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HydroBench: Jupyter supported
reproducible hydrological model
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Evaluating whether hydrological models are right for the right reasons demands
reproducible model benchmarking and diagnostics that evaluate not just
statistical predictive model performance but also internal processes. Such
model benchmarking and diagnostic efforts will benefit from standardized
methods and ready-to-use toolkits. Using the Jupyter platform, this work
presents HydroBench, a model-agnostic benchmarking tool consisting of
three sets of metrics: 1) common statistical predictive measures, 2)
hydrological signature-based process metrics, including a new time-linked
flow duration curve and 3) information-theoretic diagnostics that measure
the flow of information among model variables. As a test case, HydroBench
was applied to compare two model products (calibrated and uncalibrated) of
the National Hydrologic Model - Precipitation Runoff Modeling System (NHM-
PRMS) at the Cedar River watershed, WA, United States. Although the
uncalibrated model has the highest predictive performance, particularly for
high flows, the signature-based diagnostics showed that the model
overestimates low flows and poorly represents the recession processes.
Elucidating why low flows may have been overestimated, the information-
theoretic diagnostics indicated a higher flow of information from precipitation
to snowmelt to streamflow in the uncalibrated model compared to the
calibrated model, where information flowed more directly from precipitation
to streamflow. This test case demonstrated the capability of HydroBench in
process diagnostics and model predictive and functional performance
evaluations, along with their tradeoffs. Having such a model benchmarking
tool not only provides modelers with a comprehensive model evaluation
system but also provides an open-source tool that can further be developed
by the hydrological community.
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Introduction

Supported by advances in computational capacity, there is a
proliferation of hydrological models ranging from simple black
box data-driven models to complex integrated models. Similarly,
the application of these models ranges from local to regional and
continental-domain hydrological decision support tools. In this
regard, the U.S. Geological Survey’s National Hydrologic Model-
Precipitation Runoff Modeling System (NHM-PRMS) (Regan
et al, 2018, 2019) and National Oceanic and Atmospheric
Administration’s National Water Model (Cohen et al., 2018)
are examples of continental-domain models that strive to address
national-scale water balance, water supply, and flood risk
analyses. Although model adoption can be more of a function
of legacy than adequacy, models’ reliability rests on performance
evaluation (Adorr and Melsen, 2019). Performance evaluation,
which includes model benchmarking and diagnostic efforts,
benefits from standardized methods and ready-to-use toolkits
that implement those methods (Kollet et al., 2017; Nearing et al.,
2018; Lane et al., 2019; Saxe et al., 2021; Tijerina et al., 2021).
Standardized methods and toolkits
communities and model users build trust
reliability. As
organized, and comprehensive model-agnostic (i.e., model-

also help modeling
in a model’s
operational such, having a ready-to-use,
independent) benchmarking tool is critical for advancing
modeling communities and modeling practice.

Hydrologic model performance evaluations often rely on
statistical metrics such as Nash-Sutcliffe efficiency and
these

indicative of focused aspects of model performance, there is a

correlation coefficient. However, as metrics are
call of comprehensive model evaluation that includes process-
based model diagnostics (Gupta et al., 2008; McMillan, 2020,
2021) and functional model evaluations (Weijs et al, 2010;
Ruddell et al., 2019). Process-based model diagnostics evaluate
the hydrological consistency of the model with observations (e.g.,
through examination of hydrological signatures that capture
dominant processes), while the functional model performance
evaluation focuses on the interactions or information flows
among internal flux and state variables (e.g., uncertainty
reduction of streamflow by precipitation data). Thus, a
comprehensive model benchmarking tool may need to include
at least three types of metrics that 1) quantify model predictive
by their
corresponding model outputs, 2) reveal hydrological process

performances comparing  observations and
consistency and 3) assess the functional performance of the
model. As a whole, such a benchmarking practice helps
evaluate not only predictive performance but also reveals
whether the models are right for the right reasons (Kirchner,
2006).

Hydrologic model consistency, which to the

representation of dominant processes by the model, can be

refers

evaluated by using hydrological process signatures. This
benchmarking strategy reveals a model’s ability to reproduce
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observed process-informative signatures such as flow duration
curve, runoff coefficient, and recession curves. For instance,
Yilmaz et al. (2008) used flow duration curves to diagnose
model performance in capturing the different segments of a
hydrograph, while De Boer-Euser et al. (2017) showed the use of
flow duration curves in diagnosing model inadequacy. Similarly,
recession curves are employed to evaluate and derive models that
characterize subsurface processes (Clark et al., 2009; Kirchner,
2009). Meanwhile, numerous studies used a mixture of different
signature measures (e.g., McMillan et al., 2011; Tian et al., 2012;
Moges et al., 2016). These studies have shown that hydrological
signatures can highlight how well the model is capturing the
causal processes rather than being a mere predictive tool that
may suffer in out-of-sample tests.

Model functional performances can be evaluated using
information-theoretic metrics that quantify information flows
between flux and state variables. These metrics are used as 1) a
better measure of dependence between simulations and
the
correlation coefficient and similar L-norm based metrics
(Pechlivanidis et al., 2010, 2014; Weijs et al., 2010), 2) tools
that reveal model internal interactions among all variables

observations than linear metrics such as Pearson

(termed “process networks”) (Ruddell and Kumar, 2009;
Bennett et al., 2019; Moges et al., 2022), and 3) quantitative
measures of the synergies or tradeoffs between predictive and
functional performance in a model. L-norm based metrics
quantify the
simulated values as opposed to information flow metrics that

actual differences between observed and
quantify differences in probabilistic distributions. Here, synergies
refer to simultaneous improvements in both predictive and
functional performance, while tradeoffs refer to gains in either
functional or predictive performance leading to a loss in the other
(i.e, between “right answers” versus “right reasons”) (Kirchner,
2006; Ruddell et al, 2019). The use of functional model
performance metrics, particularly a model’s process network,
helps to evaluate the validity of the model’s constitutive
functional hypotheses in light of both expert judgment and
model intercomparisons. However, as some of these tools
were developed only recently, there is a lack of widespread
application and ready-to-use interfaces accessible to the wider
community.

