PHYSICAL REVIEW B 107, 155143 (2023)

Quantum-classical correspondence of strongly chaotic many-body spin models
Luis Benet®,! Fausto Borgonovi,>? Felix M. Izrailev,*> and Lea F. Santos ®°
Unstituto de Ciencias Fisicas, Universidad Nacional Auténoma de México (UNAM), Av. Universidad s/n,
Col. Chamilpa, CP 62210 Cuernavaca, Mor., Mexico
’Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics,
Universita Cattolica, via della Garzetta 48, 25133 Brescia, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
4Instituto de Fisica, Benemérita Universidad Auténoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
3Dept. of Physics and Astronomy, Michigan State University, E. Lansing, Michigan 48824-1321, USA
Department of Physics, University of Connecticut, Storrs, 06269 Connecticut, USA

® (Received 9 December 2022; revised 26 March 2023; accepted 14 April 2023; published 26 April 2023)

We study the quantum-classical correspondence for systems with interacting spin particles that are strongly
chaotic in the classical limit. This is done in the presence of constants of motion associated with the fixed angular
momenta of individual spins. Our analysis of the Lyapunov spectra reveals that the largest Lyapunov exponent
agrees with the Lyapunov exponent that determines the local instability of each individual spin moving under
the influence of all other spins. Within this picture, we introduce a rigorous and simple test of ergodicity for the
spin motion, and use it to identify when classical chaos is both strong and global in phase space. In the quantum
domain, our analysis of the Hamiltonian matrix in a proper representation allows us to obtain the conditions for
the onset of quantum chaos as a function of the model parameters. From the comparison between the quantum
and classical domains, we demonstrate that quantum quantities, such as the local density of states (LDoS) and the
shape of the chaotic eigenfunctions written in the noninteracting many-body basis, have well-defined classical
counterparts. We also find a relationship between the Kolmogorov-Sinai entropy and the width of the LDoS,

which is useful for studies of many-body dynamics.
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I. INTRODUCTION

The quantum-classical correspondence (QCC) principle is
one of the deepest concepts of physics and has attracted
significant attention since the birth of quantum physics. The
different nature between classical and quantum mechanics is
at the origin of the QCC problem,; this difference being highly
pronounced in deterministic Hamiltonian systems. One of the
first rigorous results connecting quantum and classical physics
that is often mentioned in the current literature is the Ehrenfest
theorem [1]. It states that narrow quantum packets propagate
along the classical trajectories for a finite timescale g during
which the spread of the packets in the phase space can be
neglected.

Until the birth of the theory of quantum chaos, the Ehren-
fest theorem served as the main tool for establishing the
QCC. However, the application of this theorem to quantum
systems that exhibit chaotic motion in the classical limit led
to unexpected results. As analytically shown in [2], when
the system is classically chaotic, the quantum packets spread
exponentially fast resulting in a very short physical timescale
tg on which there is complete correspondence between the
quantum and classical descriptions of the deterministic sys-
tems’ behaviors (see also discussion in [3]).

The estimate of the Ehrenfest time for the simplest one-
dimensional chaotic systems is given by the expression fg
A~'In(1/her), which depends on both the classical Lya-
punov exponent A and the effective quantum parameter 7fieg
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proportional to the Planck constant 7. This expression reveals
two cornerstones in the theory of the QCC. The first one is
that the more unstable the classical motion is, the shorter the
time 7z becomes. The second is that by moving deeper into
the quantum region, the Ehrenfest time 7z shrinks.

The first numerical study of a paradigmatic model of classi-
cal and quantum chaos, the kicked rotor [4], revealed another
timescale, fp > fg, on which there is a good QCC for the
width of the quantum packet as it diffusively spreads in mo-
mentum space. The process of quantum diffusion gradually
slows down, and for times ¢ > tp, a complete saturation takes
place, while classical diffusion continues. The semianalytical
approach developed in [3,5] showed that the saturation results
from the localization of the eigenstates that are involved in
the dynamics. Due to the finite size of the eigenstates in the
infinite momentum space, only a fraction of the phase space
can be covered by the quantum packet. Measuring the local-
ization length [, of the eigenstates by projecting them onto
the unperturbed basis in which the dynamics is explored, it
was found numerically and explained semianalytically that /,
is proportional to the classical diffusion coefficient D.;. This
direct link between classical diffusion and the localization
of the eigenstates is an important finding in the theory of
quantum chaos. It became known as dynamical localization
and is observed in various disordered models.

As a result of the discovery of the two timescales on
which the chaotic properties of motion get manifested in a
quantum system, ¢z and 7, the question arose about when the
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correspondence principle holds. Local properties of chaos are
evident in quantum systems on timescales ¢ < tg, while for
global properties, this happens for ¢ < 5. This means that in
quantum systems, manifestations of chaos depend on the time
at which the evolution of the system is considered. Thus, we
have to agree that there is no unique answer to the validity of
the correspondence principle itself. The answer does not de-
pend only on the generally accepted classical limit /i — O,
but also on how the limit is taken, whether before or after the
time limit t — oo. If, for example, we fix fi.s and let time go
to infinity first, the correspondence principle will be violated.
If, on the other hand, we assume that the correct procedure
is to take Zi.sr — O first, the course of action becomes to fix a
finite time when taking /i,y — 0, and only next take r — oo,
therefore “saving” the correspondence principle as applied
to chaotic systems. (The question of which limit should be
taken first arises also in classical physics when investigating
integrable nonlinear systems with a large number N of degrees
of freedom, the issue in this case being the order of the limits
N — ocoandt — 00.)

Taking /e — O first was the solution to the QCC prob-
lem proposed by Chirikov at the beginning of the quantum
chaos theory [3]. According to Chirikov, chaotic properties
are observed in quantum systems at finite times only, be the
time short or long. Similar points have been partially ad-
dressed in several recent studies [6—25] that relate unstable
classical motion with the exponentially fast evolution of quan-
tum observables, including the out-of-time ordered correlator
(OTOC) [26]. In these works, the QCC is mostly restricted
to short times, typically on the same order as the Ehrenfest
time.

Further numerical studies comparing classical and quan-
tum diffusion [27] led to the conclusion that the observed
quantum diffusion, although nicely reproducing the global
properties of classical diffusion, is not true diffusion, because
quantum diffusion is reversible in time, in contrast to diffusion
in classical physics. By numerically reversing the evolution,
the initial quantum packet is completely recovered, while this
is not possible in a classical system due to the exponential
sensitivity of the chaotic motion to any weak perturbation. In
essence, chaos that occurs in quantum systems at times ¢ > g
for some global observables has a different nature from chaos
emerging in classical physics.

There have been several efforts to relate essential proper-
ties of a (pseudo)chaotic quantum dynamics to the statistical
properties of spectra and eigenstates. One of the earliest
suggestions in this direction was Berry’s conjecture that for
quantum billiards fully chaotic in the classical limit, the
eigenstates may be treated as random superpositions of plane
waves [28]. In this sense, quantum chaos can be understood
as the complicated (random) structure of the stationary states
in a physically chosen basis (see also [29-34]). As for the
eigenvalues, the properties of the energy spectra of quantum
systems that are strongly chaotic in the classical limit should
be comparable to those determined by random matrices of a
specific symmetry [35,36].

