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Abstract

We provide bounds on temporal fluctuations around the infinite-time average of out-
of-time-ordered and time-ordered correlators of many-body quantum systems without
energy gap degeneracies. For physical initial states, our bounds predict the exponential
decay of the temporal fluctuations as a function of the system size. We numerically verify
this prediction for chaotic and interacting integrable spin-1/2 chains, which satisfy the
assumption of our bounds. On the other hand, we show analytically and numerically
that for the XX model, which is a noninteracting system with gap degeneracies, the tem-
poral fluctuations decay polynomially with system size for operators that are local in the
fermion representation and decrease exponentially in the system size for non-local op-
erators. Our results demonstrate that the decay of the long-time temporal fluctuations
of correlators cannot be used as a reliable metric of chaos or lack thereof.
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1 Introduction

The spreading of local observables under unitary time evolution has been used as a measure
of information scrambling in quantum systems out-of-equilibrium and has spurred a lot of
interest across various areas of physics. A central quantity used to assess this spreading is the
out-of-time ordered commutator (OTOC) between two operators, W(t) and V(0), where one
is fixed at time t = 0 and the other evolves in time, that is,

CO) =3 (WO, IT) M
= 1- AW OV OW OV O],

where #R[.] indicates the real part of the out-of-time-ordered correlation function
(WT(6)VT(0)W (t)V(0)). Initially, the commutator is small or zero, and the spreading of the
operator in time is manifested in the growth of the commutator.

The OTOC was introduced more than half a century ago in the semiclassical analysis of
superconductivity [1], and recently attracted a lot of attention in high energy physics [2-9],
random unitary circuits [10-13], diffusive dynamics [14-17], many-body localization [18-
21], quantum phase transitions [22-25], integrable models [26], quantum chaos [27-48],
and instability [49-54]. The interest in this quantity has inspired a number of experimental
studies [55-67].

For chaotic systems with a well-defined semiclassical limit, the initial growth of the OTOC
with time is exponential, with a rate determined by the positive Lyapunov exponents of the
corresponding classical system [1]. As such, OTOCs are natural candidates to explore the
chaotic features of a given system. However, this initial exponential growth happens also in
integrable models due to instability [49-54], as experimentally confirmed in [67]. There have
also been examples of interacting-integrable systems without a well-defined semiclassical limit,
where the OTOC exhibits a diffusive front broadening as in nonintegrable models [16,17], and
of chaotic models with local conserved quantities, where the OTOC grows algebraically [11,
15,68-70]. Recently, it was also shown that for a class of many-body local circuits, exponential
OTOC decay is not a good indicator of chaos [71].

While the short-time behavior of the OTOC does not categorically distinguish between
integrable and chaotic quantum systems, one may wonder whether its long-time behavior
could. In [36], the authors used the size of the temporal fluctuations after the saturation of
the OTOC as a way to differentiate between chaos and integrability.

Motivated by [36] and various other studies on the temporal fluctuations of observables
[72-79] and OTOCs [40,41], we investigate how the magnitude of the temporal fluctuations
of time-ordered correlation functions and out-of-time-ordered correlation functions depend
on the system size L. We obtain analytical bounds that show that for systems without en-
ergy gap degeneracies (chaotic or not), the fluctuations decay at least exponentially with the
system size. We confirm this result numerically by considering three spin-1/2 models in one-
dimensional (1D) lattices: a chaotic model with first- and second-neighboring couplings, the
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integrable interacting XXZ model, and the integrable noninteracting XX model. In the first two
cases, energy gap degeneracies are absent, so the scaling of the fluctuations with L cannot set
them apart and the fluctuations decay exponentially with L. For the XX model, where energy
gap degeneracies are present, the decay can be polynomial or exponential depending on the
local operators used in the correlators.

The paper is structured as follows. In Sec. 2, we introduce the correlators that we study
and the general bounds for the decay of their temporal fluctuations as a function of system
size. In Sec. 3, we present the models and initial states that we consider. In Sec. 4, we study
numerically the decay of the fluctuations with L and verify that our bounds are tight. In Sec. 5,
we present analytical results for the XX model, for which the general bounds do not apply. In
Sec. 6, we summarize our main results and outline possible research directions. Derivations
and supporting material are provided in the appendices.