Reproducibility is central to science and one of the key
features of the geosciences paper of the future (Gil et al,
2016). It involves the full documentation, description, and
sharing of research data, software, and workflows that
underpin published results. However, multiple disciplines
that
reproducibility crisis (Stagge et al., 2019). Thus, similar to the

including hydrology have indicated there is a
call for model diagnostics and benchmarking, there is a drive
towards hydrological research reproducibility. Hutton et al.
(2016) indicated that the lack of common standards that
facilitate

workflows, open availability of codes with metadata, and

code readability and reuse, well-documenting
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citation of codes are key challenges in hydrological
computational reproducibility. As a potential solution, recent
tools in computer science are enabling ease of documenting,
collaborating, self-descriptiveness, and sharing of codes and
workflows. These tools can likewise be used to support
reproducibility in computational hydrology. Furthermore, as
these tools are user-friendly and interactive, they can be used
to support not only modelers but also decision-makers who are
not as equally code-adept and trained as modelers.

One way to meet the call for an organized (less fragmented)
system of comprehensive model evaluation and reproducibility is
to have a readily available tool. For instance, the Toolbox for
Streamflow Signatures in Hydrology (TOSSH) was recently
developed as a Matlab ° toolbox that provides a variety of
hydrological process signatures (Gnann et al., 2021). Similarly,
Hydroeval focuses on statistical predictor metrics (Hallouin,
2021). Although these tools are available, they are limited in
their focus to one set of diagnostics and lack interactivity. For
instance, Hydroeval is focused on multiple predictive
performance measures such as the Nash-Sutcliffe coefficient
while TOSSH provides an extended list of hydrological
signature measures to evaluate process consistency.
Furthermore, they do not incorporate the recent information-
theoretic toolsets that quantify model functional performances.
On the other hand, although various Jupyter based tools that
support reproducibility are being developed in hydrology (for
example, Pefiuela et al. (2021) on reservoir management), they
cannot typically produce benchmarking and diagnostic metrics.

Building on the existing model benchmarking and diagnostic
tools, HydroBench
HydroBenchJBook/HydroBenchIntroduction.html) serves as

(https://emscience.github.io/

an open-source, model agnostic hydrological diagnostics
platform that emphasizes reproducibility. As a comprehensive
model performance evaluation tool, HydroBench consists of
three sets of metrics that include 1) predictive performance
metrics, 2) hydrological signatures, and 3) functional
performance metrics that use information-theoretic concepts.
The tool can be used to help modelers diagnose potential issues
with their models, users to reproduce model performance
evaluations, decision-makers to quickly evaluate and
understand model performances interactively, and educators
to teach hydrological science students about both model
diagnostics and reproducibility. In order to demonstrate its
usefulness and application, HydroBench is applied to the
NHM-PRMS product at the watershed scale near Cedar

River, WA.

Methods

HydroBench helps answer the following model performance
evaluation questions in a reproducible manner:
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FIGURE 1

HydroBench supports computational hydrology and water
resources decision making by facilitating reproducibility,
collaboration, and computational interactivity. Voila is a widget
rendering tool that enables interactive computation (https://
github.com/voila-dashboards/voila), while Xarray is a standardized
data format that eases working on multidimensional datasets
(https://docs.xarray.dev/en/stable/).

1) How good a predictor is the model with respect to statistical
predictive performance measures?

2) How consistent is the model with a suite of observed
hydrological behaviors (i.e., signatures)?

3) How well do the model’s internal dynamics replicate
interactions among observed system variables?

These three questions are addressed within HydroBench
through three types of hydrological benchmarking metrics
that aid in model performance diagnostics. In this section, we
first highlight the software ecosystem that underlies HydroBench
and supports reproducible research and then discuss the three
sets of benchmarking metrics.

Reproducibility and the jupyter ecosystem

Model diagnosis and benchmarking require evaluation
strategies that are applicable to any watershed or model
(i.e, “model-agnostic”). Standardizing model benchmarking
and diagnostics in a reproducible and collaborative manner
will allow modelers to better focus their time on research
development, rather than on reinventing the model evaluation
wheel. In this regard, the Jupyter ecosystem (https://jupyter.org/)
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provides foundational tools that are intended to facilitate
reproducibility and collaboration.

In HydroBench, we followed a three-pillar scheme to support
hydrological model benchmarking and diagnostics: 1)
and 3)
computation (Figure 1). To support reproducibility, we used
Jupyter Notebook, Binder and JupyterBook (Project Jupyter 2022

| https://jupyter.org/). Jupyter Notebooks are open-source

reproducibility, 2)  collaboration interactive

documents that merge code, results, texts and interactive
widgets to narrate a computational story (Pérez and Granger,
2007). By narrating a computational story rather than presenting
mere codes or results, notebooks make computational workflows
self-descriptive. Furthermore, as notebooks can be viewed and
shared they also
reproducibility. For a

easily, facilitate  collaboration and
detailed description of Jupyter
Notebooks, the ten best practices of using Jupyter Notebooks
are outlined in Rule et al. (2019) while ten best practices of
reproducible research are outlined by Sandve et al. (2013).
Hydrological computations may require the use of more than
one Jupyter Notebook or a very long single notebook. Having
long or multiple notebooks leads to story fragmentation. To
avoid this fragmentation, a Jupyter Book can be used to bind
together multiple notebooks (Community, 2020 - https://
jupyterbook.org/intro.html). A Jupyter Book is a compilation
This
compilation can then be published as a traditional book

of notebooks and markdown (text) readme-files.
narrating the computational story from its multiple components.

