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Abstract

We study the chaotic properties of a large-spin XXZ chain with onsite disorder and a

small number of excitations above the fully polarized state. We show that while the

classical limit, which is reached for large spins, is chaotic, enlarging the spin suppresses

quantum chaos features. We examine ways to facilitate chaos by introducing additional

terms to the Hamiltonian. Interestingly, perturbations that are diagonal in the basis of

product states in the z-direction do not lead to significant enhancement of chaos, while

off-diagonal perturbations restore chaoticity for large spins, so that only three excitations

are required to achieve strong level repulsion and ergodic eigenstates.
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1 Introduction

Partially motivated by the Bohigas-Giannoni-Schmit conjecture [1, 2], quantum chaos was
extensively studied in the 1980’s and 1990’s [3±5]. In the last ten years, the subject has
seen a resurgence of interest due to its strong connection with several questions currently
studied experimentally and theoretically, that include the issue of thermalization in isolated
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many-body quantum systems [6±8], the problem of heating in driven systems [9±11], the
difficulty to achieve many-body localization [12±15], and the fast scrambling of quantum in-
formation [16±20]. For systems with well-defined classical or semiclassical limits, quantum
chaos refers to signatures found in the quantum domain, such as level statistics as in full ran-
dom matrices [21], that indicate whether the classical system is chaotic in the sense of positive
Lyapunov exponent and mixing. While this correspondence holds well for some systems with a
small number of degrees of freedom, such as Sinai’s billiard [1,2], it has recently been shown
to be violated in triangular billiards [22] and quantum triangle maps [23]. As one moves
to systems with many interacting particles, this issue gets even more complicated, since the
classical limit is not always straightforward [24].

In this work, we investigate a one-dimensional system of many interacting spins described
by the Heisenberg XXZ model with nearest-neighbor couplings and onsite disorder. We employ
the term ªquantum chaosº as a synonym for level statistics as in random matrices. When the
total magnetization in the z-direction is close to zero, this model is chaotic for spin-1/2 [25],
spin 1 [26, 27], and larger spins [28, 29]. For spin-1/2, the model has also been shown to
demonstrate chaotic traits for as little as 3 or 4 excitations above a fully polarized state of
spins [30,31] and even for a chain of only 3 spins-1/2 [32]. Here, we extend this analysis and
examine the case of large-spin chains with a low number of excitations. In the semiclassical
limit of a continuous spin, we verify that the system has a positive Lyapunov exponent. This
might suggest that increasing the spin size would require even fewer excitations than in the
case of spin-1/2 to reach the quantum chaotic regime. However, rather counterintuitively, the
opposite takes place, larger spin takes us away from quantum chaos. We then try to remedy this
problem by adding terms to the Hamiltonian. We show that chaos can be recovered with the
inclusion of perturbations that are off-diagonal in the basis of product states in the z-direction,
but the same does not happen for diagonal perturbations. With off-diagonal perturbations,
quantum chaos can finally be reached with only 3 excitations.

2 The model

We consider the large-spin version of the XXZ model with onsite disorder and open boundaries
described by the following Hamiltonian
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Ŝ x

k+1 + Ŝ
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where Ŝα
k

, with α= x , y, z, stands for spin-s operators acting on a lattice site k with eigenvalues
in [−s, s]. The parameter Jx y corresponds to the coupling strength in the x y plane and Jz

stands for the strength of the interaction along the z-axis. To stay away from the isotropic point,
Jx y = Jz , we choose Jx y = 1 and Jz = 0.55. The onsite disorder, where hk is independent and
uniformly distributed random numbers in the interval [−W, W ], is introduced to break spatial
symmetries. We use a weak amplitude, W = 0.5, to avoid possible localization effects at
higher disorder strength. For spin-1/2 and W ∼ Jx y ∼ Jz , model (1) is known to be chaotic
[25,33,34]. The model conserves the total z-magnetization

∑

k Ŝz
k
, and through the work we

consider almost fully polarized magnetization sectors with magnetization −sL+N . Here N is
the number of excitations on top of the fully polarized state.
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Ŝ−
k+1 + Ŝ−
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The effective Planck constant of the model is ħhe f f = I/
p

s (s+ 1), where I is the classical
angular momentum which we set equal to 1. The semiclassical limit of Eq. (1) is obtained for
very large spin numbers, s ≫ 1. More precisely, to study the classical limit, it is convenient
to normalize the spin operators, Ŝα

k
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k
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s (s+ 1), which amounts to fixing the largest
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operator to 1. Using the normalized spin operators, the

quantum Hamiltonian is given by
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where the commutation relations of the normalized spins follow directly from the standard
commutation relations of the spin,
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, Ŝβ
k

