
H.264 Video Encoding-based Edge-assisted Mobile AR Systems:

Network and Energy Issues
Anik Mallik and Jiang Xie

The University of North Carolina at Charlotte, Charlotte, NC, USA

Email: amallik@uncc.edu, linda.xie@uncc.edu

AbstractÐEdge-assisted mobile augmented reality (Edge-
MAR) systems have emerged as effective ways to support
computation-intensive and latency-sensitive applications for mo-
bile devices due to the offloading capability of heavy compu-
tational burdens. However, the network- and energy-resource
utilization of such systems is high. Video encoding schemes
like H.264 can help Edge-MAR systems reduce latency and
bandwidth utilization but at the cost of increased energy con-
sumption. In this paper, we present a comprehensive study of
Edge-MAR using H.264 video encoding with a focus on network
condition, resource utilization, detection accuracy, and energy
consumption of various mobile devices. We collect latency, energy,
transmitted data size, and accuracy data for each segment of
an object detection pipeline measured through experiments with
testbeds, and analyze the non-linear behaviors of Edge-MAR.
Following this, we demonstrate the challenges associated with
the experiments conducted to test the system as well as the ways
to overcome them. Finally, we propose regression-based models
to analytically compute different Edge-MAR parameters to
achieve desired outcomes. This extensive study provides essential
guidelines to network- and energy-aware H.264 video encoding-
based Edge-MAR system design.

Index TermsÐEnergy measurement, mobile augmented reality,
edge computing, computation offloading, wireless network

I. INTRODUCTION

Augmented reality (AR) is an interactive experience of a

real-world environment where objects in the real world are

enhanced by computer-generated perceptual information. The

introduction of deep learning techniques may add more intel-

ligence to mobile AR (MAR) applications. However, sizeable

deep learning models are not proven effective for mobile

devices, especially smartphones and other portable devices,

due to their limited computation capabilities. Additionally,

these models also involve high energy consumption, which

causes shorter battery support for mobile devices. In this case,

taking the assistance of cloud, edge, or fog computing may

relieve mobile devices from these issues.

Edge computing is a distributed computing paradigm that

brings computation and data storage closer to the sources of

data where heavy computational tasks are offloaded to a nearby

edge server from a mobile device. The server completes the

computation and sends the result back to the mobile [1]. In

this way, mobile devices can save battery life. Mobile vision

applications, including AR, can now be provided to mobile

users being edge-assisted [2]. However, there is an increasing

concern about the network resources, such as bandwidth, used

to support edge-assisted MAR or Edge-MAR applications.

A straightforward way to reduce the network resource

utilization is to reduce the data size transmitted to and from
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Fig. 1. Transmission (a) latency and (b) energy consumption at different RSS
levels at CPU freq.=1 GHz.

the edge server over the wireless network. From our study,

we discover that a 400×400 image frame sent to an edge

server usually takes about 1.2 MB of data, which results in

36 MB per second on average if frames are being sent at

a rate of 30 frames per second (fps). With the increase in

the number of Edge-MAR users, the large amount of data

being transmitted may cause severe delays, which is in contrast

to the requirements of real-time applications. Video frame

encoding schemes like H.264 help compress the source data

and reduce the data size [3]. H.264 encoding compresses the

redundant background while keeping the objects of interest in

consecutive frames intact. Therefore, there is an opportunity

to explore this encoding scheme in MAR.

Motivations: Offloading computational tasks to edge

servers reduces energy consumption on mobile devices but

brings challenges such as increased latency and congested net-

works. Many resource allocation techniques are proposed that

can reduce latency for real-time applications. Nevertheless, to

mitigate network congestion or alleviate the impact of poor

wireless link quality is under-explored for MAR applications.

Our measurement shows that transmission latency from mobile

devices to an edge server increases over 10% and energy

consumption rises by around 5% due to decrease in received

signal strength (RSS) as shown in Fig. 1. In such a case,

reducing the data size through compression can be a potential

solution. Moreover, moving object detections in smartphones

deal with a high volume of data which can be further reduced

using video compression techniques.