2 Correlators and bounds on their temporal fluctuations

We consider the time-ordered correlation function,
Fy (£) = (BolA (D Al%,), 2)
and the out-of-time-ordered correlation function,
Fi (6) = (BlA(DAA(DANY), 3)

where |¥,) is an initial state, A is a local operator, which in our case is Hermitian and unitary,
A(t) = eHtAe ™t and H is the Hamiltonian of the system.
We investigate the infinite-time average of the correlators,

T
1
F’Z“4— l1m ?f thA4(t) 4
0

and the magnitude of their temporal fluctuations around this value,
T —2
, = |PL - (5)

2.1 Bounds on fluctuations

To obtain general bounds on the temporal fluctuations of F2 4
Refs. [74-76] for the fluctuations in an observable (A(t)). Our results for Fﬁ are complemen-
tary to those in Ref. [41], where a bound on the fluctuations of F’ZA‘ was obtained for ther-
mal initial states and for systems exhibiting weak ETH, as well as to those in Refs. [80, 81],
where the fluctuations of k-time-ordered correlation functions were bounded on average (see
also [82] for studies on temporal fluctuations of nonequilibrium currents).

The Hamiltonian associated with the evolution of the correlators has eigenvalues E,, and

eigenstates |E,). It is a Hermitian operator that can be written as H = > E,b,, where

we generalize the results of

P, = Z{:;l |Enq)(Enq| is a projector onto the degenerate subspace with K, equal eigenvalues
E,, and all E;’s in the sum for H are distinct by construction.
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2.1.1 Fluctuations of the time-ordered correlation function

Using the projectors, the time-ordered correlation function in Eq. (2) becomes

FA(t) = e EnEndt (| AP, Al W) . (6)

n,m

Since all E,,’s are distinct, the infinite-time average is

FQA:Z<\PO|ﬁnAﬁnA|\PO): (7)

n

and the fluctuations around F‘z“ are given by

A2, = ST i)t B (| B AB, A W) (ol ATBATB 1) ®)
FZ
n#m k#l
We now assume that the energy gaps are non-degenerate, which means that if the gaps
E,—E,, = E;—E, for any given n,m, k, [, then eithern =m and k =l orn = k and k = [. Since
n=m and k = [ are excluded from the sums in Eq. (8), we obtain the following expression
for the infinite-time averaged fluctuations in Eq. (5),

A% = Z (o ﬁ’nAﬁmAN’o) <‘I’0|A>IrﬁmATﬁ’n [Wo)

n#m
< > (ol AP A W) (Wo| ATBLATE, W) ©)
n,m

= tr(Aw A’ w),

where we defined,

wp = Zf’nAI%) (Tl AT, (10)
n

C():ZISH|\I/0> <\I’0|ﬁn. (11)
n

Using the Cauchy-Schwarz inequality, Eq.(9) gets bounded as (see Appendix A),
A4
A%< Al Vi(e?), (12)

where ||A|| is the matrix norm corresponding to the largest eigenvalue of A. The quantity
tr(w?) corresponds to the inverse participation ratio (IPR) of the initial state in the basis of
the eigenstates of the Hamiltonian,

2y _ _ (0))4
tr(w?) =1PRy = D [cI*, (13)

ng.q

where C,(lo) = (Enq |¥y). The bound for the autocorrelation function is softer compared to the
q

bound for the observable obtained in Ref. [76], as reflected in the square root of the IPR.

The result in Eq. (12) implies that for Hamiltonians with non-degenerate energy gaps
and initial conditions that have weight on exponentially many eigenstates of the Hamiltonian
(which may happen when the Hamiltonian describes a many-body quantum system), the fluc-
tuations decay exponentially with the system size. It is important to stress that, similarly to
Refs. [74,76], the obtained bound does not require the system to be chaotic or the spectrum
to be non-degenerate.
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2.1.2 Fluctuations of the out-of-time-ordered correlation function

To bound the fluctuations of Ff(t), we first introduce the following simplified notation,
Tomkt = (¥ | P, AP, APAPA| W) (14)

Snmkl EEn_Em'i_Ek_El'