One way to facilitate scientific reproducibility is by openly
sharing a complete, re-runnable workflow over the cloud. Binder
is a web-based cloud platform that enables sharing and executing
codes by recreating the computational environment without
installing packages locally (Jupyter et al, 2018). Since the
computational environment is recreated on the cloud, Binder
makes reproducing codes and their results a single-click task.
Thus, Binder not only provides a reproducible environment but
also simplifies the user experience.

Collaboration is key in both model development and
diagnostics. Git is a version control state-of-the art tool for
code development and collaboration, while GitHub and other
similar platforms are online repositories that enable sharing and
collaboration on codes. Through its version-control features, Git
enables a reproducible workflow among groups of collaborators
on a project. In addition to collaboration on code developments,
open-source hydrological data are also critical for community-
wide model benchmarking, as they enable modelers to test their
hypotheses beyond local watersheds and over a broad range of
time against consistent information. Examples of large-sample
open-source data in hydrology include the MOPEX, CAMELS,
EMDNA, and CHOSEN datasets (Duan et al., 2006; Addor et al.,
2017; Tang et al,, 2021; Zhang et al.,, 2021).

The third pillar of HydroBench is interactive computation.
Although sharing codes, executables and data is critical in
reproducibility, codes are not always user-friendly, as their use
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is impossible without baseline expertise. In contrast, widgets are
user-friendly tools that can be intuitively executed with clicks and
slider bars. As a result, they can support most users and
stakeholders across the spectrum of computing skills. In
addition, widgets clear up code blocks and can facilitate
interpretation through informative visualizations.

Model benchmarking and diagnostics

Statistical predictive metrics

Numerous model predictive performance metrics are used
in hydrological model evaluation to compare hydrological
responses such as observed and modeled streamflow (and/
or water table, or evapotranspiration) data. Each metric has a
different skill in its evaluation. For instance, the Pearson
correlation coefficient is effective in revealing the linear
relationship between observed and modeled output, while
the log-transformed Nash-Sutcliffe coefficient is more
sensitive to low flow regimes than high flows. A detailed
skills description of these metrics can be found in Krause
etal. (2005), Gupta et al. (2009), and Moriasi et al. (2015). Due
to their variation in skill, it is recommended to evaluate
models using multiple metrics (Bennett et al., 2013). As a
result, HydroBench includes multiple statistical metrics as
indicators of models’ predictive performances. Table 1
the list of HydroBench’s
performance metrics and their corresponding skills. These

provides model predictive
metrics are selected according to their skill, widespread use in
hydrology, complementarity, and avoidance of redundancy.
In terms of skill, they cover high and low flows, volume, and

overall hydrograph characteristics (Table 1 and Figure 2).

Process-based hydrological signature metrics
Statistical lack
hydrological rigor and are not sufficient in diagnosing
model performances (Gupta et al., 2008; McMillan, 2021).
In contrast, the use of hydrological signature metrics can help

predictive  performance metrics

diagnose model performances by indicating the model’s
ability to reproduce specific hydrological processes such as
high/low flows or subsurface flows. Multiple process-based
signature metrics are implemented in HydroBench (Table 2).
Table 2 provides a description and relative skills of the
signature metrics, which are complementary to each other
in characterizing subsurface flow, different segments of a
hydrograph and water balance. In addition, we have also
created an interface between TOSSH and HydroBench to
support the full access of the TOSSH hydrological signature
metrics to HydroBench users. A detailed guide of the
interface is provided in the example notebook included in
HydroBench. For an extended list, skill, and computation of
hydrological signatures, we refer users to the TOSSH toolbox
and the references therein (Gnann et al., 2021).
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TABLE 1 List and description of predictive performance evaluation metrics in HydroBench. Here, Q represents streamflow, an example of the
dependent variable, P represents precipitation, as an example of an input flux variable, mod = model, and obs = observed.

Name Equation

Nash-Sutcliffe
efficiency (NSE)

NSE = 1= YL (Qobsi = Quiodi)/ iy (Qobsi = Q)"

Log transformed
(logNSE)

Percent Bias (PBIAS)  PBIAS = Y (Qobs;i — Quod,i)/ Y1y Qobsi

Similar to NSE but with Qs and Qyueq in the logarithm space

Description and skill

NSE is relatively skilled in revealing model performance in
capturing high flows, while it has limited skill in capturing low
flows, as it is an L* norm-derived metric

logNSE is similar to the Nash Sutcliffe efficiency but with the
inputs being transformed to the logarithm space. As it is
computed based on log-transformed inputs, it is skilled in
capturing model predictive performances of low flows

Compared to the L norm-derived NSE, PBIAS is an L'-
derived metric that is less sensitive to peaks and suitable to
reveal predictive performances of total streamflow volume
Moriasi et al. (2015)

Pearson correlation
coefficient (r)

r=Y" (Qusi —Q

ol

o = stdev(Quoq)/stdev (Qops)

B = mean(Quoa)/mean (Qops)

Kling-Gupta
efficiency (KGE)

KGE=1-+[(r=1?+ (a—17 + (f—1)?

) Qo = Qo VT (Qubsi = Q)T Qs = Q)

r is a linear measure of model performance. It quantifies the
linear relationship between observed and model prediction

KGE addresses NSE's biases and better evaluates model
performance in capturing both high and low flows (Gupta
et al., 2009)

Streamflow
Model

Streamflow

Observed Precipitation

Temperature

Air Soil

Moisture

Actual
ET

Potential

Snowmelt ET

Statistical performance

Hydrological Signature

Information-theoretic Functional

mettics mettics performance mettics
Tradeoffs between functional and
Nash Sutcliffe coefficeint Runoff coefficient predictive petformance
Kling-Gupta coefficeint Flow duration cutve (FDC)  |[Mutual information
Log-transformed Nash Sutcliffe
coefficeint Recession curve Entropy and conditional entropies

Percent Bias

Time linked FDC

Informaton flow Process Networks

Correlation coefficient

Key: Sensitivity of metrics

FIGURE 2

High flow Water balance

Volume Mixture

Low flow Linearity of relationships
Functional performance

(A) Example of a standard input table to HydroBench. The empty cells refer to user provided input data, and (B) Summary of the output metrics
of HydroBench and their sensitivities (color-coded). Color codes, described in the lower table ("Key: sensitivity of metrics”) indicate the hydrological

feature to which the metric is most sensitive.

