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ABSTRACT:  

We have predicted acid dissociation constants (pKa), octanol-water partition coefficients (KOW), 

and DPMC lipid membrane-water partition coefficients (Klipid-w) of 150 different 8-carbon 

containing poly-/per-fluoroalkyl carboxylic acids (C8-PFCAs) utilizing COSMO-RS theory. 

Different trends associated with functionalization, degree of fluorination, degree of saturation, 

degree of chlorination, and branching are discussed based upon the predicted values for the 

partition coefficients. In general, functionalization closest to the carboxylic head group had the 

greatest impact on the value of the predicted physicochemical properties. 



 

1. Introduction 

Within the last few decades, the scientific community has awakened to the threat that 

Per- and Polyfluorinated Alkyl Substances (PFAS) pose towards human and environmental 

safety.1–4 These substances have been demonstrated to be immunopathogenic, carcinogenic, and 

in preliminary zebrafish studies, even teratogenic.3,5,6 The daunting reality of this issue is that 

there exist over 8,000 PFAS substances across the global market for a wide range of 

applications.7–10 However, very few of these chemicals have been tested for toxicity, despite the 

demonstrated health risks of some PFAS, or have had their physicochemical properties 

quantified, despite the need to understand their fate & transport. One of the major goals set out 

by the PFAS research community is the attainment of physicochemical properties.11 These 

properties can be predictive of human and environmental effects and therefore a first entry point 

for toxicology and bioaccumulation investigation regarding PFAS. Since experimental tests for 

assessing chemical toxicity and quantification of physicochemical properties are difficult, costly, 

and time-consuming, useful data may not be available for years. Hence, there is a critical need to 

design standard platforms for assessing PFAS toxicity and physicochemical properties.11–15 This 

deficiency in knowledge is only exacerbated by the chemical elusiveness of PFAS isolation from 

complex environmental and biological matrices paired with the limited availability of  analytical 

standards for these compounds.16,17 Unfortunately, these caveats makes the utilization of QSARs 

to predict physicochemical properties unreliable due to lack of experimental data. Therefore, 

computational means of predicting the physicochemical properties of PFAS will yield a powerful 

and relatively inexpensive method compared to wet lab approaches to understanding the overall 



behavior of these types of substances and may allow for the development of preliminary risk 

assessment tools.  

Physicochemical properties have been predicted within chemical accuracy by DFT, 

COSMO-RS, along with SPARC, Open structure-activity/property Relationship App (OPERA), 

EPI Suite, and machine-learning methods, for a variety of compounds, including PFAS.14,18–29 

Herein, we elect to utilize COSMO-RS models to predict relevant physicochemical properties. 

Quantum mechanical calculations paired with COSMO-RS models present a reliable method to 

predict physicochemical properties.28,30–32 This method is especially indicated for PFAS as 

fluorine chemistry exhibits hyper conjugative effects and novel chemical properties that may 

often conflict with common organic chemical intuition.33 At this point, no reliable forcefield 

parameters for PFAS exist, which further supports QM calculations as the computational method 

of choice. 34 

This study is motivated by the sheer chemical diversity available to the PFAS family, and 

the urgency to understand and prioritize risk assessment of these ubiquitous pollutants. Since the 

emergence of fluorinated alternatives including (1) shorter-chain homologues of legacy PFAS , 

(2) functionalized polyfluoropolyethers (PFPEs), and (3) sulfonic/phosphoric acids, very few 

studies have reported their physicochemical, bio-accumulative, toxicological, or bio-

transformative properties.35,36 Additionally, precursor compounds are on the radar as potentially 

unaccounted-for sources of PFAS exposure.37–40 Little information is readily available on any of  

the pertinent properties for these emerging in pollutants.41 

Given the ionogenic nature of PFAS, the acid dissociation constant (pKa) is an important 

physicochemical property to know but proves to be difficult to obtain experimentally or is 

unknown for emerging PFAS.19,28,42 Often, researchers assume that the pKa of different PFAS is 



low, meaning they only need to consider the anionic form of the molecule. However, 

experimental values of pKa for even the most well-studied PFAS are highly debated.43–45 The 

value of pKa also gives insight into the partitioning behavior of these molecules, i.e. are the 

molecules expected to be anionic or neutral. The pKa values of per-/poly-fluorinated carboxylic 

acids (PFCAs) has been predicted by COSMO-RS models, in-addition to other models.19,24 

