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Abstract—3GPP has introduced Private 5G to support the
next-generation industrial automation system (IAS) due to the
versatility and flexibility of 5G architecture. Besides the 3.5GHz
CBRS band, unlicensed spectrum bands, like 5GHz, are con-
sidered as an additional medium because of their free and
abundant nature. However, while utilizing the unlicensed band,
industrial equipment must coexist with incumbents, e.g., Wi-Fi,
which could introduce new security threats and resuscitate old
ones. In this paper, we propose a novel attack strategy conducted
by a mobility-enabled malicious Wi-Fi access point (mmAP),
namely PACMAN attack, to exploit vulnerabilities introduced
by heterogeneous coexistence. A mmAP is capable of moving
around the physical surface to identify mission-critical devices,
hopping through the frequency domain to detect the victim’s
operating channel, and launching traditional MAC layer-based
attacks. The multi-dimensional mobility of the attacker makes it
impervious to state-of-the-art detection techniques that assume
static adversaries. In addition, we propose a novel Markov
Decision Process (MDP) based framework to intelligently design
an attacker’s multi-dimensional mobility in space and frequency.
Mathematical analysis and extensive simulation results exhibit
the adverse effect of the proposed mobility-powered attack.

I. INTRODUCTION

The future industrial automation systems (IAS) is envi-
sioned to adopt the full-scale wireless connectivity offered by
the fifth-generation (5G) cellular technology [1]. Regulatory
authorities and researchers are advocating the implementation
of Private 5G in IAS to accomplish the precise industry-
specific QoS standards [2], [3]. Due to the limited availability
of licensed radio spectrum and the additional logistics required
to access such resources, unlicensed spectrum bands, such
as 5 GHz, have the potential to play a significant role [4].
Though industries may prioritize using licensed spectrum
bands as anchor carriers, unlicensed spectrum bands provide
an unparalleled resource to meet the demands of advanced
AI/ML-enabled IAS applications. The caveat, however, is that
Private 5G is required to coexist with the incumbents in these
unlicensed bands, e.g., Radar and Wi-Fi in the 5GHz band.

Motivation: While Private 5G-enabled IAS plan to utilize
unlicensed spectrum bands like 5GHz, the heterogeneity be-
tween Wi-Fi and cellular technologies may hinder their fair
and effective coexistence. For example, Wi-Fi employs a
preamble-based detection mechanism for Wi-Fi signals and
an energy-sensing-based detection mechanism for non-WiFi
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ones, whereas LTE/5G employs the latter. Cellular technolo-
gies have adopted CSMA/CA-based methods along with a
similar contention window structure and backoff techniques
to maintain a uniform channel access framework in 5GHz
spectrum band. The CSMA/CA mechanism, however, has
several vulnerabilities that may have an adverse impact on IAS
applications. Additionally, the absence of a preamble-based
detection mechanism makes it more difficult to detect such
malicious behaviors. Therefore, given the national security
significance of manufacturing and supply chain industries, it
is crucial to assess such vulnerabilities and propose a more
secure coexistence framework in unlicensed spectrum bands.

Challenges: Most research on the fair coexistence of Wi-Fi
and cellular technologies in the 5GHz spectrum band has pri-
oritized Wi-Fi’s performance. In contrast, only a small amount
of research has addressed the Quality-of-Service (QoS) of cel-
lular technologies. Moreover, the impact of various PHY/MAC
layer-based attacks in heterogeneous spectrum coexistence
scenarios is rarely studied. In [5], authors have conducted
a comprehensive survey on the vulnerabilities in the future
heterogeneous coexistence of 802.11 and cellular technologies
in an unlicensed spectrum band. Researchers in [6] and [7]
have proposed intelligent jamming attack and MAC layer-
based misbehavior, respectively, in the context of spectrum
coexistence of Wi-Fi and LTE in the 5GHz spectrum band.

However, only [6] has considered cellular technologies as a
victim against malicious AP. Evidently, it is an effective ap-
proach to use malicious APs to disrupt cellular communication
in the 5 GHz spectrum band. Nonetheless, the attack strategies
mentioned previously would not be able to make a conse-
quential impact due to the consideration of the fixed physical
location of the attacker and not considering delay-sensitive
application scenarios—important security considerations for
industrial applications. Additionally, a comprehensive attack
strategy must account for the risk of exposure and the reward
of persistent attacks. Hence, the consideration of latency-
sensitive critical application scenarios (e.g., IAS) with added
mobility considerations at the attacker (in both space and
frequency), introduces novel challenges to design intelligent
adversarial strategies and assess associated vulnerabilities.