HydroBench includes Hydrograph and Flow Duration Curve
(FDC) as part of the signature metrics. However, a hydrograph
becomes cumbersome and difficult to interpret when the time-
series being evaluated is long (i.e, multiple years of fine
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resolution data). Similarly, as FDC is purely probabilistic, it
delinks the temporal dimension of the streamflow magnitude.
That is, as long as the model preserves the exceedance probability
of the observed data, FDC suggests high model performance,
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TABLE 2 List and description of hydrological signature-based model diagnostic metrics in HydroBench. Here, Q denotes streamflow, an example of
the dependent variable, P denotes precipitation, an example of an input flux variable, and r denotes rank based on a decreasing sorting of a time

series.

Name Equation/
Function

Runoff coefficient (RC) RC = 2Q/ZP

Description and skill

RC deals with the flow of mass from precipitation to streamflow and helps in diagnosing water balance
discrepancies between the observed and model time series at the annual scale. Namely, it measures to what
extent the model captures the observed annual water balance

Flow duration curve (FDC)

Qr = f(Qrank)

Qrank =1/n+1

Recession curve

dQldt = f(Q)

Time Linked Flow Duration curve
(T-EDC)

f(Q, binsize)

FDC provides visual diagnostics of model performance in capturing both high- and low-flow segments of a
hydrograph in a temporally delinked manner

Recession curves help evaluate model performance in the absence of precipitation. Their shape is most
sensitive to the rate at which water is released from catchment storage. Consequently, recession curves can
indicate a model’s performance in characterizing subsurface processes

Because FDC does not have a time component in revealing under- and overestimation of flows, we
developed T-FDC, which complements FDC by incorporating a time component. For a given day observed
streamflow, T-FDC tracks whether a model estimate results in the same, higher or lower bin. This is
analogous to the confusion matrix and requires binning of the data according to the observed minimum
and maximum values. T-FDC is a (visual) metric between FDC and hydrograph. Thus T-FDC eases the
interpretation of a hydrograph by simplifying it to be within a specific bin count

regardless of the time coincidence of the model simulation.
Complementing the hydrograph and FDC, we developed a
signature metric that is probabilistic like FDC but also
preserves the time correspondence of the simulation like a
hydrograph. The metric is called Time linked Flow Duration
Curve (T-FDC), and it inherits the characteristics of both FDC
and a hydrograph.

T-FDC is a heatmap-based model performance evaluation
hydrological signature metric. In constructing the heatmap,
T-FDC first lets users define a bin size for segmenting
streamflow. Second, it bins the observed streamflow to the
predefined bin size and sets it as the y-axis. Then, for its
x-axis, T-FDC tracks whether the time corresponding model-
simulated streamflow is binned in the same bin class as the
observed streamflow or other bin classes. Finally, it generates a
heatmap based on the time-tracked counts of the simulated
streamflow in each bin class. A perfect model with a high
number of data counts in the same bin as the observed values
will only populate the main diagonal of the heatmap. In contrast,
a high number of data counts below the diagonal indicate an
underestimating model, while an overestimating model will have
a high number of counts above the diagonal. This makes T-FDC's
visual interpretation intuitive. In addition to the visual
interpretation, we have included a numerical quantification of
model performance based on T-FDC using the percentage of data
counts in the diagonal. Higher percentages indicate higher
performance and vice versa.

Information-theoretic metrics

Beyond the predictive metrics and signature measures, recent
developments in hydrological model diagnostics involve the use
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of information-theoretic metrics (Nearing et al., 2018, 2020).
Compared to the predictive and hydrological signature metrics,
the information-theoretic metrics require longer hydrological
records. However, the diagnostic information they provide about
why a model may be exhibiting poor performance, or whether it
exhibits good performance for the right reasons, can be more
powerful. Specifically, HydroBench provides a suite of
information theoretic-based metrics (Table 3) that reveal 1)
functional model performance, 2) predictive model
performance and 3) the tradeoff between functional and
predictive performances. Functional performance can be
quantified by comparing observed transfer entropy (TE) with
modeled TE and visualized using information flow process
network (PN) illustrating functional relationships within the
model (Ruddell et al, 2019). TE is a measure of time-lagged
information flow from a “source” to a “sink” variable that
accounts for autocorrelation in the “sink” time series. Unlike
the runoff coefficient, which quantifies the flow of mass from
precipitation (P) to streamflow (Q), PNs quantify information
flow (i.e., uncertainty reduction of Q by P) between these and
other variables. On the other hand, the predictive performance of
a model can be quantified as the mutual information (MI)
which

functions similarly to a correlation coefficient but is robust to

between the observed and modeled time series,

nonlinearity (Ruddell et al., 2019). By providing visualizations of
these metrics and how they vary across alternative models,
HydroBench helps reveal the tradeoffs between predictive and
functional performances.

In HydroBench, predictive performance is quantified based
on the similarity between the observed and predicted streamflow
time series, computed through their mutual (i.e., shared)
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information (1-MI). Functional performance is evaluated as a
comparison of information flows from a forcing variable (e.g.,
temperature, precipitation) to a sink variable (e.g., streamflow) in
the
(T Esource—sink: model = T Esource—sink: observed)- 1deally, information

model versus observations
will flow similarly among modeled variables as in observations
leading to a zero score in functional performance. Negative
values of functional performance indicate that the model does
not extract enough information from the forcing variable, with
extreme negative values being indicative of an overly-random fit.
Positive values of functional performance indicate that the model
extracts too much information from the forcing variable of
interest, resulting in an overly-deterministic fit. Further details
of this interpretation can be found in Ruddell et al. (2019).

