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Abstract—Ultra-high-definition (UHD) videos are enjoying increased popularity in people’s daily usage because of the good visual
experience. However, the data size of UHD videos is 4-16 times larger of HD videos. This will bring many challenges to existing video
delivery systems, such as the shortage of network bandwidth resources and longer network transmission latency. In this article, we
propose a cloud computing based deep compression framework named Pearl, which utilizes the power of deep learning and cloud
computing to compress UHD videos. Pearl compresses UHD videos from two respects: the frame resolution and the colorful
information. In pearl, an optimal compact representation of the original UHD video is learned with two deep convolutional neural
networks (DCNNs): super resolution CNN (SR-CNN) and colorization CNN (CL-CNN). SR-CNN is used to reconstruct a high resolution
video from a low resolution video while CL-CNN is adopted to preserve the color information of the video. Pearl focuses on video
content compression in two new directions. Thus, it can be integrated with any existing video compression system. With Pearl, the data
size of UHD videos can be significantly reduced. We evaluate the performance of Pearl with a wide variety of network conditions,
quality of experience (QoE) metrics, and video properties. In all considered scenarios, Pearl can further compress 84% of video size

and reduce 73% of network transmission latency.

Index Terms—UHD video delivery, super resolution, deep learning, CDN

1 INTRODUCTION

THE ultra-high-definition (UHD) video (4K and 8K) will
enjoy increased popularity in people’s daily lives
because of the better visual experience. It will take account
for 22% of the whole network video by 2022 [1]. However,
UHD videos will bring high pressure on data transmission
and storage because the data size of 4k and 8k resolution
are 4 times and 16 times of HD resolution for a video.

In recent years, there are many approaches that try to use
deep learning techniques in the video delivery system [2],
[3], [4]. As shown in Fig. 1, there are main 4 steps in the
deep learning driven video delivery system. The first step is
to train the deep neural network (DNN) models for video
compression. Because training the DNN model requires
adequate computation resources, especially for UHD vid-
eos, this step can only be done on the cloud. Another limita-
tion is that existing systems need to train (tuning) one DNN
model for each video chunk to overcome the versatility
problem, resulting in a large number of separate models for
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a long video. This brings additional storage and bandwidth
cost for the video delivery system [5].

The next step is from the cloud to the edge servers which
are closed to clients. Content Distributed Networks
(CDNs) [6], [7] are the main tools that content providers like
Google and Netflix use to improve the video delivery per-
formance in this step. CDN consists of a group of servers
that are placed across the world. These servers pull the con-
tents from the cloud server and cache a copy of them allow-
ing visitors to retrieve the content from the nearest server.
CDN serves a large portion of the video deliveries across
the Internet. One of the main challenges of CDN is the lim-
ited storage space of the distributed servers, which leads to
that cached videos on the distributed servers will be fre-
quently replaced [8]. This shortage will be amplified with
the increasing amount of UHD videos in CDNS.

The third step is from the edge server to the client. The
network bandwidth between servers and clients is the key
factor to determine the user quality of experience (QoE) in
this phase. Caused by the dynamic change of wireless net-
works, the user QoE suffers directly when the network
throughput is low. Adaptive bitrate (ABR) algorithms [2],
[9], [10], [11], [12] are widely used to optimize video trans-
mission in this phase. There are already several advanced
ABR algorithms that apply deep learning techniques. How-
ever, these works are mainly focused on improving the per-
formance of existing ABR systems. The challenges brought
by UHD videos are not solved.

In the last step, the compressed video can be recovered to
the original video with DNN models on the client device.
However, most of the existing DNN models are trained on
HD videos. When the model is trained on UHD videos, a
challenge is that the GPU memory required to execute the
model is significantly increased (detailed in Section 3), such
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a high requirement cannot be satisfied by most of the exist-
ing GPU models on the client device.

To address these challenges, we propose Pearl, a system
that applies deep learning techniques on video content com-
pression to maximize video delivery performance and user
QoE. To tackle the versatility problem in the first step, two
deep convolutional neural networks (DCNNs) are designed
and trained in Pearl to learn an optimal compact representa-
tion from an input video, which preserves the structural
information and color information. These two DCNNs can
be widely applied to different types of videos according to
the evaluation results. After the compression, the video
data size is significantly reduced. We can recover high-qual-
ity videos with decompression using the DCNN models. In
this case, a large amount of network bandwidth resources
and storage spaces used for video delivery are reserved.
Meanwhile, the transmission latency will also be reduced.
As a result, the challenges brought by UHD videos in steps
two and three are solved. To overcome the GPU memory
shortage problem in step four, we design and apply chan-
nel-based super resolution models. Note here, Pearl focuses
on video content compression from two new directions: res-
olution and color channel. As a result, it can be integrated
with existing ABR systems and video encoding algorithms.

Pearl consists of two DCNNs: super resolution CNN and
colorization CNN. We name them SR-CNN and CL-CNN,
respectively. The SR-CNN is used to reconstruct a high res-
olution video V% from a low resolution video VI%. To
more deeply compress the video contents, CL-CNN is
adopted to preserve the color information of the video. The
CL-CNN reconstructs a colorful video V¢ from a gray-scale
video V&. On the cloud server, an HR video is downsized to
an LR video, and then converted from a colorful video to a
gray video. The data size of the video is reduced during the
network transmission. On the received side, the color infor-
mation of the video is restored by the CL-CNN. Then, SR-
CNN is applied to reconstruct the high resolution video.
The compression on resolution and color is not lossless.
Nevertheless, the losses caused by Pearl are lower com-
pared with existing adaptive bitrate encoding algorithms.
All the super resolution and colorization models are trained
and executed with sufficient computing resources on the
Cloud.

