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Abstract—Edge-assisted mobile augmented reality (Edge-
MAR) systems have emerged as effective ways to support
computation-intensive and latency-sensitive applications for mo-
bile devices due to the offloading capability of heavy compu-
tational burdens. However, the network- and energy-resource
utilization of such systems is high. Video encoding schemes
like H.264 can help Edge-MAR systems reduce latency and
bandwidth utilization but at the cost of increased energy con-
sumption. In this paper, we present a comprehensive study of
Edge-MAR using H.264 video encoding with a focus on network
condition, resource utilization, detection accuracy, and energy
consumption of various mobile devices. We collect latency, energy,
transmitted data size, and accuracy data for each segment of
an object detection pipeline measured through experiments with
testbeds, and analyze the non-linear behaviors of Edge-MAR.
Following this, we demonstrate the challenges associated with
the experiments conducted to test the system as well as the ways
to overcome them. Finally, we propose regression-based models
to analytically compute different Edge-MAR parameters to
achieve desired outcomes. This extensive study provides essential
guidelines to network- and energy-aware H.264 video encoding-
based Edge-MAR system design.

Index Terms—Energy measurement, mobile augmented reality,
edge computing, computation offloading, wireless network

I. INTRODUCTION

Augmented reality (AR) is an interactive experience of a
real-world environment where objects in the real world are
enhanced by computer-generated perceptual information. The
introduction of deep learning techniques may add more intel-
ligence to mobile AR (MAR) applications. However, sizeable
deep learning models are not proven effective for mobile
devices, especially smartphones and other portable devices,
due to their limited computation capabilities. Additionally,
these models also involve high energy consumption, which
causes shorter battery support for mobile devices. In this case,
taking the assistance of cloud, edge, or fog computing may
relieve mobile devices from these issues.

Edge computing is a distributed computing paradigm that
brings computation and data storage closer to the sources of
data where heavy computational tasks are offloaded to a nearby
edge server from a mobile device. The server completes the
computation and sends the result back to the mobile [1]. In
this way, mobile devices can save battery life. Mobile vision
applications, including AR, can now be provided to mobile
users being edge-assisted [2]. However, there is an increasing
concern about the network resources, such as bandwidth, used
to support edge-assisted MAR or Edge-MAR applications.

A straightforward way to reduce the network resource
utilization is to reduce the data size transmitted to and from
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Fig. 1. Transmission (a) latency and (b) energy consumption at different RSS
levels at CPU freq.=1 GHz.

the edge server over the wireless network. From our study,
we discover that a 400x400 image frame sent to an edge
server usually takes about 1.2 MB of data, which results in
36 MB per second on average if frames are being sent at
a rate of 30 frames per second (fps). With the increase in
the number of Edge-MAR users, the large amount of data
being transmitted may cause severe delays, which is in contrast
to the requirements of real-time applications. Video frame
encoding schemes like H.264 help compress the source data
and reduce the data size [3]. H.264 encoding compresses the
redundant background while keeping the objects of interest in
consecutive frames intact. Therefore, there is an opportunity
to explore this encoding scheme in MAR.

Motivations: Offloading computational tasks to edge
servers reduces energy consumption on mobile devices but
brings challenges such as increased latency and congested net-
works. Many resource allocation techniques are proposed that
can reduce latency for real-time applications. Nevertheless, to
mitigate network congestion or alleviate the impact of poor
wireless link quality is under-explored for MAR applications.
Our measurement shows that transmission latency from mobile
devices to an edge server increases over 10% and energy
consumption rises by around 5% due to decrease in received
signal strength (RSS) as shown in Fig. 1. In such a case,
reducing the data size through compression can be a potential
solution. Moreover, moving object detections in smartphones
deal with a high volume of data which can be further reduced
using video compression techniques.