To reduce the data size of video frames, compression is a

well-researched method [4]. However, compression techniques

are mainly studied for powerful machines, not smartphones or

other mobile devices. Consequently, there is a need for a trade-

off study among latency, energy consumption, data size, and

inference accuracy. To propose a model capable of balancing

such trade-offs, we need to understand how MAR applications

behave in terms of latency and energy consumption under

different network conditions with or without encoding.
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Challenges: The latency and energy consumption of mobile

devices in different MAR situations are not linear at all.

Through extensive studies, experiments, and measurements,

these non-linear traits can be understood. However, setting up

an experimental testbed that resembles real-world difficulties

involves many challenges.

Moreover, the testbed setup for energy measurement adds

further challenges. For Android OS-based smartphones, the

energy consumption can be obtained from the on-device log

files. However, due to the low sampling rate of this method,

it does not provide a precise measurement. Hence, an external

power measurement device must be introduced in the testbed

that can provide more accurate data with a better sampling

rate. However, the input terminal of a smartphone for energy

supply is nowadays designed so delicately that accessing these

power input terminals and connecting those to an external mea-

suring instrument becomes difficult. Additionally, measuring

and collecting the latency data during an MAR activity poses

further challenges. While collecting the latency data for each

element of the MAR pipeline, each task needs to be organized

properly so that the time can be calculated accurately for every

event, which is very sensitive in our experiment.

Our contributions: Our contributions in this paper are

summarized as follows:

• Latency and energy consumption of Edge-MAR and

Edge-MAR with H.264 encoding (§V-B): We carry out

experiments with different smartphones running an Edge-

MAR application (object detection). Then we, for the first

time, implement another Edge-MAR system with H.264

video encoding at the client-side (mobile devices) and run

the experiments for a similar setup. We use this encoding

scheme due to its high compression ratio and compatibil-

ity with object recognition systems. Our measurements

of the total latency and energy consumption show the

necessity of applying compression in data transmission.

• Impact of H.264 encoding on transmitted data size

and inference accuracy (§V-C): We measure and collect

the transmitted data size and inference accuracy for an

Edge-MAR application with H.264 encoding and com-

pare with those for an existing Edge-MAR application.

Our study shows that there is a trade-off between data

size and accuracy in order to use any of the systems.

• Behavior of Edge-MAR in different network condi-

tions (§V-D): We emulate three different wireless trans-

mission conditions in our testbed. We analyze the latency

and energy data for both systems. It is evident that only

the data transmission part of an Edge-MAR pipeline gets

affected due to worse wireless signal strength.

• Impact of encoding on latency and energy consump-

tion (§V-E): Introducing encoding in an Edge-MAR

system helps reduce the latency and transmitted data size,

but at the cost of additional energy consumption. We

investigate the latency and energy data for encoding only,

which further proceeds to regression-based models.

• Regression model of Edge-MAR parameters (§V-F):

We, finally, develop regression-based models for different

Edge-MAR parameters, i.e., latency, accuracy, data size,

frame size, and energy consumption, from the large

datasets obtained from experiments. These models can

help design network- and energy-aware Edge-MAR sys-

tems with H.264 encoding.

II. RELATED WORK

Computation offloading and Edge-MAR: Numerous re-

search works are done on computation offloading from mobile

devices to servers, especially while using deep learning-based

applications [2]. These works are on offloading decisions,

efficient resource allocation, service placement [5], and saving

energy of mobile devices [6]. However, none of the existing

works make the system energy-aware which can process data

to be offloaded according to different network conditions.

H.264 encoding for object detection: H.264/AVC encod-

ing scheme is a popular standard video coding technology

in streaming applications and video file generation [3]. It is

also investigated for object detection in video surveillance

applications [7]. Existing papers involve the use of H.264 as

feature descriptors [8] or for reducing latency [9]. Dynamic

video encoding is also used to improve the streaming latency

[10]. Nevertheless, none of the existing works describe the

changes in MAR behaviors due to encoding in terms of latency

and energy, making it difficult to design adaptive systems.