The main contributions of our work are:

e We propose a deep-compression framework named
Pearl which uses two DCNNs to learn a compact
representation of UHD videos. The structural and
color information is preserved by the deep learning
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models. Pearl can further compress 84% of the video
size. This relieves the pressure of limited storage
space in CDNs. Meanwhile, a large amount of net-
work bandwidth resources and network transmis-
sion time are reserved.

e Applying DNN models for recovering UHD videos
requires much more GPU memory as compared
with HD videos. Our proposed channel-based super
resolution models can overcome the GPU memory
shortage problem and two-thirds of the GPU mem-
ory can be saved.

e The versatility problem of super resolution and col-
orization models results in additional storage and
bandwidth cost. Our proposed reference-based col-
orization model can overcome the versatility prob-
lem. With our proposed framework, it is not
necessary to transmit the DCNN models along the
video transmission route.

e DPearl can be integrated with any state-of-the-art ABR
algorithms. Compared with only combining SR-
DCNN with the ABR system, adopting SR+CL can
further compress the video size by 19%. The network
latency from servers to clients will be decreased due
to the smaller video data size. The user QoE can be
improved.

2 VIDEO COMPRESSION MEETS DEEP LEARNING

In this section, we detail the key factors of existing video
delivery systems, and highlight some challenges.

2.1 Image Compression

An image normally consists of several channels. There are
many different channel types, such as RGB and YUV. An
RGB colorful image has three channels. Each channel is a
two dimensional matrix. The resolution means the width w
and the height & of the matrix. We can use w * h * 3 to pres-
ent an RGB image 7¢. On the contrary, the gray-scale image
I¢ only has one channel which is combined by the red,
green, and blue channels: 19 = w; * IS + wg * IS + w3 * I} .
We can downscale the image resolution and reduce the
number of channels to reduce the image data size. However,
these processes are not invertible. With the help of deep
learning techniques, we can construct the high resolution
and colorful image from the low resolution gray image with
a low loss rate.

In recent years, there have been many works that try to
use deep learning models to build an image encode [13],
[14], [15]. These works mainly focus on generating the low
loss rate image with a higher compression rate compared to
traditional methods. The main difference between these
works and our proposed system is that we are trying to
maximize the compression rate for video frames from the
resolution and channel perspectives.

2.2 Video Processing Algorithms

Video is defined as a continuous series of frames. Frame res-
olution, frames per second (FPS), and bitrate are the most
important factors of a video. Bitrate is defined as the total
video data size divided by the time length of the video. For
a video, high bitrate means that a low compression rate is
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Fig. 2. Video processing algorithms.

used to encode the video frames, and vice versa. The change
of bitrate has no effect on frame resolution and FPS.

Since videos take a vital role in people’s daily lives, there
is a large amount of research focusing on video processing.
They can be mainly divided into two categories: video
encoding and video transmission. The poluar video codecs
include MP4 and MPEG. H.26x, and VPx [16], [17], [18] are
the new generation video encoding methods. The processes
of video encoding are shown in Fig. 2a. There are two com-
pression types: intraframe compression and interframe
compression. Both of them are adopted by new generation
video compressing methods. For intraframe compression,
popular image compression methods are applied. The large
redundant information between the nearby frames is com-
pressed during the interframe compression.

To improve the video transmission QoE, ABR algorithms
[2], [9] are widely adopted to handle the dynamic change of
the network in the real world. As shown in Fig. 2b, the video
is encoded to multiple bitrates. High bitrate has a larger
video data size. All the videos will be divided into multiple
chunks. ABR algorithms will select the bitrate of the chunks
according to the network throughput and the playback
buffer of the client.

2.3 Super Resolution and Colorization

Super resolution is a hot topic in the computer vision field
[19], [20], [21], [22], [23]. It aims to upscale and improve the
details within an image. A low resolution image is taken as
an input and a higher resolution image containing more
details is the output. Recent research on super-resolution
has achieved great progress with the development of deep
convolutional neural networks. For a super resolution
model, we can choose the scales of up-scaling. {x2, x3, x4}
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are widely used in super resolution algorithms. xk means
upscaling both the width and height k times. All the scales
can be used to generate HD resolution frames. The frame
resolution of 4k and 8k videos are 3840x2160 and
7680x4320, respectively. Such high resolution frames cannot
be directly fed into the deep compression models. There are
two main reasons: First, if we use such high resolution
frames as the training data, we will get poor performance
with the current DCNN structure, because the learning
space is too large to converge for the DCNNSs. Second, most
GPU models do not have enough memory for feeding the
4k and 8k video frames into the deep compression models.
For instance, ESRGAN needs 19 GB and 38 GB GPU mem-
ory to generate 4K and 8K frames. To solve this problem, a
straightforward approach is to crop the UHD video frame
into multiple smaller parts. After applying the super resolu-
tion algorithms on each part, we can collect all the frame
parts and combine them together. However, this approach
is not efficient for practical video delivery systems. In this
case, we propose to adopt channel-based super resolution
models. More details are shown in Section 4.2.

Colorization is defined as converting a gray-scale image to
a colorful image. The performance of colorization cannot fit
the user’s requirement until the invention of DCNN and
GAN [24], [25], [26]. In this work, we use the Pix2pixHD as
our base deep learning framework to train a colorization
model for video compression, because Pix2pixHD is the first
model designed for colorizing HD videos. A reference-
based colorization model (DEPN) is adopted to improve the
colorization performance. Compared with super resolution
models, colorization is a more complicated task. The reason
is that there is no guiding information for colorizing the
image. Moreover, memory is also an obstacle to applying
colorization on a 2k frame.