To reduce the data size of video frames, compression is a
well-researched method [4]. However, compression techniques
are mainly studied for powerful machines, not smartphones or
other mobile devices. Consequently, there is a need for a trade-
off study among latency, energy consumption, data size, and
inference accuracy. To propose a model capable of balancing
such trade-offs, we need to understand how MAR applications
behave in terms of latency and energy consumption under
different network conditions with or without encoding.
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Challenges: The latency and energy consumption of mobile
devices in different MAR situations are not linear at all.
Through extensive studies, experiments, and measurements,
these non-linear traits can be understood. However, setting up
an experimental testbed that resembles real-world difficulties
involves many challenges.

Moreover, the testbed setup for energy measurement adds
further challenges. For Android OS-based smartphones, the
energy consumption can be obtained from the on-device log
files. However, due to the low sampling rate of this method,
it does not provide a precise measurement. Hence, an external
power measurement device must be introduced in the testbed
that can provide more accurate data with a better sampling
rate. However, the input terminal of a smartphone for energy
supply is nowadays designed so delicately that accessing these
power input terminals and connecting those to an external mea-
suring instrument becomes difficult. Additionally, measuring
and collecting the latency data during an MAR activity poses
further challenges. While collecting the latency data for each
element of the MAR pipeline, each task needs to be organized
properly so that the time can be calculated accurately for every
event, which is very sensitive in our experiment.

Our contributions: Our contributions in this paper are
summarized as follows:

« Latency and energy consumption of Edge-MAR and
Edge-MAR with H.264 encoding (§V-B): We carry out
experiments with different smartphones running an Edge-
MAR application (object detection). Then we, for the first
time, implement another Edge-MAR system with H.264
video encoding at the client-side (mobile devices) and run
the experiments for a similar setup. We use this encoding
scheme due to its high compression ratio and compatibil-
ity with object recognition systems. Our measurements
of the total latency and energy consumption show the
necessity of applying compression in data transmission.

o Impact of H.264 encoding on transmitted data size
and inference accuracy (§V-C): We measure and collect
the transmitted data size and inference accuracy for an
Edge-MAR application with H.264 encoding and com-
pare with those for an existing Edge-MAR application.
Our study shows that there is a trade-off between data
size and accuracy in order to use any of the systems.

o Behavior of Edge-MAR in different network condi-
tions (§V-D): We emulate three different wireless trans-
mission conditions in our testbed. We analyze the latency
and energy data for both systems. It is evident that only
the data transmission part of an Edge-MAR pipeline gets
affected due to worse wireless signal strength.

« Impact of encoding on latency and energy consump-
tion (§V-E): Introducing encoding in an Edge-MAR
system helps reduce the latency and transmitted data size,
but at the cost of additional energy consumption. We
investigate the latency and energy data for encoding only,
which further proceeds to regression-based models.

o Regression model of Edge-MAR parameters (§V-F):
We, finally, develop regression-based models for different

Edge-MAR parameters, i.e., latency, accuracy, data size,
frame size, and energy consumption, from the large
datasets obtained from experiments. These models can
help design network- and energy-aware Edge-MAR sys-
tems with H.264 encoding.

II. RELATED WORK

Computation offloading and Edge-MAR: Numerous re-
search works are done on computation offloading from mobile
devices to servers, especially while using deep learning-based
applications [2]. These works are on offloading decisions,
efficient resource allocation, service placement [5], and saving
energy of mobile devices [6]. However, none of the existing
works make the system energy-aware which can process data
to be offloaded according to different network conditions.

H.264 encoding for object detection: H.264/AVC encod-
ing scheme is a popular standard video coding technology
in streaming applications and video file generation [3]. It is
also investigated for object detection in video surveillance
applications [7]. Existing papers involve the use of H.264 as
feature descriptors [8] or for reducing latency [9]. Dynamic
video encoding is also used to improve the streaming latency
[10]. Nevertheless, none of the existing works describe the
changes in MAR behaviors due to encoding in terms of latency
and energy, making it difficult to design adaptive systems.