One parameter for gauging lipophilicity of a compound is the octanol-water partition 

coefficient (KOW). KOW has been used to gauge the relative bioaccumulation of lipophilic 

compounds which may yield insight into the bio accumulative potential and base-line toxicity for 

some compounds.15,46–50 However, KOW coefficients prove to be difficult to quantifywith high 

uncertainty as a result due to a lack of the aforementioned standards, due to their surfactant 

behavior, or even a lack of standardized methods to conduct experiments.12,15  

Experimental methods include using artificial membrane columns, and computationally 

using COnductor like Screening MOdel for Realistic Solvents (COSMO-RS) theory or molecular 

dynamics (MD) simulations.24,42,46,51–54 Higher concentrations of PFAS have been measured in 

tissues that have higher amounts of phospholipids than neutral lipids.55,56 

Membrane partitioning of PFAS has also been studied in bacteria.51 These studies have identified 

the phospholipid bilayer as an important reservoir for PFAS accumulation. Therefore, 

membrane-water partition coefficients (Klipid-w) using phospholipid-derived lipid bilayers are of 

relative importance for understanding the partitioning behavior and accumulation of PFAS. 

Herein, we present pKa, log KOW, & log Klipid-w values calculated from COSMO-RS 

theory of over 150 different per-/poly-fluoroalkyl carboxylic acids (PFCAs) that contain 8 



carbon atoms. These selected molecules have a wide range of different functionalization, bond 

saturation, and degree of fluorine/chlorine saturation. 

 

2. Computational Details 

All molecules discussed in this study were constructed using Avogadro Software and 

initially optimized with UFF forcefield.57 Conformers were produced using Vconf software, with 

an energy cutoff set at 1-5 kcal/mol.58 A maximum of 50 conformers were produced and 

optimized by DFT methods. DFT geometry optimization calculations were performed using 

TURBOMOLE software package59,60 with the BP86 functional61,61 and the def-TZVP basis set62 

from the TURBOMOLE basis set library. The BP86 functional was selected as this was utilized 

in the parameterization in the physicochemical predictions of COSMOtherm63. Both neutral 

forms and anionic forms were optimized for the PFCAs. We highlight that COSMO-RS can be 

used to predict physiochemical properties of ions whereas it is impossible for other predictive 

methods.53  

Herein, we highlight the basics of COSMO-RS theory but highly we suggest the readers 

to review the strong literature associated with COSMO-RS.32,63–66 Our previously mentioned 

DFT calculations are utilized to generate a σ-profile of each molecule. These σ-profiles are then 

utilized to calculate chemical potentials (μ) utilizing COSMO-RS theory via the COSMOtherm 

software package. Finally, these μ are utilized in the calculation of the different physicochemical 

properties. 

2.2 Calculating acid dissociation constants (pKa):  

COSMOtherm software was utilized to calculate the acid dissociation constant (pKa). The 

COSMOtherm BP_TZVP_19 parametrization was used for the calculation of pKa. Optimized 



structures of the anionic form (missing a proton) and the neutral forms we utilized in the 

COSMOtherm calculation. The pKa was calculated using a weighted Boltzmann distribution that 

accounts for all entered conformers.67 This COSMO-RS methodology has been tested with a 

variety of 64 organic and inorganic acids, approximating the error of the pKa values to be ±0.49 

logarithmic units.68 Utilizing our methodology, we calculate a pKa value for perfluoro octanoic 

acid (PFOA) of 0.709. This matches the value calculated by Goss,19 and falls within the range of 

the debated experimental values of sub-zero to 3.8. In our calculations, we assume that the 

carboxylic acid functional group will be deprotonated to form the anion, which may not 

necessarily be true given the strange behavior of fluorinated compounds and the wide diversity 

of functional groups.23,43,45,69–71 

 

2.3 Calculating water-octanol partition coefficient (log KOW):  

COSMOtherm software was utilized to calculate the octanol-wet water partition 

coefficient (log KOW) for the anionic forms of the molecules. Wet octanol was chosen for the 

nonpolar phase as this more closely approximates experimental conditions. The COSMOtherm 

BP_TZVP_19 parametrization was used for log KOW calculations. This method has been utilized 

previously to reliably predict log KOW for varying neutral and anionic PFAS species, and other 

compounds.24,46 The log KOW was calculated using a weighted Boltzmann distribution that 

accounts for all entered conformers. 