Contribution: Based on the above discussion, in this paper,
(i) we propose a Wi-Fi-based mobility-powered attack model
called PACMAN attack, where the attacker can traverse the
physical area in a private 5G-enabled IAS, locate critical
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areas for IAS operations, and perpetrate MAC-layer attacks
on the devices residing in these areas. To the best of our
knowledge, this is the first work to propose such an attack in
private 5G-enabled IAS; (ii) in addition, we propose a Markov
decision process (MDP) based framework for path planning,
attack strategy design, and detection avoidance where the
attacker trade-offs between the path that maximizes the attack
performance and evasive maneuvers that minimizes the risk of
detection. The proposed framework aims to aid in modeling
and assessing security vulnerabilities.

II. RELATED WORK

In the following, we discuss the prior research on the path
planning model based on the MDP and PHY/MAC layer
vulnerabilities of heterogeneous spectrum coexistence.

A. Path Planning Model
Path planning models are used in applications such as

UAVs [8], drones [9], autonomous vehicles [10], and others
where an agent must move through an environment while
taking actions that are linked to rewards and penalties to
accomplish specific goals. MDP has been a popular method
for developing these models. In [9], the authors used a
combination of Jump Point Search and MDP to propose a
3D path planning model and real-time collision resolution for
multi-rotor drones operating in hazardous urban low-altitude
airspace. The trajectory planning for UAV-mounted mobile
edge computing systems is formulated using the combination
of MDP and Reinforcement Learning in [11]. In [8], [10],
authors considered the partially observable MDP-based path
planning models for military-based UAVs and the detection
of hidden road users by autonomous vehicles. However, these
models consider the traversal in the physical domain, whereas
our proposed model considers the mobility in both the physical
and frequency domains. Additionally, in our proposed model,
the adversary traverses the physical space to locate the critical
devices and hops through channels to detect the victim’s
operating channel, all while avoiding exposure.

B. MAC and PHY Layer-based Vulnerabilities
MAC and PHY layer-based vulnerabilities like jamming,

selfish backoff attack etc. have been prevalent in wireless
communications since its inception. Spectrum coexistence of
heterogeneous technologies can bring a new perspective in
terms of vulnerabilities and the detection and defense strate-
gies against them. In [6], the author proposed a jamming
attack perpetrated by a malicious Wi-Fi AP to degrade the
performance of coexisting LTE users. Conventional jamming
attack would not be an energy-efficient strategy for a mali-
cious entity with energy constraints [12]. Although a reactive
jamming attack is effective and energy-efficient, it suffers
from hardware constraints [12]. Moreover, MAC-layer-based
security attacks have the potential to disrupt the harmonious
coexistence of heterogeneous technologies in unlicensed spec-
trum bands. Authors in [13] introduced a logistic classification
approach to detect Selfish Backoff attacks in IEEE 802.15.4
networks, whereas [14] utilized a supervised learning model

for detecting the backoff manipulation attack in cognitive
radio. [15] considered time series analysis to detect malicious
nodes using the greedy MAC Protocol. However, while de-
tecting malicious actors or behaviors in the network, none of
these studies considered the heterogeneity of technologies in
a specific spectrum band. Although researchers in [7] have
proposed such MAC layer misbehavior for the first time
in such scenarios, their work did not address the scenarios
of malicious Wi-Fi APs. At the same time, none of the
proposed work on this topic considered the attacker’s ability
to move across the physical surface. Though Wi-Fi AP-based
spoofing attacks [16]–[18] also have the potential to impact
the coexistence of heterogeneous technologies, the difference
in the proposed work lies in the fact that the malicious entity
would act as a legitimate user of the spectrum band and have
the required mobility throughout the attack surface.

III. PROPOSED ATTACK STRATEGY

In the PACMAN attack scenario, the attacker has two ways
of traversal throughout the attack surface i.e. spatial and
frequency. The attacker will divide the physical space into
multiple polygons i.e. zones depending on its interference
range (we consider each zone a hexagon) and will initially
traverse throughout the surface randomly to have a better
understanding of the surface. While moving through differ-
ent zones, the attacker learns about transmitting devices in
different zones. We assume that the attacker has an out-of-
bound link (i.e., a secure control channel for the attacker only),
through which it derives the reward of attack in each zone. The
short-term goal is to cause successive transmission failures to
reach the maximum limit of transmission attempts (or until the
information becomes stale) and seize the victims’ operation.
The long-term goal is to locate the sectors crucial to industrial
automation, seize its operation, and remain undetected.