The infinite-time average of Ff(t) is given by

— /
Ff - Z Tnmkl i (15)

nmkl

and the fluctuations around the infinite-time average are

/ /
2 _
AF:? - Zn m,k,l Zn’ m’, k'l Tnmkl n’ m’k’l’5 (Snmkl Sn’m’k’l’) ’ (16)

where 6(x) is a Kronecker delta and the prime indicates that all terms with Sk, Simrirrr = 0
are not included in the sums. The Kronecker delta implies that S,,,x; = Sym/t 7 O-
Similarly to the fluctuations of Fg‘(t), we assume that the nonzero S,,,;;;’s are unique up
to trivial permutations n «— k and m «— [ that leave S,,,;; invariant. In other words, for
nonzero S,,,x;, only the following S,,,; are equal,
Snmkl = Skmnl = Sklnm = Snlkm .

Using this assumption, we can reduce the constraint into four sums,

/
2 _
AF/;‘ = Zn Tomict Tyt + Z Tomit Temni
+ Z nmkl Tklnm + Z nmkl nlkm ’ 17)

where the prime over the sum includes all constraints on (nmkl) that ensure no double count-
ing between the permutations.
To obtain the bound for A? P we show (see Appendix A) that the first term on the right-

hand-side of Eq. (17) is domlnatlng, and write it in the form

Z nmkl nmkl - tr(wAwAAAAT)) (18)

n,m,k,l

where w is defined in Eq. (10), and

Wapp = Z P AP APA|W,) (W | ATDATPLATD,, . (19)
m,k,l

As shown in Appendix A, we can bound the fluctuations as

a7, < 4[4l V(o). (20)

This is similar to the result in Eq. (12) and implies again that if IPR,, is proportional to the
dimension of the Hilbert space of a many-body quantum system, then the fluctuations decay
exponentially with the system size.
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Figure 1: Dynamics of the correlators F ZZ 4 (t) in the top row (a)-(c) and F: 5‘ 4 (t) inbot-
tom row (d)-(f) evaluated numerically for the Haar state initial condition and three
spin-1/2 models. Solid lines correspond to Ff’z(t) and dashed lines to Fé( Z(t). For
F f (t), a number of system sizes are considered, where the larger sizes are indicated
with darker colors [legend in (b) is for (a)-(c) and legend in (e) for (d)-(f)]. For
FZ(t), the system size is L = 18 and for F; (t), itis L = 16. The XX model from
Eq. (21) is depicted in the left column [(a), (d)], the XXZ model from Eq. (22) in
the middle column [(b), (e)], and the chaotic NNN model from Eq. (23) in the right
column [(c), (D].

3 Models and initial states

In this section, we describe the models and initial states that we use to numerically confirm in
Sec. 4 that the bounds derived above are tight. We consider three spin-1/2 chains as described
next.

(i) The XX model,

-1
Hoo= > J (8585, +38787 ) + by 82, 21)
i=1
where §* = o”"* /2 are spin-1/2 operators operating on site i and o} ”** are Pauli matrices,

L is the size of the system, J is the coupling strength, and h;, is a border defect, which we
introduce to break parity and spin-reversal symmetries [83], without breaking the integrability
of the model. Throughout the work, we set J = 1 and h; = 0.1. This model can be exactly
mapped to noninteracting fermions using the Jordan-Wigner transformation.

(ii) The XXZ model,

L-1
HXXZ :HXX +JZZ‘§?§1'Z+1’ (22)
i=1

which is integrable via the Bethe ansatz [84]. We set the anisotropy parameter to J, = 0.48
to avoid additional symmetries that appear for J = J, and at the roots of unit, such as
J,=J/2[85].

(iii) The XXZ model in Eq. (22) with additional next-nearest neighbor (NNN) couplings,

L—2

N avax L Ay ay -

Fnn = o + 2 [T (8285, +8787,,) +0.8282,,] . (23)
i=1
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Figure 2: Variance of the temporal fluctuations of Ff 2z (t) (circles) and Ff’z(t) (di-
amonds) for the Haar state initial condition as a function of system size, L. Filled
symbols represent Ai , and empty symbols correspond to Aix . The models are (a)

2,4 2,4
the XX defined in Eq. (21), (b) the XXZ from Eq. (22), and (c) the NNN in Eq. (23).