 

2.4 Calculating lipid bilayer partition coefficients (log Klipid-w): 

COSMOmic,72 as part of the COSMOtherm  suite, was utilized to calculate the 

phospholipid membrane-water partition coefficient (log Klipid-w). Specifically, the weighted 

partition ratio between water and a hydrated zwitterionic 1,2-dimyristoyl-sn-glycero-3-



phosphocholine (DMPC) phospholipid bilayer were computed. The results of molecular 

dynamics (MD) generated by Jakobtorweihen et al. were utilized in our COSMOmic calculations 

to simulate our lipid membrane.73 For the general procedure associated with COSMOmic we 

refer the reader to the work of Jakobtorweihen et al. and Klamt et al.72,73 However, we prodive a 

general overview of COSMOmic herein.  

COSMOmic utilizes the same input as COSMO-RS, the σ-profile obtained from DFT 

geometry optimization calculations. This includes the solute molecule (in our case a PFAS of 

interest), solvent molecule (water in this study), and a single lipid molecule. COSMOmic differs 

from COSMO-RS in that a system is divided up into smaller subsystems then summed over these 

divisions. The system that is divided up is obtained from MD simulations of the anisotropic 

system (lipid+water). A solute molecule is then placed within these layers and a chemical 

potential is calculated.  A free energy profile is then calculated based upon these chemical 

potentials. From here, the free energy profile is then utilized to calculate the log Klipid-w value. 

The COSMOtherm BP_TZVP_C30_1401 parametrization was used for log Klipid-w 

calculations. The same membrane dipole potential utilized by Bittermann et al. was utilized in 

this study.74 This methodology has been shown to be effective at calculating DPMC lipid 

membrane-water partition coefficients for PFAS.42,53 

3. Results and Discussion 

3.1 Error Analysis of COSMO-RS & COSMOtherm 

To demonstrate the accuracy and utility of COSMO-RS/COSMOtherm and COSMOmic, we 

report pKa, and log KOW values for various PFAS reported in the literature. The comparison to 

experimental values for PFAS tends to be limited/problematic.12,43,45 Table 1 contains a 

comparison of experimental and theoretical log KOW values for a series of fluorotelomer 



alcohols. Table 2 contains pKA values for a series of PFCAs. The root-mean absolute error 

(MAE) and root-mean square error (RMSE) indicate that our calculations show comparable 

results to prior COSMOtherm calculations and OPERA calculations, similar to what others have 

shown.24 However, the MAE and the RMSE values may be skewed due to the larger number of 

pKa values for so-called “short-chain” PFAS over “long chain” PFAS. A more detailed error 

analysis associated with the value contained herein, and the difference in experimental 

techniques can be found in the Supporting Information. For more information about the 

performance of COSMOmic for the calculation of Klipid-w please refer to the work by 

Jakobtorweihen et al. and Klamt et al.72,73  

Table 1: Octanol-water partition coefficients (log KOW) estimates and previously 

determined experimental values. The mean absolute error (MAE) and root-mean square 

error (RMSE) is indicated. 

FTOH 

log KOW 

(experiment)75 

log KOW 

(calculated, us) 

log KOW 

(calculated, 

previous)24 

log KOW 

(OPERA) 

4:2 FTOH 3.28 2.65 - 3.27* 

6:2 FTOH 4.54 3.82 3.17 3.47, 3.64* 

8:2 FTOH 5.58 4.97 4.84 6.07, 5.07* 

10:2 FTOH 6.63 6.14 7.45 7.74, 7.09* 

MAE - 0.61 0.98 0.89, 0.47* 

RMSE - 0.62 1.02 0.93, 0.57* 

* Calculated by OPERA 2.6 on the EPA CompTox Chemical Dashboard v2.2.19 

Table 2: Acid dissociation constants (pKa) estimates and previously determined 

experimental values. The mean absolute error (MAE) and root-mean square error (RMSE) 

is indicated 



PFCA 
pKa 
experiment 

pKa (Calculated, 
us) 