Network and energy resource utilization by MAR:
Making MAR applications network-aware still remains a re-
search problem. It is shown in [11] that the radio network
is accountable for around 33% of the total latency of an
MAR system, which infuses a need for network-aware MAR
systems. Moreover, preparing an energy-aware MAR system
is a dormant research issue since energy modeling is very
challenging. Analytical models are developed for smartphones’
energy consumption [12]. Some papers use on-device logging
to measure the energy consumption of smartphones [13],
as well as third-party applications, which do not provide
precise measurements. Unlike these methods, recent research
works prefer to use external energy consumption measuring
instrument [14]. New energy models for MAR and an energy-
aware MAR system are proposed in [15], [16]. However,
none of the existing systems considers latency and energy
consumption along with network resource usage altogether.

III. H.264-BASED EDGE-MAR: SYSTEM DESCRIPTION

We propose an Edge-MAR system based on the H.264 video
encoding scheme to detect and recognize objects. This system
includes an encoder at the client-side (mobile devices) and a
decoder at the server-side. Like other Edge-MAR pipelines,
our system does not include a “frame conversion" segment
since the encoder can process raw frames with YUV color
formats. The system workflow is shown in Fig. 2. First, a frame
is generated by the client’s camera capturing the intended AR
object with the available background. Second, the raw frame is
previewed on the client’s output display. Third, the raw frame
is sent to the encoder of the client and further encoded using
the H.264 scheme. Fourth, the encoded frame is transmitted to
the edge server over the wireless network. This communication
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Fig. 2. System description of Edge-MAR with H.264.
takes place by creating a TCP (transmission control protocol)
socket at the server end. Fifth, the server receives the encoded
frame and then decodes it. If running convolutional neural
netwok (CNN) on each frame takes longer than the frame
reception time, all the received and decoded frames remain in
the queue (buffer). Sixth, the server runs the CNN inference
model on each decoded frame and gets the result of the object
detection and recognition. The result is then transmitted back
to the client using the TCP socket. Finally, the client receives
the result for each frame and displays it with a bounding box
and inference accuracy. This workflow is repeated while the
MAR application is running.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

Testbed: We perform vast experiments using our imple-
mented testbeds consisting of different smartphones (as mobile
client devices), an edge server, and a WiFi router. In order to
make the proposed system usable for most of the commercially
available Android OS-based smartphones, we select phones
released in different years, having different specifications,
which are listed in Table I. We use Jetson AGX Xavier as
the edge server, which has an 8-core ARM 64-bit CPU with
32GB 256-bit LPDDR4x 137GB/s RAM and 512-core Volta
GPU with Tensor Cores. As the WiFi access point, we use
a Linksys dual-band router, which is connected to the edge
server. For energy consumption measurement purposes, we
connect an external instrument — “Monsoon Power Monitor”
to the smartphones.

Methodology: For “Edge-MAR with H.264”, we use An-
droid’s “MediaCodec” library to encode the generated frames
from the mobile device’s camera. The camera is moved at a
constant speed and angle to capture the objects to be detected.
MediaCodec provides a compression ratio of around 92%
(1:12.5) in our experiment. For ease of development, we
save 300 frames into a video file, then encode the video
and transmit it. We use 30 fps, I-frame interval 5, and
maximum video bitrate 30 MB/s as configuration parameters
for encoding. For remote execution in the edge server, we
adopt a version of the famous CNN model, YOLOvV3 [17]
that uses COCO dataset having 80 classes of objects. We use
the 2.4 GHz band of the router to access the Wi-Fi network. To
produce different network conditions with different RSS, we

use different distances with line-of-sight considerations from
the Wi-Fi access point to the mobile devices while keeping
the transceivers directional.

The energy consumption of smartphones is measured by
the power monitor that is connected to the smartphones via
the battery terminals. In the case of the latest smartphones,
the batteries need to be removed from the back panel of the
phones by applying heat from a heat gun. Then the terminals
are soldered to extended wires, which are then connected to
the input/output terminals of the power monitor — the power
monitor powers up the phones.