2.4 Challenges

The performance of the video delivery system has been
greatly improved by employing CDN and ABR algorithms.
However, current frameworks will face the following chal-
lenges when UHD videos are becoming more and more
popular:

e Since the data size of UHD videos is 4-16 times larger
than that of HD videos, there will be frequent
replacements of cached videos due to the limited
storage space on the distributed servers. Thus, the
efficiency of CDNs will be decreased. Meanwhile,
the large video data size also demands high network
bandwidth. As a result, low bitrate video chunks
with a low video quality are frequently selected in
the ABR system, which significantly degrades user
QoE.

e With the power of deep learning techniques, many
new algorithms can be used to improve the image
and video quality, such as the super resolution algo-
rithm. However, the GPU memory will become the
main obstacle in applying these algorithms to UHD
videos.

e Existing systems train separate DNN models for
each video trunk to overcome the versatility problem
of deep learning algorithms. However, transmitting
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such a large number of models brings additional
storage and bandwidth cost.

3 VIDEO QOE STuDY

In this section, we show a comprehensive study of the video
quality in current video delivery systems. According to
experiment results, our proposed framework can achieve
similar video quality with a smaller data size compared
with existing algorithms.

Peak signal-to-noise ratio (PSNR) and the structural simi-
larity index (SSIM) are used to evaluate the video frame
quality in this paper. At first, we evaluate the video frame
quality of the adaptive bitrate video system. A 2k HD video
is encoded with 5 bitrates: 6000k, 4800k, 2400k, 1200k, and
400k. H.264 is the video codec used here. The 6000k bitrate
video is defined as the original video. The PSNR and SSIM
of different bitrate frames are shown in the first row of
Fig. 3. We can find that the PSNR and SSIM keep decreasing
with the decrease of bitrate. When the bitrate is less than
1000kbps, the frame is blurry.

Then, we study the impacts of super resolution and col-
orization algorithms on video quality. We choose a state-of-
the-art super resolution and a colorization model to perform
the experiments. For the super resolution model, we choose
4 different scales:{x2,x3,x4,x6}. After applying the super res-
olution models with different scales, we measure the PSNR
and SSIM of the generated frames. The results are presented
in the second row of Fig. 3. Compared with adaptive
bitrates, the results generated by the super resolution model
are smoother than the frames with different bitrates from
the visual experience. The super resolution model can

TABLE 1
The Comparison of Frame Data Size
Bitrate  DataSize SR  DataSize  CL+SR  Data Size
4800k 5.8MB x2 1.5MB X2 491KB
2400k 5.7MB x3 687.5KB x3 227KB
1200k 5.3MB x4 399.5KB x4 132KB
400k 3.8MB x6 185.9KB x6 62KB

Bitrate 4.8M
(31.96dB/0.92) (29.07dB/0.88) (25.53dB/ 0.80)
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Bitrate 2.4M Bitrate 1.2M Bitrate 0.4M

(21.09dB / 0.62)

SRx4 SRx6
(25.42dB/0.83) (23.31dB/0.76)

SRx2

SRx3

always achieve higher SSIM and lower PSNR values. When
it comes to the low bitrate, super resolution can achieve bet-
ter video quality. The performance of the colorization is
close to the performance of SRx4. To improve the perfor-
mance of the colorization model, we adopt a reference
frame based colorization algorithm. More details are shown
in Section 4.2. Another factor we investigate here is the
frame data size. As shown in Table 1, the frame data size of
the super resolution and colorization algorithms are much
less than the ABR algorithms.

The results of the video quality comparisons prove that
we can use the super resolution and colorization models to
compress the video content. The video quality will not be
decreased while the data size of the video will be signifi-
cantly reduced.

However, we fail to directly apply the existing super res-
olution model

(MDSR [19]) to UHD video frames for all the scales. The
frame resolution of 4k and 8k videos is 3840x2160 and
7680x4320, respectively. As shown in Fig. 4a, the GPU mem-
ory required for 4k and 8k video frames are 9 GB and 13 GB
when the scale is set as x4, which cannot be supported by
most of the existing GPU models. Such high-resolution
frames cannot be directly generated by the deep compres-
sion models. To solve this problem, we crop the 4k and 8k
video frames into multiple parts. The 4k video frame is
divided into four parts and each part is a 2k sub-frame. The
8k video frame is divided into 16 sub-frames. We then can
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Fig. 4. The GPU memory usage and time consumption.
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successfully apply the super resolution model by frame
cropping. However, the model execution time will be signif-
icantly increased. As shown in Fig. 4b, it takes over 20 sec-
onds to process an 8k video frame. At the same time, image
cropping and combining cause additional frame processing
time.

We can conclude that super resolution algorithms can
achieve good performance on video compression. However,
existing systems face many challenges when super resolu-
tion algorithms are directly applied to UHD videos. Thus,
we propose Pear], the first deep learning driven compres-
sion framework for UHD videos.

4 PROPOSED DESIGN

In this section, we detail the design and implementation of
Pearl, a system that applies the super resolution and colori-
zation algorithms for video compression. First, we describe
the whole system framework. Then, the design of the colori-
zation and super resolution algorithms are presented. After
that, we present the studies of the versatility problem of
super resolution and colorization models. Finally, we
explain the implementation details of the deep learning
models.

4.1 System Framework

Pearl mainly contains two parts: encoder and decoder. As
illustrated in Fig. 5, the original video frames will be
encoded with existing encode algorithms (e.g., H.264) to
compress the video data size before applying our proposed
deep compression models. Then the encoded video will be
deeply compressed from a high resolution colorful video to
a low resolution gray video with our encoder. The deeply
compressed video will be reconstructed to the high resolu-
tion colorful video with the decoder. The detailed steps are
shown in Fig. 6.