A. MAC Layer Misbehavior Strategy
In the context of this paper, we only focus on the 5GHz

unlicensed spectrum band where Wi-Fi acts as an incumbent
user and Listen Before Talk (LBT) based access mechanism
is promoted by the regulatory bodies for the cellular tech-
nologies. In an LBT-based mechanism, cellular technologies
are required to adopt a CSMA/CA-based access mechanism
while employing an energy detection-based sensing method.
Although in different research, the authors used energy de-
tection levels ranging from -62 dBm to -82 dBm, we would
only focus on the energy detection level of -72 dBm based on
3GPP specification [19]. To limit the scope, we only focus on
the selfish backoff attack approach [14], in which a malicious
Wi-Fi AP tries to employ a lower backoff value to gain
more access to the channel while restricting other users. The
attacker’s choice of backoff value is configurable and depends
on the attack objective. In a PACMAN attack, the goal is to
restrict the victim from accessing the channel and increase the
victim’s channel access delay, which will affect the operation
of IAS. Although selfish backoff attacks have been studied
before, the absence of preamble-based mechanisms to detect
malicious behaviors and the attacker’s mobility (in space
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(b) After attack.

Fig. 1: First phase of the attack.

and frequency) create an opportunity for adversaries to stay
undetected by traditional intrusion detection systems (IDS).

B. Frequency Hopping Mechanism

Short-term Strategy: A zone has M channels available for
the victims device, and the attacker is unaware of the channel
that is currently in use. Hence, the attacker visits m different
channels during each slot to identify the operating channel.
The attacker randomly creates a channel-hopping sequence
and periodically hops through it until it locates the victim’s
active channel. The strategy of channel hopping helps attackers
to put an upper bound on how long a victim device can
continuously use a channel. Fig. 1(a) shows an illustration
of the attack sequence with M = 10 and m = 2. It shows
the hopping sequence of attackers before a successful attack.
Here, the operating channel of the victim network in a sector is
channel-3 and, in slot-3, the attacker perpetrates the attack.aj
represents the channels where attackers have conducted the
attack and j represents the number of successive attacks. After
realizing performance degradation, the victim will randomly
hop to a new channel, will try to stay on that channel as
long as plausible, and will not hop back to the previously
attacked channels (i.e., aj) until it achieves a successful
transmission. Hence, the attacker will discard the previously
attacked channels for a particular transmission attempt. After
each successful attack, the attacker randomizes its hopping
sequence, excluding aj . Therefore, after j successive trans-
mission failures, attackers have M − j channels to randomize.
Fig. 1(b) illustrates a new hopping sequence of attackers where
the attacker detects and perpetrates the attack in the first slot.

Long-term Strategy: Given the flexibility in the frequency
domain, the attacker aims to gain more success in detecting
the correct operating channel of the victim. To successfully
detect the target victim’s operating channel, the attacker has
two assumptions. Firstly, when a victim is being denied access
to the channel for a continuous period, after a certain threshold
it would move to a new channel. Secondly, the victim would
not go to a channel where it previously faced anomaly in
terms of accessing the channel. When the attacker assuming
after G consecutive transmission failures (G<M ) the victim
cancels the current transmission, the attacker stays persistent
to increase its chance of successful attack after each successive
attacks; hence, it discards earlier attacked channels. Fig. 2
shows an illustration of a scenario, where G = 4, and attackers
are successful to drop the packet with successive attacks.

After jth successful attack, if the attacker is not successful
in the (j + 1)

th slot, it assumes that the victim had a suc-
cessful transmission. Hence, it will re-randomize the hopping
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(b) 2nd attack.
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(c) 3rd attack.
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(d) 4th attack.

