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ABSTRACT. Purpose: Prior studies show convolutional neural networks predicting self-reported
race using x-rays of chest, hand and spine, chest computed tomography, and mam-
mogram. We seek an understanding of the mechanism that reveals race within x-ray
images, investigating the possibility that race is not predicted using the physical
structure in x-ray images but is embedded in the grayscale pixel intensities.

Approach: Retrospective full year 2021, 298,827 AP/PA chest x-ray images from
3 academic health centers across the United States and MIMIC-CXR, labeled by
self-reported race, were used in this study. The image structure is removed by sum-
ming the number of each grayscale value and scaling to percent per image (PPI).
The resulting data are tested using multivariate analysis of variance (MANOVA) with
Bonferroni multiple-comparison adjustment and class-balanced MANOVA. Machine
learning (ML) feed-forward networks (FFN) and decision trees were built to predict
race (binary Black or White and binary Black or other) using only grayscale value
counts. Stratified analysis by body mass index, age, sex, gender, patient type, make/
model of scanner, exposure, and kilovoltage peak setting was run to study the
impact of these factors on race prediction following the same methodology.

Results: MANOVA rejects the null hypothesis that classes are the same with 95%
confidence (F 7.38, P < 0.0001) and balanced MANOVA (F 2.02, P < 0.0001). The
best FFN performance is limited [area under the receiver operating characteristic
(AUROC) of 69.18%]. Gradient boosted trees predict self-reported race using gray-
scale PPl (AUROC 77.24%).

Conclusions: Within chest x-rays, pixel intensity value counts alone are statistically
significant indicators and enough for ML classification tasks of patient self-reported
race.
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1 Introduction

It is trivial for convolutional neural networks (CNN) to predict self-reported race within medical
imaging. Radiologists are not trained or proven capable of performing this task; what is learned
by CNN is not clear.""? Artificial intelligence (AI) can detect race from medical images, and
computer vision-based Al models can unknowingly integrate racial biases into prognostic or
treatment algorithms.® There is potential for discriminatory harm if we assume that Al models
are agnostic to race—understanding the relationship between race and medical imaging Al
models is important.*®

There are no known imaging biomarker correlates for racial identity; however, medical
imaging AI models produce racial disparities.”!” Prior work sought to answer how Al systems
could produce disparities in multiple medical imaging modalities. Within chest x-rays, Al models
can predict self-reported race with an area under the receiver operating characteristic (AUROC)
of 0.974." Gichoya et al.' showed that the features learned appear to involve all regions of the
image and frequency spectrum, suggesting that mitigation efforts will be challenging.

We seek an understanding of the mechanism that reveals race within medical imaging by
investigating the possibility that race predicting features may be embedded within the individual
grayscale pixel intensities of an x-ray image. We remove all image structures by counting how
many times each grayscale value appears, testing for statistical differences between the pixel
intensities within race groups, and training machine learning models to predict race using these
grayscale counts. Although this method removes the structure of the image, the presence of body
habitus can remain encoded in this representation. We investigate possible confounders of body
habitus using body mass index (BMI) as well as modality configuration settings by limiting the
device to a single make/model and controlling for kilovoltage peak (KVP) and exposure.

2 Approach

The dataset consists of three academic health centers (AHC) and one publicly available dataset,
MIMIC-CXR.'"" Dataset population descriptions are described in Table 1; all use self-reported
race, are front-view AP/PA chest x-rays, and were collected between 1/1/2021 and 12/31/2021
(except MIMIC-CXR'"). AHC 1, Indiana University School of Medicine in Indianapolis, has two
datasets—uncontrolled hospital W (1.1) and one year at hospitals X, Y, and Z (1.2) limited to the top
10% of diverse x-ray devices, defined as the devices with the largest percent of non-White patients.
AHC 2, Emory University in Atlanta, has five datasets—uncontrolled (2.1) and four limited to one
device make and model (Carestream DRX-Revolution'?) categorized by BMI—underweight (2.2),
normal (2.3), overweight (2.4), and obese (2.5). AHC 3, University of Minnesota in Minneapolis,
has one uncontrolled dataset.’ Overall, 298,827 images are included in the analysis. All institutions
acquired IRB approval with waiver of consent and de-identified datasets prior to processing.
All institutional data were collected retrospectively without control to pathologies present.

KVP, exposure, and modality information are extracted from DICOM headers, and then the
images are converted from DICOM format to 8-bit grayscale PNG format. 8-bit grayscale format
was chosen to match the MIMIC-CXR format.!! No windowing, leveling, or grayscale normali-
zation are applied to images during conversion. When photometric interpretation equals
“MONOCHROME],” images are grayscale inverted. The conversion of local DICOM files was
done with a function of [(pixel_grayscale_value/overall_image_max_grayscale_value)*255].
Images are then converted into a data frame, with columns of grayscale values from 0 to
255 and race and row values being the number of pixels appearing in the image with that value.
The zero-grayscale value is dropped as this value has high variance and often only appears due to
postprocessing, such as image rotations. Grayscale pixel counts are converted to percent per
image (PPI), normalizing for resolution of the image. The code for this process is included
in the linked Github repository.