Network and energy resource utilization by MAR:

Making MAR applications network-aware still remains a re-

search problem. It is shown in [11] that the radio network

is accountable for around 33% of the total latency of an

MAR system, which infuses a need for network-aware MAR

systems. Moreover, preparing an energy-aware MAR system

is a dormant research issue since energy modeling is very

challenging. Analytical models are developed for smartphones’

energy consumption [12]. Some papers use on-device logging

to measure the energy consumption of smartphones [13],

as well as third-party applications, which do not provide

precise measurements. Unlike these methods, recent research

works prefer to use external energy consumption measuring

instrument [14]. New energy models for MAR and an energy-

aware MAR system are proposed in [15], [16]. However,

none of the existing systems considers latency and energy

consumption along with network resource usage altogether.

III. H.264-BASED EDGE-MAR: SYSTEM DESCRIPTION

We propose an Edge-MAR system based on the H.264 video

encoding scheme to detect and recognize objects. This system

includes an encoder at the client-side (mobile devices) and a

decoder at the server-side. Like other Edge-MAR pipelines,

our system does not include a ªframe conversion" segment

since the encoder can process raw frames with YUV color

formats. The system workflow is shown in Fig. 2. First, a frame

is generated by the client’s camera capturing the intended AR

object with the available background. Second, the raw frame is

previewed on the client’s output display. Third, the raw frame

is sent to the encoder of the client and further encoded using

the H.264 scheme. Fourth, the encoded frame is transmitted to

the edge server over the wireless network. This communication
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Fig. 2. System description of Edge-MAR with H.264.

takes place by creating a TCP (transmission control protocol)

socket at the server end. Fifth, the server receives the encoded

frame and then decodes it. If running convolutional neural

netwok (CNN) on each frame takes longer than the frame

reception time, all the received and decoded frames remain in

the queue (buffer). Sixth, the server runs the CNN inference

model on each decoded frame and gets the result of the object

detection and recognition. The result is then transmitted back

to the client using the TCP socket. Finally, the client receives

the result for each frame and displays it with a bounding box

and inference accuracy. This workflow is repeated while the

MAR application is running.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

Testbed: We perform vast experiments using our imple-

mented testbeds consisting of different smartphones (as mobile

client devices), an edge server, and a WiFi router. In order to

make the proposed system usable for most of the commercially

available Android OS-based smartphones, we select phones

released in different years, having different specifications,

which are listed in Table I. We use Jetson AGX Xavier as

the edge server, which has an 8-core ARM 64-bit CPU with

32GB 256-bit LPDDR4x 137GB/s RAM and 512-core Volta

GPU with Tensor Cores. As the WiFi access point, we use

a Linksys dual-band router, which is connected to the edge

server. For energy consumption measurement purposes, we

connect an external instrument ± ªMonsoon Power Monitorº

to the smartphones.

Methodology: For ªEdge-MAR with H.264º, we use An-

droid’s ªMediaCodecº library to encode the generated frames

from the mobile device’s camera. The camera is moved at a

constant speed and angle to capture the objects to be detected.

MediaCodec provides a compression ratio of around 92%

(1:12.5) in our experiment. For ease of development, we

save 300 frames into a video file, then encode the video

and transmit it. We use 30 fps, I-frame interval 5, and

maximum video bitrate 30 MB/s as configuration parameters

for encoding. For remote execution in the edge server, we

adopt a version of the famous CNN model, YOLOv3 [17]

that uses COCO dataset having 80 classes of objects. We use

the 2.4 GHz band of the router to access the Wi-Fi network. To

produce different network conditions with different RSS, we

use different distances with line-of-sight considerations from

the Wi-Fi access point to the mobile devices while keeping

the transceivers directional.

The energy consumption of smartphones is measured by

the power monitor that is connected to the smartphones via

the battery terminals. In the case of the latest smartphones,

the batteries need to be removed from the back panel of the

phones by applying heat from a heat gun. Then the terminals

are soldered to extended wires, which are then connected to

the input/output terminals of the power monitor Ð the power

monitor powers up the phones.