The interest in the statistical properties of the energy spec-
tra of complex quantum systems emerged before the birth of
quantum chaos. It was motivated by experimental studies of
heavy nuclei and many-electron atoms (see, e.g., [37,38] and

references therein). One of the first questions addressed was
the shape of the distribution P(s) of the spacings s between
nearest energy levels in relation to the results from exper-
iments with nucleon scattering on nuclei. It was observed
that the probability of small spacings decreases with s, thus
manifesting repulsion between nearest-neighboring energy
levels. After intensive discussions about the form of P(s),
Wigner suggested the expression that is nowadays known
as the Wigner surmise [39], obtained with the use of sim-
ple scaling arguments. Later, he indicated that the form of
P(s) could be explained within the theory of random matri-
ces. Further studies of random matrices (see the collection
of papers in [40]) showed that the degree of repulsion for
small spacings s depends on the symmetry of the random
matrices or, equivalently, on the underlying symmetry of
the physical systems. Although there is no analytical ex-
pression valid for any value of s, it was numerically shown
[41] that an exact form written as an infinite sum is quite
close to the approximate expression given by the Wigner
surmise.

The relationship between the properties of the energy
spectra of quantum systems that are strongly chaotic in the
classical limit and the spectra of random matrices emerged in
studies of billiards [35,36] and was supported with semiclas-
sical analysis [42]. In the other limit of completely integrable
classical systems, it was understood [43] that the form of
P(s) can be approximately described by the Poisson distribu-
tion P(s) ~ exp(—s). This distribution was analyzed within
a semiclassical approach to quantum systems in [28]. The
Berry-Tabor conjecture [28] of the Poisson form of P(s) is
considered a generic property of integrable quantum systems
with a classical limit, but despite intensive mathematical stud-
ies (see [44—46] and references therein), it has not yet been
rigorously proved. Recent studies [47] of the Lieb-Liniger
quantum model, known to be integrable and solvable with
the Bethe ansatz [48,49], have shown that the Berry-Tabor
conjecture fails due to the existence of underlying correla-
tions between energy levels. Other papers that have discussed
the onset of level repulsion in integrable systems include
Refs. [50-54].

As one moves from few- to many-body systems, the anal-
ysis of the correspondence principle gets more challenging
[18,19,55-61]. With regard to classical systems, this is pri-
marily due to the structure of the multidimensional phase
space, which becomes practically inaccessible for a detailed
study. On the quantum side, the main problem is the dimen-
sion of the Hilbert space, which grows exponentially fast with
the number of particles and sites. As a result, many ques-
tions about the QCC applied to many-body systems remain
unanswered.

The purpose of this paper is to resolve the issue of the QCC
for many-body systems, at least partially, by focusing on the
strongly chaotic regime. Our study is based on the semiana-
lytical approach that was used to establish the criteria for the
onset of quantum chaos and statistical relaxation in isolated
quantum systems of interacting Fermi and Bose particles, and
which were confirmed by numerical experiments [34,62—64].

We consider a one-dimensional spin model that is relevant
to experiments with ion traps, where the range of the inter-
actions can be tuned [65-68]. We show that quantities used
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in the analysis of quantum dynamics, quantum chaos, and
localization have classical counterparts. The QCC between
these quantities becomes excellent in the region of quantum
chaos. We also find a direct relationship between the rate
of quantum information spread and the Kolmogorov-Sinai
entropy, which is a classical quantity obtained by summing
the positive Lyapunov exponents.

The paper is organized as follows. In Sec. II, we describe
our one-dimensional classical system with L interacting spins
and determine the range of parameters chosen for our numeri-
cal simulations. As we explain, the analysis of the system’s
behavior in the multidimensional phase space is simplified
due to additional integrals of motion. The phase space of the
system represents a set of L three-dimensional (3D) spheres,
each one corresponding to one spin. The motion of each spin
is limited by a 3D phase space and is described by a 3D equa-
tion with an external perturbation determined by the behavior
of the surrounding spins. As a result, the degree of instability
of the motion of a single spin is effectively determined by the
positive Lyapunov exponent associated only with that individ-
ual spin and not with the entire system of spins. This allows us
to relate the maximal Lyapunov exponent of each single spin
with the Kolmogorov-Sinai entropy of the whole system. In
addition, we are able to obtain a rigorous and simple definition
of ergodicity for the entire classical system by examining the
motion of each spin on its 3D sphere.

Section III describes the corresponding quantum system
and gives an estimate of the critical interaction strength above
which the behavior of the quantum system can be considered
chaotic. The estimate is done before diagonalization and is
based on the structure of the Hamiltonian matrix represented
in a properly chosen noninteracting basis. Numerical analysis
of level statistics supports the analytical estimates that we
obtain.

In Sec. IV we show that it is possible to define classical
analogues to functions that are widely used in the analysis of
quantum systems. One of these functions is known in nuclear
physics as strength function and in solid state physics as local
density of states (LDoS). The other refers to the shape of the
eigenfunctions (SoE) and is used to quantify the eigenstates
as either localized or delocalized, and as regular or chaotic.
The LDoS and the SoE for classical systems are obtained
by numerically integrating the classical equations of motion
[69,70]. The possibility to talk about the classical LDoS and
the classical SoE remains little known, despite some previous
studies [71-75]. Our numerical data demonstrate an excellent
correspondence between the classical and quantum functions
above the quantum chaos border. The knowledge of these
functions is extremely important for the description of the
dynamical properties of the quantum system and its relaxation
into a state that can be described statistically [34].

Inspired by the QCC, several results have been obtained re-
lating the behavior of quantum observables—such as survival
probability, Loschmidt echo, different types of entropies, and
OTOCs—with the maximal Lyapunov exponent in the region
of strong chaos [7,10,11,13,17,22,25,76]. However, many-
body classical systems are characterized by the full spectrum
of Lyapunov exponents and many features of global dynamics
can be thought in terms of the sum of all positive Lyapunov
exponents [77], that is, the Kolmogorov-Sinai entropy. This

prompts us to search for a link between quantum dynamics
and the Kolmogorov-Sinai entropy, a direction taken also in
[78-80]. It was recently shown that the width of the quantum
LDoS determines the dynamical wave packet spreading in
the noninteracting many-body Hilbert space [64,81] and is
related with the timescale for equilibration. In Sec. V, we then
compare the width of the LDoS with the Kolmogorov-Sinai
entropy and find a direct correspondence between the two.
Conclusions are given in Sec. VI.

II. CLASSICAL MODEL

‘We consider a one-dimensional classical model of L inter-
acting spins described by the following Hamiltonian:

L L-1 L
H=Hy+V =) BSi—Y > Lusisi, D)
k=1

k=1 j>k
where
By = (Bo + 8By),
and
J
=
The angular momentum I? = |§k|2, fork=1,...,L,1is fixed.

We choose I = 1, so that time has the dimension of inverse
energy. In Eq. (1), By, are the frequencies of the noninteracting
motion described by the Hamiltonian Hy. They are slightly
detuned by random values of 6By, with [6B;| < W < By,
to avoid degeneracies in the corresponding quantum model.
We consider a single set of random values of §By, so the
model is perfectly deterministic, in the sense that no averages
over different realizations of Hamiltonians are performed. The
interacting part of the Hamiltonian depends on the couplings
Jjx between all pairs of spins and decays algebraically with
the distance between the spins with an exponent v > 1. Even
though there is coupling between distant spins, technically
speaking, since the model is one-dimensional and v > 1, we
are not considering long-range interactions. Most of our re-
sults are obtained for the generic value of v = 1.4 and do not
depend on this choice.

The classical equations of motion are obtained from stan-
dard expressions written in terms of the Poisson brackets and
the Levi-Civita symbol €%/ as

{587} = aje sy, )
from which we have

$i = (S1. Ho} = —ByS).