This external power monitor provides voltage, current, and
energy consumption data for every 2 ms. Before measuring the
energy consumption, all the irrelevant features and background
applications are turned off in the smartphones to understand
the behavior of the object detection application properly.
The latency data for different segments of the Edge-MAR
pipeline, on the other hand, are logged in separate files. The
application is run for 300 frames each time. Then the energy
and latency are considered for a single frame by taking the
average of all the measurements for 300 frames. To compare
our experimental results with an existing MAR system, we
implemented the work in [18], which we name here as “Edge-
MAR” only. Finally, using multiple linear regression, new
models are developed for different parameters of the Edge-
MAR system taking all the experimental data as inputs.

V. RESULTS AND DISCUSSION
A. Key parameters

1) Performance metrics: In any edge-based AR system,
latency is the most important performance metric, which
defines whether a system is suited for real-time or other
sensitive applications. The inference accuracy describes the
system’s ability to recognize any object correctly. Moreover,
for Edge-MAR systems, energy consumption is another crucial
metric to determine a mobile device’s stability in terms of
battery health. Lastly, the transmitted data size dictates how
much network resources are consumed.

2) Control factors: Our experimental testbed consists of an
H.264 encoder, where the encoding configuration regulates the
encoding latency and energy consumption due to encoding.
Additionally, smartphones’ CPU frequency governs the way
frames are processed and encoded. The size of the captured
frames does not necessarily control the compression, but the
data size depends on it heavily. However, no matter what
the data size is, the transmission latency and energy vary on
different signal strengths of the wireless medium.

B. Latency and energy consumption of Edge-MAR and Edge-

MAR with H.264 encoding
We conduct experiments on both Edge-MAR and Edge-

MAR with H.264 for 8 different sizes of frame resolu-
tion (300x300, 350x350, 400x400, 450x450, 500x500,
600x600, 700x700, and 800x800) and for 3 different CPU
frequencies (1, 2, and 3 GHz). The main difference between
the pipelines of these two systems is the presence and absence
of frame conversion and frame encoding, and vice-versa. The
latency and energy measurements are shown in Fig. 3.
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TABLE I
BRIEF SPECIFICATIONS OF THE SMARTPHONES USED IN THE EXPERIMENTS

Manufacturer

Samsung Asus Motorola Vivo Google

Model Galaxy S5 ZenFone AR One Macro (XT2016-2) 1Q00 71 Pixel 4a
oS Android 6.0.1 Android 7.0 Android 9.0 Android 10.0 Android 10.0
SoC Snapdragon 801 (28nm)  Snapdragon 821 (14nm) MediaTek (12nm) Mediatek (7nm) Snapdragon 730G (8nm)
CPU 32-bit 4-core 64-bit 4-core 64-bit Octa-core Octa-core (4x2.6GHz  Octa-core (2x2.2GHz &

2.5GHz Krait 400 2.4GHz Kryo 2x2GHz ARM Cortex & 4x2GHz Cortex) 6x1.8GHz Kryo)
GPU Adreno 330 Adreno 530 Mali-G72 Mali-G77 Adreno 618
RAM 2GB 6GB 4GB 6GB 6GB
WiFi 802.11n/ac 802.11n/ac/ad 802.11 b/g/n 802.11 a/b/g/n/ac 802.11 a/b/g/n/ac
Release date April, 2014 July, 2017 October, 2019 May, 2020 August, 2020