HydroBench additionally provides one, two and three-
dimensional entropy measures for the given random variables
X, Y, and Z as H(X), H(X, Y) and H(X, Y, Z), that quantify the
information content of a single variable or its simultaneous
interactions with multiple other variables. However, higher-
dimensional quantities require longer data record lengths than
the metrics discussed above. Along with their data length
requirements, information theoretic metrics have a few
shortcomings or caveats in comparison to the other metrics.
As information theoretic metrics are dependent on probability
distributions rather than on actual variable values, it is important
to use them along with hydrological signatures and statistical
performance measures that are a function of the actual values of
the variables. Moreover, the computation of these information-
theoretic metrics involves subjective parameters such as the
number of bins and the statistical significance threshold. The
Jupyter notebook accompanying HydroBench describes these
parameters and their computation, including the number of bins
and statistical significance.

HydroBench interface—Input and output
data structure

HydroBench is a model-agnostic platform that requires basic
Python programming skills. It can be downloaded/cloned from
the following GitHub link https://github.com/EMscience/
HydroBench with multiple application test cases and a
particular focus on the Cedar River, WA. HydroBench accepts
model and observed data in a predefined structure. The input
structure is a table of data that consists of at least two data
columns (e.g., observed streamflow, and model streamflow),
along with their start and end dates (Figure 2). The model
that generated the data can be lumped or distributed, as
HydroBench requires inputs of time series variables. With
these inputs, basic benchmarking results can be obtained. The
basic results are the predictive performance metrics, plus FDC
and T-FDC diagnostics. With an extended input table that
contains one or more additional columns of independent
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variables (e.g., precipitation), HydroBench can provide all
three types of metrics - predictive, hydrological signature, and
functional (Figure 2). Since HydroBench has a modular design, it
can easily be called into any notebooks that host model results
and generate a table of inputs (e.g., Figure 2A). Additionally, any
single metric can be employed depending on users’ preferences.

Case study description

HydroBench was applied to a 103.5-km’, relatively low-
gradient watershed near Cedar River, WA (Figure 3), which
was extracted from the NHM infrastructure (Regan et al.,, 2018)
for this case study. The Cedar River watershed was selected for
the case study because it is considered undisturbed according to
the GAGES II classification (Falcone et al., 2010) and because
NHM-PRMS predictions of its streamflow strongly contrast
between the calibrated and uncalibrated version of the model
(Section 3). The catchment’s land cover is dominated by a
coniferous forest (Falcone et al.,, 2010). Comparing the long-
term (1980-2016) average monthly precipitation and catchment
area-normalized streamflow volume, streamflow is higher than
precipitation from April to July, indicating that most of the
streamflow is a function of storage during these months, while
the remaining months are dominated by precipitation, meaning
that water enters storage. The catchment resides in a humid
climate, where 53% of precipitation falls as snow (Figure 3 and
Falcone et al., 2010).

The model under consideration is NHM-PRMS. NHM-
PRMS provides two hydrological model products based on
two model parameter sets: a nationally calibrated set and the
uncalibrated set (Driscoll et al., 2018; Hay, 2019). In the NHM-
PRMS uncalibrated model (Driscoll et al., 2018), parameters are
estimated from both catchment and climatic characteristics
(Markstrom et al., 2015; Regan et al., 2018; Regan et al,
2018). the
uncalibrated product is based on model default parameter

In cases where estimation is impossible,
values from Markstrom et al. (2015). This approach has its
advantages and limitations. Primarily, it is fast compared to
automatic calibration schemes and can be used to initialize
the PRMS model for a further

Additionally, the approach might also be beneficial for

automatic calibration.

parameter  estimation in ungauged watersheds and
nonstationary systems, as it does not rely on historical
climatic/meteorological data. However, the approach becomes
poor in cases where local data is sparse and in regions where the
model is not tested before, as the default values may not be
relevant. An extended description of the uncalibrated NHM-
PRMS model parameter estimation and its product can be found
at Regan et al. (2018) and Driscoll et al. (2018).

The calibrated version of NHM-PRMS employed a
multivariable stepwise parameter estimation using the Shuffle

Complex Evolution algorithm (Hay and Umemoto, 2007; Hay
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et al,, 2006 & 2019). In starting the calibration, the parameters
were initialized at their uncalibrated NHM-PRMS value. The
calibration uses multiple variables, including daily streamflow
from 1980 to 2010 and for the same period, monthly snow cover
area (SCA, from SNODAS; National Operational Hydrologic
Remote Sensing Center, 2004), potential evapotranspiration and
solar radiation (PET and SR, from Farnsworth and Thompson,
1982, the DAYMET climate data and Regan et al.,, 2018), actual
evapotranspiration (AET, from Cao et al., 2006; Rietjes et al.,
2013) and soil moisture estimates (SM, from Campo et al., 2006;
Thorstensen et al., 2016). These data are derived from national
scale remotely sensed datasets and other model products. The
sensitivity of the different model parameters to these variables is
assessed, and parameters are then sequentially calibrated with an
objective function defined as the normalized root mean square
error between the observed and simulated values of the output
variables in decreasing order of sensitivity (Markstrom et al,
2016). That is, in calibrating PRMS to these variables, sensitivity
analysis guides the identification of which parameters are
calibrated by which variable in a stepwise manner. Stepwise
calibration starts with 1) PET and SR, followed by 2) SM and
AET, and finally, 3) streamflow. For a detailed description of the
model calibration and the optimization employed, please refer to
Hay et al. (2006), Hay and Umemoto (2007) and LaFontaine et al.
(2019).