2.1 Statistical Methods

Multivariate analysis of variance (MANOVA) and subsampled class balanced MANOVA are run
on all datasets and combined datasets. The test hypothesis is that groups contain differences in
pixel values. Results are analyzed for significance of 95% (p <0.05) and F-value > 2.
MANOVA results include Bonferroni multiple-comparison adjustment at an a = 0.05, and
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Asian
Black
White
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Fig. 1 Grayscale histogram for the combined-no MIMIC dataset. X represents grayscale values
between 1 and 255, and Y represents the PPI.

significant p values must be <0.0038. Histogram line charts were created describing the gray-
scale PPI by race (Fig. 1).!%!*

2.2 Visualizing Grayscale Value Presentations in Chest X-ray

To visualize the statistical differences in distributions of grayscale pixels between the groups,
we plotted a grouped histogram using the D3.js v3 library.> We used a random sample of 500
images from each race at AHC 1. Filters are utilized to segment data by race, sex, and grayscale
range. When filtering by range, the chest x-ray image embedded within the page highlights in
yellow the current area of the image. Figure 2 highlights regions of interest within the histogram.
The raw individual image data are plotted in a multi-line plot, with a filter for how many lines are
shown. ANOVA test results are listed by pixel value, and bar charts represent the filtered pop-
ulation age and sex by race.

2.3 Machine Learning Methods

KerasTuner is used on the combined dataset to determine the best hyperparameters of feed-
forward networks (FFN) classifying race.'® 10% of data is randomly withheld as a test dataset.
The tuning process uses the validation AUROC on a validation set consisting of 20% of the
training data as the metric to tune on. The tuning process trials 500 models of dense layer (DL)
2 to 10 depth, DL width (512 to 4096), activation functions (relu, tanh, and sigmoid), regulari-
zation layers (dropout, 12, and batch normalization), and Adam optimizer run at 60 epochs each.
Multi-class, binary Black or White, and binary Black or other classification models were tuned.
Multi-class classification failed to achieve over 55% validation set AUROC in any model and
was not utilized for further tests. Black or White achieved a validation set AUROC of 68.47%,
and Black or other achieved the highest AUROC of 69.51%. Model descriptions, package
versions, and performance metrics are included in Appendix A.

The resulting model is retrained on each dataset separately, with a random data split of
10%/80%/20% for test/training/validation. Categorical cross-entropy is used for multi-class and
binary cross-entropy for binary classification. Early stopping for minimum validation loss is
utilized to stop training. Each dataset is trained and evaluated once for each classification
problem using binary accuracy over all samples and AUROC.

Random forest (RF), gradient boosted trees (GBT), and cart models were trained on each
dataset, with 80% training data and 20% testing. RF and GBT utilized the Keras hyperparameter
template “benchmark_rank1,” and cart utilized the default Keras cart settings.17

Using the combined single modality datasets (2.2 through 2.5), controls are applied for KVP
(KVP =125 and n = 38,102) and exposure (mAs = 1 to 4 and n = 39,795) with a combined
n = 28,381 samples.18 This dataset includes bucketed age, bucketed BMI, gender, and patient
type (emergency, inpatient, and outpatient). Using this controlled dataset, we tested the race
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Fig. 2 Regions of interest within the histogram, visualized in a sample chest x-ray. Yellow high-
lighting in images shows current pixel range selected. Pixel values 10 to 65 have more pixels for
Black patients and appear to correlate with background, skin/muscle, and some lung areas. Values
30 to 40 are minimal soft tissue, though that does vary within any given chest x-ray. Values 170 to
190 correlating to bone and some organ systems and less pixels on average for Black patients.
Note: due to the overlaid nature of x-ray, there is no direct correlation between grayscale value and
body regions as in computed tomography with houndsfield units. Chest x-ray image sourced from
Wikimedia Commons under Creative Commons CCO 1.0 Universal Public Domain Dedication.

prediction tasks as well as age, BMI, gender, and patient type prediction. Additionally,
we applied the controls (KVP = 120, mAs = 1 to 4, age = 60 to 80, gender = male, patient
type = inpatient, and n = 5718) with the race prediction tasks. A final test was done on the full
images using these controls and prediction tasks, following the methodology of Ref. 1.

3 Results

3.1 Statistical Results
ANOVA assumes that variables are uncorrelated, and a correlation matrix is created and assessed
for correlations (Fig. 3). Many pixel counts appear to be highly correlated with other pixel
counts. MANOVA is more appropriate as it accounts for correlations between variables. To
ensure the validity of the MANOVA test in this setting, we conducted tests against several ran-
dom splits of population subgroups for each dataset. None of these were significant after multi-
plicity correction (Sec. 5.3), implying that each race group followed a consistent distribution,
so the following across-group tests will detect differences due to race and not due to sampling.
All MANOVA tests have significant P values (with Bonferroni multiple-comparison adjustment
significant P values < 0.0038), indicating that for all source datasets, the pixel percentage dis-
tribution is significantly different across different races. Balanced MANOVA tests have signifi-
cant P values except datasets 1.1, 2.2, and 2.3. Table 2 describes dataset MANOVA results.
Single make/model modality controlled for KVP/exposure MANOVA results are listed in
Table 3 (unbalanced) and Table 4 (balanced). MANOVA results show that all results are signifi-
cant (P < 0.05).

Journal of Medical Imaging 061106-5 Nov/Dec 2023 e Vol. 10(6)
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Fig. 3 Pixel correlation matrix, generated using R, showing the highly correlated nature of gray-
scale values and reasoning for MANOVA testing. X and Y scales are grayscale values (0 to 255)
normalized to between 0 and 1. Darker regions are highly correlated pixel values.

Table 2 MANOVA results by dataset. DF, degrees of freedom.

MANOVA MANOVA balanced
Dataset DF F-value P-value F-value P-value
1.1 762 1.49 <0.0001 1.14 0.0119
1.2 762 1.22 <0.0001 1.16 0.0031
1-all 762 1.64 <0.0001 1.30 <0.0001
2.1 508 3.23 <0.0001 2.99 <0.0001
2.2 762 1.38 <0.0001 0.93 0.7726
2.3 762 2.65 <0.0001 1.13 0.0140
24 762 2.88 <0.0001 1.36 <0.0001
2.5 762 2.73 <0.0001 1.18 0.0015
2-all 762 7.38 <0.0001 2.02 <0.0001
3 508 2.58 <0.0001 1.67 <0.0001
MIMIC 762 7.04 <0.0001 2.90 <0.0001
Combined-no MIMIC 762 8.63 <0.0001 3.37 <0.0001
Combined-all 762 35.64 <0.0001 11.07 <0.0001

Table 3 MANOVA N, F, and P values for unbalanced and controlled tests. Single make/model of
modality, KVP = 120, exposure mAs = 1 to 4.