The overall latency and energy consumption for Edge-MAR
varies from 677.6 ms to 1156.35 ms and 5.87 J to 7.55 J for
1 GHz, 662.84 ms to 1144 ms and 6.45 J to 7.81 J for 2
GHz, and 610.96 ms to 1115.5 ms and 6.58 J to 8.6 J for
3 GHz CPU frequency for the above-mentioned frame sizes.
The major latency is caused by the transmission, and most of
the energy is consumed by the frame generation. We find that
for frame sizes from 350x350, the latency does not increase
drastically for Edge-MAR till the frame size of 500x500. After
that, the change in latency is steeper. Similar trend goes for
energy consumption also in Edge-MAR.
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Fig. 3. Overall latency at CPU frequency (a) 1 GHz, (c) 2 GHz, and (e) 3
GHz, and energy consumption at CPU frequency (b) 1 GHz, (d) 2 GHz, and
(f) 3 GHz for Edge-MAR and Edge-MAR with H.264 respectively.

For Edge-MAR with H.264, we find that the overall latency
is reduced by around 80%, but at the cost of energy consump-
tion increase of around 20%. Most of the latency and energy
consumption is here caused by the encoding. Similar to Edge-
MAR, in this system, from frame size 350350 to 500x500,
latency and energy consumption do not increase significantly.

Insight: With the increase in CPU frequency, latency
decreases, and energy consumption increases. However, for
the increase in frame resolution, both latency and energy
consumption rise. Edge-MAR with H.264 provides less latency
but at the cost of an apparent increase in energy consumption.
Frame size 350350 to 500x500 is observed to be an optimal
range for MAR applications in terms of latency and energy
consumption due to the hardware limitations such as sensor
size and frame rates of mobile devices.

C. Data size and accuracy

Our measurement shows that with the increase in frame
sizes, the size of transmitted data per frame rises, as shown in
Fig. 4. This is due to the increase in frame information with
the larger frame size. From frame size 400x400 to 450x450
and from 600x600 to 700x 700, there is a sharp rise of data
size due to the sudden introduction of additional information.
The increment in data size is more stable from frame sizes
450450 to 500x500, because of a more minor increase in
background information with the movement of the camera or
the object. This is true for the encoded data size as well.
Another interesting finding is that there is a slight decline in
compression at frame sizes 600x600 and 800x800, because
of small information added to the frames compared to the
other sizes. The data size for Edge-MAR varies from 0.95
MB to 1.8 MB per frame, and for Edge-MAR with H.264 from
0.072 MB to 0.13 MB per frame with an increase in frame
sizes, i.e., additional information. Furthermore, the inference
accuracy varies a little across different frame sizes. It ranges
from 84.50% to 89.7% per frame, with YoloV3 running at
the server. Another However, due to encoding, this accuracy
drops slightly by around 0.1% to 0.5%, because of the lossy
compression of the frames, as depicted in Fig. 5.

Insight: Edge-MAR with H.264 provides a considerable
reduction in data size in our experiment, but at the cost
of reduced inference accuracy by 0.5% implying that using
H.264, an Edge-MAR system can save around 92% of the
allocated bandwidth with slightly reduced accuracy. Neither
the data size nor the inference accuracy depends on the
CPU frequency. Though frame resolution does not influence
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encoding, with additional information in a frame, encoded data
size and compression ratio increase.
D. Impact of RSS on transmission latency and energy

The impact of the signal strength of the wireless medium
is pivotal in the transmission of data from mobile devices
to the server. Both latency and energy consumption due to
transmission increase with the decrease in RSS, which in turn
increases the overall latency and energy consumption. We
generate 3 RSS levels for our experiment: —30 dBm, —42
dBm, and —60 dBm. Fig. 6 and Fig. 7 show the transmission
latency and energy, respectively, for different RSS at different
CPU freq. for both Edge-MAR and Edge-MAR with H.264.
For RSS=—60 dBm, in Edge-MAR and Edge-MAR with H.64,
transmission latency increases on average by 44.41 ms and
7.73 ms at 1 GHz, 32.13 ms and 6.38 ms at 2 GHz, and 25.36
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ms and 5.08 ms at 3 GHz of CPU freq. sequentially from
RSS=—30 dBm. At the same RSS, a corresponding increase
in energy consumption for transmission for these systems are
49.38 mJ and 9.38 mJ at 1 GHz, 89.75 mJ and 4.31 mJ at
2 GHz, and 75.63 mJ and 24.75 mJ at 3 GHz of CPU freq.
from —30 dBm. Fig. 8 illustrates the difference in transmission
latency for encoding from Edge-MAR only for different RSS.