We choose A = 1, which guarantees that the system is chaotic.
We use open-boundary conditions for the three models to break translational symmetry.
All of them conserve the total magnetization in the z-direction, 57 = >, 5. We work within

the §f0t = 0 subspace, which has the Hilbert space dimension D = ( L];Z)'

Interacting Hamiltonians without symmetries, like those defined in Egs. (22) and (23),
typically satisfy the condition of non-degenerate energy gaps, which is needed for the bounds
in Eq. (12) and Eq. (20). This contrasts with noninteracting models, or systems that can be
mapped to free fermions, such as the XX model in Eq. (21), which have a large number of gap

degeneracies even when the spectrum is non-degenerate.

3.1 Initial states

In this work, we use three initial states: a random state drawn from the Haar measure, which
we refer to as the Haar state, the Néel state |¥y) = | T/T| ... T|), and the domain-wall state
[Wo) =117 ... Lll), where half of the chain has the spins pointing up in the z-direction and
the other half is pointing down. The Haar state corresponds to an infinite-temperature state
with energy in the middle of the many-body spectrum. The Néel and domain-wall states are
pure states widely used in experiments, whose energies depend on the model considered (see
Appendix B).

4 Numerical results

In this section, we show that when the bound that we derived in Sec. 2 applies, it is tight.
We numerically investigate the evolution and temporal fluctuations of the time-ordered and
out-of-time-ordered correlation functions for

A A

A= G’L‘/Z , and A= 0‘2/2 . 24)

The corresponding correlators are denoted by Fé‘ 4 and FZZ 4> respectively.

We consider the three models presented above and take a random state from the Haar
measure as our initial state. The results do not change qualitatively for the other initial states
listed in Sec. 3.1, but they differ in details (see Appendix B).

Since we are interested in the long-time dynamics, we use exact diagonalization, which
limits the accessible system’s size to L < 18.



Scil SciPost Phys. 15, 244 (2023)

4.1 Results

Before analyzing the temporal fluctuations, we present in Fig. 1, the evolution of FZZ’ 4(0) [(@)-
(0)] and FX (t) [(d)-(fH)] from time t = O up to their saturation; for the XX, XXZ, and NNN
models; for various system sizes. With the exception of FZ 4(t) for the XX model [Fig. 1(a)],

the correlation functions saturate to a very small value and exhibit small temporal fluctuations
that decrease as the system size increases. The fluctuations of FX 4(t) are noticeably smaller
than those of FZ 4(t) This is likely caused by the conservation of the total z-magnetization in
the studied models, which is also known to slow down the decay in time of F f (t) [70].

The behavior of F f (t) after saturation for the XX model [Fig. 1(a)] stands out. While for
the other models, F f (t) fluctuates around zero at long times, for the XX model, it approaches
1, as discussed also in Ref. [26]. In contrast, Fzz (t) for the XX model [Fig. 1(a)] does decay
to zero, even though it exhibits larger fluctuations than for the XXZ [Fig. 1(b)] and NNN
[Fig. 1(c)] models. In Sec. 5, we elucidate the behavior of F. ZZ 4(t) for the XX model by analytical
arguments.

The saturation of Fff (t) for the XX model [Fig. 1(d)] is preceded by quasi-periodic oscilla-
tions, which are absent for the chaotic NNN model [Fig. 1(f)]. Smaller oscillations at interme-
diate times are also visible for the XXZ model, although they happen at a plateau [Fig. 1(e)].
Interestingly, a plateau that gets longer as L increases also appears for F, f (t) in the XXZ model
[Fig. 1(b)]. Contrary to Fff (t), the time-ordered correlation function F§ (t) decays fast to a
small value without oscillations for all three models