Encoder. The video on the cloud server will be down-sam-
pled and gray-scaled from high resolution colorful videos to
low resolution gray videos. The deeply compressed video
will be distributed to CDNs. Training a deep learning model
normally takes dozens to hundreds of hours. If the trained
model cannot achieve good performance on different types
of video, it will be very challenging to widely adopt the
deep compression frameworks. The reason is that we need
to train an individual deep learning model for each kind of
video or train separate models for each chunk of a video,
which is not practical, even with the help of fine-tuning
techniques. To solve this problem, we show a comprehen-
sive study of the model performance on different types of

video content. According to experiment results, the super
Authorized licensed use limited to: University of North Carolina at Charlotte.
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resolution model trained on a large dataset performs well
on different types of videos. However, the trained coloriza-
tion model has a poor performance. To solve the versatility
problem of colorization models, we propose a reference-
based colorization model.

Decoder. After receiving the deep compressed video from
the edge server, we can reconstruct the video from low reso-
lution gray video to high resolution colorful video. The col-
orization model is applied before the super resolution
model. The reason is that the colorization model acquires
more GPU memory compared with super resolution mod-
els. In addition, the time complexity of the colorization
model is also higher than the super resolution model. Thus,
applying the super resolution model to low resolution color-
ful video is more efficient than applying the colorization
model to high resolution gray video. To solve the GPU
memory shortage problem, we propose channel-based
super resolution models.

4.2 Deep Learning Model

As shown in Fig. 7, the deep learning model consists of two
DCNNs: SR-CNN and CL-CNN. At first, the low resolution
(LR) gray frames will be fed into the CL-CNN model. LR
colorful frames will be generated. Then, the SR-CNN will
convert the LR colorful frames to high resolution (HR) col-
orful frames.

SR-CNN. There are several state-of-the-art super-resolu-
tion algorithms, such as EDSR and ESRGAN [19], [20]. The
input of most existing super resolution algorithms is an
RGB video frame. The main obstacle of adopting these algo-
rithms on UHD video frames is the limited GPU memory.
To perform super resolution on UHD video frames, we pro-
pose channel-based super resolution models. As shown in
Fig. 8, instead of using the whole RGB video frame as the
input to the super resolution model, each separate frame
channel is set as the input. In this case, the data size of the
input of the super resolution model is reduced by 3 times.
As a result, the GPU memory shortage problem is solved.
We also present the pipeline of the baseline approach
(CropSR) in Fig. 8. In CropSR, all video frames are extracted
from the received colorized LR video. These RGB image
frames are cropped into several subframes. After applying
the super resolution model to each subframe, the generated
results will be combined to generate the upscaled UHD

frames. The main advantage of channel-based SR model is
TC from IEEE Xplore. Restrictions apply.
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that it only needs to execute 3 times to generate a UHD
video frame. However, 4 executions for a 4k video frame
and 16 executions for an 8k video frame are needed in
CropSR.

Another challenge of adopting state-of-the-art SR models
is the time complexity. For example, the inference speed of
EDSR for 1020x768 frames is 2.08 frames per second, which
makes it impossible to achieve real-time video processing,
especially for UHD videos because the inference speed is
directly affected by the resolution of the input frame. To
meet the real-time constraint for the high resolution frame,
we adopt NAS-MDSR (a downscaled SR model), which
uses scalable DNN to enable anytime prediction [2]. With
NAS-MDSR, the inference speed can reach 31.34 FPS
(Within 1 second, 31 frames can be generated with the super
resolution model). The normal FPS for UHD videos is 30
FPS. Thus, a real-time frame super resolution process can be
achieved. For each scale of super resolution (x2,x3,x4,...), we
need to train for separate SR-CNN models.

CL-CNN. Colorization is an even more complicated task
compared with the super resolution because of the large
learning space of colorful information. We adopt Pix2-
pixHD [25], a state-of-the-art colorization algorithm, as our
base CL-CNN model. According to experiment results, the
video quality (PSNR and SSIM) of the colorization model
based on Pix2pixHD is not robust. For instance, the PSNR
and SSIM of some frames are 20.55 dB and 0.63, which is
worse than the quality of the smallest bitrate video in the
adaptive bitrate encoding approach. To improve the perfor-
mance of the colorization model, a dense encoding pyramid
network (DEPN) is adopted [24]. DEPN is a reference frame
based colorization algorithm. The main difference is that

Colorized LR
frame Frame cropping

o
P
i
o

Colorized LR Channel
frame extraction
Channel based SR models

Upscaled UHD
channels

SR models

Upscaled Upscaled UHD
UHD frame channels

CropSR

Upscaled
UHD frame
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Fig. 8. The framework of super resolution models.
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ResBlock

the keyframes will keep the colorful information instead of
converting to gray frames when we encode the video.
DEPN will use the colorful keyframes as the reference frame
to colorize the gray frames. The colorful keyframe will pro-
vide guiding information for colorization. Thus, the perfor-
mance of the colorization model is improved. Another
advantage brought by DEPN is that the colorization model
training by DEPN can be used on the colorization of multi-
ple videos. For Pix2pixHD based colorization model, we
need to train an individual colorization model for each
video. The objects and scenes keep changing in videos. If
we only have a few colorful keyframes, the coloration per-
formance will be poor. A proper interval between the key
colorful frames needs to be chosen.

