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The University of Texas at Austin, Austin TX 78712, USA
janghyuncho7@utexas.edu, philkr@cs.utexas.edu

https://github.com/janghyuncho/ECM-Loss

Abstract. Large-scale object detection and instance segmentation face
a severe data imbalance. The finer-grained object classes become, the less
frequent they appear in our datasets. However, at test-time, we expect
a detector that performs well for all classes and not just the most fre-
quent ones. In this paper, we provide a theoretical understanding of the
long-trail detection problem. We show how the commonly used mean
average precision evaluation metric on an unknown test set is bound
by a margin-based binary classification error on a long-tailed object de-
tection training set. We optimize margin-based binary classification er-
ror with a novel surrogate objective called Effective Class-Margin

Loss (ECM). The ECM loss is simple, theoretically well-motivated, and
outperforms other heuristic counterparts on LVIS v1 benchmark over a
wide range of architecture and detectors. Code is available at https:

//github.com/janghyuncho/ECM-Loss.

Keywords: object detection, long-tail object detection, long-tail in-
stance segmentation, margin bound, loss function

1 Introduction

The state-of-the-art performance of common object detectors has more than
tripled over the past 5 years. However, much of this progress is measured on
just 80 common object categories [27]. These categories cover only a small por-
tion of our visual experiences. They are nicely balanced and hide much of the
complexities of large-scale object detection. In a natural setting, objects follow
a long-tail distribution, and artificially balancing them is hard [16]. Many recent
large-scale detection approaches instead balance the training loss [39, 44, 51] or
its gradient [24, 40] to emulate a balanced training setup. Despite the steady
progress over the past few years, these methods largely rely on heuristics or ex-
perimental discovery. Consequently, they are often based on intuition, require
extensive hyper-parameter tuning, and include a large bag-of-tricks.

In this paper, we take a statistical approach to the problem. The core is-
sue in long-tail recognition is that training and evaluation metrics do not line
up, see Figure 1. At test time, we expect the detector to do well on all classes,
not just a select few. This is reflected in the common evaluation metric: mean-
average-precision (mAP) [12,16,22,27,38]. At training time, we ideally learn from
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(a) Data distribution

1
n

∑
n

i=1
ℓ(s(xi), yi)

(b) Training objective

1
C

∑
C

c=1
APc

(c) Evaluation objective

Fig. 1: In long-trail detection, training objectives (b) do not align with evaluation
objectives (c). During training, we optimize an empirical objective on a long-tail
data distribution (a). However at test time, we expect a detector that performs
well on all classes. In this paper, we connect the detection objective (c) on an
unknown test set to an empirical training objective (b) on a long-tail real-world
data distribution (a) through the margin-bound theory [1, 4, 19, 21].

all available data using a cross-entropy [5, 17, 36] or related loss [23, 26, 33, 49].
Here, we draw a theoretical connection between the balanced evaluation metric,
mAP, and margin-based binary classification. We show that mAP is bound from
above and below by a pairwise ranking error, which in turn reduces to binary
classification. We address the class imbalance through the theory of margin-
bounds [1,4,19,21], and reduce detector training to a margin-based binary clas-
sification problem.

Putting it all together, margin-based binary classification provides a closed-
form solution for the ideal margin for each object category. This margin depends
only on the number of positive and negative annotations for each object cate-
gory. At training time, we relax the margin-based binary classification problem
to binary cross entropy on a surrogate objective. We call this surrogate loss
Effective Class-Margin Loss (ECM). This relaxation converts margins into
weights on the loss function. Our ECM loss is completely hyperparameter-free
and applicable to a large number of detectors and backbones.

We evaluate the ECM loss on LVIS v1 and OpenImages. It outperforms
state-of-the-art large-scale detection approaches across various frameworks and
backbones. The ECM loss naturally extends to one-stage detectors [42,49,50,54].