With the general picture of the behavior of F (t) provided in Fig. 1, we study the de-
pendence of the temporal fluctuations, A pizasa funct1on of system size. Fig. 2 shows this

dependence for the Haar state (for a comparison with the results for the Néel and domain
wall states, see Appendix B), and confirms that the bound derived in Sec. 2 is tight. Namely,
that A FX2 decays exponentially with system size for the interacting-integrable [Fig. 2(b)] and

chaotic [Flg 2(c)] systems. For a given chain length, even the magnitude of the fluctuations
is comparable for both models.
The behavior for the XX model [Fig. 2(a)] is distinct. While both Aix and AI%_X decay
2 4

exponentially with L, A2 decreases slower than exponentially. As stated in Sec. 2, this model
2 4

has gap degeneracies, so the proof of Sec. 2 does not apply to it. Nevertheless, since it can be
mapped to free fermions, in the next section, we provide numerical and analytical results for

the dependence of A2 2z onl,as well as for the infinite-time averages FZZ "
24 B

5 XX model

Since the XX model maps exactly to noninteracting fermions, its infinite-time average, F2 45

and temporal fluctuations, A2 5z > can be computed analytically. The numerical analysis of the
Fyq

previous section can also be extended to much larger system sizes, because the complexity of
the calculations increases only polynomially with system size.

We compute F Z(t) and F; Z(t) by writing them in terms of fermionic creation, L /2, and
annihilation, ¢} /,, operators acting on site /2, that is,

Oy =28] pbrp—1. (25)

For quadratic Hamiltonians, the time-evolution of the creation and annihilation operators is
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given by

ATy — AT
e=>uh e,
l

&)= uy ()&,

k

(26)

—ihst ) is the single-particle propagator and h; the single-particle Hamil-

where u;; (t) = < |
tonian.

After expressing Fzz 4 (t) in terms of fermionic operators, we calculate the correlations using
Wick’s theorem (see Appendix C). For generic initial states, the final expression is cumbersome,

however, it considerably simplifies at infinite temperature, yielding

Fj(t)= |uL/2,L/2(f)|2 , (27)

and . )
F} (t):4(’uL/2,L/2(t)| _|uL/2,L/2(t)~ )"‘1- (28)

We can then obtain the infinite time-average,

FZ= el (L) P |(416) —ZI 29)

a’ﬁ

where |a) and ¢, are the eigenstates and eigenvalues of h,. In the last equality, we assumed
that the single-particle spectrum is non-degenerate, which is true for the XX model with the

border impurity. We see that FZZ is the IPR of the initial state corresponding to a single particle
at the center of the chain, L/2, and projected in the basis of the single-particle eigenstates of

h. For delocalized single-particle initial states, we have that FZZ oc L1,

Using FZ, we write the temporal fluctuations of FZ (t) as

FZ()—Ff = > [(ali)? [(Bli)[*el(erea)t (30)
a#p
and obtain the variance
A}, = |Ff - Z| (ali)[*1(B10)* 31)
a#p

A similar derivation follows for the temporal fluctuations of F 4Z (t). The infinite-time aver-
age of the out-of-time ordered correlation function is given by

—1+4Z|zla\|zlﬁ|—42|zl ~1-2ho(1), (32)

ot

a result that was first discussed in Ref. [26]. Since F f (t) is dominated by the second term in
the parenthesis of Eq. (28), its temporal fluctuations decay with system size similarly to what
happens for FZ(t) [cf. Eq. (27)].

To confirm these analytical estimates numerically, we compute FZZ (t) and F, f (t) using
Eq. (27) and Eq. (28) for a number of system sizes. Figure 3(a) shows that the infinite-time
average decays as L™}, and Fig. 3(b) shows that the temporal fluctuations around that average
decay as L™2, in perfect alignment with the analytical estimates.

The calculation of the temporal fluctuations of Fé( 4(t) is considerably harder, because both
correlators expressed in terms of fermionic operators are non-local, so one has to perform
Wick’s contraction of the order of L operators. While this can be done numerically, we were
not able to obtain analytical estimates, which would help to explain the exponential decay of
the fluctuations with the system size.
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Figure 3: (a) Infinite-time average F f and (b) temporal fluctuations after saturation,
AF224, as a function of system size; for the XX model and an initial state at infinite
temperature. Solid lines represent the numerical data and dashed lines, the analytical
results.