KVP Exposure Both Uncontrolled

Task Ok N F P N F P N F P N F P

Black or all 762 26,925 2.48 <0.0001 70410 5.16 <0.0001 26,387 2.44 <0.0001 72,188 5.31 <0.0001

Black or 254 25,215 3.28 <0.0001 66743 8.46 <0.0001 24,692 3.20 <0.0001 68,429 8.59 <0.0001
White

Age 762 26,890 3.52 <0.0001 70078 6.05 <0.0001 26,352 3.45 <0.0001 71,849 6.22 <0.0001
Gender 254 26,925 13.79 <0.0001 70410 23.85 <0.0001 26,387 13.59 <0.0001 72,188 24.00 <0.0001

BMI 762 26,925 17.15 <0.0001 70410 39.34 <0.0001 26,387 16.57 <0.0001 72,188 40.67 <0.0001
category

Patient type 508 26,925 6.42 <0.0001 70410 13.71 <0.0001 26,387 6.29 <0.0001 72,188 14.01 <0.0001

Journal of Medical Imaging 061106-6 Nov/Dec 2023 e Vol. 10(6)
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Table 4 MANOVA N, F, and P values for balanced and controlled tests. Single make/model of
modality, KVP = 120, exposure mAs = 1 to 4.

KVP Exposure Both Uncontrolled

Task OF N F P N F P N F P N F P

Black or all 762 2820 1.42 <0.0001 5444 1.86 <0.0001 2788 1.41 <0.0001 5556 1.90 <0.0001

Black or 254 15,038 2.70 <0.0001 59,040 7.65 <0.0001 14,660 2.57 <0.0001 60,606 7.76 <0.0001
White

Age 762 6720 1.93 <0.0001 27,372 3.93 <0.0001 6616 1.91 <0.0001 28,108 4.04 <0.0001
Gender 254 23,002 11.87 <0.0001 62354 21.45 <0.0001 22,680 12.15 <0.0001 63,754 21.39 <0.0001
BMI category 762 5900 4.95 <0.0001 19,196 11.84 <0.0001 5868 5.03 <0.0001 19,508 12.62 <0.0001

Patient type 508 4530 1.88 <0.0001 8946 2.88 <0.0001 4476 1.95 <0.0001 9099 2.68 <0.0001

3.2 Visualizing Results
Grayscale histograms were created for each dataset, and a subsample is visualized and available
for browsing in Ref. 19. Features of the visualization website are shown in Fig. 4.

3.3 Machine Learning Results

FFN and decision tree results are listed in Table 5. In general, model performance follows dataset
size. For binary Black or White classification, the best model is RF on dataset 3 with an accuracy
of 70.5 and AUROC of 74.1. The full dataset GBT performs better than all other datasets and
models, with an accuracy of 75.6 and AUROC of 70.4. For binary Black or all classification, the
best model is GBT on the full dataset with an accuracy of 68.5 and AUROC of 77.2.

Single modality/body habitus models show better results than the combined models in some
cases for FFN; however, for decision trees, this does not happen. Both Black or White/Black or
all FFN experiments on Institution 2 data show that the overall combined dataset performs
slightly worse (FFN AUROC 64.5/63.4) than some of the single modality (FFN AUROC
65.3/64.6). However, we see the opposite relationship with a better overall performance with
decision trees on the full dataset (RF AUROC 69.6/68.8) compared with the single modality
best performance (RF AUROC 67.3/67.6).

Single make/model modality controlled for KVP/exposure MANOVA FFEN results are
listed in Table 6. For race prediction tasks, controlling for KVP significantly improves model
performance, whereas controlling for exposure has a similar performance, and controlling for
both decreases model performance. Of the other tasks, the gender prediction performs best
(AUROC 76.5) when controlled for KVP. All other tasks failed to accurately predict. Race
prediction when fully controlled (single make/model of modality, KVP, exposure, patient
type, gender, and age), listed in Table 7, shows improved performance compared with dataset
size.

The full image CNN tests are listed in Table 6 and have high AUROC (0.99) in predicting
race and gender. Age and patient type are predictable, whereas BMI is not. In these tasks, there
does not appear to be any variation when controlling for KVP, exposure, or both when utilizing
the full image.

4 Conclusions

4.1 Overall Conclusion

MANOVA results show a statistically significant relationship between grayscale PPI and race.
Visualization of this data proved critical for analysis and idea generation. Presenting the PPI
average alongside a chest x-ray image and controls for filtering by grayscale value allowed
us to quickly communicate with radiologists in a format that they understood. The interpretation

Journal of Medical Imaging 061106-7 Nov/Dec 2023 e Vol. 10(6)



Burns et al.: Ability of artificial intelligence to identify self-reported race. ..

Data Visualization: Pixel Color Averages by Race in Chest X-Ray
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Fig. 4 Web visualization hosted in Ref. 19 of a subsampled dataset. (a) Image filters affect all
charts and images. (b) Chest x-ray image filtered to show highlighted pixel range in yellow.
(c) Average line graph by race, (d) multi-line by image colored by race, (¢) ANOVA results for
dataset, and (f) age/sex of dataset by race.

of where race data may exist, specifically areas linked to body habitus and BMI, informed model
building decisions.