Fig. 2: An illustration of successful DoS attack with G = 4.

sequence (i.e., nullify aj), but exclude the channels it has
visited in the current slot (since currently visited channels are
free, visiting again is not required), and begin a new period
(one period = ⌈M/m⌉ slots).
C. Physical Mobility

The malicious entity performing a PACMAN attack has the
capability of traversing throughout the physical domain of the
physical surface. The mobility across the attack surface makes
it more difficult for the IDS to locate and identify the selfish or
hostile transmissions. To begin, the attack is launched initially
in a certain area of the surface, which has a minimal effect
on the aggregate but a substantial effect on the zone. Second,
while the IDS can detect an abnormal event across the entire
surface, differentiating an attack from any physical anomaly
in that particular zone can be difficult. Finally, tracking down
the attacker’s current location as well as its intended future
location can be challenging because it may continuously move
around the physical surface.
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Fig. 3: The physical surface.
Fig. 3 illustrates a physical surface that contains multiple

distinct locations in hexagonal shapes comprised of different
application areas of the IAS. Also, an estimated travel path of
the attacker throughout the surface is shown. The attacker’s
goal is to identify the operating channel of the victim in
a certain location and conduct its MAC layer-based attack
to disrupt the network while minimizing the mobility cost.
However, the increased duration of attack in a zone would
increase the probability of being detected by the IDS. Hence,
the attacker moves to an optimal adjacent zone to protect itself

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

4381
Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 29,2024 at 09:24:31 UTC from IEEE Xplore.  Restrictions apply. 



from being detected. An optimal location is considered a zone
where the attacker would be able to cause the most damage by
affecting critical communications. The process of choosing the
ideal zone depends on the relative importance of each sector
and is discussed in detail in the subsequent section.

Summary: The proposed strategy introduces uncertainties in
the actions and location of the attacker. Unlike deterministic
approaches, the proposed attack strategy introduces a random
hopping sequence and path trajectory. Also, the attacker can
only be detected if the victim experiences transmission fail-
ures; hence, the first attack will always be undetected.

IV. PROPOSED MDP-BASED ATTACK MODEL

A. Formation of the MDP

We have utilized the MDP framework proposed in [20], [21]
and scaled it to incorporate the mobility of the attacker. We
presume that the operating channel of the victim in a location
is unknown to the attacker; the attacker iteratively sweeps
through the available channels, detects it, and perpetrates a
MAC-based attack. As we consider the attacker can sense
multiple channels at once (i.e., m), instead of waiting on a
certain frequency, it will hop through different channels. The
attacker will decide its action at the end of each time slot,
based on the observation of the current state. The attacker
receives an immediate reward U(n) in the nth time slot,

U(n) = L.1(Single attack) +Q.1(Packet drop)

−B.1(Busy channel)− V.1(Moving cost)

− C.1(Hopping cost)− E.1(Attacker detection)

(1)

where 1(·) is an indicator function of the event in brackets.
As the employed strategy impacts the current state and also

the future states, the expected reward of this game is,

U =

∞∑
n=1

δn−1U(n), (2)

where δ represents the discount factor (0 < δ ≤ 1). It measures
the significance of the future reward values.
B. Markov Model

This subsection demonstrates the proposed MDP model
and defines state space, action space, rewards, and transition
probabilities. We assume that the attacker sweep through all
channels periodically; hence, the probability of an operating
channel being detected depends on the channels that have been
visited earlier in the sequence, conforming the requirement of
a Markov process (i.e., a future state of the Markov process
depends only on the current state).

Markov States: The state denotes the status of an attacker at
the end of a time-slot at location l. Here, the proposed Markov
model (Fig. 4) has four kinds of states in each location:
P l : The attacker senses that the channel is occupied by a PU.
H l

i : The attacker hopped onto a new channel and had i
consecutive unsuccessful detection of the victim (1 ≤ i ≤ K).
Al

j : The attacker successfully perpetrated j consecutive at-
tacks (1 ≤ j ≤ G).
Dl : The attacker is detected by the IDS system at the site.

We represent the whole state space as X ≜
{P l, H l

1, H
l
2, · · · , Al

1, A
l
2, · · · , Dl}, where l ∈ {1, · · · , L}.

For example, L = 7 for 7 sector model. In Fig. 4, blacked
dotted arrows represent the incoming and outgoing transitions
to neighboring locations.
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Fig. 4: The proposed MDP-based attack model.

Actions: We have three action types available at each state:
stayloc + hopfreq (sh): The attacker stays at the current
location in the next time-slot and hops to the next channels in
the hopping sequence.
moveloc + hopfreq (mh): The attacker moves to a new
location and hops on new channels.
moveloc + stayfreq (ms): The attacker moves to a new
location and stays on the current channel.
We represent the whole action space as A ≜ {sh,mh,ms}.