2 Related works

Object detection is largely divided into one-stage and two-stage pipelines.
In one-stage object detection [26, 33–35, 54], classification and localization are
simultaneously predicted densely on each coordinate of feature map representa-
tion. Hence, one-stage detection faces extreme foreground-background imbal-
ance aside from cross-category imbalance. These issues are addressed either
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by carefully engineered loss function such as the Focal Loss [26, 54], or sam-
pling heuristics like ATSS [50]. Two-stage object detection [3, 15, 36] mitigates
the foreground-background imbalance using a category-agnostic classifier in the
first-stage. However, neither type of detection pipelines handles cross-category
imbalance. We show that our ECM loss trains well with both types of detectors.

Long-tail detection. Learning under severely long-tailed distribution is chal-
lenging. There are two broad categories of approaches: data-based and loss-
based. Data-based approaches include external datasets [48], extensive data
augmentation with larger backbones [14], or optimized data-sampling strate-
gies [16,45,46]. Loss-based approaches [24,39–41,44,51,52] modify or re-weights
the classification loss used to train detectors. They perform this re-weighting
either implicitly or explicitly. The Equalization Loss [40] ignores the negative
gradient for rare classes. It builds on the intuition that rare classes are “discour-
aged” by all the negative gradients of other classes (and background samples).
Balanced Group Softmax (BaGS) [24] divides classes into several groups accord-
ing to their frequency in the training set. BaGS then applies a cross-entropy
with softmax only within each group. This implicitly controls the negative gra-
dient to the rare classes from frequent classes and backgrounds. The federated
loss [52] only provides negative gradients to classes that appear in an image.
This implicitly reduces the impact of the negative gradient to the rare classes.
The Equalization Loss v2 [39] directly balances the ratio of cumulative positive
and negative gradients per class. The Seesaw Loss [44] similarly uses the class
frequency to directly reduce the weight of negative gradients for rare classes. In
addition, it compensates for the diminished gradient from misclassifications by
scaling up by the ratio of the predicted probability of a class and that of the
ground truth class. These methods share the common premise that overwhelming
negative gradients will influence the training dynamics of the detector and result
in a biased classifier. While this makes intuitive sense, there is little analytical or
theoretical justification for particular re-weighting schemes. This paper provides
a theoretical link between commonly used mean average precision on a test set
and a weighted binary cross entropy loss on an unbalanced training set. We
provide an optimal weighting scheme that bounds the expected test mAP.

Learning with class-margins. Margin-based learning has been widely used in
face recognition [11,28,43] and classification under imbalanced data [4]. In fact,
assigning proper margins has a long history in bounds to generalization error [1,
2, 19, 21]. Cao et al. [4] showed the effectiveness of analytically derived margins
in imbalanced classification. In separable two-class setting (i.e., training error
can converge to 0), closed form class-margins follow from a simple constrained
optimization. Many recent heuristics in long-tail detection use this setting as
the basis of re-weighted losses [24,40,44]. We take a slightly different approach.
We show that the margin-based classification theory applies to detection by
first establishing a connection between mean average precision (mAP) and a
pairwise ranking error. This ranking error is bound from above by a margin-
based classification loss. This theoretical connection then provides us with a set
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of weights for a surrogate loss on a training set that optimizes the mAP on an
unknown test set.

Optimizing average precision. Several works optimize the average precision
metric directly. Roĺınek et al. [37] address non-differentiability and introduced
black-box differentiation. Chen et al. [7] propose an AP Loss which applies an
error-driven update mechanism for the non-differentiable part of the computa-
tion graph. Oksuz et al. [31] took a similar approach to optimize for Localization-
Recall-Precision (LRP) [30]. In contrast, we reduce average precision to ranking
and then margin-based binary classification, which allows us to use tools from
learning theory to bound and minimize the generalization error of our detector.

3 Preliminary

Test Error Bound. Classical learning theory bounds the test error in terms
of training error and some complexity measures. Much work builds on the Lip-
schitz bound of Bartlett and Mendelson [2]. For any Lipschitz continuous loss
function ℓ, it relates the expected error L(f) = E[ℓ(f(x), y)] and empirical error
L̂(f) = 1

n

∑n
i=1 ℓ(f(xi), yi) over a dataset of size n with inputs xi and labels yi.