6 Discussion

We rigorously showed that for any quantum system with a bounded local Hilbert space dimen-
sion and non-degenerate energy gaps, the temporal fluctuations around the saturation value
of time-ordered and out-of-time-ordered correlation functions are bounded by the square root
of the inverse participation ratio of the initial state. Since most physical initial states are com-
posed of exponentially (in the system size L) many eigenstates of the Hamiltonian, this implies
that for such initial states, the temporal fluctuations decay at least exponentially with L. Our
results are general and do not depend on the dimensionality of the system. Moreover, while
they strictly apply only for systems with bounded local Hilbert space dimension, they should
also hold for bosonic systems with a bounded local occupation (see e.g. [86] and references
therein).

We verified numerically that the bounds on the fluctuations are tight and that the fluctua-
tions decay exponentially for the interacting integrable XXZ spin-1/2 chain and for its chaotic
version with next-nearest-neighbor couplings. Our results demonstrate that the decay of the
temporal fluctuations of correlators as a function of the system size cannot serve as a reliable
metric of chaoticity. This has to be contrasted with the decay of temporal fluctuations when
the initial state is one eigenstate of the Hamiltonian. For such initial states, the fluctuations
are related to the off-diagonal matrix elements, which do show different decay with system
size for chaotic and integrable systems [87].

The only distinguishing behavior that we identified was for the 1D XX model, which is
exactly mappable to noninteracting fermions. Since this model has degenerate energy gaps,
the bounds that we obtained on the decay of the fluctuations do not apply; however, they
can be calculated both analytically and numerically. We find that for this system, the tem-
poral fluctuations of the time-ordered and out-of-time-ordered correlation functions in the z-
direction, FZZ, 4(t), decay as L™2. On the other hand, we observed numerically that the temporal
fluctuations of F§ 4(t) decay exponentially with system size. We argue that, in this case, the
exponential decay stems from the non-locality of Fé( 4(t), when written in terms of fermionic
annihilation and creation operators. It remains to put this claim on more solid ground. It
would also be interesting to investigate if there are scenarios in which different power-law
decays of the fluctuations are possible.

10
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A Proofs of the general bounds
In this section, we provide detailed proofs of the bounds in Egs. (12) and (20) of the main
text.
We showed in Eq. (9) that Alsz can be bound by
2
A% < tr(AwsATw), (A1)

where « and w, are defined in Eq. (10). Using the Cauchy-Schwarz inequality,

r(VIwW) < (viv)yuwiw), (A.2)

setting V = Aw, and W = A'w, and using the cyclic property of the trace, we further bound
Eq. (9) as follows,

A%, < e (AtAw})y o (Adiw?)

< AP/ tr(w?) v tr (w?),

where we used that for two positive matrices A and B, tr(AB) < ||A||tr(B). We can bound
tr(wi) by

(A.3)

tr(w?) = Ztr (BLA o) (| ATPLA W) (T ATB,)
||A|\po <\110|Af||2tr (B,A|wo) (W] AT)

< || A1) (Tl AT (w0l ATAIE,) < |IA]|*

(A4)

This gives
2, < |A|I* ver(w?). (A.5)

For the fluctuations of Ff“, we start with Eq. (17). We designate a given permutation of
(nmkl) by o (nmkl), and notice that it is bijective. Then, using the Cauchy-Schwarz inequality,
we have

/ / /
* *
’: :nmkl Tnmkl To(nmkl)‘ < \/: :nmkl Tnmkl Tnmkl : :nmkl To‘(nmkl) o(nmkl) — z: Tnmkl nmkl >

nmkl
(A.6)
where in the last inequality we renamed the indexes of the second term in the square root. We
also removed the constraints on the sum, using the fact that all elements of the sum are now
positive. This allows us to write

2
A <4 Z nmkl nmkl

n,m,k,l

11
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Using the definitions of w in Eq. (10) and wgu, in Eq. (19), which are positive operators, we
have

.
D Tomia T = trwA .

n,m,k,l

Using the Cauchy-Schwarz inequality combined with the cyclic property of the trace,

tr(wAwypd’) < \/ tr(w?AA") tr (w2, ,ATA) < ||A||2 Vr(wdtr(wi,,). (A.7)

We now proceed by bounding tr(cof\AA), which is given by

AAAAAA

mk,l k1
(A.8)
Since A|¥,) (¥o| A" and the matrix to the left of it are positive, we can write