�

= i
1
p

s (s+ 1)
εαβγŜ
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, (3)

where εαβγ is the Levi-Civita symbol. In the s→∞ limit the normalized spins commute, which
corresponds to the classical limit. We can then replace the operators Ŝα

k
by real numbers sα

k
,

and obtain the classical version of the disordered XXZ model,
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which represents classical interacting rotators s⃗k =
�

sx
k
, s

y

k
, sz

k

�

on a unit sphere. The classical
system also conserves the total magnetization. We start by studying the chaotic properties of
the model in the classical limit.

3 Classical chaos

To examine the chaotic properties of the classical Hamiltonian Hcl in Eq. (4), we examine
the Lyapunov exponents starting from all the rotators pointing down in the z-direction, which
corresponds to the lowest magnetization limit. The equations of motion of the rotators are
obtained using Eq. (4) and Poisson brackets,

dsα
k

d t
=
�

Hcl , sα
k

	

,
¦

sα
k
, s
β

l

©

= δklε
αβγs

γ

k
, (5)

which gives

dsx
k

d t
= −Jx y

�

s
y

k+1 + s
y

k−1

�

sz
k
+
�

Jz

�

sz
k+1 + sz

k−1

�

+ hk

�

s
y

k
,

ds
y

k

d t
= Jx y

�

sx
k−1 + sx

k+1

�

sz
k
−
�

Jz

�

sz
k+1 + sz

k−1

�

+ hk

�

sx
k

,

dsz
k

d t
= −Jx y

��

sx
k−1 + sx

k+1

�

s
y

k
−
�

s
y

k−1 + s
y

k+1

�

sx
k

�

, (6)

and can be compactly written as nonlinear Bloch equations,

ds⃗k

d t
= − b⃗k × s⃗k , (7)
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with an effective magnetic field,
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Since the equations conserve s2
k
= s⃗k · s⃗k = 1 for each rotator separately, the equation of one

of the components of s⃗ is redundant and it is advantageous to use a numerical integration
scheme which conserves all s2

k
explicitly. One way to do this is to parametrize the orientation

of the rotators on the unit sphere as s⃗k = (sinθk cosφk, sinθk sinφk, cosθk). This yields the
following equations of motion for the angles,

dφk

d t
= Jx y sinθk−1 cotθk (cosφk−1 cosφk + sinφk−1 sinφk)

+ Jx y sinθk+1 cotθk (cosφk+1 cosφk + sinφk+1 sinφk)

− Jz (cosθk+1 + cosθk−1)− hk , (9)

dθk

d t
= Jx y sinθk+1 (cosφk+1 sinφk − sinφk+1 cosφk)

+ Jx y sinθk−1 (cosφk−1 sinφk − sinφk−1 cosφk) .

To calculate the Lyapunov exponents of this system we initialize all of the rotors at angle θ from
the z axis. Angles θ ≈ 0 correspond to the low magnetization setting considered in this work.
For each disorder realization we initiate the angles φk in the x y plane randomly in [−π,π],
and integrate the equations of motion. The maximal Lyapunov exponent is calculated with
the algorithm proposed in Ref. [35], which is based on finding the rate of growth of the fastest
growing tangent space vector. The process involves selecting a starting distance, between two
phase space trajectories. This distance is allowed to diverge over a short period of time, before
being reset back to its initial value. The procedure is repeated, and the largest Lyapunov
exponent is determined from a sum of divergences [35].

We use a chain of 50 spins to calculate the Lyapunov exponents and integrate Eq. (9) using
the LSODA method described in Ref. [36] with time steps chosen optimally by the algorithm.

In Fig. 1 for each angle θ we present the largest Lyapunov exponents computed for 100
different realizations of disorder and initial conditions,φk. We do not average the data to show
the spread of the exponents. It can be seen that even for low values of θ , which is equivalent
to a low number of excitations in the quantum limit, the largest Lyapunov exponent is positive,
indicating that the classical limit is chaotic.