Si = {SLH) = BiS; + 57 D JusSt, ®)
J#k
$i={S5. V)= =S\ D Jas)
J#k

The numerical solution of the classical dynamics is ob-
tained by integrating, via the 9/8 Runge-Kutta algorithm,
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the equations of motion in Eq. (3). To make the comparison
between quantum and classical dynamics as close as possible,
the initial conditions for the classical system are chosen using
random directions for the spins in the Bloch sphere under
either the constraint of (i) fixed noninteracting energy in a
sufficiently small microcanonical energy range Ey — §Ey <
Hy < Ey + 8Ey, or of (ii) fixed total energy E — SE < H <
E + SE. For each result, we specify whether condition (i) or
(i1) is used.

When analyzing the structure of the phase space of model
(1), it is important to take into account that in addition to the
total energy, there are L other integrals of motion, namely the
squares of the angular momenta of each spin, which are fixed.
In other words, the classical trajectory of each individual spin
lies on a sphere of unit radius, which is separated from the
other spins. The influence of the surrounding spins to the
stability of an individual spin can be regarded as an external
perturbation. From this viewpoint, the equation for the k-th
spin can be written as

S+ QOS] = F(@), “
with the nonlinear time-dependent frequency
2 2
Si(@)
QG =D TaSio) | =7 > |J——k| . ()
ok 7
and the driving nonlinear force
F(t) =Y Ju[BiSi(1)S)(1) — BiSHD)S{(1)]
J#k
B;S()S(t) — By S*(1)S:(¢t)
S ) P Ak A b N (0
: lj — kI
J#k

Equation (4) indicates that the z component of each single
spin can be thought of as a parametric oscillator with a
time-dependent frequency $2;(¢) and under the force Fi(t)
that depends on the sum of the product of all x and y spin
components.

The picture above implies that, in addition to the stability
of the motion of the total system consisting of L oscillators
(spins), one can ask about the stability of any individual spin.
Notice that the motion of a single spin is itself nonlinear, but
for weak interactions between spins, the nonlinear terms can
be treated perturbatively. This representation of our model
helps to understand the essential properties of the motion.
Specifically, in the weak interaction limit, the motion of the S*
component of a chosen oscillator can be considered separately
from the $* and S* components.

A somewhat similar model of parametric oscillators was
analyzed by Chirikov in his seminal paper [82,83], in which he
discovered that the overlaps of nonlinear resonances result in
the phenomenon of chaotic motion. These resonances appear
in the second order of perturbation theory, which complicates
the analytical approach. The rigorous analysis of such nearly-
linear models of interacting particles, where the nonlinearity
is due to the perturbative coupling with other degrees of free-
dom, is still an open problem (see [84]).

In the following two subsections we study the properties of
our system with the purpose of identifying, if any, the region
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FIG. 1. (a) Lyapunov spectrum for L = 7 spins showing L pos-
itive, L negative, and L null exponents. (b) Average (over initial
conditions) of the maximal Lyapunov exponent and average density
of the Kolmogorov-Sinai entropy as a function of the energy per spin
E /L for two different system sizes L. (c) Average Kolmogorov-Sinai
entropy as a function of J, (in semilog scale) for different values of
L [see legend in (d)]. (Inset) Rescaled Kolmogorov-Sinai entropy as
a function of J, showing the collapse into a single curve. (d) Average
Kolmogorov-Sinai entropy density vs average maximal Lyapunov
exponent for different values of L; same values of J, as in (c).
Dashed line is the best linear fit (7 is the slope) for all data in the
region ML) < 0.8. Deviations from the linear dependence appear

for A& > 0.8, since this region is characterized by large values of
the interaction strength, Jy > By. In all panels: By = 1, W = 0.2,
and v = 1.4. In (a),(b): Jy = 3. In (b): Average over an ensemble of
300 initial random trajectories within a small energy window £0.01
around the indicated energy values in the x axis. In (c),(d): Fixed
energy |E| < 0.01 and the average is done over 10? initial values of

Sx.y.z

of maximal classical chaos. We also give a physical insight of
what maximal chaos actually means.

A. Lyapunov analysis

To study the chaotic properties of the classical many-body
system, we perform the standard Lyapunov analysis, which
consists in finding the Lyapunov spectrum Ay, A3, . .. Asz, [85].
We compute the whole Lyapunov spectrum by integrating the
variational equations together with the equations of motion
[86,87]. This is done by choosing random initial conditions at
a fixed energy E. Since the length of each spin is a constant of
motion, L exponents are equal to zero. In addition, due to the
time-reversal symmetry, the eigenvalues satisfy Ay = —A3; ¢,
for k = 1, ..L, hence there are only L positive Lyapunov ex-
ponents. The spectrum is illustrated in Fig. 1(a) for L = 7.
Notice that the Lyapunov exponents corresponding to k = 7
and k = 15 are very close to zero, but are not zero.

From the Lyapunov spectrum, we obtain the Kolmogorov-
Sinai entropy hgs which is defined via the Pesin theorem [88]
as the sum of all positive Lyapunov exponents,

L
s = > A @
k=1
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Our main interest is in the maximal Lyapunov exponent Ap,x.
For two sufficiently close initial conditions on the constant
energy surface, the distance between the two trajectories in
the multidimensional phase space grows exponentially in time
with a rate given by Apax. Its inverse 1/Am.x defines the short-
est timescale related to the dynamical instability.

In what follows, we use the results in Fig. 1 to describe the
direct relationship between the maximal Lyapunov exponent
and the Kolmogorov-Sinai entropy. In particular, Fig. 1(b)
shows that both quantities are similar functions of energy and
Fig. 1(d) demonstrates that sigs/L X Amax-

Generically, the Lyapunov exponents and the Kolmogorov-
Sinai entropy depend on the initial conditions, such as the
energy or the particular regions of the energy surface, and on
the chosen parameters L, By, Jy, and the range of the interac-
tion v. To show this dependence, we fix By = 1, which sets the
energy scale, keep v = 1.4, choose a sufficiently large inter-
action strength Jy = 3, and study in Fig. 1(b) An.x and hgs as
a function of the energy of the initial conditions. Here and
hereafter, the notation for the maximal Lyapunov exponent
Amax and for the Kolmogorov-Sinai entropy hgs indicate the
average values obtained within an ensemble of random initial
conditions with constant energy E. As seen in Fig. 1(b), both
the maximal Lyapunov exponent and the Kolmogorov-Sinai
entropy are smooth increasing functions of the energy density
E /L. We therefore choose E = 0 as the region of maximal
dynamical instability (chaos) for our further investigations. In
the numerical simulations £ = 0 means —0.01 < E < 0.01.

It is important to note that fixing the value of the energy
does not fix the degree of chaos, since we still have the
freedom to tune the interaction strength Jy. This is actually
a subtle point that deserves better clarifications. Contrary
to the common intuition, increasing the interspin interaction
strength Jp while keeping the energy fixed at E = 0 does not
increase the contribution of the interacting part V in com-
parison with the noninteracting part Hy. Fixing the initial
conditions to have £ = 0 means that |Hy| =~ |V], so for any
Jo, both Hy and V remain on the same order of magnitude.
Physically, changing the strength of the perturbation Jy while
keeping the energy E fixed just means exploring different
regions of the energy surface £ = 0. That is, increasing Jy
corresponds to selecting a set of initial conditions where, on
average, the modulus of the z magnetization, [(1/L) ), ;.
also increases. This is a generic feature found whenever one
fixes the total energy rather than changing the ratio between
the interacting part (V') and the noninteracting part (Hp) of the
Hamiltonian.

