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We analyze the anisotropic Dicke model in the presence of a periodic drive and under a quasiperiodic drive.

The study of drive-induced phenomena in this experimentally accessible model is important since, although

it is simpler than full-fledged many-body quantum systems, it is still rich enough to exhibit many interesting

features. We show that under a quasiperiodic Fibonacci (Thue-Morse) drive, the system features a prethermal

plateau that increases as an exponential (stretched exponential) with the driving frequency before heating to an

infinite-temperature state. In contrast, when the model is periodically driven, the dynamics reaches a plateau

that is not followed by heating. In either case, the plateau value depends on the energy of the initial state and

on the parameters of the undriven Hamiltonian. Surprisingly, this value does not always approach the infinite-

temperature state monotonically as the frequency of the periodic drive decreases. We also show how the drive

modifies the quantum critical point and discuss open questions associated with the analysis of level statistics at

intermediate frequencies.
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I. INTRODUCTION

The idea of modifying the properties of a system with an

external drive has a long history with early examples including

the spin echo [1] and the Kapitza pendulum [2]. The drive can

induce chaos in systems with one degree of freedom, where

chaos is otherwise inaccessible, as in the kicked rotor [3] and

the Duffing oscillator [4]. It can lead to the emergence of

double wells [5,6], which have application to the generation

of Schrödinger cat states [7], and it can affect the critical

point of quantum phase transitions (QPTs) and excited-state

quantum phase transitions (ESQPTs) [8,9], as verified for the

Lipkin-Meshkov-Glick model [10,11].

In the case of quantum systems with many degrees of

freedom, there have been significant efforts in exploring the

use of external drives to achieve new phases of matter and new

physics phenomena not found at equilibrium. This interest is

in part due to experimental advances that have allowed, for ex-

ample, the observation of a discrete-time crystal [12], Floquet

prethermalization in dipolar spin chains [13] and in Bose-

Hubbard models [14], and Floquet topological insulators [15].

A problem faced by the use of external drives to engineer

Hamiltonians with desired properties is that the drive usually

heats the system to an infinite-temperature state [16,17]. Al-

ternatives that have been examined to suppress heating involve

the inclusion of strong disorder [18,19], high-frequency drive

[20], and spectrum fragmentation [21].

In this paper we focus on the Dicke model [22], which is a

many-body system with two degrees of freedom and therefore

bridges the gap between the two extremes mentioned above

of systems with one degree of freedom and systems with
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many interacting particles and many degrees of freedom. We

investigate how the Dicke model’s static and dynamical prop-

erties change when a periodic external drive or a quasiperiodic

drive is applied. Our analysis addresses modifications to the

quantum critical point; the regular-to-chaos transition; the on-

set of a prethermal plateau in the quench dynamics; how the

duration of this plateau depends on the driving frequency, the

energy of the initial state, and the parameters of the undriven

Hamiltonian; and whether the plateau is followed by heating

to an infinite-temperature state.

Introduced as a model of light-matter interaction to explain

the phenomenon of superradiance [23,24], the Dicke model

describes a system of N two-level atoms that collectively

interact with a single-mode bosonic field [22]. The model

can be experimentally realized with optical cavities [25–30],

trapped ions [31], and circuit quantum electrodynamics [32].

Depending on the Hamiltonian parameters and excitation en-

ergies, the undriven system can be in the regular or chaotic

regime [33–35], and in addition to the normal to superradiant

QPT [33,36–39], it also exhibits an ESQPT [40–48]. The

model has also been used in studies of quantum scars [49–52],

the onset of the correlation hole (ramp) [53], and

thermalization [54].

Under a periodic drive, the analysis of the Dicke model has

focused on the normal to the superradiant phase and chaos

[55–57]. We extend these studies to the anisotropic Dicke

model [35,39,45,58–61], which is a generalization to the case

of two independent light-matter couplings. This version of the

model is also experimentally accessible [62]. We show that

the normal phase is stretched under a high-frequency periodic

drive and, using the Magnus expansion [63], we establish a

modified condition for the normal-to-superradiant transition.

For the periodically driven system, we also investigate level

statistics and find that at intermediate frequencies, the results
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suggest regularity even when the undriven system is chaotic.

In contrast, the evolution of the average boson number [33]

and of the entanglement entropy [37,64] indicate a degree of

spreading in the Hilbert space that is at least equivalent to that

reached by the undriven system, which implies that the results

for level statistics may be an artifact. An intriguing element

to this picture is that for high-energy initial states, there is a

narrow range of intermediate frequencies for which the satu-

ration value of the average boson number becomes larger than

the infinite-temperature result. We believe that this is caused

by a lack of full ergodicity and that near equipartition only

happens for small driving frequencies.

The core of this paper is the comparison of the dynamics

of the anisotropic Dicke model under periodic and quasiperi-

odic drives, which show distinct behaviors. When periodically

driven, the average boson number and the entanglement en-

tropy saturate to a plateau that is not followed by heating

to the infinite-temperature state. The saturation value de-

pends on the frequency of the drive, the energy of the initial

state, and whether the undriven system is in the regular or

chaotic regime. The spreading of low-energy initial states at

intermediate to high frequencies is very restrained. In con-

trast, under a quasiperiodic drive modeled by the Thue-Morse

[65–70] (Fibonacci [70–73]) sequence, the model presents

a prethermal plateau that grows as a stretched exponential

(exponential) with the driving frequency and is later followed

by heating. This is similar to what was found for many-body

spin models, where the heating time was shown to grow ex-

ponentially with the driving frequency for the Fibonacci drive

protocol [71]. In contrast, under the Thue-Morse protocol, it

was found [69] that the heating time is shorter than exponen-

tial and longer than algebraic in the driving frequency.

The presence (absence) of the heating process for

quasiperiodic (periodic) drives is aligned with the discus-

sion in [74], where complete Hilbert-space ergodicity was

proven for systems under nonperiodic drives but discarded

for time-independent or time-periodic Hamiltonian dynamics.

Paradoxically, there are results that indicate prethermaliza-

tion followed by heating in periodically driven many-body

spin systems with short- and long-range interactions [75] and

in periodically driven arrays of coupled kicked rotors [76],

although it might be that these systems do not reach full

ergodicity in the sense presented in [74].

II. MODEL HAMILTONIAN

The Hamiltonian of the generalized Dicke model with

time-dependent couplings is given by

H(t ) = ωa†a + ω0Jz +
g̃1(t )
√

2 j
(a†J− + aJ+)

+
g̃2(t )
√

2 j
(a†J+ + aJ−), (1)

where we have set h̄ = 1; a and a† are the annihilation and cre-

ation bosonic operators, respectively, with [a, a†] = 1; J±,z =
∑2 j

i=1
1
2
σ

(i)
±,z represent the angular momentum operators of a

pseudospin consisting of N = 2 j two-level atoms described

by Pauli matrices σ
(i)
±,z, which act on site i and satisfy the

relations [Jz, J±] = ±J± and [J+, J−] = 2Jz; ω is the mode

frequency of the bosonic field; ω0 is the level splitting of

the atoms; and the parameters g̃1(t ) and g̃2(t ) are the time-

dependent rotating and counterrotating interaction terms of

the light-matter coupling, respectively. For all of our numeri-

cal results, we set ω = ω0 = 1.

The Hilbert space is spanned by the basis states |Bn,m〉 =
{|n〉 ⊗ | j, m〉}, where |n〉 are the Fock states, a†a|n〉 =
n|n〉, and | j, m〉 are the eigenstates of J±,z with J±| j, m〉 =√

j( j + 1) − m(m ± 1)| j, m ± 1〉. To perform our numeri-

cal calculations, the Hilbert space of the bosonic modes

is truncated to a finite number nmax, which is large

enough to guarantee convergence, that is, by increasing

nmax one does not see qualitative changes in the calculated

quantities. The total truncated Hilbert-space dimension is

N = (N + 1)(nmax + 1).