(o) < A2 ST S e [BuA B A B, ABABA TG) (Wol ATBABATB,ABAR ], (A9)
m,k,l k’,l’

and eliminate the sum over [’ using the cyclic property of the trace and the fact that ». P, =1.
Therefore,

A2 A ALA AN AA A AL A ALA ALA AN A AL
tr(w?y) < JJA|* D D e [BLATRLARAPAIY,) (U0l AT DA BATE,APAAT] . (A10)
mk,l k'
We can now proceed along the same lines as before until we get
2 Al112
tr(ewiy,) < ||A| - (A11)
Combining the expressions, we obtain
18
A2, < 4|/4" vir(w?). (A.12)
4
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Figure 4: System-size scaling of the variance of the temporal fluctuations of F f (t)

[Fff (t)] for the (a) [(d)] Haar, (b) [(e)] Néel, and (c) [ (f) ] domain-wall states for the

XX [Eq. (21)], XXZ [Eq. (22)], and NNN [Eq. (23)] models.
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B Dependence on the initial state

Here, we compare the results for the variance of the temporal fluctuations obtained for the
Haar state as the initial state with those for the Néel and the domain-wall states. The expecta-
tion of the Hamiltonian, Ey, = (¥,| H |¥,) of these two states depends on the model according
to [88],

J
Néel state: E, = f [—(L—-1)+AL-2))],

J,
Domain wall state: E, = ZZ [(L—3)+A(L—6))].

For the XX model, where J,, A = 0, the energies of all three states are in the middle of the spec-
trum, E, = 0. For the XXZ model with large L and for our choices of parameters, |Ey| ~JL/8,
where E; is negative (positive) for the Néel (domain wall) state. For the NNN model, the
energy of the Néel state is close to the middle of the spectrum, E; ~ 0, where chaos is strong
and the eigenstates are very delocalized, while the energy of the domain wall state for large
L is closer to the positive edge of the spectrum, Ey ~ JL/4.

In Fig. 4, we plot Aix , for the three different initial states. Their results are qualitatively
2,4
similar, but there are subtle differences associated with the position of the energy of the initial

state in the spectrum. While for the Haar state [Fig. 4(a),(d)], there is practically no difference
in the values of A2 oz for the interacting-integrable and the chaotic model, the fluctuations for

the Néel state [F1g 4(b),(e)] are smaller for the chaotic model, since in this case, |¥,) is in
the middle of the spectrum, being thus more delocalized than for the XXZ model. A similar
explanation can be given for the smaller fluctuations associated with the Néel state for the
NNN model [Fig. 4(b),(e)] when compared with those for the domain wall state under the
same model [Fig. 4(c),(0].

With respect to the XX model, the magnitude of the fluctuations is analogous for all three
initial states. The difference lies in the operator considered, as already discussed in Fig. 2(a),
that is, Az decreases slower than exponentially [Fig. 4(a)-(c)] and Az decays exponentially

with L [F1g 4(d)-®D].

C Detailed derivations for the XX model

C.1 Out-of-time-order correlation function

In the following, we present the detailed derivation of F, f (t) defined in Eq. (28) of the main
text,
FZ(6)=(W (V)W ()7 (0), (C.1)

where W (t) = o? (t) and V= a?. We rewrite W and V in terms of fermionic operators as
o (t)=2n;(t)—1, and o?zZﬁj—l, (C.2)
where #; (t) = (t)c (t) and fi; = ch so that
FZ(6)=((2A; () —1)(2A; — 1) (2A; () — 1) (2A; — 1))
= ((4m; () f; — 2, () — 22 + 1) (4A; () A — 20, (£) — 2A; + 1))
Expanding the previous expression, some terms trivially cancel and it gets reduced to

FZ(t) = (16n; (¢) i, (¢) i — 8 (¢) iy (¢) — 8A; 1, (£) Ay — 4y (£) A + AR50, () + 1,
(C.4)

(C.3)

13
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where we used A7 (t) = A; (t) and ﬁJZ =fi;.
In the following, we expand the expectation value and work on each of the terms above.