In detection, we commonly refer to the expected error as a test error over an un-
known test set or distribution, and empirical error as a training error. Training
and testing data usually follow the same underlying distribution, but different
samples.

Theorem 1 (Class-margin bound [4, 19]). Suppose ℓ(x) = 1[x<0] a zero-
one error and ℓγ = 1[x<γ] a margin error with a non-negative margin γ. Sim-
ilarly, Ly(f) = E[ℓ(f(x)y)] and Lγ,y(f) = E[ℓγ(f(x)y)]. Then, for each class-
conditional data distribution P (X|Y = c), for all f ∈ F and class-margin γc > 0,
with probability 1 − δc, the class-conditional test error for class c ∈ C can be
bounded from above as following:

Lc(f) ≤ L̂γc,c(f) +
4

γc
Rn(F) +

√

log(2/δc)

nc
+ ϵ(nc, γc, δc)

where Rn(F) is the Rademacher complexity of a function class F which is typ-

ically bounded by
√

C(F)
n for some complexity measure of C [1, 4, 19].

Kakade et al. [19] prove the above theorem for binary classification, and Cao et
al. [4] extend it to multi-class classification under a long-tail. Their proof follows
Lipschitz bounds of Bartlett and Mendelson [2]. Theorem 1 will be our main
tool to bound the generalization error of a detector.

Detection Metrics. Object detection measures the performance of a model
through average precision along with different recall values. Let TP(t), FP(t),
and FN(t) be the true positive, false positive, and false negative detections for
a score threshold t. Let Pc(t) be the precision and Rc(t) be the recall. Average
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precision AP then integrates precision over equally spaced recall thresholds t ∈
T :

Pc(t) =
TP(t)

TP(t) + FP(t)
Rc(t) =

TP(t)

TP(t) + FN(t)
AP =

1

|T |
∑

t∈T

Pc(t). (1)

Generally, true positives, false positives, and false negatives follow an assignment
procedure that enumerates all annotated objects. If a ground truth object has a
close-by prediction with a score s > t, it counts as a positive. Here closeness is
measured by overlap. If there is no close-by prediction, it is a false negative. Any
remaining predictions with score s > t count towards false positives. All above
metrics are defined on finite sets and do not directly extend general distributions.

In this paper, we base our derivations on a probabilistic version of average
precision. For every class c ∈ C, let Dc be the distribution of positive samples,
and D¬c be the distribution of negative samples. These positives and negatives
may use an overlap metric to ground truth annotations. Let P (c) and P (¬c) be
the prior probabilities on labels of class c or not c. P (c) is proportional to the
number of annotated examples of class c at training time. Let sc(x) ∈ [0, 1] be
the score of a detector for input x. The probability of a detector sc to produce
a true positive of class c with threshold t is tpc(t) = P (c)Px∼Dc

(sc(x) > t),
false positive fpc(t) = P (¬c)Px∼D¬c

(sc(x) > t), and false negative fnc(t) =
P (c)Px∼Dc

(sc(x) ≤ t). This leads to a probabilistic recall and precision

rc(t) =
tpc(t)

tpc(t) + fnc(t)
=

tpc(t)

P (c)
= Px∼Dc

(sc(x) > t), (2)

pc(t) =
tpc(t)

tpc(t) + fpc(t)
=

rc(t)

rc(t) + αcPx∼D¬c
(sc(x) > t)

. (3)

Here, αc = P (¬c)
P (c) corrects for the different frequency of foreground and back-

ground samples for class c. By definition 1 − rc(t) is a cumulative distribution
function rc(1) = 0, rc(0) = 1 and rc(t) ≥ rc(t + δ) for δ > 0. Without loss of
generality, we assume that the recall is strictly monotonous rc(t) > rc(t + δ)1.
For a strictly monotonous recall rc(t), the quantile function is the inverse r−1

c (β).
Average precision then integrates over these quantiles.