The finite undriven system presents a precursor of a

second-order QPT from the normal to the superradiant phase

[44], which takes place in the thermodynamic limit (N →
∞), and presents a transition from the regular to the chaotic

regime [35] that depends on the coupling parameters and the

excitation energies. The point for the two transitions do not

necessarily coincide. In the absence of the counterrotating

term, when g̃2(t ) = 0 and g̃1(t ) = g1, the Hamiltonian (1)

describes the Tavis-Cummings model, which is regular for any

excitation energy.

The undriven Dicke model has two degrees of freedom. In

systems with few degrees of freedom and a properly defined

classical limit, such as the Dicke model, the notion of quan-

tum chaos is well established. It refers to properties of the

spectrum, level repulsion and rigidity, in particular, that signal

chaos in the classical limit, where the Lyapunov exponent is

positive and there is mixing. A parallel between the values of

the Lyapunov exponent and the degree of level repulsion for

the Dicke model with g1 = g2 can be found in [54], where it

is seen that classical and quantum chaos are evident for strong

interaction and large excitation energies. In the present paper,

we use the terms “quantum chaos” and “quantum ergodicity”

as synonyms.

In what follows, we investigate how the properties of the

generalized Dicke model change under a time-dependent peri-

odic drive (Sec. III) and under a quasiperiodic drive (Sec. IV).

III. PERIODIC DRIVE

The periodic driving protocol that we consider is

g̃i(t ) =gi + � sgn(sin ωdt ), (2)

where i = 1, 2 identifies the two coupling parameters, gi are

positive constants, � is the amplitude of the drive, sgn(·) is the

sign function, and ωd = 2π/T is the frequency of the drive.

The unitary operator over a cycle is constructed as

U (T ) = e−iHBT/2e−iHAT/2 ≡ e−iHF T , (3)

where

HA = H + V, HB = H − V,

H = ωa†a + ω0Jz+
g1√
2 j

(a†J− + aJ+)+
g2√
2 j

(a†J+ + aJ−),

V =
�

√
2 j

(a†J− + aJ+) +
�

√
2 j

(a†J+ + aJ−), (4)
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FIG. 1. Inverse participation ratio of the ground state of the effec-

tive Hamiltonian in Eq. (5) as a function of the coupling parameters

g1 and g2; � = 3 and T is indicated. The green solid line represents

the critical line for the QPT of the undriven case and the black dash-

dotted line is the modified critical line for the periodically driven

system; N = 10, nmax = 199, and ω = ω0 = 1.

and HF is the time-independent Floquet Hamiltonian.

The unitary operator can be decomposed as U (T ) =
∑

ν e−iφν |ϕν〉〈ϕν |, where φν are the Floquet phases, ǫν =
mod(φν, 2π )/T are the quasienergies, and |ϕν〉 are the cor-

responding Floquet modes [77].

A. Quantum phase transition

We start our analysis with a discussion of how the quantum

critical point depends on the drive. The critical point for the

undriven system is given by g1 + g2 = √
ωω0 [35] and is

marked with a green solid line in Fig. 1. To see how this gets

modified by the periodic drive, we perform the Magnus ex-

pansion and obtain an effective Hamiltonian Heff up to second

order in ωd (see details in Appendix A 1):

Heff = ωa†a + ω0Jz +
g1√
2 j

(a†J− + aJ+)

+
g2√
2 j

(a†J+ + aJ−) −
T 2

12

(

−
4ω�2

N
J2

x

+
2ω0�

2

N
(a† + a)2Jz +

(g1 − g2)�2

N
√

N
[8(a† + a)JxJz

+ (a† − a)(a† + a)2(J+ − J−)]

)

. (5)

Taking the limit N → ∞ (see Appendix A), we arrive at a

modified condition for the normal-to-superradiant transition

that holds for T 2�2 < 1 and depends on the period and am-

plitude of the drive as

g2 ≈ χ̃
√

ωω0 − χg1, (6)

where

χ =
1 + δ

1 − δ
, χ̃ =

1 + δ̃

1 − δ

and

δ =
T 2�2

3
, δ̃ =

δ

2

(

ω

ω0

+
ω0

ω

)

.

The line determined by Eq. (6) is marked with a black

dash-dotted curve in Fig. 1. In comparison with the green line

for the undriven system, one sees that with proper choices

of the driving parameters T and �, the normal phase can

be extended. Figure 1 corresponds to the ground-state phase

diagram for the effective Hamiltonian Heff in Eq. (5). The

different shades of blue indicate the numerical value of the

inverse participation ratio

Igs =
∑

n,m

|cn,m|4

of the ground state |ψgs〉, where cn,m = 〈Bn,m|ψgs〉. This quan-

tity measures the level of delocalization of the ground state

with respect to the basis states. When the ground state co-

incides with a basis state, Igs = 1, while a very delocalized

ground state has Igs ∝ N−1. In Fig. 1, darker tones of blue

indicate more localization. The values of Igs are shown as

a function of the coupling parameters g1 and g2 for two

values of the driving period, namely, T = 0.15 [Fig. 1(a)]

and T = 0.2 [Fig. 1(b)]. The abrupt separation between dark

blue (normal phase) and light blue (superradiant phase) coin-

cides with the critical line (black dash-dotted line) obtained in

Eq. (6). The panels make it clear that as the period increases

(ωd decreases), the critical line appears at larger values of the

coupling parameters, which indicates that the normal phase

gets extended. One can then take advantage of the drive to

control the point of the transition from the normal to the

superradiant phase.

B. Level statistics

As mentioned above, the anisotropic Dicke model presents

regular and chaotic regimes that can be identified in the quan-

tum domain with the analysis of level statistics. Here we

investigate how the two regimes get affected by the presence

of the periodic drive. For this, we consider the ratio of consec-

utive levels, defined as [16,78]

rν =
min(sν−1, sν )

max(sν−1, sν )
,

where sν = ǫν+1 − ǫν is the spacing between consecutive

quasienergies (or between consecutive eigenvalues in the case

of time-independent Hamiltonians). In the regular regime,

where the nearest-neighboring level spacing distribution is

Poissonian, the average level spacing ratio 〈r〉 ≈ 0.386. For

chaotic systems described by time-dependent Hamiltonians,

level statistics depend on the driving frequency. If the fre-

quency is high and H(t ) is well described by a chaotic static

effective Hamiltonian that is real and symmetric, thus ex-

hibiting time-reversal symmetry, the level spacing distribution

follows the Gaussian orthogonal ensemble (GOE) and 〈r〉 ≈
0.536. On the other hand, if the frequency is small and U (T )

is a symmetric unitary matrix, level statistics follow that of a

circular orthogonal ensemble (COE) and 〈r〉 ≈ 0.527 [16]. In

finite systems, the repulsion is slightly stronger for the GOE

than for the COE, but the results for both ensembles should

coincide in the thermodynamic limit [16].

For the undriven anisotropic Dicke model, chaos emerges

for large values of the coupling parameters g1 and g2, as

shown in the inset of Fig. 2(d). Lower and upper band en-

ergies, which are in the nonchaotic region, are discarded for
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FIG. 2. Average consecutive level spacing ratio 〈r〉 of the

anisotropic Dicke model as a function of (a) and (c) the driving

frequency and (b) and (d) the driving frequency rescaled by the

energy bandwidth of the undriven system for (a) and (b) g2 = 0.1

and (c) and (d) g2 = 1.0. We set g1 = 1.25, � = 1, and atom number

N = 10. Different bosonic cutoffs are used as indicated in the legend.

The inset in (d) shows 〈r〉 as a function of g1 and g2 for the undriven

model. We have set ω = ω0 = 1 for the data shown in all the panels.

the analysis of level statistics [45]. We use this figure as a

reference for our choices of g1 and g2 in the driven scenario.