Figure 1(c) shows that the Kolmogorov-Sinai entropy
grows logarithmically with respect to the interaction strength
Jo, even for small Jy < 1. To better understand the dependence
of hks on the system size L, we plot in the inset the density
of the Kolmogorov-Sinai entropy hgs/L as a function of Jy.
As one can see, the data obtained for different values of L
collapse into a single curve, showing that the rescaling with
respect to the system size is excellent. These results should be
compared with those contained in [85], where an analogous
rescaling was found for the discrete nonlinear Schrédinger
chain.

For values of J; that are not too large with respect to By, the
(average) maximal Lyapunov exponent shows a dependence

10°
10°
<]“ k=3L
10" k=1
k=2
K k=3
: k=4
10'6 k=5
k=6
k=7 e (b JO=3
10° | , E , | ,
0 200 400 0 20 40
t t

FIG. 2. Distance between two close trajectories in time. Black
thick line is the Euclidean distance in the 3L dimensional space,
while coloured lines stand for the distance in the 3D space for
different spin numbers k = 1, .., L, where L = 7. The parameters
are o« = 1.4, By =1, §W = 0.2, initial energy £ = 0+£0.01, and
interaction strength Jo = 0.3 (a) (weak chaos) and Jy = 3 (b) (strong
chaos). Only one trajectory is considered.

on the interaction strength similar to that of the density of
Kolmogorov-Sinai entropy. To facilitate the comparison, we
plot one quantity as a function of the other in Fig. 1(d). There
is a linear relation between them, hgxs/L = mAnax, Where
m >~ 0.43 is the slope obtained by the best linear fitting for
not too large values of Anyax. This relationship is in agree-
ment with the approximate linear dependence of the positive
part of the Lyapunov spectrum as a function of k seen in
Fig. 1(a).

Concerning the physical meaning of these results, let us
first point out that the dependence of both Aks and Apx on
In Jy, as evident from Figs. 1(c) and 1(d), raises the question
of the contribution of each spin to the growth in time of the
phase space volume. Indeed, since a coarse-grained volume
in the phase space is expected to grow exponentially in time
with an exponent given by hxs [77,89], we should have

V() = V(0) " o [JE]' )

The equation above indicates that even in the presence of a
strong inter-spin interaction, each spin contributes individ-
ually to the growth of this volume. This behavior must be
related with the presence of the L constants of motion, being
therefore generic for spin systems. It would be interesting to
test this result in other classical spin chains.

Another important point that we raise, motivated by the
equations of motion [Eq. (4)] for the single spins, is the
relationship between the maximal Lyapunov exponent of
the multidimensional problem and the dynamical instability
of the trajectory of each individual spin confined to its 3D
sphere. To address this question, we compare the dynam-
ics of the Euclidean distance between two initially close
trajectories for each spin k, Ax(t) = [|Sy(¢) — S;(¢)||, with
the Euclidean distance for the many-dimensional problem,
Asp = [Zézl ||§k(t) — §,/((t)||2]1/2. The results are shown in
Fig. 2 for two values of the interaction strength Jy. Despite
fluctuations, one sees that the exponential growth of A (¢) for
each spin k coincides with the maximal Lyapunov exponent
of the many-body spectrum. This means that the timescale
for the dynamical instability on each individual Bloch sphere
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is also described by the maximal Lyapunov exponent of the
multidimensional problem, a result that is far from trivial.

B. Ergodicity of the classical motion

The finding above that the motion of each spin is charac-
terized by the maximal positive Lyapunov exponent means
that the motion is locally strongly chaotic. However, this
does not imply that global properties, such as the relaxation
of the whole system of L spins, follow the predictions of
statistical mechanics. For this reason, we now investigate
whether our system exhibits ergodicity. Apart from simple
specific systems, such as billiards and two-dimensional maps,
a mathematical proof of ergodicity for interacting many-body
systems is still missing. The usual numerical approach is
to search for consequences of ergodicity, such as the decay
of correlations functions, which is still not enough to claim
ergodicity.

Here, we introduce a very simple and rigorous way to
study the onset of ergodicity. Since the motion of each spin
is confined to its 3D sphere, a rigorous definition of ergod-
icity means that the distribution of each one of the three
Cartesian components of each single spin should follow the
expression for each component of the random eigenstates of
N-dimensional full random matrices [90,91],

T(N/2)
JET((N = 1)/2)

where I'(N) is the Gamma function. In the case of N — oo,
this expression leads to the Gaussian distribution of the eigen-
vectors components. Since in our case we have N = 3, the
ergodic distribution implies the constant result P(S) = 1/2.
This method significantly simplifies the study of ergodicity
for spin models.

To test ergodicity in our system, we consider a single
initial condition 1(0) = {5(0), .., S.(0)} at a fixed energy
E = 0 and compute the trajectory u«(¢) under the full Hamil-
tonian H for a very long time, T = 10°. We then build the
distribution obtained by sampling each component Sfl(t_,-),
where @ = x,y,zand k = 1, .., L, at different times t; = j/T,
j=1,..,T. The interval [—1, 1] in which each single spin
component can vary is divided in 10? bins and we count the
number of times each single spin component visits each single
bin. We say that the motion is ergodic when the distribution
P(S¥) = 1/2 within the statistical error.

The results for the distributions P(S¥), P(S”), and P(S%)
for various interaction strengths Jy are shown in Figs. 3 and
4 for L = 6 and L = 60, respectively. Each color represents a
different spin number k =1, ..., L.

In Figs. 3(a)-3(c), where chaos is weak, the distribution of
§% is clearly different from that of the components $* and S”.
This can be understood from the equations of motion, Eq. (4).
In the absence of interaction, the motion of each spin is simply
arotation about the z axis. In the presence of weak interaction
strength Jy, these oscillators get coupled, resulting in a motion
that covers ergodically a portion of the surface of the 3D
sphere. For even larger Jy, the motion eventually covers the
whole surface. Looking at Fig. 3, as Jy increases to Jy = 1
[Figs. 3(d)-3(f)] and Jy = 3 [Figs. 3(g)-3(31)], P(5%) becomes
more similar to P(S*) and P(S”), but the distributions do not

P(S) = (1 —§HWN=/2 ©

J,=0.3 (a) J,=0.3 (b) J;=0.3 (©)
AL 0.5 Pt e i gttt
0 1 1 1 1 1 1 1 1 1
J=1 d [ J=1 e [ Izt ()
B 0.5 bbb 0 om ot T ot PR o ST Mg
0 | 1 1 1 1 1 1 1 |
JO=3 (2) JO=3 (h) Jo=3 @)
bR, N L v
A05 TJ)" v - “‘*»‘\‘v.t_., = f“""«we;e,. u,w-wf' e
0 | 1 1 1 1 1 1 1 |

-1 05 O 05 -1 -05 O 05 -1 -05 0 0.5 1
s’ s’

FIG. 3. Probability distribution functions P(S*) [(a),(d),(2)];
P(S8”) [(b),(e),(h)], and P(5%) [(c),(),()] for Jo = 0.3 [(a)—(c)], Jo =
1 [(d)—(D)], and Jy = 3 [(g)—(i)]. Solid horizontal black line indicates
the theoretical result for ergodicity, P(S;”"*) = 1/2. Parameters: L =
6,By =1,v = 1.4, W = 0.2. Initial conditions: random spins with
energy E = 0. Integration time T = 10°. Only one trajectory is
considered.

get flat, so the motion cannot be considered truly ergodic for
this system size (L = 6), even when the interaction strength is
large (by significantly increasing Jy, the distributions become
even more curved).