FFN were unable to accurately predict self-reported race from uncontrolled PPI. The best
model achieved an AUROC of 69.18% using the full dataset. There is a possibility that additional
data would increase AUROC and accuracy as these metrics generally went up as data size
increased. Decision trees had better success in predicting self-reported race from PPI, having
a higher AUROC than FFN in all but three cases. Utilizing the full dataset, GBT achieved
an AUROC of 77.24% on a withheld test set.
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Table 5 FFN/decision tree test set accuracy and AUROC by dataset and classification type. Bold
cells indicate best performing model in each type.

Binary Black or White Binary Black or all
Decision tree Decision tree
FFN [RFIGBTIcart] FFN [RFIGBTIcart]
Top Top
Dataset Accuracy AUROC model Accuracy AUROC Accuracy AUROC model Accuracy AUROC
1.1 60.9 63.2 RF 57.3 60.6 62.9 57.9 RF 65.3 58.3
1.2 58.8 59.8 GBT 571 61.5 63.6 54.1 RF 65.9 62.4
1-All 57.1 58.2 RF 60.5 66.8 64.5 58.0 RF 66.3 63.2
2.1 60.6 63.5 RF 63.4 67.7 67.5 64.6 RF 66.3 66.6
2.2 60.6 64.6 RF 64.0 67.3 54.5 52.9 RF 61.4 65.1
2.3 63.2 62.0 RF 63.5 67.3 62.5 64.4 RF 65.1 66.8
24 59.7 62.2 RF 65.2 65.5 65.3 64.6 RF 66.0 67.6
25 62.2 65.3 RF 61.6 64.7 60.4 62.9 RF 62.9 66.4
2-All 61.7 64.5 RF 64.7 69.6 62.5 63.4 RF 65.9 68.8
3 67.4 67.9 RF 70.5 741 68.5 66.1 RF 71.9 72.6
MIMIC 80.5 61.2 GBT 80.4 61.7 82.4 60.2 GBT 82.3 60.0

Combined-  58.4 62.5 GBT 63.0 66.8 61.2 62.7 GBT 64.3 65.8
no MIMIC

Combined 75.0 69.2 GBT 75.6 70.4 77.0 684 GBT 68.5 77.2
—all

Table 6 Using pixel PPI—FFN test set accuracy and AUROC or macro F1 (age, BMI, and patient
type) for controlled tests. Using full image, CNN test set accuracy and AUROC or macro F1 (age,
BMI, and patient type) for controlled tests. Single make/model of modality, KVP = 120, exposure
mAs = 1 to 4.

KVP Exposure Both Uncontrolled

Task-PPIFFN Accuracy AUROC/F1 Accuracy AUROC/F1 Accuracy AUROC/F1 Accuracy AUROC/F1

Black or all 721 75.2 63.3 68.1 42,7 39.8 62.7 66.8
Black or White  69.8 735 62.2 66.2 58.8 61.8 60.4 65.2
Age 19.2 10.4 15.8 9.3 15.2 9.8 49.7 21.6
Gender 69.2 76.5 324 25.4 64.8 70.6 68.0 74.6
BMI category 421 32.2 35.6 26.5 35.0 27.4 14.8 13.4
Patient type 67.5 39.1 26.5 17.7 71.3 417 27.0 17.2
Task-full

image CNN

Black or all 97 99 96 99 97 99 96 99
Black or White 97 99 96 99 96 99 96 99
Age 73 72 74 72 73 72 74 72
Gender 99 99 99 99 99 99 99 99
BMI category 48 43 48 43 47 43 49 44
Patient type 83 63 84 61 83 63 84 61
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Table 7 FFN/decision tree test set accuracy and AUROC for controlled tests. Single make/model
of modality, KVP = 120, exposure mAs = 1 to 4, patient type: inpatient, gender: male, and age:
60 to 80.

FFN Decision tree [RFIGBTIcart]
Task Accuracy AUROC Top model Accuracy AUROC
Black or all 64.0 67.1 RF 63.9 64.7
Black or White 63.8 68.6 RF 63.7 64.4

4.2 Controlled/Alternate Bias Factors Tests
There is some evidence in this data that modality configurations or BMI are correlated to model
performance. Single institution models do appear to perform better, with 1.1 (single hospital in
network) outperforming 1.2 (three other hospitals in same network) and 3 (single site AHC)
performing well in comparison with the multi-site AHCs. Potentially, there is less effect of spe-
cific modality configurations and more effect toward hospital specific protocols and population.

Controlling for KVP within the single make/model of the modality dataset significantly
improved FFN performance in race prediction tasks and controlling for exposure has no effect
on model performance. Controlling for both KVP and exposure reduces performance; however,
this follows the pattern of smaller dataset sizes having a reduction in performance seen across all
datasets. This pattern is broken when comparing the fully controlled (KVP, exposure, patient
type, gender, age, and n = 5,718) versus the uncontrolled (n = 72,188). The fully controlled
FFN perform as well as or better than the uncontrolled.

We are unable to predict age, BMI category, or patient type following this methodology.
We had success in predicting gender in the controlled dataset tests. We did not have these fields
individually annotated in the other datasets and were unable to test this on a larger scale.

4.3 Limitations and Comparison with Prior Work

This study is limited to retrospective analysis of patients blinded to present disease. It should be
noted that, although we removed the image structure, we did not entirely removed the physical
structure—aspects of body habitus remaining embedded within this information. There is a
chance that we are not picking up on a feature like skin tone but population metrics such as
obesity that are observable within chest x-ray. Future research in this area following a prospective
methodology, controlling patient factors such as BMI, disease, and limiting to a single modality,
configured the same for each scan, and operated under the same protocol may be warranted.
Additional tests with other body parts and modalities (CT/MRI/etc) are warranted and could
limit the effect of other confounders. For example, using CT imaging could allow for segmen-
tation of regions of interest, such as skin, and performing similar analysis.