The main panels in Fig. 2 display the average level spac-

ing ratio for the driven system using different values of the

bosonic cutoff nmax. The results are shown as a function of the

driving frequency in Figs. 2(a) and 2(c) and as a function of

the driving frequency rescaled by the energy bandwidth 
 of

the undriven system in Figs. 2(b) and 2(d). The purpose of the

rescaling is to check the convergence of the results. The solid

lines for the different values of nmax in Figs. 2(b) and 2(d) are

indeed close and, for large frequencies, they nearly coincide

with the curve for the effective Hamiltonian from Eq. (5)

(dashed line), the agreement being excellent for the largest

value of nmax = 199. Notice that our Heff depends on the

value of T , which contrasts with similar plots from previous

studies, where the effective Hamiltonian used was obtained

to zeroth order of the Magnus expansion [16]. However, even

when higher orders of the Magnus expansion are used, we

naturally do not expect coincidence with the results for the

driven system when ωd is small.

For the chosen coupling parameters in Figs. 2(a) and 2(b),

the undriven system is regular, while in Figs. 2(c) and 2(d)

it is chaotic. This explains why, at high frequencies, 〈r〉
in Figs. 2(a) and 2(b) reaches Poisson values, while 〈r〉 in

Figs. 2(c) and 2(d) reaches GOE values. The saturation at

the GOE value for large ωd is more evident for the largest

nmax. At low frequencies, the effective Hamiltonian ceases to

be valid and the system becomes chaotic, independently of the

regime of the undriven case. In this case, 〈r〉 should approach

the COE value.

This last paragraph in this section is dedicated to a possible

explanation of what happens at the intermediate frequencies

in Figs. 2(c) and 2(d), where one sees a significant dip in the

values of 〈r〉. This may not be caused by a transition to a

regular regime and may instead be an artifact of the process

of folding the quasienergies to the principal Floquet zone

[−ωd/2, ωd/2]. We discuss why we suspect this might be the

FIG. 3. (a) and (b) Average boson number Nav(t ) and (c) and

(d) von Neumann entanglement entropy S(t ) as a function of the

stroboscopic time tn = nT for the periodically driven anisotropic

Dicke model for (a) and (c) low-energy initial states, so that 〈Ein〉 =
3.48, and (b) and (d) high-energy initial states, so that 〈Ein〉 = 76.8.

The parameters g1 = 1.25 and g2 = 1.0 guarantee chaos in the ab-

sence of a drive. The driving frequencies are indicated; the gray

line represents the evolution under the effective time-independent

Hamiltonian in Eq. (5) and the black dashed indicates the results

for the infinite-temperature state. For all plots the driving amplitude

� = 1.0, N = 10, nmax = 199, and ω = ω0 = 1. The time t is in

units of ω−1
0 .

case, but a final answer requires the analysis of the system in

the classical limit. As noticed in [16] and clearly explained

in [79], at intermediate frequencies, some of the quasiener-

gies lie outside the principal Floquet zone and need to be

folded back. In this process, the folded quasienergies may

not repel the energies originally inside the zone, resulting in a

reduced value of 〈r〉. This contrasts with the case of a driving

frequency larger than the many-body bandwidth (ωd ≫ 
),

where the reconstruction of the spectrum of quasienergies is

not required and the picture is analogous to that of a time-

independent GOE Hamiltonian. It also contrasts with the case

of low frequency, where the majority of the quasienergies

need to be folded back and one reaches the scenario of COE

statistics. It indicates, however, that instead of a small dip

suggesting a mixed scenario with some levels still repelling

each other, as seen in [16,79], our results for 〈r〉 reach Poisson

values and the dip does not diminish as nmax increases. We

attribute this result to the strong asymmetric shape of the

density of states. It may be that at intermediate frequencies,

the folded levels affect the states at high excitation energies,

for which the GOE statistics used to hold, while the states

at lower energies, which are not chaotic, do not get affected.

Our speculation finds support in the quantum dynamics de-

scribed in the next section, where despite the Poisson values

associated with 〈r〉, the quantum evolution suggests spreading

of the initial state at least comparable to what happens to the

chaotic undriven Hamiltonian. However, we direct attention

to the puzzling results in Figs. 3(b) and 7.

C. Dynamics and dependence on the initial state

To study the dynamics, we consider the average boson

number, defined as

Nav(t ) = 〈�(t )|a†a|�(t )〉, (7)
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and the von Neumann entanglement entropy between the spins

and bosons

S(t ) = −Tr{ρspins(t ) ln[ρspins(t )]}, (8)

where ρspins(t ) = Trbosons[ρ(t )] is the reduced density matrix

of the spins obtained by tracing over the bosonic degrees

of freedom. One expects generic driven systems to heat up

and reach an infinite-temperature-like state with ρ∞ = I/N ,

where I is the identity matrix and N is the Hilbert-space di-

mension. The infinite-temperature value of the average boson

number for the Dicke model corresponds to

N∞
av = Tr

(

ρ∞
bosonsa

†a
)

= nmax/2,

where ρ∞
bosons = Trspins(ρ

∞), and the entanglement entropy

saturates to the Page value [80], given by

SPage = ln(N + 1) −
N + 1

2(nmax + 1)
.

The Page value is derived for bounded systems, while the

Hilbert space of the bosonic subspace of the Dicke model is

unbounded. However, the truncation to nmax still provides a

meaningful result for the converged states. In what follows,

we set the atom number to N = 10 and the bosonic mode cut-

off at nmax = 199, which gives N∞
av ≈ 100 and SPage ≈ 2.37.

Our initial states are eigenstates of the decoupled Hamiltonian

[g̃(t ) = 0]. We average the data over 50 initial states.

In Fig. 3 we select coupling parameters corresponding to

the chaotic undriven model and analyze the evolution of Nav(t )

[Figs. 3(a) and 3(b)] and S(t ) [Figs. 3(c) and 3(d)] for initial

states with low [Figs. 3(a) and 3(c)] and high [Figs. 3(b)

and 3(d)] energies and for various choices of the driving

frequency. The results are compared with the dynamics for the

time-independent effective Hamiltonian in Eq. (5) (indicated

as ωd = ∞ in the figure) and with the result for the infinite-

temperature state (black dashed line).

In Figs. 3(a) and 3(c), where the initial states have low

energy, as the driving frequency decreases and level statistics

move from GOE to COE, the saturation values for Nav(t ) and

S(t ) increase monotonically, going from agreement with the

result for the chaotic effective Hamiltonian to agreement with

the infinite-temperature state. Nothing in the figure suggests

any special feature for intermediate frequencies that would

justify associating the dip for 〈r〉 seen in Fig. 2 with an en-

hancement of regular behavior. Below, after some additional

discussion about the low-energy initial states, we investigate

what happens when the initial states have high energies. In

this case, a nonmonotonic behavior with ωd emerges, but only

for the saturation values for Nav(t ) and in a very narrow range

of intermediate values of the driving frequency.

For high and intermediate driving frequencies, where Heff

approximately describes the system, the saturation values for

Nav(t ) and S(t ) found in Figs. 3(a) and 3(c) decrease if we

decrease the value of g2 (see Fig. 6 in Appendix B). This is

expected, because decreasing g2 brings the effective Hamil-

tonian closer to the regular regime. The limited spread in the

Hilbert space of the low-energy states seen in Figs. 3(a) and

3(c), despite the drive and the chaoticity of Heff, evokes the

discussion in Ref. [81], where long-lived prethermal plateaus

were observed for driven many-body spin chains under peri-

odic drives at intermediate frequencies. It is possible that the

spectrum of our model at low energies presents some special

feature, such as a commensurate structure, that the periodic

drive with intermediate frequencies cannot overcome. This is

a point that deserves further investigation.