In demonstrating the application of HydroBench at the
Cedar River, we evaluated model performance with respect to
the input, state, and output variables of the calibrated and
uncalibrated NHM-PRMS model. Namely, as NHM-PRMS
computes hydrologic fluxes using inputs of daily precipitation
and maximum and minimum air temperature, these variables
were included in our analysis. Similarly, we extracted the
basin  soil

predicted variables of streamflow, snowmelt,
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moisture, and actual evapotranspiration from 1980 to 2016 at
a daily time step for our model benchmarking and diagnostics at
the Cedar River, WA.

Results

Facilitating reproducibility, all inputs and the results
presented in this section are available on GitHub (https://
github.com/EMscience/HydroBench). As a Binder link is also
included, the analysis can be fully reproduced, and the different
widgets can also be used for further interactive computation on
the cloud. Thus, users of HydroBench can emulate and adapt the
workflow easily.

Statistical predictive performance metrics

At the Cedar River watershed, the uncalibrated model shows
better statistical predictive performance than the calibrated
model, according to the HydroBench-provided statistics,
except for the KGE metric under the log-transformed flow
condition (Table 4 and Figure 4). Regardless of the skills of
the metrics in representing the different hydrograph segments
(low or high flows), most of the predictive performance metrics
suggest that the uncalibrated model is a preferred choice (Tables
1-3). However, the predictive performance metrics do not
explain why and how the uncalibrated model exhibits better
predictive performance than the calibrated model. In addition, it
is important to note that the calibration of NHM-PRMS does not
only focus on the prediction of streamflow but also on capturing
remotely sensed ET and other variables with a stepwise
calibration method.
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TABLE 3 List and description of information-theoretic model diagnostic metrics. Here, Q denotes streamflow, an example of the dependent variable
of interest, and P denotes precipitation, an example of an input flux variable.

Name

Entropy (H(x))

Mutual Information (MI)

Transfer Entropy (TE)

The trade-off between functional and

predictive performances

Process networks (PN)

Frontiers in Earth Science

Equation Description and skill

H(Q) = -1 Z:j Pp(Q)*log (p(Q) Provides a measure of the uncertainty of the indicated flux or store variable(s)
Shannon (1948)

MI(P,Q) = Y} op(P, Q)log(ﬁ%ﬁ%) MI quantifies the predictive performance of a model. It measures the shared
information content of the observed and modeled dependent variable

TE(P — Q) = MI(Q;, P/|Q;1) TE quantifies the shared information between two variables (typically thought of as an
independent and dependent variable) conditioned on the history of the dependent
variable Schreiber (2000). In HydroBench, the variables can be any flux or store
variables as chosen by expert's (user's) choice

f(MI, TE) The tradeoffs between functional and predictive performance metrics across models
are visualized through a bivariate plot showing MI and TE Ruddell et al. (2019); see
also Figure 7C here for an example)

PN = f(TE) PNs provide a visual web of the model internal information flow between different
flux and store variables as computed by TE
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Hydrological signature-based evaluation of NHM-PRMS predictions of daily streamflow at Cedar River, WA over 1980-2016: (A) flow duration
curve, (B) annual (i.e., October to September water year) runoff coefficient, (C) winter/cold season (months October to March) recession curves and,
(D) summer/warm season (months April to September) recession curves. The seasons and the corresponding months can be adaptively defined in

HydroBench.

Hydrological process consistency using
hydrological signature metrics

Both the FDC and T-FDC indicate that high flows are better
represented by the uncalibrated model (Figures 5A, 6; Table 5).
In contrast, the recession curves indicate that the subsurface
release of water from storage over extended periods is better
represented by the calibrated model (Figures 5C,D; Table 5), as it
has a scatter (slope and intercept) more similar to the
observations than does the partly near-linear (in a semi-log
space) uncalibrated model. Figure 6 along with Table 5 shows
that the calibrated model is closely related to the observed data
(35% than 33%). On the other hand, the runoff coefficient (RC)
comparison between both model versions indicates strong
similarity between the models, with an RC model to RC
observed ratio of 0.969 for the calibrated and 1.003 for the
uncalibrated model (Figure 5B). The similarity in RC may
that the
streamflow) of the two models is similar, with slightly more

suggest annual mass flow (precipitation to
precipitation converted into streamflow in the uncalibrated
model.

Despite the high statistical predictive performance reports of

the uncalibrated model (Table 4), the hydrological signature

Frontiers in Earth Science

10

metrics revealed that the calibrated model better represents
the low-flow segments of the Cedar River hydrograph. This
comparison of predictive and hydrological signature metrics
the both types
evaluations. Although hydrological process signature metrics

underscores need for of performance
illuminate the failure or success of each model in representing
different processes, neither they nor the statistical predictive
metrics can reveal what type of model input and output
interactions lead to the model results, underscoring the need

for functional performance evaluations.

Model functional performances using
information-theoretic metrics

The calibrated and uncalibrated models have a similar
pattern of information flows, depicted in their process
networks (PN), with a few exceptions (Figures 7A,B; Table 6).
For example, the PNs depict high transfer entropy (TE) from
precipitation to snowmelt in the uncalibrated model. In
the has high TE from
precipitation directly to streamflow. Although observations

contrast, calibrated model

of daily snowmelt are not available for this watershed for
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TABLE 4 Summary of statistical predictive performance metrics for the uncalibrated and calibrated NHM-PRMS model of a watershed near Cedar

River, WA, based on daily streamflow, 1980-2016.

NSE KGE

Model
Versions

Calibrated Uncalibrated

0.50
0.69

Untransformed flow 0.76 0.66 0.85

Log transformed flow 0.78 0.85 0.79

comparison to an observed PN, the PN difference noted by the
that the
uncalibrated model could be the cause of low flow

models suggests snowmelt contributions in

overestimation in the FDC. Following these insights from the
PN plots, we explored the day of the year (DoY) averages,

minimums and maximums of snowmelt, actual
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Calibrated Uncalibrated

1

PBIAS r

Calibrated Uncalibrated Calibrated Uncalibrated

2.6% -0.35% 0.84 0.88
N/A N/A 0.85 0.90
evapotranspiration and soil moisture of the two models

(Figure 8). The figure showed that the uncalibrated model
leads to snowmelt processes even in the late summer
months, which is not likely.