By increasing the system size L, our data in Fig. 4 show
a clear onset of ergodicity provided the interaction strength is

1,203

(@ [ J=03 (b)

FIG. 4. Probability distribution functions P(S*) [(a),(d),(2)];
P(87) [(b),(e),(m], and P(S%) [(c),(D),(®)] for Jo = 0.3 [(@)—~(c)], Jo =
1 [(d)—(®)], and Jy = 3 [(g)—(1)]. Solid horizontal black line (clearly
visible in Fig. 3) indicates the theoretical result for ergodicity,
P(S;") = 1/2. Parameters: L =60, By =1, v = 1.4, W =0.2.
Initial conditions: random spins with energy £ = 0. Integration time
T =10°.
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strong enough, Jy 2 1. Therefore, ergodicity for the motion
of any single spin requires a large number of spins. A possible
reason for the lack of ergodicity for L = 6 is the presence of
stability islands due to nonlinearity. This has been observed
for L = 2 in Ref. [71] and references therein.

We reiterate that to have strong statistical properties one
should have both strong chaos, signalled by a positive maxi-
mal Lyapunov exponent, and ergodicity.

II1I. QUANTUM MODEL
Upon quantization we have, for each spin,
1IS2 | = 2SS+ 1) =1,

where S is the quantum spin number and the z component of
the spin has the values /s withs = —S, -S+1...,5 — 1, S.
For simplicity, we only consider integer spin numbers S. Here,
and below /i = 1/{/S(S + 1) plays the role of an effective
Planck constant. In other words, the classical limit is obtained
for large spin numbers § > 1.

We build the many-body Hilbert space of the total quantum
Hamiltonian,

H=H+V, (10)

using the z representation, where the basis |n) corresponds to
the many-body eigenstates of the noninteracting Hamiltonian
H, and have noninteracting energies E(*,

L
Aoln) =Y (Bo+8B)SiIn) = Em),  (11)
k=1
with
n) = |81, oy Skyvvn,SL),
and

Siln) = SElIst, ooy Sk, oo nSL) = Aselsy, oo, Sk, oo ., SE)-

The interacting part of the classical Hamiltonian (1) is written
in terms of operators as

L-1

L
) o aeer
j>k k=1

The interparticle interaction is computed by taking into
account that 8§ = (87 + §7)/2 and

ot
Sk |Sl,...,Sk,...,SL>

=hy/S(S + 1) — si(se £ Dlsy, ..

.,Sk:tl,...,SL>.
(13)

The two-body interaction in Eq. (12) can be written as V =
Vin + Vout, where

. Jo aval . aea
%“:Z4|'_k|u(;_sk +Sj Ij_) (14)
kM
and
% Jo d+o+ 4 6—o—
Vouw =Y W(sj SE+85). (15)
J#k
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FIG. 5. Structure of the full Hamiltonian in the site representa-
tion (a) and in the energy representation (b). The block diagonal
structure is evident. In (b), the red vertical and horizontal lines indi-
cate multiples of 7By. For both panels: By = 1, §W = 0.04, J, = 3,
v=14,L=4,§=2.

The term Vi, couples spin configurations that have the same
total magnetization along the z axis, M, = Zf;l 3‘;, so it
does not change the value of the quantum number pu, =
—LS,—LS+1,...,LS —1,LS. The term Vom couples basis
vectors that differ by two excitations, so it changes the total
magnetization by a factor of two, u, — u, £ 2. The eigen-
values can then be divided as belonging to an even (in units
of ) or odd value of the total z-magnetization. The model
is not integrable for any choice of the parameters Jy # 0,
BQ 75 O, v 75 0.

A. Hamiltonian matrix structure and quantum chaos border

Information about the structure of the Hamiltonian matrix
is fundamental for a complete description of the system in
terms of quantum chaos [34]. From the structure of the matrix,
one can estimate the quantum chaos border, that is, the inter-
action strength necessary to produce chaotic eigenstates and
thus relaxation and eventually thermalization [34,92]. The full
analysis of the Hamiltonian matrix, eigenvalues, and eigen-
states provides a more complete picture than relying only
on the statistics of the spacings between neighboring energy
levels.

We order the many-body noninteracting states from low
to high energies and analyze the structure of the Hamilto-
nian matrix in two representations. The site representation
is used in Fig. 5(a), where the label n in the axis indicates
a many-body noninteracting state |#) and each colored dot
marks a nonzero element (n|H|m) # 0. In Fig. 5(b), each dot
indicates again an element (n|H|m) # 0, but the labels in the
x and y axes are now the noninteracting energies E*. This
noninteracting energy representation is more physical and it
allows for generalizations to other many-body models.

To provide a detailed analysis of the Hamiltonian matrix,
let us discuss first its noninteracting part Hy, which commutes
with M. This means that in the many-body S, representation
the Hy matrix has a block-diagonal structure with 2SL + 1
blocks, each block being associated with a quantum number
.. The block structure is indeed observed for the diagonal
elements in Figs. 5(a) and 5(b).

All levels belonging to a single block would be degenerate
if §B; = 0. Instead, we have random |[6B;| < W < By, so
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FIG. 6. Structure of the central block (u, = 0) of the Hamilto-
nian 1-70 + Vi, in the site representation. By = 1, W = 0.04, Jy = 3,
v=14,L=4,85=2.

each block of noninteracting levels forms an energy band
whose maximal width is estimated to be ~2L§W. This can
be confirmed by considering the central block with u, =
0 (which is the largest block) and a generic state |ng) =
|s1, ..., s.) belonging to it. The noninteracting energy of this
state is given by

(nolHolno) = ) _ s¢8Bx,
k

which is maximized for s; = S and §B; = §W, so that E{O) =

hSLSW, E O _ —hSLSW, and the energy size of the central

min
block can be estimated as
Ao =EQ —EW ~2nSLSW ~ 2L5W. (16)

max

Since the energy distance between the diagonal blocks is
proportional to /iBj [see the horizontal and vertical red lines
in Fig. 5(b)], when By > 2LSéW, the diagonal elements are
arranged in 2LS + 1 disconnected segments, as indeed seen in
Figs. 5(a) and 5(b), while for By < 2LSSW, all elements along
the diagonal become more or less homogeneously distributed.

We now move to the interacting part of the Hamiltonian,
starting with the term V;, in Eq. (14) that only couples states
inside the same block of fixed u, value, since it commutes
with M.. Let us then concentrate on a single block with fixed
.. In Fig. 6(a), we show the central block (u, = 0) and the
arrows indicate examples of nonzero elements caused by the
interactions within that block, (n|Vi,|m) # 0.

The two-body interaction Vi, which contains the sum of
the operators S';TS,:, exchanges the state of two spins that
at most have a noninteracting energy difference e = h|By —
Bj| >~ 2héW ~ 26W/S.