Under the periodic drive, one can increase the saturation

values of the average boson number and the entanglement

entropy by increasing the energies of the initial states, as seen

in Figs. 3(b) and 3(d). Notice that the scale in the y axis of

these panels is not the same as in Figs. 3(a) and 3(c). For

high-energy initial states, as seen in Fig. 3(d), the saturation

values of S(t ) become close to the infinite-temperature

state not only for low frequencies, but also for a range of

intermediate frequencies. The results for the average boson

number are however intriguing. Contrary to what we see

for the entropy, the saturation value of Nav(t ) does not

increase monotonically to the infinite-temperature result

as we decrease ωd. Instead, for ωd � 20, we observe that

N sat
av > N∞

av (see results for N sat
av vs ωd and for Ssat vs ωd

for different values of the initial state energy in Fig. 7 of

Appendix B). The overshooting suggests lack of equipartition

and predominant contributions from states with large average

boson number. This means that for all driving frequencies

ωd � 5, even when N sat
av crosses N∞

av , there is no ergodicity, as

supported by the saturating values of the entropy, which for

this range of driving frequencies give Ssat < S∞.

The results in Figs. 3 and 6 are in stark contrast to what

we observe for the quasiperiodic drive, where after a transient

time, heating does take place. As we show in the next section,

even for intermediate to high frequencies and small g2, the

quasiperiodic drive is capable of bringing the system to the

infinite-temperature state after prethermalization. In Fig. 3,

no matter how far in time we go, we never see Nav(t ) and

S(t ) getting away from their plateaus towards the infinite-

temperature results. The periodically driven Dicke model with

intermediate to high frequencies is thus well protected against

heating, especially when it is prepared in a low-energy state.

IV. QUASIPERIODIC DRIVE

We now consider the case where the time-dependent drive

is quasiperiodic, consisting of either Thue-Morse or Fibonacci

sequences. The Thue-Morse sequence [65–70] is constructed

with unitary operators U± = exp(−iH±T ), so it starts with

U1 = U−U+ and is followed by Ũ1 = U+U−. Next, U2 =
Ũ1U1 is followed by Ũ2 = U1Ũ1 and so on successively. One

can recursively construct the driving unit cells of time length

2nT as Un+1 = ŨnUn. The Fibonacci sequence [71–73] is

constructed using the recursive relation Un = Un−2Un−1

for n � 2, where the initial unitary operators are U0 =
exp(−iH+T ) and U1 = exp(−iH−T ). We discuss the case of

the Thue-Morse drive in this section and present the analysis

of the Fibonacci drive in Appendix C. The results for both

cases are similar, but the dependence of the heating time on

the driving frequency is different.

In Fig. 4 we consider low-energy initial states and the

Thue-Morse driving sequence. We show the dynamics of the

average boson number [Figs. 4(a) and 4(b)] and the entan-

glement entropy [Figs. 4(c) and 4(d)] for a fixed intermediate

value of the driving frequency ωd and various values of the

coupling parameter g2 [Figs. 4(a) and 4(c)] and for a fixed g2
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FIG. 4. (a) and (b) Average boson number Nav(t ) and (c) and

(d) von Neumann entanglement entropy S(t ) as a function of time

tn = 2nT for the anisotropic Dicke model under the Thue-Morse

quasiperiodic drive. The initial states have low energies, so 〈Ein〉 =
3.48. (a) and (c) Intermediate driving frequency ωd = 100, g1 =
1.25, and various values of g2. (b) and (d) Parameters g1 = 0.7 and

g2 = 0.5 (which are parameters that ensure chaos for the undriven

system) and various values of ωd . The inset in (d) shows the scaling

of the heating time τ ∗ with ωd; numerical data are in blue and

the best fitting, given by log τ ∗ = 1.4
√

ωd − 4.24, is in red. In all

panels, the driving amplitude is � = 1.0, N = 10, nmax = 199, and

ω = ω0 = 1. The time t is in units of ω−1
0 . The dashed line represents

the Page value, the black solid line is for the prethermal value, and the

dash-dotted line represents the value when the entanglement entropy

reaches the halfway mark between its prethermal plateau and the

Page value.

associated with the chaotic undriven model and various values

of ωd [Figs. 4(b) and 4(d)]. All panels exhibit a prethermal

plateau followed by a saturation to the infinite-temperature

state, which contrasts with the results in Figs. 3(a) and 3(c).

The quasiperiodic drive breaks regularity and induces ergodic-

ity. It causes all cases considered with intermediate frequency

and coupling parameters from the regular to the chaotic

regime to heat up to an infinite temperature.

The prethermal plateau gets longer in time if one increases

the driving frequency or brings the coupling parameters closer

to the regular regime. To quantify the dependence of the

prethermal plateau on the driving frequency, we study the

heating time τ ∗, which is defined as the time when the en-

tanglement entropy reaches the halfway mark between its

prethermal plateau and the Page value [21] S(τ ∗) ≡ Sp +
(SPage − Sp)/2. The inset in Fig. 4(d) shows that for the Thue-

Morse drive protocol, the heating time τ ∗ grows as a stretched

exponential with ωd, the best-fitting curve corresponding to

log τ ∗ = 1.55
√

ωd − 0.695. In Appendix C we show that for

the Fibonacci drive protocol, the heating time grows exponen-

tially with the driving frequency as log τ ∗ = 0.125ωd − 0.39.

In Fig. 5 we extend the analysis done in Fig. 4 and investi-

gate how our results are affected by the rise of the energies of

the initial states. In Figs. 5(a) and 5(b) we plot the evolution of

the entanglement entropy for two sets of initial states with dif-

ferent energies given by 〈Ein〉 = 3.48 and 22.2, respectively.

As the energy increases, the prethermal plateau happens at

higher values and the heating time decreases. To check the

energy dependence on the heating time, we plot τ ∗ as a func-

FIG. 5. Entanglement entropy as a function of the sequential

time tn = 2nT for the anisotropic Dicke model under the Thue-Morse

quasiperiodic drive for g1 = 0.7 and g2 = 0.5. Results are averaged

over 50 initial states with (a) low energy 〈Ein〉 = 3.48 and (b) high

energy 〈Ein〉 = 22.2. (c) Heating time as a function of 〈Ein〉 for a

fixed driving frequency ωd = 200; the time scales as τ ∗ = (1.99 ×
108)E−2.29

in . The driving amplitude is � = 1.0, N = 10, nmax = 199,

and ω = ω0 = 1. The time t is in units of ω−1
0 .

tion of 〈Ein〉 in Fig. 5(c). We verify that for the Thue-Morse

drive protocol, τ ∗ decays as E−2.29
in . In Appendix C we show

that for the Fibonacci drive protocol, τ ∗ decays as E−4.03
in .

In Appendix D we present additional figures to demon-

strate that our results for the Thue-Morse drive protocol are

general. In Fig. 10 we show that the results obtained here for

ω = ω0 are similar to the results obtained when ω 
= ω0. In

Fig. 11 we provide results for the dynamics of the von Neu-

mann entanglement entropy for different values of N and show

that they are analogous to those seen Fig. 4(d) for N = 10.

V. CONCLUSION AND DISCUSSION

We studied the effects that a periodic drive and a quasiperi-

odic drive have on the anisotropic Dicke model. While we

have verified that some of the results are similar to those

for the driven isotropic Dicke model (not shown), this work

focused on the more general anisotropic Dicke model. We list

below our four main findings.

(i) Using a periodic drive and the high-frequency Mag-

nus expansion, we provided a modified condition for the

normal-to-superradiant QPT. By properly choosing the driv-

ing frequency, one can extend the normal phase.

(ii) We argued that the results for level statistics suggesting

regularity for the periodically driven system under interme-

diate frequencies may be an artifact caused by the folding

procedure of the quasienergies back to the principal Floquet

zone and the highly asymmetric shape of the density of states.