The visualization of tradeoffs between predictive and
functional performance metrics (Figure 7C) shows that
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TABLE 5 Numerical scores of hydrological signature metrics. For this test case, we chose the mid slope of the FDC (25-45% exceedance probability).
Similarly, we chose the main diagonal in T-FDC as a strict measure and ‘Dry’ months (April—September) for recession score as a representative of
subsurface flow dominant season. HydroBench allows users to choose the exceedance probabilities, the number of diagonals in T-FDC and seasons
for recession curve scores.

FDC slope at T-FDC main diagonal Recession Annual runoff coefficient
exceedance probability of coefficients ratio (model/observed)
0.25-0.45
Slope Intercept
Observed 1427 N/A 1.384 ~5.087 N/A
Calibrated 14.86 35% 1.396 -5.561 0.969
Uncalibrated 7.63 33% 1.179 -4.816 1.003
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FIGURE 7

Functional performance metrics based on evaluation of NHM-PRMS at the Cedar River watershed. (A) uncalibrated model and (B) calibrated
model, and (C) tradeoff between functional and predictive performance metrics. In interpreting PN plots, the outer colored circle indicates the
interacting variables. The width of the chords linking the interacting variables corresponds to the TE magnitudes. In (C), the change in predictive
performance and functional performance from the uncalibrated model (origin of the arrow, blue) to the calibrated model (point of the arrow,

red) is plotted. Thus, the arrows show the effect of calibration. The difference between the two figures is presented in Table 6.
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TABLE 6 TE difference between Calibrated and Uncalibrated model (%) ((TEca — TEuncar) 100

Sink
Source Streamflow Soil moisture Snowmelt Actual ET Potential ET
Precipitation 3.216 0.306 -3.310 — —
Min Air Temperature -0.011 0.121 0.518 0.112 -0.053
Max Air Temperature 0.132 -0.046 0.537 -0.139 0.155
Soil Moisture —-0.352 — — 0.185 -0.316
Snow melt —0.061 —2.400 — — —
Actual ET — —0.482 — — —
Potential ET — -0.213 — —0.124 —
A
Il Uncalibrated
61 Calibrated
c
bl
o 4
€
3
| g -
52
0 -
0.4 1 Hl Uncalibrated
- [T Calibrated
£ 0.3
=
w
= 0.2 1
>
=
O
< 0.14
0.0 1
T T T T T T T T T T 8 T
c o - = > {2 = o Q + 5 9]
© © o =) = ) Q
= € B = g = 2 & o 2 &
Cc
4 -

Soil moisture (in)
N
1

=
1

I Uncalibrated
[ Calibrated

T T T
= c
o %‘ =
< s =

Feb -
Mar +

T
c
(5]

-_

FIGURE 8

Day of the year averages of (A) snowmelt, (B) actual evapotranspiration and (C) soil moisture for both the calibrated and uncalibrated model.

calibration decreased the predictive performance of the
model, primarily by over-extracting information from
precipitation to inform streamflow (as seen in the higher
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transfer entropy from precipitation to model streamflow,

ie., TEp_.Qmoder compared to observed streamflow

TEp_.Qobserved)- However, both the uncalibrated and calibrated
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models have TEp_qmoder greater than TEp_qopserved for
precipitation (i.e., overly-deterministic fitting), suggesting that
other processes involved in water balance partitioning (e.g.,
evapotranspiration) or through which precipitation is routed to
streams (via subsurface or snow storage) may be imperfectly
represented in the model structure and/or parameter values. In
contrast to the information flows originating from precipitation,
information flows from both maximum and minimum air
the
information flows and near the ‘deal fit point. Given the

temperatures to streamflow are close to observed
dominant role of temperature as a driver of evapotranspiration,
this similarity of temperature-to-streamflow information flows
between models may suggest, by elimination, that the overly-
deterministic information flow from precipitation to streamflow
observed in the calibrated model is likely attributable to its
representation (or lack thereof) of storage processes. Namely, a
more direct translation of precipitation to streamflow in the
calibrated model may neglect some of the contributions of
snow storage to peak flow that are better reflected in the
uncalibrated model. However, larger flows of information from
snowmelt and soil moisture to streamflow in the uncalibrated
model may underlie its poorer performance (relative to the
calibrated model) during periods of baseflow and suggest that
too much water is extracted from storage over longer time periods.

Discussion

Case-study reflections: Example of how a
hydrologist may use HydroBench results

Overall, HydroBench showed that the calibrated and
uncalibrated NHM-PRMS model products at the Cedar
River watershed have different skills. Although long-term
snow and moisture observational data were not available to
the
HydroBench produced a set of insights into the mechanisms
the
uncalibrated model exhibited better statistical predictive

support diagnosis of performance discrepancies,

underlying performance differences. In summary,
performance than the calibrated model, particularly during
high flows. However, the uncalibrated model was less skilled at
capturing low flows and streamflow recession processes, based
on the hydrological signature metrics. Functional metrics
suggested that routing of precipitation through snow storage
and melt differs between the two models, with the calibrated
model abstracting too much information directly from
precipitation. Thus, it is likely that the uncalibrated model
does a better job of capturing peak flows than the calibrated
model because it better represents the initial release of water
from the snowpack. However, the tradeoff is that the release of
water from storage from the uncalibrated simulation is too
high during baseflow-dominated periods, in comparison to the
calibrated model.
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In general, information about whether the relationship
between variables is overly random or overly deterministic, as
in the Cedar River, can provide useful insight into the next steps.
In an overly-random system, although the process information is
contained in the observations, it is under-utilized, meaning the
model might not have extracted it effectively. Structural changes
to the model to represent hydrologic processes more realistically,
a better calibration strategy, and/or better objective function may
help extract the process information contained in the
observations. In contrast, in an overly-deterministic system
where there is ‘over extraction’, it might be better to reduce
the dependency of the model on the observed input data. The
reduction in dependency might be achieved through diversifying
the input data by, for example, incorporating new data (e.g.,
adding snow and soil moisture data into a model that was forced
by precipitation and temperature inputs). Additionally, the user
may consider changing the model optimization strategy.
Alternative strategies may include calibrating and validating
the model in contrasting seasons and hydrograph regimes,
using transformed data, and/or changing calibration and
validation objective functions in a way that penalizes models
in which training data have substantially higher performance
than test data. These approaches may lead to less reliance of the
model on specific variables or aspects of a variable that have
resulted in the overly-deterministic fit.