pKa (Calculated, 
previous)24 pKa (OPERA)24,* 

PFDA 2.5870 0.78 0.47 0.40 

PFOA 3.8024,44 0.80 0.36 0.34 

  1.0124,76 0.80 0.36 0.34 

 1.3177 0.80 0.36 0.34 

  2.5024,24 0.80 0.36 0.34 

PFPeA 0.8524 0.75 0.43 0.80 

 0.2370 0.75 0.43 0.80 

 0.2370 0.75 0.43 0.80 

 0.3770 0.75 0.43 0.80 

 0.5477 0.75 0.43 0.80 

PFBA 0.6424 0.72 0.55 -0.21 

 0.4870 0.72 0.55 -0.21 

 0.3670 0.72 0.55 -0.21 

 0.3870 0.72 0.55 -0.21 

 0.3777 0.72 0.55 -0.21 

PFPrA 0.3224 0.83 0.03 0.81 

 0.3870 0.83 0.03 0.81 

 0.3470 0.83 0.03 0.81 

 0.2970 0.83 0.03 0.81 

 0.4477 0.83 0.03 0.81 

TFA -0.3019 0.95 0.60 0.72 

  0.4924 0.95 0.60 0.71 

 0.3570 0.95 0.60 0.71 

 0.2670 0.95 0.60 0.71 

 0.2470 0.95 0.60 0.71 

MAE   0.661 0.582 0.777 

RMSE   0.420 0.485 0.572 
Calculated by OPERA 2.6 on the EPA CompTox Chemical Dashboard v2.2.19 

3.2 Diversity of PFCAs Studied 

Herein, we only considered fluorinated carboxylic acid molecules containing a total of 8 carbon 

atoms, which we term C8-PFCAs. 150 different C8-PFCAs were optimized and had their 

physicochemical properties calculated. Throughout this work we will refer to different positions 

on the per-fluorinated chain utilizing schematic 1, as reference to the carboxylic headgroup. 



 

Schematic 1: (top) A skeletal structure & (bottom) cartooned representation of PFOA 

indicating the α, β,γ, & δ positions on the per-fluorinated chain with respect to the 

carboxylic head group. White/red/grey/green spheres represent 

hydrogen/oxygen/carbon/fluorine atoms, respectively. 

 

The functional groups and the number of molecules that fall within that class that were 

considered in this study are listed in Table 3. A molecule with multiple functional groups would 

be considered to fall within multiple categories associated with functional group. For example, a 

C8-PFCA containing an ester and a thiol would count once under the thiol category and once 

under the ester category. We assume that each C8-PFCA is saturated with fluorine atoms, unless 

it falls under the “unsaturated” category, indicating that at least 1 fluorine atom has been 

replaced by a hydrogen atom. The “chlorinated” category indicates that the C8-PFCA that at 

least 1 fluorine atom has been replaced by a chlorine atom. The “branching” category indicates 

that the C8-PFCA molecule is not linear, such as 2-trifluoromethyl-perfluoroheptanic acid. The 

category “ring” indicates that a benzylic ring is contained within the structure of the C8-PFCA 

molecule. Each individual C8-PFCA's skeletal structure and SMILES can be found in the 

Supporting Information (SI).  



While there are many comparisons that could be made with this data, we focus on major 

aspects we find interesting.  While accuracy of the methodology is important, we would like to 

remind the reader that we are interested in the trends associated with functionalization of these 

molecules.78 Herein, we discuss relevant trends that we believe are of importance to the reader 

but encourage the reader to utilized the files we generate to investigate additional trends. We 

freely provide the COSMOtherm files to anyone with internet access.79 

Table 3: The functional group category and number of molecules associated with the 

category. An example skeletal structure of a representative member of the functional group 

category is also included. 

Functional Group Category # Of Molecules (N) Example Molecule 

Alkene 18 

 
Alkyne 5 

 
Anhydride 3 

 
Branching 49 

 
Carbonyl 16 

 
Chlorinated 13 

 
Ester 34 

 
Ether 16 

 



Ring 8 

 
Thioester 9 

 
Thioether 14 

 
Thioketone 3 

 
Thiol 15 

 
Unsaturated 37 

 
 

 

  



3.3 pKa PFCAs 

 

Figure 1: Violin plots of the pKa versus the functional group categories. The median pKa 

value is marked with a black line while the 1st and 3rd quartiles are marked with a red line. 