(iii) Under the periodic drive, the system saturates to a

steady-state value that is not followed by heating to the

infinite-temperature state. The saturation values depend on the

energy of the initial state, the frequency of the drive, and the

parameters of the undriven Hamiltonian. To reach saturation

values that indicate near ergodicity, small driving frequencies
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are required. Therefore, the nonmonotonic behavior of the

saturation values of the average boson number observed for

intermediate driving frequencies imply that these frequencies

are still not small enough to ensure equipartition.

(iv) For the quasiperiodic drives, prethermalization is fol-

lowed by heating, ensuring full ergodicity. The heating time

τ ∗ for the Fibonacci protocol grows exponentially with the

driving frequency (τ ∗ ∝ eωd ), while for the Thue-Morse pro-

tocol the growth follows a stretched exponential (τ ∗ ∝ e
√

ωd ).

In both cases, the heating time decreases as the energy of the

initial state increases.

Overall, our work shows that the (anisotropic) Dicke model

exhibits properties of genuinely many-body quantum systems

that could be experimentally explored. The absence of heating

for the periodic drive and the long prethermal plateaus for

the quasiperiodic drives, for example, provide scenarios under

which nonequilibrium phases of matter could be hosted.

An interesting question opened up by our results is how

a finite prethermal plateau followed by heating emerges as

the drive goes from periodic to quasiperiodic. To answer this

question, one would need to design a driving protocol that in-

terpolates between the two kinds of drives. A continuous drive

of the form f (t ) = β cos(ωdt ) + (1 − β ) cos(αωdt ) with ir-

rational α could help to address this question. It would then

also be interesting to see how the heating time depends on the

parameter β. We look forward to exploring this question.
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APPENDIX A: PERIODIC DRIVE

We derive in Appendix A 1 the analytical expression of the

effective Hamiltonian for the periodically driven anisotropic

Dicke model using the high-frequency Floquet-Magnus ex-

pansion. In Appendix A 2 we derive the modified equation for

the critical line of the QPT due to the periodic drive.

1. Derivation of the effective Hamiltonian

We first recall the system Hamiltonian in Eq. (1). The pro-

tocol of the square wave periodic drive applied to the system is

g̃i(t ) = gi + �, 0 < t �
T

2
,

g̃i(t ) = gi − �,
T

2
< t � T .

This means that the system is periodically driven by a

repeated two-step sequence that alternates between the

time-independent Hamiltonians H + V and H − V (discussed

in the main text). The duration of each step is T/2, where

T = 2π/ωd is the period of the driving sequence. The

evolution operator at time t = nT is

U (t = nT ) =
(

e−iT (H−V )/2e−iT (H+V )/2
)n

. (A1)

Using the Magnus expansion and small T , we search

for a time-independent effective Hamiltonian Heff that

approximately describes the evolution as

U (t = nT ) ≈ e−inT Heff . (A2)

Since the driving protocol involves time-independent

Hamiltonians, the Magnus expansion coincides with the

Baker-Campbell-Hausdorff expansion, where the product of

two exponentials can be simplified to

eX eY = e{X+Y +(1/2)[X,Y ]+(1/12)[X−Y,[X,Y ]]+··· }. (A3)

If we let

X = 1
2
(H − V ), Y = 1

2
(H + V ), (A4)

then

X + Y = H, X − Y = −V, (A5)

[X,Y ] = 1
4
[H − V, H + V ] = 1

2
[H,V ], (A6)

and

Heff = H +
T

2i
[X,Y ] −

T 2

12
[[X,Y ],V ] + · · · . (A7)

After some calculation, we have

[X,Y ] =
ω�
√

N
(a† − a)Jx +

ω0�√
N

(a† + a)iJy

+
(g1 − g2)�

√
N

[2iJxJy − (a† − a)(a† + a)Jz] (A8)

and

[X − Y, [X,Y ]] = [[X,Y ],V ]

= −
4ω�2

N
J2

x +
2ω0�

2

N
(a† + a)(a† + a)Jz

+
(g1 − g2)�2

N
√

N
[8(a† + a)JxJz

+ (a† − a)(a† + a
2
)(J+ − J−)]. (A9)

The first-order term T
2i

[X,Y ] = −i T
4

[H,V ] is imaginary,

which breaks the time-reversal symmetry [82]. Hence we

discard the first-order term and consider the second-order

correction shown above, which leads to

Heff = ωa†a + ω0Jz +
g1√
N

(a†J− + aJ+) +
g2√
N

(a†J+ + aJ−)

−
T 2

12

(

−
4ω�2

N
J2

x +
2ω0�

2

N
(a† + a)

× (a† + a)Jz +
(g1 − g2)�2

N
√

N
[8(a† + a)JxJz

+ (a† − a)(a† + a)2(J+ − J−)]

)

. (A10)
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2. Critical line of the quantum phase transition

of the driven system

To find the critical line, we first apply the Holstein-

Primakoff transformation [33] to the effective Hamiltonian in

Eq. (A10),

J+ = b†
√

2 j − b†b, J− =
√

2 j − b†bb, Jz = b†b − j.

(A11)

In the thermodynamic limit (when the atom number N → ∞),

we have

Heff = ωa†a + ω0b†b + g1(a†b + ab†) + g2(a†b† + ab)

+
T 2ω�2

12
[(b†)2 + b2] +

T 2ω�2

6
b†b

+
T 2ω0�

2

6N

N

2
[(a†)2 + a2 + 2a†a + 1]

−
T 2ω0�

2

6N
[(a†)2 + a2](b†b) −

T 2ω0A2

6N
2(a†a)(b†b)

−
T 2ω0�

2

6N
b†b +

T 2
g�2

3N

N

2
(a + a†)(b + b†)

−
T 2
g�2

3N
(a + a†)(b + b†)b†b. (A12)

We now consider only up to second-order terms in the bosonic

operators, which means that we neglect the last term of the

Hamiltonian in Eq. (A10). Introducing the position and mo-

mentum operators for the two bosonic modes as

x =
1

√
2ω

(a† + a), px = i

√

ω

2
(a† − a),

y =
1

√
2ω0

(b† + b), py = i

√

ω0

2
(b† − b), (A13)

we have

Heff =
(

1 +
T 2�2ω0

6ω

)

1

2

(

ω2x2 + p2
x − ω

)

+
(

1 +
T 2�2ω

6ω0

+
T 2�2

6N

)

1

2

(

ω2
0y2 + p2

y − ω0

)

+ g1

(

√
ωω0xy +

px py√
ωω0

)

+ g2

(

√
ωω0xy −

px py√
ωω0

)

+
T 2�2ω

12

(

ω0y2 −
p2

y

ω0

)

+
T 2�2ω0

12

(

ωx2 −
p2

x

ω

)

+
T 2�2ω0

12N

(

ωx2 −
p2

x

ω

)

+
T 2�2ω0

12N

(

ωx2 +
p2

x

ω
+ ω0y2 +

p2
y

ω0

)

+
T 2�2
g

3

√
ωω0xy +

T 2�2
g

3N

√
ωω0xy. (A14)

To find the critical line for the QPT, we just need to resort to

the position part of the equation, which is given by

H
x̃,ỹ

eff =
1

2

(

x̃2 + ỹ2 +
2γ

αβ
√

ωω0

x̃ỹ

)

, (A15)

where x̃ = ωαx, ỹ = ω0βy,

α2 =
(

1 +
T 2�2ω0

3ω
+

T 2�2ω0

3Nω

)

,

β2 =
(

1 +
T 2�2ω

3ω0

)

,

γ =
(

g1 + g2 +
T 2�2
g

3
+

T 2�2
g

3N

)

.