4.3 Model Versatility

To study the model versatility problem of super resolution
and colorization models, we evaluate the performance of
our proposed models with 27 video clips from 9 different
categories that are randomly downloaded from the Internet.
As shown in Table 2, the average PSNR and SSIM of the
original SR model is 33.90 and 0.87. The proposed channel-
based SR model has a slight performance degradation.
However, the performance of both of these two SR models
can be classified as good [27]. In this case, we can conclude
that the SR model can be widely adopted on different types
of videos. Training a separate SR model for each video
chunk or each video is not necessary. For the CL model, the
average recovery performance is poor. The reason is that
there is no guiding information for colorizing the gray
image. For instance, a vehicle with color, in the first video
chunk may be very similar to another vehicle with color; in
the second video chunk when video frames containing these
two vehicles are converted to gray images. The colorization

TABLE 2
The Performance of DCNN Models

- SR Channel-based CL Reference-based
(x4) SR(x4) CL

PSNR 33.90 32.62 25.47 32.77

SSIM 0.87 0.83 0.72 0.91
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model fails to correctly colorize these two vehicles at the
same time. Therefore, one colorization model cannot per-
form well on multiple video chunks and different types of
videos. In this paper, we propose a reference-based colori-
zation model to overcome the versatility problem of the col-
orization model. As shown in Table 2, the recovery
performance of the reference-based CL model is signifi-
cantly improved as compared with the original CL model
and it can even achieve better recovery performance on
SSIM as compared with SR models, which indicates that it
can be widely adopted on different types of videos.

We use popular DNN architectures as the backbone of
our proposed DNN models. Instead of designing new mod-
els, we focused on solving the challenges of applying exist-
ing models on UHD videos in this work (directly applying
the existing state-of-the-art DNN models fails to address
these challenges): the channel-based super resolution model
is designed to solve the GPU memory shortage problem
and the reference-based colorization model is designed to
tackle the model versatility issue. These two models have
never been studied in existing video delivery systems.

4.4 Implementation

Because there are no 4k and 8k video data sets available for
training our super resolution model, we use the most
widely used 2k video data set, DIV2k and Flick2k [28], to
train the proposed channel-based super resolution models.
The NAS-MDSR (SR-CNN) and Pix2pixHD (CL-CNN) are
implemented with Pytorch. For training the SR-CNN
model, the frames (1920x1080) are downsampled to
{960x540, 640x360, 480x270, 320x180} for {x2, x3, x4, x6}. For
the hyperparameters, we adopt the same setting as in [2].
The batch size is 64, and the learning rate is 10~%. For fine-
tuning the Pix2pixHD model, we extract 1 frame per second
as the training dataset of each video. The video frames
(1920x1080) are randomly cropped into 512x512 pixels.
Then, these cropped frames will be converted into gray
images as the training dataset. The batch size is 8, and the
learning rate is 2x10~*. The improved colorization algo-
rithms DEPN is based on Caffe [29]. The network was
trained with the learning rate of 3x107°, and batch size is 5.
The optimization algorithm applied in all three deep learn-
ing models is Adam.

5 [EVALUATION

In this section, we provide an extensive evaluation of the
proposed video deep compression framework under two
phases of experiments. The first phase experiments are per-
formed with the video delivery system. We integrate the
deep compressed videos with the state-of-the-art ABR algo-
rithm in the second phase experiments. The main findings
are:

e  Video QoE: Pearl can further compress the video data
size from 84% to 97% with existing video encoding
algorithms. Compared with existing adaptive bitrate
encoding algorithms, we can reduce 65% of the
video data size with the SR model, and 84% with the
CL+SR model. Considering the video visual quality,
Pearl can improve the PSNR and SSIM (27%, 13%)
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and (10%, 11%) for the SR model and the CL+SR
model, compared with the adaptive bitrate encoding
algorithm.

e  Network transmission latency: We perform the video
delivery experiments under three different network
conditions. On average, the network latency can be
reduced by 66%-95% after applying the SR model.
73%-95% of network latency can be reduced with the
CL+SR model.

o  ABR system: After integrating Pearl with the state-of-
the-art ABR algorithm, we improve the average QoE
of the ABR system from 0.62 to 1.47 and 1.52 for the
SR model and the CL+SR model, respectively.

5.1 Methodology

Video. The HD and UHD videos for experiments are down-
loaded from YouTube. For HD videos, we download videos
from 9 popular categories (1: Beauty, 2: Comedy, 3: Cook, 4:
Entertainment, 5: Game, 6: Music, 7: News, 8: Sports, 9:
Technology). For each of the nine Youtube channel catego-
ries, we download three videos. For UHD videos, we down-
load 2 videos for 2 categories(1: Beauty, 2: Sports) because
of the limited UHD video resource online. All the videos
are cut into 5 minutes length and re-encoded. The video
processing library and encoding codec we used is FFMPEG
and H.264, respectively. The encoding frame resolution,
frame chunk size (GOP), and the frame rate are:

o 2k videos: {1920x1080, 4 seconds, 24 FPS}

e 4k videos: {3840x2160, 4 seconds, 30 FPS}

e 8k videos: {7680x4320, 4 seconds, 60 FPS}

Network. We test the performance of the video delivery
under three different network environments:

e Local — LowBW: local low bandwidth wireless net-
work. It is composed of one router and two worksta-
tions, one is the transmitter and another one is the
receiver, the average bandwidth is 3 Mbps.

e Local — HighBW: local high bandwidth wired net-
work. The videos are stored on the cloud server. We
download the videos with a workstation, the average
bandwidth is 108 Mbps.

e  Remote — MediumBW: remote network. We put vid-
eos on a remote server, and fetch videos from a local
workstation. The average bandwidth is 7 Mbps.