Prior work utilized CNN and the full image to achieve high AUROC in race prediction.’
Following their methodology, we found similar success in classifying race/gender and could
classify age/patient type with less accuracy. We were unable to identify the BMI category using
this methodology.

Our intent was to investigate the low-pass/high-pass filter and resolution reduction findings
of Al recognition of patient race in medical imaging as a modeling study.' The low- and high-
pass findings indicate that racial information existed on both ends of the grayscale spectrum,
whereas the resolution reduction showed that the image structure could play less of a role than
average grayscale values. In both cases, it was demonstrated that race was still predictable, even
when humans no longer could identify the image as an x-ray. Our work expands on this—
completely removing the image structure and attempting to predict race from simple grayscale
value counts.

We are unable to predict self-reported race using grayscale values alone with the same accu-
racy as prior full-image work. However, CNN utilize features of the image, and it was expected
that performance would decrease when the image structure was removed. GBT can interpret this
data, showing that there is predictive value in grayscale PPI for self-reported race. It is not clear
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that grayscale PPI is a factor in what the prior study CNNs learned for the race prediction task,
but we have shown that it is possible to remove the image structure entirely and perform this task.

For both internal and publicly available datasets, race is deeply embedded in chest x-ray
images in ways that are not obvious to human observers.

5 Appendix A: Model and Computational Setup Details

5.1 Keras Tuner Hypermodel Outcomes
The best models created using the Keras Tuner process for each task are described below.
Both used the Adam optimizer with learning rate = 0.0001, beta_1 = 0.9, beta_2 = 0.999, and
epsilon = 1 x 1077,

The black or White model is as follows: input size 255, DL 1024, DL 2048 activation tanh,
DL 2048 activation relu, dropout value 0.01, kernel regularizer 12 value 0.0001, and DL size 1
with activation sigmoid.

The black or all model is as follows: input size 255, DL 1024, 2x (DL 1024 activation relu),
DL 1024 activation tanh, dropout value 0.01, kernel regularizer 12 value 0.0001, DL 1024, and
DL size 1 with sigmoid activation.

5.2 Computational Setup
All analysis was completed on a system consisting of an Intel Xeon E5-2609 v4 CPU, 128 GB
RAM, 4x GeForce RTX 2080Ti, and 4x GeForce GTX 1080. Python 3.9.7 and libraries Numpy
1.19.2, Pandas 1.1.3, Pillow 8.0.1, Pydicom 2.1.2, Scipy 1.5.2, and Matplotlib 3.3.2 are utilized
for conversion of images and histogram plotting. R 4.1.1 was utilized for correlation plots and
MANOVA. Model training and evaluation utilized Python 3.8.10 and libraries Scikit-learn
0.23.1, Pandas 1.3.1, Numpy 1.19.5, Keras 2.6.0, and GPUtil 1.4.0.

Training and evaluation run-time varies between 9 and 205 s, using a maximum of 5.05 GB
RAM, 20% of up to 6 processor cores, and a single 2080ti GPU.

5.3 MANOVA Random Subsampling

For each dataset, data are split into race subgroups, and each subgroup is randomly split in half
via a dummy variable. Then MANOVA is performed against the dummy variable. This is
repeated 5 times for each subgroup. Results of this subsampling analysis are included in Table 8.
After multiplicity correction (alpha = 0.000208), there were no significant tests. This is exactly
what we would expect, confirming that the MANOVA tests were indeed reliable.

Table 8 MANOVA random subsampling analysis to determine if random patient groupings could
produce significant results. No significant results were found with random groupings.