The term V,, in Eq. (15) couples the elements of one block
with those of a next-nearest-neighboring block, and as such,
it allows us to compute the entire width of the Hamiltonian
matrix. The arrows in Fig. 5(a) indicate examples of nonzero
elements caused by the interactions between the central block
and outer blocks, (n|Vu|m) # 0. To estimate the energy band-

0.9
e 2 3 I AL=3 o
P - 33 /0 0.8 = vi=4
as ¥ - 76} r Al=4
\éf B j)_ 52—4 A/ . 0.7+
5 r L o) S AL=5
< / =
COl g 0.6 oOL=4
Z 1 /7 B O] =
| [0) L=6
10'F 05 —erg————
i | /X | (?) i | LI | I(b)
C Z 1 L1 1 1 1 1 1
1 2 4 8 0’40 1 2 3 4
L S

FIG. 7. (a) Number of off-diagonal matrix elements N, rescaled
by the dimension of the many-body Hilbert space dim(H) = (25 +
1)t as a function of the system size L for different values of S. The
dashed line is oc L. (b) Interaction strength for the quantum chaos
border J,;, as a function of § for different values of L. The dashed line
is our estimate for the chaos border. The parameters in both panels
are By =1,W =02,/ =1,v=14.

width of the total Hamiltonian matrix, we sum the energy
separation between the two outer bands connected with the
1, = 0 central band, that is ~47B, with the width of the outer
band 2L5W: AE ~ 4By/S + 2L5W.

In hands of the bandwidth of the Hamiltonian matrix, one
now needs the number of directly coupled states, so that divid-
ing that bandwidth by this number, one obtains the many-body
energy spacing. To induce quantum chaos, the interaction
strength has to be larger than the energy spacing, i.e., the
chaotic regime emerges when the interaction is strong enough
to mix all neighboring many-body levels.

The average number of directly coupled states corresponds
to the average number of nonzero off-diagonal elements in
each row of the Hamiltonian matrix. This number should be
proportional to the number of local operators in the inter-
acting part of the Hamiltonian V/, that is oc L?>. Numerically,
we compute the total number of off-diagonal matrix ele-
ments Nyg of the full Hamiltonian matrix and divide it by
the matrix dimension, dim(H) = (25 + 1)~. This is done in
Fig. 7(a) for different values of L and S, confirming that
indeed N,/dim(H) o< L?. The quantum chaotic regime ap-
pears when the typical perturbation strength (strength of
the off-diagonal elements) is able to mix many-body levels,
whose energy separation can be estimated by AE/L?. The
strength of the perturbation is proportional to Jy, but it also
depends in a complicated way on the other parameters v, L,
and S, so we denote the strength of the off-diagonal elements
of the matrix Hamiltonian by Jo|V; x|. One can then estimate
that strong quantum chaos emerges when

AF J, 17
0NL2|VLk| = Jqcb» ( )
where J,¢; designates the interaction strength for the quantum
chaos border (gcb).

In Fig. 7(b), J,cp is shown as a function of § for different
system sizes K. As one can see, for the parameters used in
the numerical investigations of this paper (S = 1,2, 3, By =
1, W =0.2, v=1.4, L =5,6,7), an “operative” estimate
for the quantum chaos border indicates Jy = 0.5. However, it
is evident that J,, depends on the length L, as also noticed in
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[93-95], and on the spin quantum number S, so it is difficult
to make further analytical considerations concerning the chaos
border both in the semiclassical and thermodynamic limit. In
the next section, we corroborate the consistency of our choice
Jo 2 0.5 by studying level statistics.

In closing this section let us stress that even if each two-
body spin Hamiltonian has its particularities, our analysis can
be extended to more general Hamiltonians. Instead of our
Hamiltonian, we could have a system with additional trans-
verse magnetic fields along the x, y directions that would also
couple the nearest-neighbour blocks, p, — . £ 1, oritcould
be a model with only V.., or other variations. But overall, the
results would be very similar, we would still have very sparse
banded matrices due to the presence of two-body couplings.
We may therefore say that the Hamiltonian structure analyzed
in this paper is quite generic for spin systems with two-body
interactions.

B. Level statistics

Quantum systems that are chaotic in the classical limit
often exhibit correlated eigenvalues as in random matrices
[37]. The degree of short-range correlations can be evaluated
with the distribution of the spacing s between neighboring
unfolded levels. In the case of random matrices belonging
to the Gaussian orthogonal ensemble (GOE), the distribution
follows the Wigner surmise, Pgog(s) = (s/2) exp(—ms?/4),
while uncorrelated levels result in a distribution close to the
Poissonian distribution Pp(s) = exp(—s) [96].

A more complete picture of the spectrum requires also
the analysis of the long-range correlations. To measure the
rigidity of the spectrum, one resorts to quantities such as
the level number variance $%(£), which is the variance of the
number of unfolded eigenvalues in an interval £. For GOE,
we have that T2,:(€) =2[InQ2me) +y + 1 —n?/8]/n2,
where y is the Euler constant, while for the Poissonian case,
the fluctuations are larger and the variance grows linearly with
the energy interval, £3(¢) = ¢.

In Fig. 8, we compare the level spacing distributions
[Figs. 8(a)-8(c)] and the level number variances [Figs. 8(d)—
8(f)] for different values of the interaction strength Jy, growing
from left to right, and keeping fixed the other parameters of
the Hamiltonian. For all the chosen values of the interaction,
the classical system is always chaotic, but deviations from
the Wigner-Dyson distribution are seen in Fig. 8(a), because
Jo = 0.3 is below the quantum chaos border. Actually, even in
the region where good agreement of the level spacing distri-
bution with the Wigner-Dyson distribution is seen [Figs. 8(b)
and 8(c)], deviations from the random matrix theory results
appear for the more sensitive measures, such as the level
number variance in Figs. 8(e) and 8(f) for £ > 7. Even though
this observation is important, it is not surprising, because we
are comparing the spectrum of a sparse banded matrix, that
has correlated elements, with the spectrum of a GOE random
matrix.

IV. SHAPE OF EIGENFUNCTIONS AND LOCAL
DENSITY OF STATES

In this section, we discuss two basic concepts for the study
of quantum chaos and show that they have classical analogues.
The first one is the envelope of the exact eigenstates written

10 15
[ [ [

20

FIG. 8. Nearest-neighbor level spacing distribution [(a)—(c)]
and level number variance [(d)—(f)] for three different interaction
strengths; L = 6, S = 2, By=1, 6W = 0.2, v = 1.4. For comparison,
the solid lines represent Poisson (black) and GOE (red) results. All
the eigenvalues have been computed from one symmetry sector (even
total z magnetization) discarding 10% of the levels at the borders.

as a function of the noninteracting energies, which is referred
to as the “shape of the eigenstates” (SoE), and the other is the
“local density of states” (LDoS). Both quantities have been
extensively investigated in view of the definition of chaotic
eigenstates [71,74]. Chaotic eigenstates are defined as eigen-
states composed of many components in the noninteracting
basis that can be treated as completely uncorrelated.

In physical systems, the eigenstates cannot be fully ergodic
in the noninteracting basis due to the finite range of the in-
teractions, which gets reflected in the band-like structure of
the total Hamiltonian. Therefore, one can speak at most about
pseudorandomness of the eigenstates in connection with some
envelope around which the fluctuations of the squared compo-
nents of the eigenfunction are Gaussian. This envelope can be
obtained either by averaging over close eigenstates or by using
moving windows within one eigenstate. The equivalence of
these two averaging procedures is at the core of statistical
mechanics.