ABR Algorithm and Network Trace. There are several
widely used ABR algorithms, such as BOLA, MPC,
robustMPC [30], [31]. However, Pensieve outperforms all of
these algorithms. NAS is another state-of-the-art ABR algo-
rithms. Because the code of NAS is not released yet, only
Pensieve is used to integrate with the proposed deepcom-
press system during the experiments. We use the HSDPA
network trace dataset provided by [9] to evaluate the perfor-
mance of the integrated system. There are total 142 network
traces in the dataset. The bitrates used for adaptive bitrate
encoding are (300, 750, 1,200, 1,850, 2,850) kbps, (1, 4, 8, 14,
20) Mbps, (4, 12, 24, 48, 60) Mbps for 2k, 4k, and 8k videos,
respectively.

Experiment Settings. To evaluate the video QoE and net-
work latency, each 2k video is encoded into 6000 Kbps. The
6000 Kbps videos are set as the original videos for down-
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Fig. 9. The normalized video frame and chunk data size.

scaling and gray-scaling. We choose 4 scales {x2,x3,x4,x6} to
downscale the frame resolution. The downscale method is
bicubic. Then, we convert each down-scaled video to gray-
scale video. For UHD videos, each video is encoded into 20
Mbps and 60Mbps for 4K and 8K videos. These videos are
set as the original video for down-scaling and gray-scaling.
The down-scaling and gray-scaling approaches are the
same with 2k videos. To satisfy the requirements of the
training of deep learning models, we use a server with 8
GTX 1080TI GPUs and a workstation with 3 GTX TITAN X.
A computer with an RTX 2080TI GPU is used to execute all
the trained models. The SCP function in SSH is applied to
transmit the encoded videos.

QoE Metrics. We have two different QoE metrics to evalu-
ate the performance of Pearl: Video QoE and ABR QoE.
Video QoE is used to evaluate video compression quality.
There are three types of metrics: size; (frame data size),
PSNR and SSIM (frame perceptual quality), and latency,,
(network transmission latency). The ABR QoE defined in
Pensieve is used to evaluate the ABR system, which is
defined as following;:

N N N-1
QoEapr =Y q(Rn) =1 Tn—=> lg(Rup) — q(Ry), (D
n=1 n=1 n=1

where R, represents the bitrate of chunk n. ¢(R,) is a func-
tion to calculate the video quality of video chunks n at
bitrate R,. Ty is the rebuffering time caused by download-
ing chunk n at bitrate R,. The quality difference between
two neighboring chunks is used to punish the changes of
bitrate. Frequently changing of the bitrate will affect the
smoothness of the video.

5.2 Video QoE

To evaluate the video QoE, we have two granularities:
frame and video chunk. The average frame data size of a
video is less than that of an isolated image frame. The rea-
son is that inter-frame compressing is applied by video
encoding algorithms. We use video chunk level to evaluate
the performance of combining Pearl with a video encoding
algorithm. Nevertheless, videos are sent frame by frame in

Frame resolution

JE 4 5557 B A
8kx2 8k 8kx4  8kx6

Frame resolution

j E b e
4kx3 4kx4  4kx6

(e)

some scenarios, for instance, in augmented reality (AR)
applications. The video inter-frame compression cannot be
applied in these applications. Thus, we evaluate the perfor-
mance of Pearl in image frame level compression.

Frame. Figs. 9a, 9b, and 9c show the data size of 2k, 4k,
and 8k image frames, respectively. For 5 different down-
sampling scales, gray-scaling can reduce the frame data size
by 58.56%, 62.69%, 61.46% on average, for 2k, 4k, and 8k
image frames, respectively.

Video Chunk. The video chunk data size of 2k, 4k, and 8k
videos are shown in Figs. 9d, 9e, 9f. Gray-scaling can reduce
the data size of video chunks by 50.10%, 62.23%, 53.35% on
average, for 2k, 4k, and 8k videos, respectively.

In summary, applying the SR model can reduce 70% to
95% of the frame data size and 65% to 95% of video chunk
data size for UHD videos. 88% to 98% of frame data size
and 84% to 97% of video chunk data size for UHD videos
can be reduced with the CL+SR model. Down-scaling can
significantly reduce the frame data size by reducing the
pixel dimension of video frames. However, the frame visual
quality is also decreased. If we recover the frame using up-
sampling methods, the frame visual quality is too poor to
satisfy the user visual requirement. Super resolution models
can achieve much higher frame visual quality as compared
with up-sampling methods. With our proposed channel-
based super resolution model, UHD videos can be down-
sampled and recovered without losing much visual quality.

5.3 Performance of DCNNs
As shown in Fig. 10, we show the PSNR and SSIM of the
reconstructed video frames for 9 types of 2k videos. There
are two different approaches: only applying the SR model
(SR-only) and combining the CL model with the SR model
(CL+SR). According to the experiment results, the CL+SR
approach brings more loss on PSNR. However, the CL
model can help to keep the structure information of the
original frame because of the reference frame structure in
the colorization algorithm, which can make it achieve
higher SSIM values.

We define the bottom-line construction quality of a video
frame as (30 dB, 0.85) for PSNR and SSIM. The cumulative
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Fig. 10. The video frame reconstruction quality.

distribution function (CDF) graphs of the PSNR and SSIM
are shown in Fig. 11. For the SR-only approach, about 99%
reconstructed frames are above the bottom-line quality for
the x2 scale. 97%, 79%, 71% for x3, x4, and x6 scale, respec-
tively. For the CL+SR approach, there are about 85% recon-
structed frames which are above the bottom-line quality for
the x2 scale, and 88%, 78%, 59% for x3, x4, and x6 scale,
respectively. Here, the SR model and the CL model are not
fine-tuned with the frame dataset of each video. This proves
that the SR and CL models can be widely used on different
types of videos without training individual models for each
video. In this case, we do not need to transmit the deep
learning model with the video, which results in lower net-
work latency. There are some reconstructed frames with
extremely high PSNR and SSIM values. The reason is that
these frames contain a large percentage of pure color blocks.
The SR and CL models can achieve high accuracy for recov-
ering pure color blocks. When we combine the SR model
with the CL model, we can find that the x3 scale can achieve
higher performance than the x2 scale. The reason is that the
CL model can only achieve poor performance on large reso-
lution frames (e.g., X2 frames).