For the Cedar River case study, the insight provided by
HydroBench suggests that further calibration would be a
logical next step. Though the calibrated model exhibited
poorer predictive performance, its improved ability to capture
low flow dynamics may indicate that performance gains can be
obtained without changing the model structure. The parameters
of focus may be those relevant to snow and soil storage, and the
objective function of the calibration may need to be adjusted
further to upweight peak flows. Alternatively, the tradeoff in
better low-flow performance at the expense of high-flow
performance seen in the calibrated model may suggest that
rather than an ‘absolute best model’ parameter set, there exists
a Pareto front (i.e., an unavoidable tradeoff). However, this
possibility would need to be tested using a multi-objective
optimization scheme for calibration that provides the Pareto
front. Finally, if further parameter calibration attempts failed
to improve the predictive performance of the model while
maintaining acceptable functional performance, the modeler
may wish to revisit the fundamental structure (i.e., equations)
of the model. In this case, the representation of snow storage
and melt processes in PRMS might need to be revised to better
reflect the Cedar River catchment response.

Alternatively, given the two tested models, a user may decide
to opt for the uncalibrated model if most interested in outcomes
related to high flows, or the calibrated model if most interested in
low flows. Additionally, users or developers may decide to adopt
model averaging techniques such as Bayesian Model Averaging
-or Hierarchical Mixture of Experts to derive a consensus
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prediction (Marshall et al., 2006; Duan et al., 2007; Moges et al.,
2016). Importantly, the application of HydroBench to the test
case proves that relying only on high performance statistical
predictive measures can be misleading as shown by the high
predictive performance but the poor functional performance of
the uncalibrated model. Thus, a holistic performance evaluation
is critical.

The value of a systematic framework for
model benchmarking

Model benchmarking and diagnostics are not only at the core
of model trust and reliability but also serve as guides for future
model development and improvements. HydroBench was
designed as a model diagnostic and benchmarking tool in a
practice of open, reproducible science. The tool relies on the
Jupyter ecosystem for reproducible, collaborative, and interactive
HydroBench
evaluation and diagnosis of performance discrepancies by

computation. enables model performance
providing three sets of complementary metrics, including
statistical performance metrics, process-based hydrological
As

demonstrated in the test case, this tool produces insight into

signatures, and information theoretic-based  tools.
many different aspects of a model’s performance and helps
diagnose performance shortfalls.

The metrics in HydroBench support the different aspects of
model evaluation outlined in Gleeson et al. (2021), including a
comparison of model results against 1) observations, 2) other
models, and/or 3) expert-based expectations. All of the metric
categories in HydroBench (predictive, process diagnostics, and
functional performances) facilitate comparison against
observations in watersheds that have observed data. The
information theoretic-based model functional performance
metric using PN supports model comparisons even in the
absence of observed data, though availability of observed
data strengthens such comparisons (e.g., Figures 7A,B).
Similarly, PNs and the hydrological signatures can facilitate
expert-based model evaluation as they highlight the key
hydrological processes and model hypotheses. The graphical
representation of a PN can be interpreted as an imprint of the
models’ process conceptualization. HydroBench can be used to
formalize and standardize the ad-hoc expert-based model
evaluation approaches commonly applied by the hydrologic
science community.

Although all the three categories of metrics in HydroBench
are designed to be used in concert, HydroBench is modular and
supports the use of any of the metrics individually. For instance,
in watersheds with abundant data, all capabilities of HydroBench
can be utilized. However, in cases of limited record length or data
diversity, a user may decline to use information-theoretic metrics

because they are not reliable in limited record lengths.
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Choice of calibration objective functions dictates model
performance and sensitivity analysis results (Diskin and
1977; Jie et al., 2016; Markstrom et al., 2016;
Garcia et al., 2017). For instance, a model calibrated using

Simon,

root mean square error may not result in better performance
in logNSE. Thus, in using HydroBench, we suggest a careful
choice of performance metrics that reflect the modeling
objective. For instance, for pure predictive purposes, such
as short term flow forecasts, relying on predictive
performance metrics is beneficial. On the other hand,
water balance projections and quantifications can better be
served by signature based diagnostics and functional
performance evaluation metrics as they seek to get the
right answer for the right reasons. Furthermore, in
modeling works that start with a sensitivity analysis, the
sensitivity analysis result can also be used to align sensitive
parameters, modeling objectives and evaluation metrics. That is,
evaluating models based on a metric that reflects the objective
function set for the sensitivity analysis. Although this approach is
consistent with the user’s modeling objective, the approach is
susceptible to getting the right answer for the wrong reasons. For
instance, in a non-stationary system, an insensitive parameter or
process can be activated and the prediction and evaluations can be
In this regard, multi-objective calibration and
comprehensive model evaluation across the three categories of

misplaced.

HydroBench can be beneficial in diagnosing whether the model is
right for the right reasons.

In addition to its utility in hydrologic research and applications,
HydroBench can be used to support hydrological teaching that focuses
on modeling and model evaluations (Wagener and Mcintyre, 2007;
Wagener et al., 2012). Last, HydroBench is an open source project and
can be extended by the community and also integrated with other
benchmarking tools, as TOSSH is interfaced with HydroBench.
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