This external power monitor provides voltage, current, and

energy consumption data for every 2 ms. Before measuring the

energy consumption, all the irrelevant features and background

applications are turned off in the smartphones to understand

the behavior of the object detection application properly.

The latency data for different segments of the Edge-MAR

pipeline, on the other hand, are logged in separate files. The

application is run for 300 frames each time. Then the energy

and latency are considered for a single frame by taking the

average of all the measurements for 300 frames. To compare

our experimental results with an existing MAR system, we

implemented the work in [18], which we name here as ªEdge-

MARº only. Finally, using multiple linear regression, new

models are developed for different parameters of the Edge-

MAR system taking all the experimental data as inputs.

V. RESULTS AND DISCUSSION

A. Key parameters

1) Performance metrics: In any edge-based AR system,

latency is the most important performance metric, which

defines whether a system is suited for real-time or other

sensitive applications. The inference accuracy describes the

system’s ability to recognize any object correctly. Moreover,

for Edge-MAR systems, energy consumption is another crucial

metric to determine a mobile device’s stability in terms of

battery health. Lastly, the transmitted data size dictates how

much network resources are consumed.

2) Control factors: Our experimental testbed consists of an

H.264 encoder, where the encoding configuration regulates the

encoding latency and energy consumption due to encoding.

Additionally, smartphones’ CPU frequency governs the way

frames are processed and encoded. The size of the captured

frames does not necessarily control the compression, but the

data size depends on it heavily. However, no matter what

the data size is, the transmission latency and energy vary on

different signal strengths of the wireless medium.

B. Latency and energy consumption of Edge-MAR and Edge-

MAR with H.264 encoding
We conduct experiments on both Edge-MAR and Edge-

MAR with H.264 for 8 different sizes of frame resolu-

tion (300×300, 350×350, 400×400, 450×450, 500×500,

600×600, 700×700, and 800×800) and for 3 different CPU

frequencies (1, 2, and 3 GHz). The main difference between

the pipelines of these two systems is the presence and absence

of frame conversion and frame encoding, and vice-versa. The

latency and energy measurements are shown in Fig. 3.
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TABLE I
BRIEF SPECIFICATIONS OF THE SMARTPHONES USED IN THE EXPERIMENTS

Manufacturer Samsung Asus Motorola Vivo Google

Model Galaxy S5 ZenFone AR One Macro (XT2016-2) IQOO Z1 Pixel 4a
OS Android 6.0.1 Android 7.0 Android 9.0 Android 10.0 Android 10.0
SoC Snapdragon 801 (28nm) Snapdragon 821 (14nm) MediaTek (12nm) Mediatek (7nm) Snapdragon 730G (8nm)
CPU 32-bit 4-core 64-bit 4-core 64-bit Octa-core Octa-core (4x2.6GHz Octa-core (2x2.2GHz &

2.5GHz Krait 400 2.4GHz Kryo 2x2GHz ARM Cortex & 4x2GHz Cortex) 6x1.8GHz Kryo)
GPU Adreno 330 Adreno 530 Mali-G72 Mali-G77 Adreno 618
RAM 2GB 6GB 4GB 6GB 6GB
WiFi 802.11n/ac 802.11n/ac/ad 802.11 b/g/n 802.11 a/b/g/n/ac 802.11 a/b/g/n/ac
Release date April, 2014 July, 2017 October, 2019 May, 2020 August, 2020

The overall latency and energy consumption for Edge-MAR

varies from 677.6 ms to 1156.35 ms and 5.87 J to 7.55 J for

1 GHz, 662.84 ms to 1144 ms and 6.45 J to 7.81 J for 2

GHz, and 610.96 ms to 1115.5 ms and 6.58 J to 8.6 J for

3 GHz CPU frequency for the above-mentioned frame sizes.

The major latency is caused by the transmission, and most of

the energy is consumed by the frame generation. We find that

for frame sizes from 350×350, the latency does not increase

drastically for Edge-MAR till the frame size of 500×500. After

that, the change in latency is steeper. Similar trend goes for

energy consumption also in Edge-MAR.
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Fig. 3. Overall latency at CPU frequency (a) 1 GHz, (c) 2 GHz, and (e) 3
GHz, and energy consumption at CPU frequency (b) 1 GHz, (d) 2 GHz, and
(f) 3 GHz for Edge-MAR and Edge-MAR with H.264 respectively.