The reconstruction performances of the SR model and CL
model for 4k and 8k video frames are presented in Table 3.
We compare Pearl with an adaptive bitrate encoding algo-
rithm. For the SR-only approach, we can save 84.63% and
86.5% of data size on average for 4k and 8k videos. The
PSNR and SSIM are improved by (31.19%, 18.38%) and
(19.15%, 16.9%) for 4k and 8k videos. For the CL+SR
approach, we can save 94.5% and 93.7% of data size on aver-
age for 4k and 8k videos. The PSNR and SSIM are improved
by (23.32%, 8.77%) and (2.66%,7.01%) for 8k and 4k videos.

In summary, Pearl can improve (27%, 13%) and (10%,
11%) PSNR and SSIM of UHD videos with the SR model
and the CL+SR model. We can conclude that Pearl can
achieve better video quality (higher PSNR and SSIM values)
with a smaller frame data size compared with an adaptive
bitrate encoding algorithm for both the SR-only approach
and the CL+SR approach. There are many trade-offs
between SR-only approach and CL+SR approach. For
instance, applying the colorization model costs more frame
recovering time. However, the transmission time and the
storage space are reduced, and the frame visual quality can
also be enhanced by the colorization model. In this case, the
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Fig. 11. The UHD video frame reconstruction performance.
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TABLE 3

The Comparison Performance of UHD Video Frames
Bitrate Size PSNR  SSIM SR Size PSNR SSIM CL+SR Size PSNR SSIM
(Mbps)  (Mbps) (Mbps) (Mbps)
60 36.49 00 1 8kx1 36.49 00 1 8kx1 11.97 - -
48 33.65 3540 091 8kx2 10.12 44.43 0.98 8kx2 3.69 37.09 0.97
24 31.97 3297 087 8kx3 5.11 42.42 0.97 8kx3 1.81 39.95 0.98
12 29.86 30.15 081 8kx4 3.07 39.51 0.96 8kx4 1.07 38.20 0.96
4 28.14 2491  0.67 8kx6 1.45 34.76 0.91 8kx6 0.5 31.24 0.87
- - - - average gain  84.63% 31.19% 18.38% averagegain  94.5%  19.15% 16.9%
20M 9.03 00 1 x1 9.03 () 1 x1 3.23 - -
14M 8.87 4031 096 x2 2.49 49.23 0.99 x2 1.27 34.77 0.96
8M 8.60 38.00  0.94 x3 0.98 42.90 0.98 x3 0.48 37.92 0.98
4M 8.09 3443  0.90 x4 0.76 39.36 0.96 x4 0.28 35.08 0.96
™M 7.00 2577  0.76 x6 0.36 35.85 0.92 x6 0.13 30.57 0.89
- - - - average gain  86.5%  23.32% 8.77%  averagegain = 93.7% 2.66% 7.01%

ABR algorithm needs to be more adaptive to select the opti-
mal video chunk. Traditional ABR algorithms only consider
the tradeoffs between the bitrate of the video chunk and the
transmission latency. However, the reinforcement learning
based ABR algorithm adopted in our system can learn the
relationships among all these factors and predict the opti-
mal selection option.

5.4 Network Latency

With Pearl, the video data size will be reduced from 79% to
97% compared with original videos. A large amount server
storage spaces are saved. Meanwhile, the video transmis-
sion latency will also be significantly reduced. We use
three different networks to transmit 2k, 4k, and 8k videos,
the network latency results are shown in Fig. 12. Applying
the SR model can reduce 66.68%-95.89%, 69.70%-94.54%,
64.47%-94.68%, of network latency for Local-LowBW,
Local-HighBW, and Remote-MediumBW network, respec-
tively. 70.07%-96.18%, 75.83%-95.51%, and 75.75%-95.02%
of network latency can be reduced with CL+SR model. On
average, 66%-95% and 73%-95 of network latency can be
saved with the SR model and the CL+SR model respec-
tively. The network latency is defined as the end-to-end
video transmission time, which includes the model execu-
tion time.

5.5 Pearl With ABR System

To evaluate the performance of integrating Pearl with
ABR systems, we combine Pearl with Pensieve together.
The result of applying the integrated system for 2k, 4k,
and 8k videos are shown in Figs. 13a, 13b, and 13c,
respectively. We can find that the integrated system out-
performs the original ABR system. Moreover, the CL+SR
model outperforms the SR model 25%. All the QoE of 4k
and 8k videos are negative numbers. The QoE of UHD
video delivery suffered under the network simulated
from the network trace. This proves that applying the
deep compression framework to improve the QoE of
UHD video delivery is necessary.

5.6 Performance of the Improved
Colorization Model

In Fig. 14, we show the performance of the improved colori-
zation model. The PSNR and SSIM are decreasing with the
increase of the frame sequence index, which is caused by
the scene changing in the video. The average PSNR and
SSIM of the Pix2pixHD colorization model are 26.14 and
0.86. The reference-based colorization model outperforms
the Pix2pixHD model within 10 continuous frames. If we
set a keyframe for every 24 frames, the lowest PSNR and
SSIM are 22.01 dB and 0.84. The main advantage of the
improved colorization model is that we can share a coloriza-
tion model for a variety of videos instead of training an indi-
vidual colorization model for each video. A large amount of
training time is reserved. Moreover, it is unnecessary to
transmit it with the video content during the video delivery.