Rewards: Let U(S, a, S′) represent the reward when an
attacker takes action a ∈ A in state S ∈ X and enters into
state S′ ∈ X. Now using (1), we define rewards:
U(S, a, S′) =

−C, if {S, a, S′} = {X, sh,Hi}, i = 1, · · · ,K − 1

L− C, if {S, a, S′} = {X, sh,Aj}, j = 1, · · · , G− 1

Q− C, if {S, a, S′} = {AG−1, sh,AG}
−B − C, if {S, a, S′} = {X, sh, P}
−E − C, if {S, a, S′} = {Aj , sh,D}, j = 2, · · · , G
−V, if {S, a, S′} = {X,ms,H1}
L− V, if {S, a, S′} = {X,ms,A1}
−B − V, if {S, a, S′} = {X,ms, P}
−C − V, if {S, a, S′} = {X,mh,H1}
L− C − V, if {S, a, S′} = {X,mh,A1}
−B − C − V, if {S, a, S′} = {X,mh, P}

(3)
Transition Probabilities: As the attacker can sense m chan-

nels at once and go through its attack channel sequence, at
state Hi, only max(M−im, 0) channels have yet to be visited
by the attacker, and another m channels will be visited in the
subsequent slot. Therefore, the probability of an attack (with
action sh) in the absence of a victim on the channel,

Prat|sh =

{ m

M − im
, if i < K

1, otherwise.
(4)

We assume a 5G transmission is q mini-slots long. Also, we
can approximate the probability of finding the channel busy
with action hopfreq as the steady-state probability,

PrP |a,s =
α

α+ β
= ρ, a ∈ A and s ∈ X, (5)

where α and β represent radar activity and denote transition
probabilities from OFF to ON and ON to OFF, respectively.
Now, the transition probabilities from state Hi with action sh:

Pr(Hi+1|Hi, sh) = (1− ρ)(1− Prat|sh),

Pr(A1|Hi, sh) = (1− ρ)(1− α)qPrat|sh,

Pr(P |Hi, sh) = ρ+ (1− ρ){1− (1− α)q}Prat|sh.

(6)
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Moreover, aside from the sensing time, the attacker can still
end up in state P during the attack interval. The second part of
Pr(P |Ti, sh) in Eq. 6 represents this situation. The transition
probabilities from state P with action sh is,

Pr(H1|P, sh) = (1− ρ)(1− Prat|sh),

Pr(A1|P, sh) = (1− ρ)(1− α)qPrat|sh,

Pr(P |P, sh) = ρ+ (1− ρ){1− (1− α)q}Prat|sh.

(7)

In state Aj , as the victim device has experienced transmis-
sion failures j times in j different channels, it refrains from
visiting back to these channels until it successfully finishes the
current transmission. Therefore, when an attacker takes action
hopfreq from state Aj , it randomizes its attack sequence,
excluding these j channels. Therefore, the probability that the
attacker will attack the new operating channel of the victim
in the next slot is uniformly distributed over M − j channels.
Hence, the probability of an attack is,

Prat|sh,Aj
=

m

M − j
. (8)

The transition probabilities from state Aj with action sh is,

Pr(H1|Aj , sh) = (1− ρ)(1− Pat|sh,Aj
),

Pr(Aj+1|Aj , sh) = (1− ρ)(1− α)qPrat|sh,Aj
{1− Prjdet},

Pr(D|Aj , sh) = (1− ρ)(1− α)qPrat|sh,Aj
Prjdet,

Pr(P |Aj , sh) = ρ+ (1− ρ){1− (1− α)q}Prat|sh,Aj

(9)

where Prjdet represents the probability of detection by the IDS
system. We consider that Prjdet ∈ R|0 ≤ Prjdet ≤ 1] is a non-
decreasing function of j. The intuition is that the more an
attacker perpetrates, its exposure increases. In this paper, we
consider Prjdet = (j − 1)/(j − 1 + c), where c is an IDS
performance parameter; a lower value of c represents better
detection performance by the IDS system.

Now, the transition probabilities with action mh are similar
to the action sh only if the frequency assignments at each
location are independent. Note that, though action stayloc+
stayfreq is available, it is a violation of hard-coded attack
policy and subject to penalty (i.e., −F ).