Both quantities, SoE and LDoS, are broadly employed
in the quantum realm. To fix the notation, the Schrodinger
equation

Hyln) = E”n) (18)

defines the noninteracting eigenstates |n) and eigenvalues E,EO)
of Hy, and

Hlo) = E, o) (19)

gives the exact eigenstates |«) and exact eigenvalues E, for
H. We use Latin letters for the noninteracting eigenstates and
eigenvalues and Greek for the exact ones. The coefficients

C = (n|a) (20)

of the eigenfunctions |a) = ), C¥|n) written in the noninter-
acting basis are the building blocks of our approach. They are
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obtained from the projection of the exact eigenstates on the
noninteracting states or from the projection of the noninter-
acting states on the exact ones.

A. Shape of the eigenstates

For the quantum SoE, we study the components C as a
function of the noninteracting energies E”). We perform an
average (..) over the eigenstates in a small energy window,
E — §E < E, < E + 8F, and smooth the function,

Wg(E©) = Z S(EY —EM(|c2 |2). 1)

In this equation the SoE Wz (E(?) represents the probabil-
ity that an eigenstate having an energy in the window [E —
SE,E + 8E] is found in the noninteracting state of energy
EO.

We obtain the classical analog of the SoE by taking ran-
dom initial conditions for spins with energy fixed in a small
window E — 6E < H < E + §E and computing the nonin-
teracting energy E© = Hy(S), ..., S;) for all of them. From
that, the classical probability wg(E?) to have that particu-
lar noninteracting energy (histogram of frequencies) can be
obtained.

B. Local density of states

As for the quantum LDoS associated with some nonin-
teracting state |n), a similar procedure is used. The LDoS is
obtained from the coefficients C;’ as a function of the energy
of the total Hamiltonian. We perform an average over the
noninteracting states in a small energy window, E©© — §E <
E® < E© 4+ §E, and smooth the function,

Weo (E) = Y 8(E — E){|CE[?). (22)

This distribution represents the probability for a noninteract-
ing state with energy in the range [E® — 8E, E® + §E] to
be found in the eigenstate with energy E.

Since the quantum LDoS is the energy distribution of a
given initial state |W(0)) of the system, it is tightly con-
nected with the system’s evolution. The absolute square of the
Fourier transform of the LDoS,

/ Wio (E)e F/MdE = |(W(0)|W()) 2,

for example, 1is the survival (return) probability,
|(W(0)|W(r))|?, extensively analyzed in studies of quench
dynamics (see [34,97-102] and references therein), and the
width oy pos of the LDoS is associated with the lifetime of the
initial state. In fact, in the region of strong chaos, orpos is a
key parameter for the description of the relaxation process of
quantum systems toward thermalization [64].

To construct the classical LDoS, we fix the noninteract-
ing energy £’ and take random initial conditions for each
single spin on the unit sphere with the noninteracting en-
ergy E© in the required interval [E® — §E, E© + §E]. We
then compute the total energy E for all of them and obtain
the probability wgo (E) to have the energy E (histogram of
frequencies).

C. Quantum-classical correspondence

The comparison between the classical and quantum SoE
and LDoS is done using the components C;’ of the eigen-
functions and the properties of the classical energy surfaces
Hy = Ey and H = E. More precisely, the classical distribu-
tions can be thought of as a projection of one of these surfaces
onto the other [103,104].

Figures 9(a)-9(c) show a comparison between the quantum
SoE (shade) Wz (E©®) and its classical analog (solid line)
wg (E©). Figures 9(d)-9(f) display the comparison between
the quantum LDoS (shade) W0 (E), and its classical version
(solid line) wro(E). There is excellent quantum-classical
agreement above the quantum chaos border, Jy > 0.5, while
deviations are seen below the quantum chaos border. To ex-
plain the reason for the discrepancy, it is useful to resort to a
method to compute the classical SoE and LDoS based on the
dynamical equations of motion, as described next.

The procedure to obtain SoE goes as follows. We con-
sider one initial condition specified by the 3L vector u(0) =
810, ..., 8.(0) with energy E in the chosen energy win-
dow and consider its evolution u(¢) under the full interacting
Hamiltonian H. From that we compute the function E©(¢) =
Ho(u(t)) = Hy(S1(¢), ..., S.(r)) at several equally spaced
times #; = kAt, where At is chosen of the same order of
the typical period of the motion 1/Bj to have statistical in-
dependent data. The function E(¢) is shown in Fig. 10(a)
and the values at #; are indicated with circles. The normalized
distribution of these points is the SOE shown in Fig. 10(b). It
gives the same result as the “static” method used to obtain
Fig. 9(a) provided the trajectory can cover ergodically the
whole energy range obtained by the phase space sampling.
Most importantly, it is only in this situation that we can
properly define the classical SoE. In the case in which, due
to some physical or dynamical constraints, different trajec-
tories produce different distribution functions, then a proper
definition of the classical SOE becomes problematic. We then
have the following nontrivial result: the quantum SoE admits
a well-defined classical limit only if the classical motion is
ergodic in some energy region.

This analysis can be equivalently extended to the LDoS,
where the dynamical and static methods to compute the clas-
sical LDoS give equal results only in the region of strong
quantum chaos, and they also coincide with the quantum
LDoS. Analogously to SoE, the dynamical construction of
the classical LDoS requires a single initial condition uy(0) =
S 10), ..., §L(O) with fixed noninteracting energy E © and its
evolution u((¢) under the noninteracting Hamiltonian Hy.

To compute uy(¢) under the noninteracting Hamiltonian we
do not need to numerically integrate the equations of motion.
The classical evolution under Hy corresponds simply to rota-
tions of all spins about the z axis with frequencies By, and it is
given by

(S/’E)O(f) = $;(0) cos(Bt) + S;(0) sin(Byt),
(8))°@) = S)(0) cos(Ber) — S{(0) sin(Bet),  (23)
(859) @) = 55(0).
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FIG. 9. [(a)—(c)] Quantum (shade) and classical (line) shape of the eigenfunctions. [(d)-(f)] Quantum (shade) and classical (line) local
density of states. Parameters: L = 6, By = 1, W = 0.2, v = 1.4. The quantum-classical correspondence is very accurate for strong enough
interaction, Jy 2 1. For the quantum case, we have S = 2 and average over 41 eigenstates for the SOE and 50 noninteracting basis states for
the LDoS. For the classical functions, we consider a set of 10° initial conditions with total energies (SOE) or noninteracting energies (LDoS)

in the same interval of the corresponding quantum model.

With the trajectory under the noninteracting Hamiltonian
Hj, we obtain the function E(t) = H(S"?(t), R S'g(t)) from
where we extract the values at 7, = kAt, with At ~ 1/By, to
build the correspondent normalized histogram.

To understand the mechanism for the discrepancy between
the classical and quantum quantities for small interaction

SoE
04 03 02 0.1 0

(b)I'I'I'

4

FIG. 10. Dynamical construction of the classical shape of the
eigenfunctions. In (a): Trajectory E®(¢) obtained by inserting in the
noninteracting Hamiltonian H, the solution of the full equations of
motion under the total Hamiltonian H. Random sample of values
of EO(t) at equally spaced times are represented by circles. In (b):
These points, which represent how a trajectory at some specified
energy fills the “energy shell” of Hy, are used to plot the normalized
probability distribution function.

strength, Jo < 0.5, as shown in Figs. 9(a) and 9(d), we take
the case of the SoE as an example. Needless to say a similar
analysis can be done for the LDoS. In Fig. 11 we com-
pare the quantum SoE (shaded area) with the classical SoE

Quantum Chaos

SoE

©

FIG. 11. Classical and quantum shape of the eigenfunctions for
two different interaction strengths: Jy = 0.3 (a) and Jy = 3 (b). (Red)
histograms represent the quantum data obtained by averaging 41
eigenfunctions in a small energy window in the center of the spec-
trum. (Black) Full lines stand for the classical SoE obtained by
averaging over 10° random points in the same small energy window
(static method). (Blue) Circles are obtained with a single trajectory
with energy |E| < 0.01 (dynamical method).