A violin plot of the log pKa values of the 150 C8-PFAS vs. their functionalization can be 

seen in Figure 1. The average predicted pKa value for the 150 C8-PFCAs was 1.704 with a 

maximum of value 4.758, a minimum value of –0.232, and a standard deviation of 0.992 

logarithmic units. Of the molecules studied, PFCAs with a thiol group or ether functional group 

had the largest range of pKa values. Of the molecules studied, thioesters and unsaturated C8-

PFCAs had the highest average pKa values while C8-PFCAs functionalized with carbonyls, 

anhydrides, and thioethers had the lowest average pKa values. 



 

Figure 2: Relative amount of the anionic form of the C8-PFCAs versus the pH. The colors 

of the lines/area of the lines are associated with different functional groups. 

Those looking to study C8-PFCAs in their anionic form will need to consider utilizing a 

basic media to ensure 100% conversion to the anionic form, especially when considering a 

mobile phase of high-performance liquid chromatography (HPLC). However, according to our 

predictions the majority of the C8-PFCAs should be converted completely to their anionic state 

at a pH=7. To demonstrate this, we utilize the acid dissociation constant to determine the relative 

amount of anion (Anion to Neutral Ratio) of all 150 C8-PFCAs as a function of pH in Figure 2. 

We assume the C8-PFAS are in low ionic strength environment to have the activities of the C8-

PFCAs approach their concentrations in our calculations of %anion. However, commonly used 

treatments of the mobile phase to reduce pH should be approached cautiously as some of our 

tested C8-PFCAs have higher than the previously mentioned average pKa values. For example, 

formic acid/phosphate/acetic acid buffers with pKa values of 3.8/2.1/4.8, respectively, would 

result in an appreciable amount of neutral C8-PFCAs in solution as predicted for our 150 C8-

PFCAs. 



Initially. one may elect based upon the predicted pKa value for the majority of the 

explored C8-PFAS is lower than 2 logarithmic units, one would only need consider the anionic 

forms of the molecules when calculating the other physicochemical properties herein (log KOW 

and log Klipid-w), given that at a pH of 7 or greater would permit the dominance of the anionic 

forms for the majority of the molecules. However, to determine if this is indeed a valid 

approximation we utilized COSMO-RS theory to calculate the Gibbs free energy of solvation 

(ΔGsolv) for the anionic and the neutral forms of each molecule with water/octanol/1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as solvents. To compare the difference in the 

ΔGsolv between the anionic form and the neutral form of each molecule we introduce a 

convention to compare the change in ΔGsolv via equation 1: 

Δ(ΔGsolvent) = ΔGsolv(neutral) - ΔGsolv(anion)    [1] 

Where ΔGsolv(neutral) is the Gibbs energy of solvation of the neutral form of the C8-PFCA, 

ΔGsolv(anion) is the Gibbs energy of solvation of the anionic form of the C8-PFCA, and 

Δ(ΔGsolvent) is the difference between the two previously mentioned values. Therefore, a positive 

Δ(ΔGsolvent) indicates that the anionic form of the molecule is more thermodynamically favorable 

while a negative value indicates that the neutral form is more preferred. 

  The results of these calculations can be seen in Figure 3. For all cases considered herein, 

Δ(ΔGsolvent) is lower for the anionic PFCA over the neutral form in H2O and octanol. However, 

for DMPC the ΔGsolvent was determine to be lower for neutral form for the majority of the 150 

molecules. Predicted values for all partitioning coefficients and relevant thermodynamic 

properties are contained within the supporting information for both the anionic and the neutral 

forms of each PFCA. 



However, is the neutral form that is the most prevalent as the molecule passes through the 

lipid bilayer? To answer this question, we calculate the Gibbs free energy profile of PFOA 

(Figure 3). These Gibbs free energy profiles can elucidate the distribution of the 

neutral/anionic/cationic forms of the same molecule at different depths within the phospholipid 

membrane.46 PFOA is a good representative case for the general behavior of the studied C8-

PFACs. Generally, the anionic form sorb on the “exterior” side of the headgroup of the DMPC 

near the positively charged quaternary amine while the neutral form of PFOA sorb to the 

aliphatic chain contained within the lipid. 

Figure 3: (left) Plot of Δ(ΔGsolvent) vs. the molecule’s index number (Number) of the 

octanoic acids in water, the DMPC lipid, and octanol. (right) Gibbs free energy profile for 

the (black/red line) neutral/anion form, respectfully, of PFOA traversing a DPMC lipid 

layer. 