Definition 1 (Probabilistic average precision).

apc =

∫ 1

0

pc(r
−1
c (β))dβ =

∫ 1

0

β

β + αPx∼D¬c
(sc(x) > r−1

c (β))
dβ

There are two core differences between regular AP and probabilistic AP: 1)
The probabilistic formulation scores a nearly exhaustive list of candidate ob-
jects, similar to one-stage detectors or the second stage of two-stage detectors.

1 For any detector sc with a non-strict monotonous recall, there is a nearly identical
detector s′c with strictly monotonous recall: s′c(x) = sc(x) with chance 1 − ε and
uniform at random s′c(x) ∈ U [0, 1] with chance ε for any small value ε > 0.
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It does not consider bounding box regression. 2) Regular AP penalizes dupli-
cate detections as false positives, probabilistic AP does not. This means that at
training time, positives and negatives are strictly defined for probabilistic AP,
which makes a proper analysis possible. At test time, non-maxima-suppression
removes most duplicate detections without major issues.

In the next section, we show how this probabilistic AP relates to a pairwise
ranking error on detections.

Definition 2 (Pairwise Ranking Error).

Rc = Px,x′∼Dc×D¬c

(
sc(x) < sc(x

′)
)
= Ex′∼D¬c

[1− rc(sc(x
′))]

The pairwise ranking error measures how frequently negative samples x′ rank
above positives x. The second equality is derived in supplement.

While it is possible to optimize the ranking error empirically, it is hard to
bound the empirical error. We instead bound Rc by a margin-based 0-1 classifi-
cation problem and use Theorem 1.

4 Effective Class-Margins

We aim to train an object detector that performs well for all object classes. This
is best expressed by maximizing mean average precision over all classes equally:
mAP = 1

|C|

∑

c∈C apc. Equivalently, we aim to minimize the detection error

LDet = 1−mAP =
1

|C|
∑

c∈C

(1− apc)
︸ ︷︷ ︸

LDet
c

(4)

Optimizing the detection error or mAP directly is hard [7, 31, 32, 37]. First,
apc involves a computation over the entire distribution of detections and does
not easily factorize over individual samples. Second, our goal is to optimize the
expected detection error. However, at training time, we only have access to an
empirical estimate over our training set D̂.

Despite these complexities, it is possible to optimize the expected detection
error. The core idea follows a series of bounds for each training class c:

LDet
c ≲ mcRc ≲ mcL̂γ±

c ,c,

where ≲ refers to inequalities up to a constant. In Section 4.1, we bound the
detection error LDet

c by a weighted version of the ranking error Rc. In Section 4.2,
we directly optimize an empirical upper bound L̂γ±

c ,c to the weighted ranking
error using class-margin-bounds in Theorem 1. Finally, in Section 4.3 we present
a differentiable loss function to optimize the class-margin-bound.

4.1 Detection Error Bound

There is a strong correlation between the detection error LDet
c and the ranking

objective Rc. For example, a perfect detector, that scores all positives above
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(a) Rare classes (b) Common classes (c) Frequent classes

Fig. 2: Visualization of the upper and lower bound of Detection Error with re-
spect to Pairwise Ranking Error. The solid and dotted lines are the theoretical
bounds discussed in Theorem 2. We show that actual detection errors strictly
follow the derived bounds. We evaluate multiple checkpoints of the same detec-
tor on rare, common, and frequent classes of lvis v1. Each point represents a
checkpoint’s performance on one class. We compute AP and ranking errors over
the training set which has low errors especially for rare classes. In practice the
upper and lower bounds are tight and the linear approximation fits well.

negatives, achieves both a ranking and detection error of zero. A detector that
scores all negatives higher than positives has a ranking error of 1 and a detection
error close to 1. For other error values the the ranking error Rc bounds the apc
from both above and below, as shown in Figure 2 and Theorem 2.

Theorem 2 (AP - Pairwise Ranking Bound). For a class c with negative-

to-positive ratio αc =
P (¬c)
P (c) , the ranking error Rc bounds the probabilistic average

precision apc from above and below:

αc log

(
1 + αc

1 + αc −Rc

)

≤ LDet
c ≤ min

(√

2

3
αcRc, 1−

8

9

1

1 + 2αcRc

)

.