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race Replication
1 0.022262 1.289666 254 14,387 0.001391 Combined-all Asian 4
1 0.074876 1.250691 254 3925 0.005367 21 Asian 2
1 0.891255 1.742418 254 54 0.007912 1.1 Asian 3
1 0.004084 1.201707 254 74,432 0.015351 Combined-all Black 3
1 0.851154 1.530898 254 68 0.0191 25 Asian 2
1 0.616741 1.317772 254 208 0.019357 25 Hispanic 5
1 0.008821 1.19074 254 33,983 0.020347 MIMIC Black 4
1 0.400541  1.22849 254 467 0.029149 1.1 Hispanic 4
1 0.056385 1.164972 254 4952  0.040539 241 White 1
1 0.006795 1.160335 254 43,078  0.04077 2-all White 1
1 0.055885 1.154261 254 4953  0.050675 21 Black 5
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race  Replication
1 0.02456  1.142726 254 11,528 0.060841 25 Black 4
1 0.024313 1.131142 254 11,530 0.07644 2.4 White 4
1 0.073933 1.132154 254 3602  0.080353 1-all White 2
1 0.005677 1.123355 254 49,980 0.086573 Combined-no MIMIC ~ White 1
1 0.019397 1.120414 254 14,387 0.093037 Combined-all Asian 5
1 0.200981 1.12299 254 1134 0.111955 2-all Hispanic 4
1 0.183696 1.120741 254 1265  0.113492 1-all Hispanic 2
1 0.023799 1.106649 254 11,530 0.119698 24 White 2
1 0.005578 1.103712 254 49980 0.123697 Combined-no MIMIC ~ White 2
1 0.007888 1.10357 254 35,256 0.124283 2-all Black 4
1 0.079472 1.107378 254 3258  0.125223 1-all Black 3
1 0.824549 1.258162 254 68 0.130637 25 Asian 1
1 0.396111 1.128516 254 437 0.136087 24 Asian 4
1 0.066368 1.098466 254 3925 0.14311 2.1 Asian 4
1 0.071818 1.097255 254 3602 0.146657 1-all White 3
1 0.001955 1.092265 254 14,1616 0.149697 MIMIC White 2
1 0.120897 1.093688 254 2020 0.16199 22 Black 4
1 0.05284 1.087643 254 4952 0.167952 2.1 White 4
1 0.036472 1.085065 254 7281  0.172629 Combined-no MIMIC  Asian 5
1 0.006322 1.079064 254 43,078 0.185396 2-all White 2
1 0.148969 1.085417 254 1575  0.187187 1.2 Black 3
1 0.446117 1.106683 254 349 0.190352 1.2 Asian 5
1 0.021001 1.077382 254 12,757 0.192078 25 White 1
1 0.036198  1.0766 254 7281  0.196288 Combined-no MIMIC  Asian 1
1 0.00628 1.071754 254 43,078 0.207029 2-all White 4
1 0.019091 1.072136 254 13,992 0.207446 Combined-all Hispanic 4
1 0.001918 1.071236 254 14,1616 0.208087 MIMIC White 4
1 0.575387 1.109675 254 208 0.217655 25 Hispanic 4
1 0.632288 1.117011 254 165 0.221142 2.4 Hispanic 4
1 0.234567 1.074987 254 891 0.229071 2.3 Asian 2
1 0.087471 1.066482 254 2826  0.233725 Combined-no MIMIC Hispanic 4
1 0.041185 1.064548 254 6295  0.234089 2-all Asian 5
1 0.007592 1.061916 254 35,256 0.238722 2-all Black 1
1 0.001402 1.060815 254 19,1851 0.241698 Combined-all White 1
1 0.018902 1.061282 254 13,992 0.242179 Combined-all Hispanic 2
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race  Replication
1 0.020647 1.058858 254 12,757 0.250588 25 White 3
1 0.06421 1.0603 254 3925 0.250912 21 Asian 1
1 0.159095 1.063664 254 1428  0.252187 1.1 Black 2
1 0.076224 1.058386 254 3258 0.258811 1-all Black 5
1 0.628234 1.097745 254 165 0.259007 2.4 Hispanic 5
1 0.018297 1.055701 254 14,387 0.261242 Combined-all Asian 3
1 0.024307 1.055735 254 10,764 0.261806 23 White 1
1 0.29135 1.065064 254 658 0.267222 1-all Asian 2
1 0.063166 1.055438 254 3976  0.267338 3 White 1
1 0.43876 1.074164 254 349 0.267606 1.2 Asian 1
1 0.007525 1.05246 254 35,256 0.271545 2-all Black 5
1 0.069196 1.054216 254 3602 0.272294 1-all White 1
1 0.03506  1.049541 254 7337 0.285118 2.4 Black 5
1 0.260937 1.057803 254 761 0.285135 3 Asian 4
1 0.007495 1.048225 254 35,256 0.287011 2-all Black 3
1 0.132859 1.051996 254 1744  0.287579 1.2 White 5
1 0.005289  1.04631 254 49,980 0.293929 Combined-no MIMIC ~ White 4
1 0.436124 1.062717 254 349 0.298751 1.2 Asian 4
1 0.142443 1.048277 254 1603 0.301735 1.1 White 5
1 0.114601 1.047193 254 2055  0.302411 22 White 4
1 0.001379 1.042854 254 191,851 0.306674 Combined-all White 2
1 0.805751 1.110495 254 68 0.308879 25 Asian 3
1 0.116 1.043573 254 2020 0.315713 2.2 Black 3
1 0.115935 1.04291 254 2020 0.31814 22 Black 5
1 0.617944 1.069786 254 168 0.319754 2.3 Hispanic 5
1 0.037043 1.037585 254 6851 0.33051 MIMIC Asian 4
1 0.074853 1.037801 254 3258  0.333227 1-all Black 2
1 0.007407 1.035811 254 35,256  0.33485 2-all Black 2
1 0.07474 1.036114 254 3258  0.339735 1-all Black 1
1 0.838169 1.101105 254 54 0.34353 1.1 Asian 5
1 0.006476 1.031427 254 40,194 0.352484 Combined-no MIMIC Black 1
1 0.327024 1.038836 254 543 0.356443 1.2 Hispanic 2
1 0.114861 1.031994 254 2020 0.35938 2.2 Black 2
1 0.020086 1.029495 254 12,757 0.361475 25 White 4
1 0.023716  1.02947 254 10,764 0.361864 2.3 White 5
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race Replication
1 0.326354 1.035673 254 543 0.367113 1.2 Hispanic 3
1 0.171537 1.031196 254 1265 0.367516 1-all Hispanic 5
1 0.256316 1.032612 254 761 0.37037 3 Asian 2
1 0.112747 1.028099 254 2055 0.374471 2.2 White 2
1 0.001356 1.025638 254 191,851 0.376092 Combined-all White 3
1 0.039743 1.025739 254 6295  0.378417 2-all Asian 2
1 0.61695 1.046271 254 165 0.37868 24 Hispanic 3
1 0.359772 1.033182 254 467 0.379352 1.1 Hispanic 5
1 0.001354 1.023956 254 19,1851 0.383184 Combined-all White 4
1 0.022048 1.023236 254 11,528 0.387609 25 Black 5
1 0.104503 1.024556 254 2230 0.387971 3 Black 5
1 0.049871 1.023313 254 4952 0.389171 2.1 White 3
1 0.15419  1.024892 254 1428  0.390373 1.1 Black 3
1 0.112236 1.022852 254 2055 0.39539 22 White 5
1 0.798385 1.060143 254 68 0.39629 25 Asian 5
1 0.141569 1.022609 254 1575 0.398446 1.2 Black 4
1 0.358199 1.026139 254 467 0.403222 1.1 Hispanic 1
1 0.083975 1.019957 254 2826  0.405313 Combined-no MIMIC Hispanic 3
1 0.00597 1.018554 254 43,078 0.406533 2-all White 3
1 0.023154 1.018178 254 10,911 0.40913 MIMIC Hispanic 1
1 0.13879 1.017066 254 1603  0.420505 1.1 White 3
1 0.103723 1.01602 254 2230 0.422759 3 Black 2
1 0.224483 1.015395 254 891 0.43224 2.3 Asian 4
1 0.25308 1.015159 254 761 0.434874 3 Asian 3
1 0.066593 1.011729 254 3602 0.4389 1-all White 5
1 0.022996 1.011079 254 10,911  0.439793 MIMIC Hispanic 3
1 0.281118 1.013033 254 658 0.444557 1-all Asian 4
1 0.128305 1.010629 254 1744 0.446289 1.2 White 4
1 0.28101 1.012489 254 658 0.446591 1-all Asian 5
1 0.049218 1.009219 254 4952  0.448938 2.1 White 2