Introducing normal coordinates

q+ =
x̃ + ỹ
√

2
, q− =

x̃ − ỹ
√

2
, (A16)

we have

H
q+,q−
eff =

1

2

(

(q2
+ + q2

−) +
γ

αβ
√

ωω0

(q2
+ − q2

−)

)

=
1

2

[(

1 +
γ

αβ
√

ωω0

)

q2
+ +

(

1 −
γ

αβ
√

ωω0

)

q2
−

]

.

(A17)

From the equation of motion for q−, which is q̈− = −(1 −
γ

αβ
√

ωω0
)q−, one gets the equation of the critical line for the

QPT in the g1-g2 plane,

1 −
γ

αβ
√

ωω0

= 0. (A18)

Introducing the notation δ = T 2�2

3
, we have

g1 + g2 =
(

1 +
δω

2ω0

+
δω0

2ω
+

δω0

2Nω

)

√
ωω0

− δ
g −
δ
g

N
, (A19)

where 
g = g1 − g2 and we have not considered the other

higher-order terms as δ ≪ 1. In the thermodynamic limit

(N → ∞), we finally obtain

g1 + g2 =
(

1 +
δω

2ω0

+
δω0

2ω

)

√
ωω0 − δ
g (A20)

or

(1 + δ)g1 + (1 − δ)g2 =
[

1 +
δ

2

(

ω

ω0

+
ω0

ω

)]

√
ωω0

(A21)

and hence

g2 =
(

1 + δ̃

1 − δ

)

√
ωω0 −

(

1 + δ

1 − δ

)

g1, (A22)

where δ̃ = δ
2
( ω
ω0

+ ω0

ω
). Thus we can write

g2 = χ̃
√

ωω0 − χg1, (A23)

where χ = ( 1+δ
1−δ

) and χ̃ = ( 1+δ̃
1−δ

).
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FIG. 6. (a) Average boson number Nav(t ) and (b) von Neumann

entanglement entropy S(t ) as a function of the stroboscopic time tn =
nT for the periodically driven anisotropic Dicke model. The initial

states have low energies, so 〈Ein〉 = 3.48, as in Figs. 3(a) and 3(b).

The driving frequency is fixed at an intermediate value ωd = 50 and

various values of g2 are considered, as indicated. The black dashed

line indicates the results for the infinite-temperature state. For both

panels, g1 = 1.25, the driving amplitude is � = 1.0, N = 10, nmax =
199, and ω = ω0 = 1. The time t is in units of ω−1

0 .

APPENDIX B: PERIODIC DRIVE

This Appendix extends the results presented in Fig. 3 of the

main text.

1. Dependence on the coupling parameters

To complement Figs. 3(a) and 3(c) of the main text and

support the discussion made there about the dependence of the

saturation values of Nav(t ) and S(t ) on the coupling parame-

ters, we show in Fig. 6 the evolution of the average boson

number [Fig. 6(a)] and the entanglement entropy [Fig. 6(b)]

FIG. 7. Saturation value of (a)–(c) the average boson number and

(d)–(f) the von Neumann entanglement entropy between spins and

bosons as a function of the driving frequency. The black dashed line

indicates the infinite-temperature result. We set g1 = 1.25, g2 = 1.0,

� = 1, atom number N = 10, bosonic cutoff nmax = 199, and ω =
ω0 = 1.

FIG. 8. (a) and (b) Average boson number Nav(t ) and (c) and

(d) von Neumann entanglement entropy S(t ) as a function of time

tn = tn−1 + tn−2 for the anisotropic Dicke model under the Fibonacci

quasiperiodic drive. The initial states have low energies, so 〈Ein〉 =
3.48. (a) and (c) Intermediate driving frequency ωd = 100, g1 =
1.25, and various values of g2. (b) and (d) Parameters g1 = 0.7

and g2 = 0.5 for a chaotic undriven system and various values ωd.

The inset in (d) shows the scaling of the heating time τ ∗ with ωd;

numerical data are in blue and the best fitting, given by log τ ∗ =
0.125ωd − 0.39, is in red. In all panels, the driving amplitude is

� = 1, N = 10, nmax = 199, and ω = ω0 = 1. The time t is in units

of ω−1
0 . In this figure the dashed line represents the Page value,

the black solid line is for the prethermal value, and the dash-dotted

line represents the value when the entanglement entropy reaches the

halfway mark between its prethermal plateau and the Page value.

for low-energy initial states and a fixed intermediate value

of the driving frequency ωd. Various values of the coupling

parameter g2 are considered, so the undriven Hamiltonian

goes from the regular to the chaotic regime.

As explained in the main text, for an intermediate fre-

quency and low-energy initial states, the periodic drive is

FIG. 9. Entanglement entropy as a function of sequential time

tn = tn−2 + tn−1 for the anisotropic Dicke model under the Fibonacci

quasiperiodic drive for g1 = 0.7 and g2 = 0.5. Results are aver-

aged over 50 initial states with (a) low energy 〈Ein〉 = 3.48 and

(b) high energy 〈Ein〉 = 22.2. (c) Heating energy as a function

of 〈Ein〉 for a fixed driving frequency ωd = 200, scaling as τ ∗ =
(1.8034 × 1013)Ein

−4.03. The driving amplitude is � = 1.0, N = 10,

nmax = 199, and ω = ω0 = 1. The time t is in units of ω−1
0 .
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FIG. 10. Off-resonance case for (a)–(d) ω0 = 1 and ω = ω0

4
and (e)–(h) ω0 = 1 and ω = 4ω0. (a), (b), (e), and (f) Average boson number

Nav(t ) and (c), (d), (g), and (h) von Neumann entanglement entropy S(t ) as a function of time tn = 2nT for the anisotropic Dicke model under

the Thue-Morse quasiperiodic drive, for N = 10 and nmax = 199. The initial states in all panels have low energies, so 〈Ein〉 = 3.48, and the

driving amplitude is � = 1.0. The values of ωd, g1, and g2 are indicated in the panels. (a), (c), (e), and (g) have intermediate driving frequencies

and (b), (d), (f), and (h) have parameters that ensure chaos for the undriven system. The insets in (d) and (h) show the scaling of the heating

time τ ∗ with ωd; numerical data are in blue and the best fitting, given by log τ ∗ = 0.86
√

ωd − 3.97, with log τ ∗ = 0.61
√

ωd − 1.83, is in red.

The time t is in units of ω−1
0 .

unable to bring Nav(t ) and S(t ) close to the results of the

infinite-temperature state, at least not for the very long times

that we studied. The saturation values of the two quantities are

always below N∞ and SPage and, as shown in Figs. 6(a) and

6(c), they further decrease as we decrease g2 and the undriven

model is brought closer to the regular regime.

2. Dependence on the initial-state energy

Figure 7 shows the saturation values of average boson num-

ber [Figs. 7(a)–7(c)] and of the von Neumann entanglement

entropy [Figs. 7(d)–7(f)] as a function of the driving frequency

for different values of the initial-state energy. While Ssat grows

monotonically towards the infinite-temperature result as ωd

decreases, the same does not happen for N sat
av when the energy

of the initial state is high. There is a very narrow range of

driving frequencies where N sat
av > N∞

av . This implies that the

value of the driving frequency is still not small enough to

ensure equipartition. As ωd decreases from ∞, the fact that

N sat
av crosses N∞

av , before becoming larger than it, is not caused

by ergodicity but by the significant number of states contribut-

ing to the dynamics, which have average boson number in the

vicinity of N∞
av .

APPENDIX C: FIBONACCI SEQUENCE

The results shown here for the Fibonacci quasiperiodic

drive are similar to those shown in Sec. IV for the Thue-

Morse quasiperiodic drive, with the difference that there τ ∗ ∝
exp(

√
ωd), while here τ ∗ ∝ exp(ωd). Figure 8 is equivalent to

Fig. 4, and Fig. 9 is equivalent to Fig. 5.