A comparison between the log KOW and the log Klipid-w values for the anionic and the 

neutral forms of the molecules are contained within the Supporting Information. There is a 

general linear relationship between the anionic and neutral properties (R2=0.77/0.66 for log 

KOW/Klipid-w, repectively). While the values associated each form differ by multiple logarithmic 

units, the general trends associated with each form should be retained. 

 



3.3.1 pKa and Fluorination 

Unsurprisingly, the degree of fluorine saturation plays a large role in the value of the pKa. 

To investigate this, we consider a series of C8-PFAS that vary with fluorine saturation 

(molecules #0 to #7). Generally, as the degree of fluorination is decreased the pKa increases. 

However, position relative to the headgroup makes a large impact. For example, comparing the 

pKa value of molecule #6, where the only fluorinated carbon is on the opposite end of the 8-

membered chain, to molecule #7, where the only fluorinated carbon is the α-carbon relative to 

the carboxylic head-group, there is a difference in pKa values of ≈ 2.3 logarithmic units 

(4.623/2.345 for molecule #6/#7, respectively). 

3.3.3 pKa for Fluorinated Rings 

Upon inspection of the ortho-/meta-/para-isomers of trifluoromethyl-tetrafluorobenzocid 

acid, the further away the trifluoromethyl group is from the carboxylic head-group on the phenyl 

ring the lower the pKa value. The predicted values were 2.02/2.24/1.88 for the o-/m-/p-isomer, 

respectively. The inductive effects associated with different positions of trifluoromethyl group 

could be the reason for this change. 

3.4 Log KOW of C8-PFCAs  

As previously established, only the anionic forms of the 150 C8-PFCAs were considered 

when calculating the log KOW values. The log KOW values for the neutral form of the C8-PFCAs 

were also calculated but will only be reported in the Supporting Information. 

A more positive log KOW value indicates favoritism for partitioning into the octanol phase 

while a more negative value indicates favoritism to partition into the water phase. The average 

predicted log KOW value for the anionic form of the 150 C8-PFCAs was –3.787. This indicates a 

preference for anionic forms of C8-PFCAs to partition into water over octanol, generally. A 



maximum log KOW value of 0.010, a minimum value of –7.167, and a standard deviation of 

1.158 logarithmic units was predicted. A violin plot of the log KOW values of the 150 C8-PFAS 

vs. their functionalization can be seen in Figure 4. 

 

Figure 4: Violin plots of the log KOW versus the functional group categories. The median 

log KOW value is marked with a black line while the 1st and 3rd quartiles are marked with a 

red line. 

Interestingly, the only category of C8-PFAS that ventured closely to having equal 

favoritism of water to octanol were two C8-PFCAs with a thiol functional group. There were 

molecules #37 and #40 with a log KOW value of –0.479 and 0.010, respectively. The skeletal 

structures of these molecules can be found in the Supporting Information. Molecule #37 is an 

analogue to PFOA with a thiol functional group at the β-carbon with respect to the carboxylic 

group. Molecule #40 is similar to #37 with an additional thiol functional group at the α-carbon. 

The most hydrophilic of the tested C8-PFCAs tended to be functionalized with a carbonyl 

or ether groups. The most negative log KOW value of –7.167 was predicted for molecule #152. 



This C8-PFAS has a carbonyl group at the β-carbon, with respect to the carboxylic head group, 

and is only fluorinated at the carbon at the opposite end of the molecule. 

3.5 Log Klipid-w of C8-PFCAs 

As previously established, only the anionic forms of the 150 C8-PFCAs were considered 

when calculating the log Klipid-w values. The log Klipid-w values for the neutral form of the C8-

PFCAs were also calculated but will only be reported in the Supporting Information. 

A more positive log Klipid-w indicates a corresponds partitioning into the DPMC 

phospholipid membrane while a smaller value indicates partitioning into water. The average 

predicted log Klipid-w value for the anionic form of the 150 C8-PFCAs was 2.335 with a standard 

deviation of 0.559 logarithmic units. This indicates a preference for anionic forms of C8-PFCAs 

to partition into the DPMC lipid bilayer over water, generally. The same trend is predicted for 

the Klipid-w of the neutral forms of these molecules. A maximum log Klipid-w value of 4.357 and a 

minimum value of 1.025. A violin plot of the log Klipid-w values of the 150 C8-PFAS vs. their 

functionalization can be seen in Figure 5. 