For Edge-MAR with H.264, we find that the overall latency

is reduced by around 80%, but at the cost of energy consump-

tion increase of around 20%. Most of the latency and energy

consumption is here caused by the encoding. Similar to Edge-

MAR, in this system, from frame size 350×350 to 500×500,

latency and energy consumption do not increase significantly.

Insight: With the increase in CPU frequency, latency

decreases, and energy consumption increases. However, for

the increase in frame resolution, both latency and energy

consumption rise. Edge-MAR with H.264 provides less latency

but at the cost of an apparent increase in energy consumption.

Frame size 350×350 to 500×500 is observed to be an optimal

range for MAR applications in terms of latency and energy

consumption due to the hardware limitations such as sensor

size and frame rates of mobile devices.

C. Data size and accuracy

Our measurement shows that with the increase in frame

sizes, the size of transmitted data per frame rises, as shown in

Fig. 4. This is due to the increase in frame information with

the larger frame size. From frame size 400×400 to 450×450

and from 600×600 to 700×700, there is a sharp rise of data

size due to the sudden introduction of additional information.

The increment in data size is more stable from frame sizes

450×450 to 500×500, because of a more minor increase in

background information with the movement of the camera or

the object. This is true for the encoded data size as well.

Another interesting finding is that there is a slight decline in

compression at frame sizes 600×600 and 800×800, because

of small information added to the frames compared to the

other sizes. The data size for Edge-MAR varies from 0.95

MB to 1.8 MB per frame, and for Edge-MAR with H.264 from

0.072 MB to 0.13 MB per frame with an increase in frame

sizes, i.e., additional information. Furthermore, the inference

accuracy varies a little across different frame sizes. It ranges

from 84.50% to 89.7% per frame, with YoloV3 running at

the server. Another However, due to encoding, this accuracy

drops slightly by around 0.1% to 0.5%, because of the lossy

compression of the frames, as depicted in Fig. 5.

Insight: Edge-MAR with H.264 provides a considerable

reduction in data size in our experiment, but at the cost

of reduced inference accuracy by 0.5% implying that using

H.264, an Edge-MAR system can save around 92% of the

allocated bandwidth with slightly reduced accuracy. Neither

the data size nor the inference accuracy depends on the

CPU frequency. Though frame resolution does not influence
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encoding, with additional information in a frame, encoded data

size and compression ratio increase.

D. Impact of RSS on transmission latency and energy

The impact of the signal strength of the wireless medium

is pivotal in the transmission of data from mobile devices

to the server. Both latency and energy consumption due to

transmission increase with the decrease in RSS, which in turn

increases the overall latency and energy consumption. We

generate 3 RSS levels for our experiment: −30 dBm, −42

dBm, and −60 dBm. Fig. 6 and Fig. 7 show the transmission

latency and energy, respectively, for different RSS at different

CPU freq. for both Edge-MAR and Edge-MAR with H.264.

For RSS=−60 dBm, in Edge-MAR and Edge-MAR with H.64,

transmission latency increases on average by 44.41 ms and

7.73 ms at 1 GHz, 32.13 ms and 6.38 ms at 2 GHz, and 25.36
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Fig. 6. Transmission latency for different RSS for Edge-MAR at CPU
frequency (a) 1 GHz, (b) 2 GHz, and (c) 3 GHz, and for Edge-MAR with
H.264 at (d) 1 GHz, (e) 2 GHz, and (f) 3 GHz.
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Fig. 7. Energy consumption for frame transmission for different RSS for
Edge-MAR at CPU frequency (a) 1 GHz, (b) 2 GHz, and (c) 3 GHz, and for
Edge-MAR with H.264 at (d) 1 GHz, (e) 2 GHz, and (f) 3 GHz.