In Fig. 8 we consider low-energy initial states and the

Fibonacci driving sequence. We show the dynamics of the

average boson number [Figs. 8(a) and 8(b)] and the entan-

glement entropy [Figs. 8(c) and 8(d)] for a fixed intermediate

value of the driving frequency ωd and various values of cou-

pling parameter g2 [Figs. 8(a) and 8(c)] and for a fixed g2

associated with the chaotic undriven model and various values

of ωd [Figs. 8(b) and 8(d)]. All panels exhibit a prethermal

plateau followed by the saturation to the infinite-temperature

state. The prethermal plateau gets longer in time as we in-

crease the driving frequency or bring the coupling parameters

closer to the regular regime. The anisotropic Dicke model

under this quasiperiodic drive heats up exponentially slowly,

as shown in the inset of Fig. 4(d), where the heating time

grows with ωd as log τ ∗ = 0.125ωd − 0.39.

FIG. 11. The von Neumann entanglement entropy S(t ) as a func-

tion of time tn = 2nT for the anisotropic Dicke model under the

Thue-Morse quasiperiodic drive for the resonant case: ω0 = ω = 1

for a fixed bosonic cutoff nmax = 399 and a varying atom number

N ∈ [6, 20]. The time t is in units of ω−1
0 . The initial states have low

energies, so 〈Ein〉 = 3.48, and the driving amplitude is � = 1.0. The

other parameters are ωd = 100, g1 = 0.7, and g2 = 0.5.
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In Figs. 9(a) and 9(b) we compare the evolution of the

entanglement entropy for two different initial states energies

〈Ein〉 = 3.48 and 22.2, respectively. As the energy increases,

the prethermal plateau happens at higher values and the heat-

ing time decreases. To check the energy dependence on the

heating time, we plot τ ∗ as a function of 〈Ein〉 in Fig. 9(c) and

we verify that τ ∗ decays as E−4.03
in .

APPENDIX D: OFF-RESONANCE CASE (ω �= ω0)

AND FINITE-SIZE ANALYSIS

To complement the results presented in the main text for

ω = ω0 in Fig. 4 and to show that they are general, we

consider here the off-resonance case ω 
= ω0. We see that

our additional numerical results for the Thue-Morse sequence

using ω = ω0/4 in Figs. 10(a)–10(d) and using ω = 4ω0 in

Figs. 10(e)–10(h) are similar to the results for the resonant

case in Fig. 4. For all three cases, we observe a prethermal

plateau that gets longer in time as the driving frequency

increases and that is followed by saturation to the infinite-

temperature state.

In this Appendix we also show results for different values

of the atom number N . In the main text, we set N = 10 and

varied the bosonic cutoff nmax. Taking a larger value of the

atom number requires a larger bosonic cutoff nmax to ensure

convergence. In Fig. 11 we set nmax = 399 and increase N to

show the dynamics of the von Neumann entanglement entropy

under the Thue-Morse sequence. The behavior is analogous

to that shown in Fig. 4(d), now for different Hilbert-space

sizes.
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driven ergodic and many-body localized quantum systems,

Ann. Phys. (NY) 353, 196 (2015).

[20] T. Mori, T. Kuwahara, and K. Saito, Rigorous bound on energy

absorption and generic relaxation in periodically driven quan-

tum systems, Phys. Rev. Lett. 116, 120401 (2016).

[21] D. S. Bhakuni, L. F. Santos, and Y. B. Lev, Suppression of

heating by long-range interactions in periodically driven spin

chains, Phys. Rev. B 104, L140301 (2021).

[22] R. H. Dicke, Coherence in spontaneous radiation processes,

Phys. Rev. 93, 99 (1954).

[23] K. Hepp and E. H. Lieb, On the superradiant phase transition

for molecules in a quantized radiation field: The Dicke maser

model, Ann. Phys. (NY) 76, 360 (1973).

[24] Y. K. Wang and F. T. Hioe, Phase transition in the Dicke model

of superradiance, Phys. Rev. A 7, 831 (1973).

[25] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke

quantum phase transition with a superfluid gas in an optical

cavity, Nature (London) 464, 1301 (2010).

[26] K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger, Explor-

ing symmetry breaking at the Dicke quantum phase transition,

Phys. Rev. Lett. 107, 140402 (2011).

[27] K. J. Arnold, M. P. Baden, and M. D. Barrett, Collective cavity

quantum electrodynamics with multiple atomic levels, Phys.

Rev. A 84, 033843 (2011).

[28] M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D.

Barrett, Realization of the Dicke model using cavity-assisted

raman transitions, Phys. Rev. Lett. 113, 020408 (2014).

063716-11



DAS, BHAKUNI, SANTOS, AND SHARMA PHYSICAL REVIEW A 108, 063716 (2023)

[29] J. Klinder, H. Keßler, M. R. Bakhtiari, M. Thorwart, and A.

Hemmerich, Observation of a superradiant Mott insulator in the

Dicke-Hubbard model, Phys. Rev. Lett. 115, 230403 (2015).

[30] Z. Zhang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson,

A. L. Grimsmo, A. S. Parkins, and M. D. Barrett, Dicke-model

simulation via cavity-assisted raman transitions, Phys. Rev. A

97, 043858 (2018).

[31] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner,

K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey,

and J. J. Bollinger, Verification of a many-ion simulator of the

Dicke model through slow quenches across a phase transition,

Phys. Rev. Lett. 121, 040503 (2018).

[32] T. Jaako, Z.-L. Xiang, J. J. Garcia-Ripoll, and P. Rabl,

Ultrastrong-coupling phenomena beyond the Dicke model,

Phys. Rev. A 94, 033850 (2016).

[33] C. Emary and T. Brandes, Chaos and the quantum phase transi-

tion in the Dicke model, Phys. Rev. E 67, 066203 (2003).

[34] J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-

Hernández, and J. G. Hirsch, Classical chaos in atom-field

systems, Phys. Rev. E 94, 022209 (2016).

[35] W. Buijsman, V. Gritsev, and R. Sprik, Nonergodicity in the

anisotropic Dicke model, Phys. Rev. Lett. 118, 080601 (2017).

[36] C. Emary and T. Brandes, Quantum chaos triggered by precur-

sors of a quantum phase transition: The Dicke model, Phys. Rev.

Lett. 90, 044101 (2003).

[37] N. Lambert, C. Emary, and T. Brandes, Entanglement and the

phase transition in single-mode superradiance, Phys. Rev. Lett.

92, 073602 (2004).

[38] G.-L. Zhu, X.-Y. Lü, S.-W. Bin, C. You, and Y. Wu, Entangle-

ment and excited-state quantum phase transition in an extended

Dicke model, Front. Phys. 14, 52602 (2019).

[39] J. Hu and S. Wan, Out-of-time-ordered correlation in

anisotropic Dicke model, Commun. Theor. Phys. 73, 125703

(2021).

[40] P. Pérez-Fernández, A. Relaño, J. M. Arias, P. Cejnar, J.

Dukelsky, and J. E. García-Ramos, Excited-state phase transi-

tion and onset of chaos in quantum optical models, Phys. Rev.

E 83, 046208 (2011).

[41] T. Brandes, Excited-state quantum phase transitions in

Dicke superradiance models, Phys. Rev. E 88, 032133

(2013).

[42] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G.

Hirsch, Comparative quantum and semiclassical analysis

of atom-field systems. I. Density of states and excited-

state quantum phase transitions, Phys. Rev. A 89, 032101

(2014).

[43] P. Pérez-Fernández and A. Relaño, From thermal to excited-

state quantum phase transition: The Dicke model, Phys. Rev. E

96, 012121 (2017).

[44] P. Das and A. Sharma, Revisiting the phase transitions of the

Dicke model, Phys. Rev. A 105, 033716 (2022).