 

Figure 5: Violin plots of the log Klipid-w versus the functional group categories. The median 

log Klipid-w value is marked with a black line while the 1st and 3rd quartiles are marked with 

a red line. The units of log Klipid-w are L(water)/kg(lipid). 

The relationship between log KOW and log Klipid seems to have a linear correlation (Figure 

6). In general, as log Klipid-w increase so does Log KOW. This provides justification for utilizing 

the octanol-water partition coefficient as an approximation to the phospholipid membrane-water 

partition coefficient. Log Klipid-w has been correlated with cellular uptake and toxicity for 

PFAS.42,53 The PFACs with a residual larger than residual standard error of the regression (0.211 

logarithmic units) were molecules #134, #138, #154 and #157. The compounds contained either 

an ether functional group (#134 & #138) or a thiol group (#154 & #157) and were not saturated 

with fluorine atoms. Their skeletal structures can be found in the Supporting Information. 

However, it should be pointed out that there are exceptions to this correlation, as we highlight in 

different sections and other studies have done before us, for PFAS.42,53 



 

Figure 6: A plot of log Klipid-w versus log KOW. The units of log Klipid-w are 

L(water)/kg(lipid). 

3.6 Log KOW & log Klipid-w - Branching 

 

The COSMO volume is associated with the volume of the molecule as calculated by 

COSMO-RS theory.32,64 Therefore, we elect to utilize the COSMO volume as the properties 

associated with branching, as IUPAC naming can become quite cumbersome and/or 

uninformative with an exorbitant number of different analogs that could be generated by 

considering different branched isomers.  

While the COSMO volume does not seem to have a linear relationship with the partition 

coefficients, trends can be pulled from Figure 7. Considering a series of perfluoroheptanonic acid 

with changing the position of a single trifluoromethyl group (molecules #41 to #45), the largest 

impact on the calculated partition coefficients was placement of trifluoromethyl group at the α-

position relative to the carboxylic head group. Placement of the trifluoromethyl group after this 

position seemed to have minor impact on the partition coefficients. The addition of an additional 

trifluoromethyl group to the α-position decrease/increase the value of the log KOW/log Klipid-w, 

respectively, when comparing molecule #41 to molecules #49 & #50. 



  

Figure 7: Plot of COSMO volume (Å3) vs. (top) log KOW value or (middle) log Klipid-w value. 

The structures associated with the molecule number are indicated in the Supporting 

Information. The units of log Klipid-w are L(water)/kg(lipid). 

  



3.7 Log KOW & log Klipid-w - Saturation 

 

Figure 8: Plot of predicted (top) log KOW value or (middle) log Klipid-w value vs. double bond 

location and (bottom) skeletal structures for the unsaturated C8-PFCAs. The units of log 

Klipid-w are L(water)/kg(lipid). 

Generally, the further away the alkene bond is from the carboxylic head group, the larger 

the log Klipid-w values, as seen in Figure 8. The modification of saturation changed the predicted 

log Klipid-w value by approximately 0.4 logarithmic units for the set of molecules considered in 

Figure 8. This indicates that the analogs become more lipophilic as saturation occurs further 

from the carboxylic head group for the tested C8-PFCAs. Interestingly, functionalization 

between C3 & C4 (β & γ) and C4 &C5, (γ & δ) causes the log KOW value to increase, showing 

deviation from the predicted log Klipid-w values. Unsaturation impacted the predicted values of 

log KOW by approximately 0.5 logarithmic units 



3.8 Log KOW & log Klipid-w - Ethers and Thioethers 

We have elected to modify the location of the bridging ether/thioether functional group, 

as seen in Figure 9. The thioether analogs have replaced the ether bond with a thioether 

functional group. The inclusion of a thioether or ether increases the log KOW
 and log Klipid-w 

values with respect to the value for PFOA. Interestingly, the placement of an ether functional 

group changes the predicted log KOW by 0.34 logarithmic units. However, the placement of a 

thioester group close to the carboxylic headgroup has a more pronounced effect, changing the 

predicted log KOW value by 1.8 logarithmic units. The replacement of an oxygen with a sulfur 

atom increases the log KOW value by approximately 1 logarithmic unit at the C2,C3 and C3,C4 

positions, while the other positions have a much less pronounced impact. The position furthest 

away (C7,C8 position) had the least impact for thioethers. Interestingly, the opposite trend 

appears to be true for the ethers, the further from the headgroup the larger the partition 

coefficient.  