Insight: It is evident that with the rise in CPU frequencies,
transmission latency decreases. However, at 2 GHz CPU
frequency, the transmission energy does not increase sharply,
compared to the other frequencies, due to smartphone archi-
tectures’ high compatibility with the 2 GHz range. Moreover,
due to encoding, transmission latency reduces by almost 80%
from that of only Edge-MAR.
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Fig. 9. Latency and energy consumption due to H.264 encoding.

E. Impact of encoding on latency and energy consumption

Since our Edge-MAR system involves H.264 at the client-
side, encoding has an impact on both latency and energy
consumption of mobile devices, shown in Fig. 9. With the
increase in CPU frequency, the encoding latency decreases,
but the encoding energy increases. However, at 2 GHz CPU
frequency, the reduction in latency is high, and the increase
in energy consumption is much lower than that at 3 GHz.

Insight: At 2 GHz of CPU frequency, smartphones provide
higher efficiency in terms of both encoding latency and energy
consumption due to encoding. For frame size 450x450, it
gives the optimal latency and energy consumption.

F. Regression model

To develop regression-based models, we denote frame size
as Sframe, data size as Sqq¢q, accuracy for encoded frames as
AcCencode, difference in overall and transmission latency from
Edge-MAR to Edge-MAR with H.264 as Aty and Atyransm
respectively, encoding latency as tepncode, the difference in
overall energy consumption from Edge-MAR to Edge-MAR
with H.264 as AFy,;;, RSS levels as Srgg, and finally CPU
frequency as f. The proposed models for Accencode, tencodes
Atiransm, and S¢rqme are summarized in Table II. The R?
values show the strength of the relationship between the model
and the dependent variables, implying a good fit of the model.
This model can be used to further design network- and energy-
aware H.264-based Edge-MAR systems where developers can
choose the independent variables to achieve desired values of
dependent variables within the 95% confidence boundary.

VI. CONCLUSION

In this paper, we presented a detailed, comprehensive exper-
imental study of network- and energy-resource utilization by
an Edge-MAR with H.264 in different wireless network condi-
tions for a variety of mobile devices. Our measurement showed
that the use of H.264 in Edge-MAR can substantially reduce
latency, but at the cost of slightly increased energy consump-
tion — especially in worse wireless network conditions. We
observed that with the increase in CPU frequency and frame
size, the overall transmission and encoding latency and energy
consumption varies to a great extent, but at some specific
frequencies and frame sizes, the variations are different due to
smartphones’ efficiency issues. The study showed the necessity
of trade-offs among Edge-MAR parameters to achieve desired

TABLE II
PROPOSED LINEAR REGRESSION-BASED MODELS

Parameters | Proposed models R? value

Accencode| 0.81+2.94x107° S, qme + 0.34f 0.73

tencode 382.77 + 0.53Sframe — 19.89f 0.64
23.08 — 0.21Sframe + 5316.3S4qta —

Attransm| 118 0,808 55 0.71
—5306.5 — 2.33f — 1.185rss —

S 39.38AFE,;; + 1.2At4;; 4+ 0.96tencode — 0.97

frame | 2 43tiransm + 6075.TAcCencode  + |

7508.25 44 ta

outcomes. Finally, we proposed regression-based models to
design Edge-MAR systems with H.264 encoding. Any MAR
system involving video transmission can leverage the benefits
of this proposed model. In short, we believe that the findings
from this paper will provide great insights to further designs of
latency- and energy-aware Edge-MAR pipelines with H.264.
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