1 0.029607 1.00877 254 8398  0.450133 2.3 Black 4
1 0.017475 1.007436 254 14,387 0.455552 Combined-all Asian 1
1 0.021708 1.007286 254 11,530 0.456356 24 White 3
1 0.049119 1.007307 254 4953  0.457212 2.1 Black 1
1 0.829176 1.031948 254 54 0.459522 1.1 Asian 1
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race  Replication
1 0.01794  1.006295 254 13,992 0.460599 Combined-all Hispanic 5
1 0.137505 1.006149 254 1603 0.4652 1.1 White 4
1 0.003415 1.00415 254 74,432 0.469692 Combined-all Black 2
1 0.048921 1.003029 254 4953  0.475828 21 Black 4
1 0.060097 1.000878 254 3976  0.485468 3 White 2
1 0.021503 0.997401 254 11,528 0.500148 25 Black 3
1 0.366983 0.99742 254 437 0.505296 24 Asian 3
1 0.082129 0.995524 254 2826  0.509012 Combined-no MIMIC Hispanic 5
1 0.126498 0.994333 254 1744  0.514421 1.2 White 1
1 0.182074 0.993831 254 1134  0.516836 2-all Hispanic 1
1 0.033492 0.993318 254 7281 0.518386 Combined-no MIMIC  Asian 4
1 0.03848 0.991842 254 6295 0.52493 2-all Asian 1
1 0.033166 0.990893 254 7337  0.529143 24 Black 3
1 0.006221 0.990549 254 40,194 0.530759 Combined-no MIMIC  Black 2
1 0.135478 0.988991 254 1603 0.53688 1.1 White 1
1 0.081608 0.988657 254 2826  0.538681 Combined-no MIMIC Hispanic 2
1 0.149363 0.987171 254 1428  0.544353 1.1 Black 5
1 0.546099 0.985237 254 208 0.546476 25 Hispanic 3
1 0.007299 0.983735 254 33,983 0.561323 MIMIC Black 3
1 0.035179 0.983467 254 6851  0.561979 MIMIC Asian 3
1 0.134371  0.979659 254 1603  0.575903 1.1 White 2
1 0.022308 0.980148 254 10,911 0.576936 MIMIC Hispanic 4
1 0.028779 0.979732 254 8398  0.578593 2.3 Black 5
1 0.033009 0.978506 254 7281  0.583853 Combined-no MIMIC  Asian 3
1 0.006145 0.978499 254 40,194 0.584704 Combined-no MIMIC  Black 4
1 0.273615 0.975811 254 658 0.586438 1-all Asian 1
1 0.346068 0.972999 254 467 0.593625 1.1 Hispanic 3
1 0.147777 0.974876 254 1428 0.595186 1.1 Black 4
1 0.147744 0.974621 254 1428 0.596234 1.1 Black 1
1 0.070493 0.972772 254 3258  0.607227 1-all Black 4
1 0.001743 0.973226 254 141,616 0.608197 MIMIC White 1
1 0.592479 0.961611 254 168 0.6133 23 Hispanic 1
1 0.037724 0.971591 254 6295  0.613748 2-all Asian 3
1 0.028511  0.97031 254 8398 0.619707 2.3 Black 1
1 0.123676 0.969025 254 1744  0.620293 1.2 White 2
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race Replication
1 0.596139 0.958883 254 165 0.620582 24 Hispanic 2
1 0.018943 0.969793 254 12,757 0.622406 25 White 5
1 0.007194 0.969516 254 33,983 0.624185 MIMIC Black 1
1 0.106851 0.967908 254 2055 0.625792 22 White 3
1 0.058227 0.967816 254 3976 0.62883 3 White 5
1 0.07993  0.966551 254 2826  0.632923 Combined-no MIMIC Hispanic 1
1 0.35819 0.960184 254 437 0.638082 24 Asian 2
1 0.106484 0.96418 254 2055  0.641089 22 White 1
1 0.134362 0.962473 254 1575  0.646159 1.2 Black 2
1 0.814145 0.931299 254 54 0.649381 1.1 Asian 2
1 0.007131  0.960984 254 33,983 0.660773 MIMIC Black 2
1 0.308762 0.954911 254 543 0.660807 1.2 Hispanic 1
1 0.107389 0.956791 254 2020 0.67073 22 Black 1
1 0.063234 0.957262 254 3602 0.672212 1-all White 4
1 0.098241 0.956479 254 2230 0.672679 3 Black 4
1 0.046778 0.956935 254 4953  0.674775 2.1 Black 2
1 0.001712 0.956352 254 14,1616 0.680532 MIMIC White 3
1 0.034216 0.955573 254 6851  0.681276 MIMIC Asian 1
1 0.133266 0.953414 254 1575  0.681823 1.2 Black 1
1 0.003245 0.953917 254 74,432 0.690442 Combined-all Black 5
1 0.004815  0.952 254 49,980 0.698123 Combined-no MIMIC ~ White 5
1 0.021952 0.951142 254 10,764 0.700161 23 White 2
1 0.016971  0.95103 254 13,992 0.701026 Combined-all Hispanic 3
1 0.211531 0.941097 254 891 0.719426 2.3 Asian 1
1 0.033879 0.94585 254 6851 0.71994 MIMIC Asian 5
1 0.582427 0.922538 254 168 0.720275 2.3 Hispanic 2
1 0.530633 0.925789 254 208 0.721565 25 Hispanic 1
1 0.582274 0.921957 254 168 0.721788 23 Hispanic 4
1 0.337284 0.935731 254 467 0.722126 1.1 Hispanic 2
1 0.158833 0.940408 254 1265  0.727645 1-all Hispanic 1
1 0.005931  0.944071 254 40,194 0.729414 Combined-no MIMIC  Black 5
1 0.005527 0.942659 254 43,078 0.734884 2-all White 5
1 0.020314 0.941081 254 11,528 0.739451 25 Black 1
1 0.004761 0.941301 254 49,980 0.740135 Combined-no MIMIC ~ White 3
1 0.303141  0.929965 254 543 0.74503 1.2 Hispanic 4
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race Replication
1 0.04592  0.93834 254 4952  0.747068 21 White 5
1 0.021604 0.93575 254 10,764 0.759043 2.3 White 4
1 0.027426 0.932354 254 8398  0.770577 2.3 Black 2
1 0.001669 0.932308 254 141,616 0.773504 MIMIC White 5
1 0.208357 0.92326 254 891 0.778986 2.3 Asian 5
1 0.763306 0.863347 254 68 0.790281 25 Asian 4
1 0.021271 0.921007 254 10,764 0.809475 2.3 White 3
1 0.016425 0.919922 254 13,992 0.813491 Combined-all Hispanic 1
1 0.030768 0.91698 254 7337  0.820984 24 Black 2
1 0.094213 0.913182 254 2230  0.824584 3 Black 3
1 0.343278 0.899316 254 437 0.825326 24 Asian 5
1 0.154411 0.909441 254 1265 0.827402 1-all Hispanic 3
1 0.342869 0.897686 254 437 0.829436 24 Asian 1
1 0.093917 0.910007 254 2230 0.833788 3 Black 1
1 0.127577 0.906756 254 1575 0.838463 1.2 Black 5
1 0.393006 0.889625 254 349 0.839499 1.2 Asian 2
1 0.055552 0.908924 254 3925 0.841683 241 Asian 5
1 0.055497 0.907974 254 3925  0.844352 21 Asian 3
1 0.005717 0.909855 254 40,194 0.845061 Combined-no MIMIC  Black 3
1 0.035362 0.908533 254 6295  0.845256 2-All Asian 4
1 0.513706 0.865059 254 208 0.864654 25 Hispanic 2
1 0.020357 0.892641 254 10,911 0.887605 MIMIC Hispanic 5
1 0.290399 0.874875 254 543 0.888625 1.2 Hispanic 5
1 0.226706 0.878354 254 761 0.891409 3 Asian 5
1 0.006619  0.8915 254 33,983 0.891784 MIMIC Black 5
1 0.226528 0.877461 254 761 0.893204 3 Asian 1
1 0.019227 0.889754 254 11,528  0.894229 25 Black 2
1 0.562719 0.835951 254 165 0.900238 24 Hispanic 1
1 0.017347 0.886613 254 12,757  0.90121 25 White 2
1 0.113688 0.880723 254 1744  0.901854 1.2 White 3
1 0.015379 0.884674 254 14,387  0.905453 Combined-all Asian 2
1 0.043234 0.881161 254 4953  0.909346 2.1 Black 3
1 0.002999 0.881537 254 74,432 0.91305 Combined-all Black 1
1 0.382689 0.851794 254 349 0.913326 1.2 Asian 3
1 0.162958 0.869173 254 1134  0.917074 2-all Hispanic 3
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Table 8 (Continued).