But before doing that, let us express the time evolution of 63' (t) and ¢; (¢t) as

&0=>uy (0,

l

&)= uy ()&,

k

(C.5)

where u;; (t) = ( | —ths t| k) is the single-particle propagator and h, the single-particle Hamil-
tonian.
Using Eq.(C.5), we then express the first term of Eq.(C.4) as

(A (D57 (O R;) = Dy (D (g (D1, (D (e eele;ele ele ) (C.6)
kipq

Using Wick’s theorem, we expand the expectation value in terms of nonzero pairwise con-
tractions. After that, re-introducing the time dependence gives,

(A A (OR;) = (A () {(;)[ (s () () + (€] () (&: () ¢])]
Hgao)[{ee ) a) =& &) +{A;) (e (0¢)]
+(n;) [(eje] () (& (&) )+ A () = () (A, () ]}

(el e {{e e[ ) (ay) +(ef () (e 0el)]
—(1—(a; OD[{ee () (ay) + () (& (0]

—(& &) [~(ele ) e e) +(a;) (3 (0) ]}

@) {(a )¢ ) () = &)+ () (04)]
+ = (A (OD[(Ay)” + () = ()]
—(&@e)[{a) e &) +(a){ee] )]}

(el () {(a ) [(ge] )& 8] + A (0) = (a;) (A (1) ]
@ — (N [(A) (& () = (el () +{ele () (ay)]
+(e (0en)[(A;) (a 0) + (ele (0) (&l ()]} -

(C.7)

+

+

Analogously, for the second and third terms in Eq.(C.4),
(i (O i, (0) = ( ()2 () + (g () (el () (6] (1)
+ (a0 (&] () (e (e ) = (e (&) (ele () + (R (0) (¢ (1)) (el (0)
—(& e [—(ele ) (e () +(a;) (a (o) ]}

+ (i (0) (& (0] ) (&56] () + (A () () — (A () (A;)
(C.8)
and,

(i (0 a;) = ()" (i () + () (e (0¢) (e (0 )
+(A){(ele () (eel (0) = (ele () (e () +(a;) {ele (D) (el () ©9)
+ (A (5 () (& (D) + () (i (0) — () 7 (0)) -

14
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For the fourth and fifth terms of Eq.(C.4), we have

(A (0A;) = (A, (D) (A;) + (& (&) (e (el ), (C.10)
(A0 (0) = () (A () + (€1, () (e (1) - (C.11)

It is convenient to rewrite all the expressions above using the Green’s function
G; ()= (el (0)¢). (C.12)

While we can obtain a general equation for any initial state for which the Wick’s theorem
holds, it is rather cumbersome. In particular, for the infinite-temperature state considered in

this work, it considerably simplifies, since <ﬁ j> = (f1; (t)) = 1/2, and the remaining terms can

be readily written in terms of Green’s functions as
(a0 =(gef () =650, (C.13)

where we used the cyclic property of the trace and the fact that the density matrix acquires
the simple form p = 1/D with Hilbert space dimension D.

Using this simplifying property together together with Egs.(C.12)-(C.13) in Egs. (C.7),
(C.8)-(C.11), and in turn, substituting everything back in Eq.(C.4), gives

FZ2(1)=16(4]G, (0]~ |G, (O") +1. (C.14)

The Green’s function at infinite temperature is given by

Gy (= (& (08) =D (O(ee) = > w036, = 5ui (0, (€19)

l [

where we used Eq. (C.5). Finally, substituting Eq. (C.15) in Eq. (C.14), we obtain the expres-
sion for F 42 (t) at infinite temperature, which we used in the main text,

FZ(6) = 4(|uy; (0] = |uy; (0)]) + 1, (C.16)

where u;; (t) is the single-particle propagator. In the text, we set i = j = L/2.

C.2 Time-ordered correlation function

From the previous subsection, one can check that in terms of fermionic operators, the time-
ordered correlation function FZZ (t) defined in Eq. (27) of the main text is given by

FZ(t)=4(f; () ;) —2(A; (0)) —2 () + 1. (C.17)
Applying Wick’s theorem, we get
FZ(t)=4(f; (1) (n;) +4(aj(t)ej)<éi (t)a;F)—z (i () —2(f;) +1, (C.18)
which at infinite temperature is simply

FZ(6)=4|Gy; (O = |u; (O . (C.19)
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