4 Quantum chaos

After establishing that the classical limit of our model in Eq. (4) is chaotic at low magnetiza-
tion, we proceed to examine whether the quantum Hamiltonian in Eq. (1) exhibits properties
associated with quantum chaos. These properties include correlated eigenvalues, as in ran-
dom matrix theory, and eigenstates that away from the edges of the spectrum are close to
the eigenstates of full random matrices, that is, their components are nearly independent real
random numbers from a Gaussian distribution satisfying the normalization condition [6, 7].
The onset of these almost random vectors in many-body quantum systems results in normal
distributions of the off-diagonal elements of local observables [37±43], which is one of the
features of the eigenstate thermalization hypothesis (ETH) [27,44±52].

Needless to say, realistic many-body quantum models differ from full random matrices
(see Ref. [7] and references therein, and for newer discussions in the context of ETH, see [53±
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Figure 1: Largest Lyapunov exponents as a function of θ/π. Each point corresponds
to a different realization of disorder and the angles of the rotors in the x y-plane,
φk. The black circles correspond to the largest Lyapunov exponent of the model in
Eq. (4), while the red triangles correspond to the largest Lyapunov exponent of the
model in Eq. (14) with additional nonlinear terms. A chain of L = 50 is considered
for these simulations.

55]). One looks for properties similar to those of full random matrices, however, correlations
are always present among the elements of the Hamiltonian matrix of real systems. These
correlations then affect the structure of the eigenstates and the results for the observables. In
this work, we analyze how the properties of our system further depart from those of random
matrices as we increase the spin size s.

Our analysis of quantum chaos focuses on level statistics and the off-diagonal ETH. It is
done for the subspace with total z-magnetization equal to −sL+N , where N is a fixed number
of excitations.

To study the level statistics, we use the so called r-metric [56±58],

rα =min
�

δα
δα−1

,
δα−1

δα

�

, (10)

where δα = Eα+1−Eα is the spacing between the neighboring eigenvalues of the Hamiltonian.
The r-metric captures short-range correlations among the energy levels. For an integrable
system with Poissonian level spacing distribution, the average of rα over the spectrum gives
rPoisson ≈ 0.39, while for chaotic systems rGOE ≈ 0.53 [57]. The latter is the value obtained for
full random matrices from Gaussian orthogonal ensembles (GOE) [57].

In Fig. 2 we plot the average of the r-metric, 〈r〉, for four different spin sizes as a function
of the number N of excitations in the system. We repeat our calculations for chain lengths
ranging from 10 to 38 sites (darker colors indicate larger chains). Surprisingly, while the
classical limit of this model is chaotic, as shown in the previous section, for larger spin sizes,
more excitations are required to reach signatures of chaos in the quantum domain. Similarly
to the spin-1/2 model studied in Refs. [30, 31], the system with spin 1 is fairly chaotic for
N = 3 and 4, as seen in Figs. 2 (a)-(b), but 〈r〉 for the spin-4 model does not reach rGOE for the
system sizes considered, as evident in Fig. 2 (d). For a fixed system size and a fixed number of
excitations, the r-metric in Fig. 2 indicates that a system with a larger spin presents a weaker
degree of chaos than its counterpart with a smaller spin.
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Figure 2: Average of the r-metric for four different spin sizes, s = 1,2, 3,4, as a
function of the number of excitations N and various system sizes. Darker circles
represent larger chain sizes (see legends). In the calculations of this metric, the top
and bottom 15% of the eigenvalues are omitted. The dashed horizontal lines stand
for rPoisson = 0.39 and rGOE = 0.53. The average is performed over 250 disorder
realizations.
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Figure 3: Distributions of the off-diagonal elements of the Ŝz
L/2 operator for spin 1

(top row) and spin 4 (bottom row) and varying system sizes. Left column corresponds
to N = 3 excitations and right column to N = 4 excitations. We use 250 eigenstates
in the middle of the spectrum to compute the off-diagonal elements, and normalize
the distributions to have unit variance. The dashed black line shows a Gaussian
distribution with unit variance.
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Figure 4: Kurtosis of the distributions of the off-diagonal elements of the Ŝz
L/2 opera-

tor for four different spin sizes, s = 1, 2,3, 4, as a function of the number of excitations
N and various system sizes. Darker circles represent larger chain sizes (see legends).
In the calculations of the kurtosis we used 250 eigenstates from the middle of the
spectrum. For a chaotic system the kurtosis is supposed to be zero.

