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ABSTRACT

This interactive tutorial describes state-of-the-art methods for for-
mally verifying neural networks and their usage within safety-
critical cyber-physical systems (CPS). The inclusion of deep learning
models in safety-critical applications requires to formally analyze
the behavior of the system, including reasoning about the individ-
ual components (e.g., controller robustness), and their interactions
and effects in the system as a whole. This tutorial begins with a
lecture on this emerging research area, followed by demos of these
methods implemented in software tools, specifically the Neural
Network Verification (NNV) tool. Examples include systems from
aerospace, automotive, and beyond.
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1 INTRODUCTION

NNV (Neural Network Verification) is a software tool! that sup-
ports the verification of multiple deep learning models, as well
as learning-enabled CPS, specifically a class of systems known as
Neural Network Control Systems (NNCS) [5, 18], where a neural
network is used as a feedback controller in a closed-loop system.
The center of NNV is reachability algorithms and various set repre-
sentations such as star sets, polytopes, zonotopes, and ImageStars,
which provide the ability to compute exact and over-approximate
reachable sets of feedforward neural networks (FFNN) [14, 15,
18], Convolutional Neural Networks (CNN) [16], Recurrent Neural
Networks (RNNs) [13], Semantic Segmentation Neural Networks
SSNNss (encoder-decoder architectures) [17], Binary Neural Net-
works (BNNs) [3], Neural Ordinary Differential Equations [9] and
NNCS [7, 12, 18]. The constructed reachable sets can be used to
verify various specifications such as safety or robustness, which
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are commonly used in learning-enabled CPS and deep learning
domains, respectively [4, 10].

In the past few years, there has been increased interest in the
areas of neural network [1, 10] and NNCS verification [4], not only
growing in the number of publications, competitions like VNN-
COMP and ARCH-COMP AINNCS, software tools and improved
verification methods, but also maturing as a field with standard
formats for neural networks like ONNX [11] and specifications
in VNN-LIB 2. This growing interest has also reached outside of
academia, leading to the creation of companies as spin-offs from
their research . The growing interest has also increased the usage
of NNV in several institutions outside of the developers’ organiza-
tions, including AFRL, Collins Aerospace [2], Northrop Grumman,
General Motors, and Toyota.

In this interactive tutorial, we demonstrate NNV capabilities
through a collection of safety and robustness verification tasks,
which involve the reachable set computation of feedforward, con-
volutional, semantic segmentation, and recurrent neural networks,
as well as neural ordinary differential equations and neural network
control systems. And as NNV is publicly available, participants can
follow along as desired. Publications on NNV have participated in
several prior repeatability/artifact evaluations at top conferences
such as CAV [5, 18], with passing results for multiple publications,
which illustrates the feasibility of this interactive demonstration
plan. Further, NNV is already available for in-browser execution
through platforms like CodeOcean [6], and we plan to organize
the interactive tutorial aspects around this or similar (Jupyter-like)
in-browser demonstrations.

Based on the growing importance of safety, trust, and trustwor-
thiness in AI and especially in safety-critical autonomous CPS, we
imagine this tutorial will be of interest to the attendees. In particu-
lar, we believe the tutorial is timely and relevant for ESWeek and
EMSOFT given the focus of our work on developing NNV in the
context of the typical embedded and cyber-physical model-based
design flow using tools like Matlab and Simulink.

2 PRESENTATION FORMAT AND TUTORIAL
PLAN

The tutorial is divided into three main sections, beginning with an
overview of formal verification, safe autonomy and trustworthy
Al and an introduction to formal verification of neural networks,
followed by two hands-on tutorials using NNV for neural network
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verification and autonomous CPS verification. The anticipated time-
frame for the tutorial is a half day, with approximately an hour
devoted to each of these three sections. The planned presenters are
included next in the tentative agenda. If time allows, we will include
a discussion period at the end for around fifteen minutes, and we
will take questions throughout the tutorial. We will accommodate
any planned coffee breaks, etc. based on the program agenda as it
is finalized.

(1) Overview (motivation, safe autonomy, trustworthy Al, for-
mal verification of neural networks and NNCS): Taylor T.
Johnson

(2) Neural network verification (open loop tasks for CNNs, SSNNss,
BNNG, etc.): Hoang-Dung Tran

(3) Autonomous CPS verification (closed loop / NNCS): Diego
Manzanas Lopez

Next, we include some further detail on the planned topics.

Overview. In this portion of the tutorial, we first motivate why
safe autonomy and trustworthy Al are important, particularly in
the context of autonomous CPS that incorporate machine learning
components. We then discuss what neural network verification
is, surveying the various approaches for it using different meth-
ods developed within the emerging field (such as optimization
and SMT-based approaches, beyond our reachability approaches
in NNV), and preview important and impactful use cases in the
embedded systems industry and high-profile research programs,
such as DARPA Assured Autonomy and ANSR, as well as NSF Safe
Learning-Enabled Systems, as well as within the research commu-
nity through VNN-COMP and ARCH-COMP AINNCS.

Neural Network Verification. In this portion of the tutorial, we
demonstrate the capabilities of NNV in a variety of open-loop ap-
plications including classification, image recognition, and semantic
segmentation over a collection of deep learning models such as
CNNs [16], RNNs [13], and SSNNs [17]. Throughout these experi-
ments, we evaluate the robustness of the neural network models
against targeted and random adversarial attacks to the system.

Autonomous CPS verification. In the latter portion, we focus on
the verification of autonomous CPS in safety-critical applications,
including examples in aerospace, ground, and maritime autonomous
vehicles [4, 7, 8, 12]. We present an interactive tutorial that shows
step by step how lo load and create a NNCS model in NNV, to repre-
sent the specifications to verify, compute the reachable sets of the
system, and finally show the verification proofs or counterexamples
as well as the visualization of the computed reachable sets.
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