DF Pillai Approx F Num DF Den DF  Pr (>F) Dataset Race Replication
1 0.025854 0.877482 254 8398  0.918232 2.3 Black 3
1 0.018901 0.874504 254 11,530 0.924287 24 White 5
1 0.001156 0.874261 254 191,851  0.92653 Combined-all White 5
1 0.197021 0.860703 254 891 0.926595 23 Asian 3
1 0.248164 0.855084 254 658 0.928479 1-all Asian 3
1 0.029266 0.870853 254 7337  0.929392 24 Black 4
1 0.029404 0.868397 254 7281 0.93333 Combined-no MIMIC  Asian 2
1 0.002931 0.86154 254 74,432 0.945917 Combined-all Black 4
1 0.772906 0.723571 254 54 0.947649 1.1 Asian 4
1 0.018538 0.857419 254 11,530 0.949976 24 White 1
1 0.54218 0.783292 254 168 0.960506 2.3 Hispanic 3
1 0.028475 0.846631 254 7337 0.961584 24 Black 1
1 0.019209 0.841298 254 10,911  0.967449 MIMIC Hispanic 2
1 0.029904 0.83144 254 6851  0.974848 MIMIC Asian 2
1 0.050287 0.828852 254 3976 0.97548 3 White 4
1 0.14105 0.817827 254 1265 0.977234 1-all Hispanic 4
1 0.04992 0.822484 254 3976  0.979715 3 White 3
1 0.150124 0.78863 254 1134 0.99026 2-all Hispanic 5
1 0.146995 0.769364 254 1134 0.994984 2-all Hispanic 2
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