 

 

Figure 9: Plot of predicted (top) log KOW value or (middle) log Klipid-w value vs. functional 

group location of ether/thioether analogs and (bottom) associated skeletal structures for the 

C8-PFCAs. The units of log Klipid-w are L(water)/kg(lipid). 



 

3.9 Log KOW & log Klipid-w -Degree of Fluorination 

The degree of fluorination is predicted to have a pronounced effect on both the log KOW 

and log Klipid-w values. As an example, we consider the different analogs of perfluorooctanoic 

acid (PFOA) with different degrees of fluorination. A plot of the partition coefficients and the 

structures considered are displayed in Figure 10. Generally, less fluorinated compounds are 

predicted to have a more negative log KOW value over more fluorinated compounds with a range 

of 1.747 logarithmic units. Log Klipid-w values were found to increase with fluorination with a 

range of 1.277 logarithmic units. Interestingly, the position of fluorination with respect to the 

carboxylic head group was found to change the log Klipid-w value by approximately 0.6 

logarithmic units while log KOW only changed 0.165 logarithmic units when comparing molecule 

# 6 vs. molecule #7. 



 

Figure 10: (Top) Plot of log Klipid-w vs. log KOW of octanoic acids with varying degrees of 

fluorination and (bottom) associated skeletal structures C8-PFCAs. The units of log Klipid-w 

are L(water)/kg(lipid). 

 

  



3.10 Log KOW & log Klipid-w -Degree of Chlorination 

 

Figure 11: Plot of log Klipid-w vs. log KOW of octanoic acids with varying degrees of 

chlorination. The structures associated with the molecule numbers are contained in the 

Supporting Information. The units of log Klipid-w are L(water)/kg(lipid). 

The degree of chlorination’s impact on the partition coefficients has been visualized in 

Figure 11. Considering chlorinated analogs of PFOA (molecules #93 to #97) has minimal impact 

on the log Klipid-w value, hovering around 2.50 log units and a range of 0.032 logarithmic units. 

Log KOW values had a larger range of 0.375 logarithmic units. The log Klipid-w/log KOW/pKa value 

increases as the degree of chlorination increases when comparing the values of these chlorinated 

analogues to PFOA.  

4. Conclusions 

In this study, we have conducted geometry optimizations of conformers of 150 different 

8-carbon containing poly-/per-fluoroalkyl carboxylic acids (C8-PFCAs) utilizing density 

functional theory (DFT). From these optimized structures, COnductor like Screening MOdel for 

Realistic Solvents (COSMO-RS) theory was utilized to predict the acid dissociation constant 

(pKa), the octanol-water partition coefficient (log KOW), and DPMC lipid-bilayer-water partition 

coefficients (log Klipid-w) of the C8-PFACs. In reference to perfluorooctanoic acid, the molecules 

considered in this study are modified with a variety of different functional groups. 



While there are outliers, general trends based upon our predicted values can be suggested 

to help aid experimentalists in the fate/transport of these molecules, provide a guideline in the 

preliminary risk-assessment of C8-PFACs, and help provide physicochemical properties to aid in 

the daunting remediation of the environment via engineered solutions. For the molecules 

considered herein we determined that:  

• Functionalization of PFCAs results in a range of pKa of ≈5 logarithmic units. 

• Functionalization of PFCAs results in a range of log KOW of ≈7 logarithmic units. 

• Functionalization of PFCAs results in a range of log Klipid-w of ≈3 logarithmic units. 

• Generally, functionalization α or β to the carboxylic head group had the greatest impact 

on the value of the predicted physicochemical properties. 

We assert that COSMO-RS predictions are a good preliminary tool to help aid in the risk 

assessment of emerging/unknown PFAS. We aggregate the files utilized in this study on our 

webpage, available for anyone to utilize.79 We are in the process of developing an even larger 

database of PFAS that can be utilized by anyone with access to COSMOtherm. We plan to 

expand our database beyond the carboxylic headgroup and beyond PFAS only containing 8 

carbon atoms. As these results are calculated, we will add the files to our webpage. 
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