We provide a full proof in supplement and sketch out the proof strategy here. We
derive both bounds using a constrained variational problem. For any detector
sc, data distributions Dc and D¬c, the average precision has the form

apc =

∫ 1

0

β

β + αg(β)
dβ, (5)

where g(β) = Px′∼D¬c

(
sc(x

′) > r−1
c (β)

)
= Px′∼D¬c

(rc(sc(x
′)) < β), since the

recall is a strictly monotonously decreasing function. At the same time the rank-
ing loss reduces to

Rc =

∫ 1

0

g(β)dβ = Ex′∼D¬c
[1− rc(sc(x

′))] . (6)
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For a fixed ranking error Rc = κ, we find a function 0 ≤ g(β) ≤ 1 that minimizes
or maximizes the detection error LDet

c through variational optimization. See
supplement for more details. See Figure 2 for a visualization of the bounds.

Theorem 2 clearly establishes the connection between the ranking and de-
tection. Unfortunately, the exact upper bound is hard to further simplify. We

instead chose a linear approximation LDet
c ≈ mcRc, for αc log

(
1+αc

αc

)

≤ mc ≤
1
9
+2αc

1+2αc

. Figure 2 visualizes this linear approximation. The linear approximation

even bounds the detection error from above LDet
c ≤ mcRc+o with an appropriate

offset o. We denote this as LDet
c ≲ mcRc.

In the next section, we show how this ranking loss is bound from above with
a margin-based classification problem, which we minimize in 4.3.

4.2 Ranking bounds

To connect the ranking loss to the generalization error, we first reduce ranking
to binary classification.

Theorem 3 (Binary error bound). The ranking loss is bound from above by

Rc ≤ Px∼Dc

(
sc(x) ≤ t

)
+ Px∼D¬c

(
t < sc(x)

)
,

for an arbitrary threshold t.

Proof. For any indicator 1[a<b] ≤ 1[a<t] + 1[t≤b]. Let’s first rewrite ranking as
expectations over indicator functions:

Rc = Ex∼Dc

[
Ex′∼D¬c

[
1[sc(x)<sc(x′)]

]]

≤ Ex∼Dc

[
Ex′∼D¬c

[
1[sc(x)≤t] + 1[t<sc(x′)]

]]

= Ex∼Dc

[
1[sc(x)≤t]

]
+ Ex′∼D¬c

[
1[t<sc(x′)]

]
.

The last line uses the linearity of expectation. ⊓⊔

Figure 3 visualizes this upper bound. While any threshold t leads to an upper
bound to ranking. We would like to optimize for the tightest upper bound t. We
do this by folding t into the optimization. In a deep network, this simply means
optimizing for a bias term of the detector score sc(x). For the remainder of the
exposition, we assume t is part of sc and use a detection threshold of 1

2 .
Next, lets us use Theorem 1 to bound the classification error, and thus the

detection objective, by an empirical bound

LDet
c ≲mc

(

L̂γ+
c ,c+L̂γ−

c ,¬c+
2

γ+
c

√

C(F)

nc
+

2

γ−
c

√

C(F)

n¬c
+ϵ(nc)+ϵ(n¬c)

)

, (7)
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(a) Rare classes (b) Common classes (c) Frequent classes

Fig. 3: Visualization of the upper bound of Pairwise Ranking Error with respect
to a binary classification error under an optimal threshold t. The blue dots corre-
spond to actual binary errors of a detector. We evaluate multiple checkpoints of
the same detector on rare, common, and frequent classes of lvis v1. Each point
represents a checkpoint’s performance in one class. We compute classification
and ranking errors over the training set which has low errors, especially for rare
classes.

where ϵ is a small constant that depends on the number of training samples nc

and n¬c. Here, we use empirical foreground L̂γ+
c ,c = 1

n

∑n
i=1 1[yi=c]1[sc(x̂i)≤γ+

c ]

and background L̂γ−
c ,¬c =

1
n

∑n
i=1 1[yi ̸=c]1[s¬c(x̂i)≤γ−

c ] classification errors for de-

tector sc. γ
+
c and γ−

c are positive and negative margins respectively.
Under a separability assumption, the tightest margins take the form

γ+
c =

n
1/4
¬c

n
1/4
c + n

1/4
¬c

γ−
c =

n
1/4
c

n
1/4
c + n

1/4
¬c

. (8)

See Cao et al. [4] or the supplement for a derivation of these margins.
We have now arrived at an upper bound of the detection error LDet =

1
|C|

∑

c∈C LDet
c using an empirical margin-based classifier for each class c. This

margin-based objective takes the generalization error and any potential class
imbalance into account.