[45] P. Das, D. S. Bhakuni, and A. Sharma, Phase transitions of the

anisotropic Dicke model, Phys. Rev. A 107, 043706 (2023).

[46] J. Chávez-Carlos, B. López-del-Carpio, M. A. Bastarrachea-

Magnani, P. Stránský, S. Lerma-Hernández, L. F. Santos, and

J. G. Hirsch, Quantum and classical Lyapunov exponents in

atom-field interaction systems, Phys. Rev. Lett. 122, 024101

(2019).

[47] S. Pilatowsky-Cameo, J. Chávez-Carlos, M. A. Bastarrachea-

Magnani, P. Stránský, S. Lerma-Hernández, L. F. Santos, and

J. G. Hirsch, Positive quantum Lyapunov exponents in experi-

mental systems with a regular classical limit, Phys. Rev. E 101,

010202(R) (2020).

[48] R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger, and A. M.

Rey, Unifying scrambling, thermalization and entanglement

through measurement of fidelity out-of-time-order correlators

in the Dicke model, Nat. Commun. 10, 1581 (2019).

[49] M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and

M. C. Nemes, Particle-spin coupling in a chaotic sys-

tem: Localization-delocalization in the Husimi distributions,

Europhys. Lett. 15, 125 (1991).

[50] D. Villaseñor, S. Pilatowsky-Cameo, M. A. Bastarrachea-

Magnani, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch,

Quantum vs classical dynamics in a spin-boson system: Mani-

festations of spectral correlations and scarring, New J. Phys. 22,

063036 (2020).

[51] S. Pilatowsky-Cameo, D. Villaseñor, M. A. Bastarrachea-

Magnani, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch,

Ubiquitous quantum scarring does not prevent ergodicity,

Nat. Commun. 12, 852 (2021).

[52] S. Pilatowsky-Cameo, D. Villaseñor, M. A. Bastarrachea-

Magnani, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch,

Quantum scarring in a spin-boson system: Fundamental fami-

lies of periodic orbits, New J. Phys. 23, 033045 (2021).

[53] S. Lerma-Hernández, D. Villaseñor, M. A. Bastarrachea-

Magnani, E. J. Torres-Herrera, L. F. Santos, and J. G. Hirsch,

Dynamical signatures of quantum chaos and relaxation time

scales in a spin-boson system, Phys. Rev. E 100, 012218 (2019).

[54] D. Villaseñor, S. Pilatowsky-Cameo, M. A. Bastarrachea-

Magnani, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch,

Chaos and thermalization in the spin-boson Dicke model,

Entropy 25, 8 (2023).

[55] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Nonequi-

librium quantum phase transitions in the Dicke model, Phys.

Rev. Lett. 108, 043003 (2012).

[56] S. Dasgupta, U. Bhattacharya, and A. Dutta, Phase transition in

the periodically pulsed Dicke model, Phys. Rev. E 91, 052129

(2015).

[57] S. Ray, A. Ghosh, and S. Sinha, Quantum signature of chaos

and thermalization in the kicked Dicke model, Phys. Rev. E 94,

032103 (2016).

[58] F. T. Hioe, Phase transitions in some generalized Dicke models

of superradiance, Phys. Rev. A 8, 1440 (1973).

[59] M. Kloc, P. Stránsky, and P. Cejnar, Quantum phases and en-

tanglement properties of an extended Dicke model, Ann. Phys.

(NY) 382, 85 (2017).

[60] I. Aedo and L. Lamata, Analog quantum simulation of gener-

alized Dicke models in trapped ions, Phys. Rev. A 97, 042317

(2018).

[61] D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Universal

fluctuations and squeezing in a generalized Dicke model near

the superradiant phase transition, Phys. Rev. A 102, 023703

(2020).

[62] L. J. Zou, D. Marcos, S. Diehl, S. Putz, J. Schmiedmayer, J.

Majer, and P. Rabl, Implementation of the Dicke lattice model

in hybrid quantum system arrays, Phys. Rev. Lett. 113, 023603

(2014).

[63] S. Blanes, F. Casas, J. Oteo, and J. Ros, The Magnus ex-

pansion and some of its applications, Phys. Rep. 470, 151

(2009).

063716-12



PERIODICALLY AND QUASIPERIODICALLY DRIVEN … PHYSICAL REVIEW A 108, 063716 (2023)

[64] D. S. Bhakuni and A. Sharma, Characteristic length scales from

entanglement dynamics in electric-field-driven tight-binding

chains, Phys. Rev. B 98, 045408 (2018).

[65] A. Thue, Uber unendliche zeichenreihen, Nor. Vid Selsk. Skr. I

Mat. Nat. Kl. Christiana 7, 1 (1906).

[66] S. Nandy, A. Sen, and D. Sen, Aperiodically driven integrable

systems and their emergent steady states, Phys. Rev. X 7,

031034 (2017).

[67] B. Mukherjee, A. Sen, D. Sen, and K. Sengupta, Restoring

coherence via aperiodic drives in a many-body quantum system,

Phys. Rev. B 102, 014301 (2020).

[68] H. Zhao, F. Mintert, R. Moessner, and J. Knolle, Random

multipolar driving: Tunably slow heating through spectral en-

gineering, Phys. Rev. Lett. 126, 040601 (2021).

[69] T. Mori, H. Zhao, F. Mintert, J. Knolle, and R. Moessner, Rigor-

ous bounds on the heating rate in Thue-Morse quasiperiodically

and randomly driven quantum many-body systems, Phys. Rev.

Lett. 127, 050602 (2021).

[70] V. Tiwari, D. S. Bhakuni, and A. Sharma, Dynamical local-

ization and slow dynamics in quasiperiodically-driven quantum

systems, arXiv:2302.12271.

[71] P. T. Dumitrescu, R. Vasseur, and A. C. Potter, Logarithmically

slow relaxation in quasiperiodically driven random spin chains,

Phys. Rev. Lett. 120, 070602 (2018).

[72] S. Maity, U. Bhattacharya, A. Dutta, and D. Sen, Fibonacci

steady states in a driven integrable quantum system, Phys. Rev.

B 99, 020306(R) (2019).

[73] S. Ray, S. Sinha, and D. Sen, Dynamics of quasiperiodically

driven spin systems, Phys. Rev. E 100, 052129 (2019).

[74] S. Pilatowsky-Cameo, C. B. Dag, W. W. Ho, and S. Choi,

Complete Hilbert-space ergodicity in quantum dynamics of

generalized Fibonacci drives, Phys. Rev. Lett. 131, 250401

(2023).

[75] F. Machado, G. D. Kahanamoku-Meyer, D. V. Else, C. Nayak,

and N. Y. Yao, Exponentially slow heating in short and long-

range interacting Floquet systems, Phys. Rev. Res. 1, 033202

(2019).

[76] A. Rajak, I. Dana, and E. G. Dalla Torre, Characterizations

of prethermal states in periodically driven many-body systems

with unbounded chaotic diffusion, Phys. Rev. B 100, 100302(R)

(2019).

[77] M. Holthaus, Floquet engineering with quasienergy bands of

periodically driven optical lattices, J. Phys. B 49, 013001

(2016).

[78] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution

of the ratio of consecutive level spacings in random matrix

ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[79] N. Regnault and R. Nandkishore, Floquet thermalization: Sym-

metries and random matrix ensembles, Phys. Rev. B 93, 104203

(2016).

[80] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett.

71, 1291 (1993).

[81] C. Fleckenstein and M. Bukov, Prethermalization and thermal-

ization in periodically driven many-body systems away from

the high-frequency limit, Phys. Rev. B 103, L140302 (2021).

[82] D. Hetterich, G. Schmitt, L. Privitera, and B. Trauzettel, Strong

frequency dependence of transport in the driven disordered

central-site model, Phys. Rev. B 100, 014201 (2019).

063716-13