(a) (b)

(c)

Fig. 8. Difference in transmission latency due to encoding in percentage for
RSS levels (a) −30 dBm, (b) −42 dBm, and (c) −60 dBm.

ms and 5.08 ms at 3 GHz of CPU freq. sequentially from

RSS=−30 dBm. At the same RSS, a corresponding increase

in energy consumption for transmission for these systems are

49.38 mJ and 9.38 mJ at 1 GHz, 89.75 mJ and 4.31 mJ at

2 GHz, and 75.63 mJ and 24.75 mJ at 3 GHz of CPU freq.

from −30 dBm. Fig. 8 illustrates the difference in transmission

latency for encoding from Edge-MAR only for different RSS.

Insight: It is evident that with the rise in CPU frequencies,

transmission latency decreases. However, at 2 GHz CPU

frequency, the transmission energy does not increase sharply,

compared to the other frequencies, due to smartphone archi-

tectures’ high compatibility with the 2 GHz range. Moreover,

due to encoding, transmission latency reduces by almost 80%

from that of only Edge-MAR.
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Fig. 9. Latency and energy consumption due to H.264 encoding.

E. Impact of encoding on latency and energy consumption

Since our Edge-MAR system involves H.264 at the client-

side, encoding has an impact on both latency and energy

consumption of mobile devices, shown in Fig. 9. With the

increase in CPU frequency, the encoding latency decreases,

but the encoding energy increases. However, at 2 GHz CPU

frequency, the reduction in latency is high, and the increase

in energy consumption is much lower than that at 3 GHz.

Insight: At 2 GHz of CPU frequency, smartphones provide

higher efficiency in terms of both encoding latency and energy

consumption due to encoding. For frame size 450×450, it

gives the optimal latency and energy consumption.

F. Regression model

To develop regression-based models, we denote frame size

as Sframe, data size as Sdata, accuracy for encoded frames as

Accencode, difference in overall and transmission latency from

Edge-MAR to Edge-MAR with H.264 as △tall and △ttransm
respectively, encoding latency as tencode, the difference in

overall energy consumption from Edge-MAR to Edge-MAR

with H.264 as △Eall, RSS levels as SRSS , and finally CPU

frequency as f . The proposed models for Accencode, tencode,

△ttransm, and Sframe are summarized in Table II. The R2

values show the strength of the relationship between the model

and the dependent variables, implying a good fit of the model.

This model can be used to further design network- and energy-

aware H.264-based Edge-MAR systems where developers can

choose the independent variables to achieve desired values of

dependent variables within the 95% confidence boundary.

VI. CONCLUSION

In this paper, we presented a detailed, comprehensive exper-

imental study of network- and energy-resource utilization by

an Edge-MAR with H.264 in different wireless network condi-

tions for a variety of mobile devices. Our measurement showed

that the use of H.264 in Edge-MAR can substantially reduce

latency, but at the cost of slightly increased energy consump-

tion ± especially in worse wireless network conditions. We

observed that with the increase in CPU frequency and frame

size, the overall transmission and encoding latency and energy

consumption varies to a great extent, but at some specific

frequencies and frame sizes, the variations are different due to

smartphones’ efficiency issues. The study showed the necessity

of trade-offs among Edge-MAR parameters to achieve desired

TABLE II
PROPOSED LINEAR REGRESSION-BASED MODELS

Parameters Proposed models R2 value

Accencode 0.81 + 2.94×10−5Sframe + 0.34f 0.73

tencode 382.77 + 0.53Sframe − 19.89f 0.64

△ttransm
23.08 − 0.21Sframe + 5316.3Sdata −

11.8f − 0.89SRSS
0.71

Sframe

−5306.5 − 2.33f − 1.18SRSS −

39.38△Eall + 1.2△tall + 0.96tencode −

2.43ttransm + 6075.7Accencode +

7508.2Sdata

0.97

outcomes. Finally, we proposed regression-based models to

design Edge-MAR systems with H.264 encoding. Any MAR

system involving video transmission can leverage the benefits

of this proposed model. In short, we believe that the findings

from this paper will provide great insights to further designs of

latency- and energy-aware Edge-MAR pipelines with H.264.
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