To better understand why the degree of quantum chaos decreases as the spin is enlarged,
we resort to the analysis of the distribution of the off-diagonal elements of the local magneti-
zation, Ŝz

L/2. For this purpose we take 250 states from the middle of the spectrum and compute

the matrix elements Zαβ ≡ 〈α| Ŝ
z
L/2 |β〉 where |α〉 and |β〉 are two different eigenstates. Since

the variance of the distribution decreases with the Hilbert space dimension D [49], we nor-
malize the distribution by dividing Zαβ by its standard deviation,

σ =

r
¬

Z2
αβ

¶

−



Zαβ
�2

, (11)

where 〈.〉 indicates the average over all different pairs of eigenstates |α〉 and |β〉 that we retain.
The resulting distributions for s = 1, 4 and N = 3,4 can be seen in Fig. 3. The distributions for
the spin-1 case in Figs. 3 (a)-(b) are very close to Gaussian (dashed black line) for both N = 3
[Fig. 3 (a)] and N = 4 [Fig. 3 (b)] excitations. However, the spin-4 distributions depicted in
Fig. 3 (c)-(d) are strongly peaked around zero. To quantify how close the distributions are to
a Gaussian, we calculate their normalized kurtosis,

κ=
〈O4
αβ
〉 − 〈Oαβ 〉

4

σ4
− 3 , (12)

which is equal to 0 for a Gaussian distribution. Figure 4 shows the kurtosis of the distributions
for s = 1,2, 3 and 4 as a function of the number of excitations N for different system sizes.
For s = 3 and 4 [Figs. 4 (c)-(d)] the dependence of the kurtosis on the number of excitations
is non-monotonic around N = 2,3. For s = 4 in Fig. 4 (d), the kurtosis only decreases when
N > 4, and much slower than for s = 1, 2 in Figs. 4 (a)-(b). Notice that the scale in the y-axis
for s = 1, 2 in Figs. 4 (a)-(b) is not the same as for s = 3, 4 in Figs. 4 (c)-(d). These results
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confirm that larger spins require more excitations to reach the chaotic regime. Note that the
situation does not improve with system size, since for larger L, the kurtosis actually moves
further away from zero, specially for s = 3,4 around N = 2,3.

In the following section we consider ways to restore quantum chaos in large-spin chains
by perturbing the original model.

5 Enhancing quantum chaos

We consider two ways to improve the chaotic properties of the finite, large-spin system in
Eq. (1) by modifying its Hamiltonian. The first mechanism consisting of adding properly nor-
malized nonlinear magnetization terms to the Hamiltonian,

H1 = H +
α
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k
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(s (s+ 1))3/2
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k
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Ŝz
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where α = 0.87,µ = 0.91. The new term in Eq. (13) corresponds to a diagonal perturbation
to the Hamiltonian (1) written in the basis of product states in the z-direction.

The classical limit of this model is
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1 = Hcl +α
∑

k
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sz
k
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∑

k
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sz
k

�3
. (14)

In Fig. 1, we present the maximal Lyapunov exponents of this model with red points and
verify that they closely follow the Lyapunov exponents of the classical disordered XXZ model
in Eq. (4). We note that the addition of these terms slightly increases the Lyapunov exponents.

The second quantum chaos enhancement mechanism that we consider is via an off-
diagonal perturbation of the form,

H2 = H1 +

L−1
∑

k=1

s
∑

n=2

Jx y

sn (s+ 1)n
��

Ŝ+
k

Ŝ−
k+1

�n
+
�

Ŝ+
k+1Ŝ−

k

�n�

. (15)

The added terms move n-excitations between neighboring sites with 2 ≤ n ≤ s. While the
classical limit of this model is well defined, the derivation of its Hamiltonian in a closed form
is cumbersome, because the sum over n of the nonlinear ladder operators has to be computed
explicitly, so we do not show it here.