Here, successive attacks increases the probability of a suc-
cessful attack in the next slot at the current location, i.e.,

Pr(H1|Aj , sh) > Pr(H1|Aj+1, sh). (10)

V. PERFORMANCE EVALUATION

To assess the adverse effect of the PACMAN attack, we
conduct simulations both in NS3 and MATLAB. Using the
simulation in NS3, we depict the performance degradation of
a single zone due to the malicious behavior of a Wi-Fi AP.
In MATLAB, we implement the proposed MDP to evaluate
the attacker’s ability to locate critical areas for industrial
automation. In the following, we will discuss the implication
of the attack based on the analytical and simulation results.
A. Impact on IAS

Using NS3, we evaluate the impact of the PACMAN attack
in a particular zone while presenting the global scenario when
the malicious entity is active. To illustrate this, we have
considered 3 hexagonal zones in which there would be 3
small BSs associated with 4 UEs. In one of the zones, we
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Fig. 5: Impact of the PACMAN attack in a particular zone.

have deployed a Wi-Fi AP within the sensing region of the
corresponding BS. We consider three scenarios: a non-attack
scenario with no active Wi-Fi, a non-attack scenario with
active Wi-Fi, and an attack scenario with malicious Wi-Fi.
The simulation illustrates half of the run-time (40 seconds)
in the benign scenario and the rest of the half in malicious.
For the saturated traffic scenario, we have considered a UDP
application running at a rate of 155 Mbps with a packet size
of 1 KB. For our evaluation, we are considering normalized
throughput and delay. Based on Fig. 5(a), a significant increase
(146.37% at the end of simulation) in delay can be viewed
while comparing to the both in presence and absence of benign
Wi-Fi AP. This is because the malicious backoff technique
used by the attacker causes a large increase in channel access
delay for the victim devices, which has a negative impact
on the time-sensitive critical applications of IAS. In terms of
throughput as presented in Fig. 5(b), the impact is also sizable
(30.56% at the end of simulation) and can potentially impact
applications with high throughput demand in IAS.

B. Comparison of Global and Zonal Impact
Using the previously mentioned simulation environment, we

have also conducted a comparison of the zonal and global
impact of the PACMAN attack. In Fig. 6(a), a significant
increase in the victim’s zone in terms of average delay is
noticed with comparison to the non-attack s cenario (the slope
is rising rapidly). However, in terms of global impact, the
slope is not very steep and the impact is noticeable from 30-
35 seconds of the simulation (10-15 seconds after the attack
started). In terms of throughput, as depicted in Fig. 6(b), this
impact is completely undetectable (5% drop from the non
attack scenario) while in the zone the impact is more (18.15%
drop from the non attack scenario). If we consider more zones
in the attack surface, these impact would be more untraceable
from global perspective.

C. Long Term Impact

From simulation, we can observe a long impact of the
attack. In case of delay, as presented in Figures 5(a) and 6(a),
the line depicting delay in attack scenario is not converging
and taking a long time to reach the maximum delay. The sim-
ilar phenomenon is also visible in terms of throughput, as of
Figures 5(b) and 6(b), where the value did not reach minimum
point even after 20 seconds. This mean, it would take a longer
time to reach maximum impact of the attack which might be
a key to detect such anomaly in the environment.
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Fig. 6: Comparison of the global and zonal impact of PACMAN attack

D. Steady-State Sojourn Time and Optimal Policy

The performance of our proposed MDP-based attack strat-
egy is evaluated through its ability to identify critical physical
locations. We run the MDP framework in a 7-sectored physical
surface (as shown in Fig. 7(a)) with varying degrees of
importance toward the industrial automation system. In Fig.
7(a), the color intensity represents the importance of each
sector (relative importance is also shown, e.g., S7 is 7 times
more important than S4), the name of each sector is provided
at the top, and the numerical values represent the normalized
total sojourn time of the attacker at each sector. Here, S7
contains the critical devices, and the attacker spends the most
time in that location (i.e., 0.99). Also, the attacker moves
between S7 and its neighbor, S6, to avoid detection. Fig. 7(b)
exhibits the optimal policy in each sector where the arrow
and circle represent the ms and sh actions, respectively. The
dominant action is shown in a filled line with translucent
color, and the secondary action is shown in a dotted line. For
instance, the dominant action in S7 is to sh, and the secondary
action is ms to S6 to avoid detection.
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Fig. 7: (a) Steady-state sojourn time; (b) Optimal policy.

VI. CONCLUSION

We proposed a novel mobility-powered Wi-Fi emulation
attack model, i.e., PACMAN attack, which exploits the MAC-
layer vulnerabilities in a Private 5G-enabled IAS. We also
proposed an MDP-based mathematical model to study and
assess different dimensions of this attack model. Numerical
investigations and simulation results showed that the proposed
attack successfully localized the physical locations of critical
devices, significantly degraded the performance of the IAS,
and compromised network operations. To the best of our
knowledge, this is the first work to propose a mobility-powered
smart attack against private 5G-enabled IAS.
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