6 DiscussION

Integration of Pearl and ABR. In this work, the deep learning
models we trained are only used for video content compres-
sion. They are independent of existing video compress algo-
rithms and ABR algorithms. However, there is another
approach to integrate the deep learning models and the
ABR algorithms, which applies joint-training on the video
compression models with ABR models. For instance, NAS
integrates a super resolution model into a state-of-the-art
ABR algorithm that uses a deep reinforcement learning
model. The deep reinforcement learning model is trained
with the effect of the super resolution model. The advantage
is that the deep learning model in the ABR system can make
better decisions compared with separate training. In this
paper, we only focus on compressing the UHD video data
size and reducing the network transmission latency of UHD
videos in the CDN.

Super Resolution or Colorization. With super resolution
model and colorization model, 2*K kinds of compressed
videos will be generated. K is the number of down-sam-
pling scales. Compared with the SR model, the CL+SR
model can improve 39% and 18% on the frame and chunk
data size compression, and the performance on PSNR and
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Fig. 12. The network latency.

SSIM will be reduced by 12.8% and 1.33% respectively. If
the network throughput is high, we can only use the SR
model during the network transmission to obtain better
video quality. When there are limited network resources,
the CL+SR model can be adopted. Both the SR model and
the CL+5SR model outperform the existing adaptive bitrate
encoding methods.

Interval of Colorful Keyframes. For the improved video col-
orization model, the keyframe keeps the color information
instead of being converted to a gray frame. How to set the
interval between keyframes needs to be carefully consid-
ered. If the interval of the keyframes is too small, the power
of the colorization model is not utilized. If the interval
between the keyframes is large, the performance of the col-
orization model will be poor. Video scene recognition algo-
rithms can be applied to solve this problem. It can detect the
time of scene changing. When the scene changes frequently,
we can choose a small keyframe interval, and vise versa.

7 RELATED WORK

There have been many works that apply DNN models for
image compression [13], [14], [15], [32]. The results show
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that DNN-based image compression outperforms tradi-
tional image compression algorithms. However, there are
only a few studies about applying the DNN for video com-
pression [33]. In non-DNN based video encoding algo-
rithms, both the intra-frame and inter-frame compression
are adopted. A large amount of redundant information
between the nearby frames is compressed during the inter-
frame compression. It is very challenging for deep learning
models to achieve the same level of the inter-frame com-
pression performance compared with non-DNN based
video encoding algorithms. Pearl aims to improve the exist-
ing video encoding algorithm from two new directions
(frame resolution and the color channel) with two DCNNs.
The SR-CNN and CL-CNN are applied on top of existing
video codecs. The inter-frame compression is executed by
the video codecs.

Super resolution is a hot topic in the computer vision
field [19], [20]. The performances of SR algorithms have
been greatly improved with DCNN:Ss. It has been used in a
variety of computer vision applications, including video
enhancement, medical diagnosis, and surveillance [34], [35],
[36]. Executing super resolution models is normally very
time and memory consuming. In [2], [3], [37], [38], they
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Fig. 13. The performance of integrated system.
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propose to use super resolution models to improve the
video delivery system. However, the super resolution
model is executed at the client-side, which is not practical to
adopt these methods for real-time UHD video processing.
With sufficient computation resources on the cloud, we can
achieve the real-time super resolution process for UHD
video in Pearl.

There have been many studies about video coloriza-
tion [39], [40]. Colorization can be used in many popular
applications such as colorizing the old black and white
photos, remastering classic black and white film [26],
[41]. However, they are all focused on low resolution
videos. In pearl, we combine super resolution with color-
ization to process UHD videos. There are two types of
colorization algorithms: user-guided colorization and
data-driven automatic colorization. The limitation of the
automatic colorization model is that we need to train
individual models for different videos. For the user-
guided model, the main challenge is the generated
images are closer to the referenced frame as compared
with the original frame. We adopted the user-guided col-
orization method in Pearl because of the high similarity
among the neighboring video frames.

Adaptive bitrate algorithms are designed for handling
the high dynamic network throughput in the real world.
Video is encoded into various bitrates and divided into
small video chunks. Rate-based and buffer-based are the
earliest ABR algorithms. Rate-based ABR algorithms [7],
[42] make the bitrate selection based on the predicted net-
work bandwidth. The buffer-based ABR methods [30], [31]
select the bitrate according to the playback buffer occu-
pancy of the client. Recently proposed ABR algorithms are
trying to combine the rate-based and buffer-based methods
[43]. A state-of-the-art ABR algorithm [9] uses deep learning
models to further improve the performance of ABR systems.
Pearl can be integrated with existing ABR algorithms to
improve user QoE. However, these works are mainly
focused on improving the performance of existing ABR sys-
tems. The challenges brought by UHD videos are not
solved.

8 CONCLUSION

In this paper, we proposed a cloud computing based deep
compression framework named Pearl, which utilizes the
power of deep learning to compress UHD videos. An opti-
mal compact representation from the original UHD videos
is learned with a super resolution model and a colorization
model. The super resolution model is used to reconstruct a
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high resolution video from a low resolution video while the
colorization model is adopted to preserve the color informa-
tion of the video. To the best of our knowledge, we are the
first to use super resolution and colorization algorithms for
UHD video compression and delivery. With Pearl, 88%
video data size and 73% network transmission latency can
be saved.
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