The results for the Hamiltonians in Eq. (13) and Eq. (15) show a systematic improve-
ment for all considered quantum chaos metrics when compared to the disordered XXZ model
in Eq. (1). Figure 5 shows the average r-metric of all three models computed for spin 1
[Figs. 5 (a)-(b)] and spin 4 [Figs. 5 (c)-(d)] as a function of the Hilbert space dimension, D.
The spin-1 case is already fairly chaotic for the Hamiltonian (1), so the addition of the new
terms in Eq. (13) and Eq. (15) do not affect the values of 〈r〉. However, for spin 4, adding
the nonlinear magnetization terms in Eq. (13) dramatically improves the degree of quantum
chaos for both N = 3 and 4. The addition of the nonlinear ladder operators in Eq. (15) is even
more effective and leads to strong level repulsion for as few as 3 excitations, making the results
analogous to the case of spin-1/2 studied in Ref. [31]. This significant enhancement of the
degree of quantum chaos is corroborated by the other chaotic metrics considered in this work,
namely the distributions of off-diagonal observables and the kurtosis of these distributions (not
shown).
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Figure 5: Averaged r-metric as a function of the Hilbert space dimension D for spin-1
models (top row) and spin-4 models (bottom row). The left column shows N = 3
excitations and the right column shows N = 4 excitations. Circles correspond to the
disordered XXZ model in Eq. (1), triangles to the model in Eq. (13), and squares
to the model in Eq. (15). The dashed horizontal lines stand for rPoisson = 0.39 and
rGOE = 0.5307.

6 Large-spin limit

In this section, we investigate whether the chaos enhancements that we proposed in Sec. 5
survive in the limit of large-spins. The system remains restricted to the low-magnetization
sector with
∑

k Sz
k
= −sL + N . In this sector, the operator norm of the diagonal terms in

Hamiltonians (1), (13) and (15) asymptotically, do not depend on s. On the other hand, the
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Figure 6: Average r-metric (left) and kurtosis (right) as a function of spin for N = 3.
Circles correspond to the disordered XXZ model (1), triangles to model (13), and
squares to model (15). The dashed horizontal lines stand for rPoisson = 0.39 and
rGOE = 0.5307.
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operator norm of the off-diagonal terms decrease with s as N/s.
In the classical limit, despite the small energy contribution of the terms containing spin

projections on the x y-plane, the Lyapunov exponent remains positive, as shown in Fig. 1. In
the quantum domain, chaos is only robust for the Hamiltonian in Eq. (15). This is shown in
Fig. 6, where we plot the r-statistics for spins up to s = 20 and N = 3. The unperturbed Hamil-
tonian in Eq. (1) and the diagonally perturbed Hamiltonian in Eq. (13) become increasingly
non-chaotic for larger spins. On the other hand, the off-diagonally perturbed Hamiltonian in
Eq. (15) stays chaotic, with only a slight decrease in the chaotic properties.

7 Discussion

The driving question of this work is whether increasing the spin size of a one-dimensional spin
model can reduce the number of spin excitations needed to achieve quantum chaos. For this
purpose we studied the large spin limit of a disordered XXZ chain. For a single spin-1/2 exci-
tation this model is integrable and localized via the Anderson localization mechanism, while
at zero z-magnetization and sufficiently low disorder it is chaotic. In previous studies of spin-
1/2 chains, it was established that at least 3 spin excitations are required to achieve quantum
chaos [30, 31]. In the present work, by considering chaotic metrics based on both the eigen-
values and the eigenstates, we found that, although the classical limit of the disordered XXZ
chain is chaotic for very low magnetization, the large spin version of the quantum XXZ model,
surprisingly, shows significantly reduced chaotic behavior, compared to its spin-1/2 counter-
part. We analyzed two ways of enhancing quantum chaotic behavior: by the introduction of
diagonal and off-diagonal perturbations to the Hamiltonian. Interestingly, while the diagonal
perturbation enhances chaos only slightly, off-diagonal perturbation allows for the onset of
quantum chaos with only N = 3 excitations. In addition, we showed that while the unper-
turbed and diagonally perturbed Hamiltonian show diminishing quantum chaos properties in
the large-spin limit, the off-diagonally perturbed Hamiltonian stays chaotic for spins as large
as s = 20. An interesting question, which our study raises, is which types of off-diagonal per-
turbations lead to quantum chaotic behavior in the large-spin limit? More broadly, our study
suggests that care should be taken in considering large-spin limits of quantum models and that
classical and quantum chaos might not be so tightly bound.
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