155143-11



BENET, BORGONOVI, IZRAILEV, AND SANTOS

PHYSICAL REVIEW B 107, 155143 (2023)

S 0SpmeEmr e
(@) 1 E o w
r 2 1 04 ?‘ E
10F e - ; & ]
w I % 1 d 0.3F & -
¥ [ PO S04 1 v [ &
=t &% 1 % o 1L=7
L o zaa’ 1= 02F F = =10 -]
5 At . i < L=15 ]
£ ey 1 oaf # s L=20 J
,ﬂ" ] : ,f L=30 7
[ ] C ]
RO S ] FE00 CENE heh Eeh ] Eoch e Mo RO C 1 R BI0S CAOE eRoent EChSr ouay Heaenl
% 5 0 15 Y 05 1 2
e
GLDOS GLDOS

FIG. 12. (a) Comparison between the Kolmogorov-Sinai entropy
and the width of the LDoS for By =1, W = 0.2, v = 1.4, initial
energy |E| < 0.01, and different interaction strengths 0.5 < Jy <
10. The dashed line guides the eye and represents the line y = x.
(b) Comparison between the density of the Kolmogorov-Sinai en-
tropy and the rescaled width of the LDoS for the same data as in
panel (a). In the x axis the logarithmic scale has been used. Here, the
dashed line stands for the best logarithmic fit y = 0.28 4+ 0.21 In(x).

obtained with the static method (line) and with the dynamical
method (circles) for two values of the interaction strength.
While the three distributions coincide in the quantum chaotic
regime [Fig. 11(b)], they differ for small interaction strength
[Fig. 11(a)]. The lack of agreement between the two classical
distributions in Fig. 11(a) is a clear indication of the lack
of ergodicity. Due to dynamical reasons, such as the pres-
ence of islands of stability or dynamical constraints, a single
trajectory cannot span the whole allowable energy range as
defined by the random initial conditions used to implement the
static distribution. Surprisingly, even the quantum distribution
differs from the classical static one. The fact that the quantum
distribution is narrower suggests the presence of quantum
localization. This should not to be confused with the lack
of classical chaos, since both cases, Jy = 0.3 and Jy = 3, are
characterized by the exponential divergence of close trajecto-
ries, signalled by a positive maximal Lyapunov exponent.

V. KOLMOGOROV-SINAI ENTROPY AND WIDTH
OF THE LDoS

As presented in Fig. 2, the rate of the exponentially grow-
ing separation between close trajectories for each individual
spin is related with the maximal exponent of the full Lyapunov
spectrum of the whole spin system. But what is the role of the
other positive Lyapunov exponents? To address this question,
we resort to the studies in Zaslavsky’s book [77], where he
compares the value of the Kolmogorov-Sinai entropy with
the exponential growth in time of the coarsed grained phase-
space volume for multidimensional classical systems with
chaotic behavior, as in our Eq. (8). We have discussed this
relation in our previous paper [64] about the onset of quan-
tum chaos in fermionic and bosonic systems characterized by
two-body interactions. Specifically, we have argued that the
Kolmogorov-Sinai entropy [/ks in Eq. (7)] should be directly
related to the width of LDoS [orpos in Eq. (22)]. We now
confirm this expectation for our spin system.

Figure 12(a) compares oy pos and higs in the energy range
of maximal chaos (|E| < 0.01) for different system sizes L

and interaction strengths J. Different colors indicate different
system sizes, and the interaction strength for each set of data
grows from the left to the right in the panels. In the chaotic
region considered, which is characterized by ergodicity, the
classical and quantum LDoS are very close, so one can also
see the comparison between the Kolmogorov-Sinai entropy
and the width of LDoS in Fig. 12 as a comparison between
two well defined, but physically different classical quantities.

In Fig. 12(a), we observe that hgs and orpes are on the
same order of magnitude, but deviations are visible, which
depend on both the values of L and Jy. In Fig. 12(b), we show
the same data, but rescaled as fsz = hgs/L (density of the
Kolmogorov-Sinai entropy) and &1pos = 01pos/ VL (renor-
malized energy width). The reason for the rescaling with /L
for the width of the LDoS is that in the chaotic regime, the
classical width of LDoS can be considered as the sum of L
independent random variables S7, whose second moment is
proportional to L. With this rescaling, all points collapse onto
a single curve well described by a logarithmic fit.

The numerically found logarithmic dependence

hgs o¢ In 61 pos, (24)

is a relationship between two intensive quantities. This re-
markable result should be checked in other models as well.
This is a very important finding, because these two quan-
tities have a completely different dynamical origin. The
Kolmogorov-Sinai entropy is directly related to local insta-
bility, while the LDoS is associated with the global properties
of the relaxation process. We hope that the relation above will
trigger future investigations in the field.

VI. SUMMARY

The aim of our study was to establish the quantum-classical
correspondence (QCC) for interacting spin models, which can
be strongly chaotic in the classical limit. Our results indicate
that this correspondence holds only in the region of strong
classical and quantum chaos, which corresponds to the energy
region E =~ 0, as confirmed from the analysis of the Lyapunov
spectrum.

Starting with the analysis of the classical equations of mo-
tion, we found that in addition to energy, our model presents
other integrals of motion. This property, which is generic to
spin systems, stems from the fact that the motion of each
individual spin is restricted to a 3D sphere, which results in
a many-dimensional phase space with a nonstandard Hamil-
tonian structure.

We observed that for weak interaction, the motion of each
individual spin can be effectively described as a linear para-
metric oscillator under an external force consisting of a large
number of harmonics. In this case, one can speak of the
emergence of linear chaos, a term introduced by Chirikov
[105,106].

As the interaction strength increases, the influence of
nonlinear resonances emerge due to the nonlinear coupling
between the spins. However, our results made it clear that in
many aspects the dynamical properties of the model can still
be effectively described with the motion of individual spins.
In particular, we showed that ergodicity of the full model boils
down to ergodicity of the motion of each individual spin. This
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allows for the introduction of a test of the local ergodicity
of the motion of individual spins. Following random matrix
theory, ergodic motion of the trajectory on a sphere implies a
flat distribution of the components of each spin. Our numer-
ical data confirmed the emergence of this flat distribution for
a large enough interaction strength (Jy 2 1) and sufficiently
long spin chains (L >> 1). One can therefore speak of global
ergodicity, when the motion of all spins are locally ergodic.

Our study of the quantum counterpart of the system started
with the analysis of the structure of the Hamiltonian ma-
trix, which allowed us to establish a criterion for the onset
of quantum chaos. We then showed that the shape of the
eigenfunctions (SoE) and the local density of states (LDoS),
which are essential quantum quantities, have classical analogs
that can be obtained using the classical equations of motion.
There is an excellent correspondence between the classical
and quantum distributions in the region of strong quantum
chaos, but not when ergodicity is broken.

In the last section, we presented a compelling relationship
between the Kolmogorov-Sinai entropy /s and the width of

the LDoS o1 pos. Since hks is related to the local instability of
motion, it is not a directly measurable quantity, but oy p,s is
the decay rate of the survival (return) probability, which is a
global quantity that can be measured after a quantum quench.
This opens the possibility to relate the Kolmogorov-Sinai
entropy with a physically measurable quantity.
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