In the next section, we derive a continuous loss function for this binary ob-
jective and optimize it in a deep-network-based object detection system. Note
that standard detector training is already classification-based, and our objective
only introduces a margin and weight for each class.

4.3 Effective Class-Margin Loss

Our goal is to minimize the empirical margin-based error

L̂γ±
c ,c

= L̂γ+
c ,c

+ L̂γ−
c ,¬c =

1

n

n∑

i=1

(

1[yi=c]1[sc(x̂i)≤γ+
c ] + 1[yi ̸=c]1[s¬c(x̂i)≤γ−

c ]

)

(9)
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Fig. 4: Visualization of the positive and negative margins and weights as a func-
tion of the negative-to-positive ratio αc.

for a scoring function sc(x) ∈ [0, 1]. A natural choice of scoring function is a

sigmoid sc(x) =
exp(f(x))

exp(f(x))+exp(−f(x)) .

However, there is no natural equivalent to a margin-based binary cross-
entropy (BCE) loss. Regular binary cross-entropy optimizes a margin sc(x) =
s¬c(x) =

1
2 at f(x) = 0, which does not conform to our margin-based loss. We

instead want to move this decision boundary to sc(x) = γ+
c and s¬c(x) = γ−

c .
We achieve this with a surrogate Effective Class-Margin Loss:

LECM
c = − 1

n

n∑

i=1

mc

(
1[y=c] log(ŝc(x)) + 1[y ̸=c] log(1− ŝc(x))

)
. (10)

The ECM loss optimizes a binary cross entropy on a surrogate scoring function

ŝc(x) =
w+

c e
f(x)c

w+
c ef(x)c + w−

c e−f(x)c
, w±

c = (γ±
c )−1. (11)

This surrogate scoring function has the same properties as a sigmoid ŝc ∈
[0, 1] and ŝ¬c(x) = 1 − ŝc(x). However, its decision boundary ŝc(x) = ŝ¬c(x)
lies at f(x) = 1

2 (logw
−
c − logw+

c ). In the original sigmoid scoring function s,
this decision boundary corresponds to sc(x) = γ+

c and s¬c(x) = γ−
c . Hence, the

Effective Class-Margin Loss minimizes the binary classification error under
the margins specified by our empirical objective (9). In Figure 4, we visualize
the relationship between the negative-to-positive ratio αc and the positive and
negative class margins/weights.

We use this ECM loss as a plug-in replacement to the standard binary cross
entropy or softmax cross entropy used in object detection.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate our method on LVIS v1.0 [16] and OpenImages datasets.
LVIS v1.0 is large-scale object detection and instance segmentation dataset. It
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Table 1: LVIS v1 validation set results. We compare different methods on various
frameworks and backbones on 2× schedule. For Swin-B backbones [29], we use
ImageNet-21k pretrained weight as initialization. We used the results of the
original papers if available, and reproduced them from the official code otherwise.

Framework Backbone Method mAPsegm APr APc APf mAPbbox

Mask R-CNN ResNet-50

CE Loss 22.7 10.6 21.8 29.1 23.3
Federated Loss [52] 26.0 18.7 24.8 30.6 26.7
Seesaw Loss [44] 26.7 18.0 26.5 32.4 27.3

LOCE [13] 26.6 18.5 26.2 30.7 27.4
ECM Loss 27.4 19.7 27.0 31.1 27.9

Mask R-CNN ResNet-101

CE Loss 25.5 16.6 24.5 30.6 26.6
EQL v1 [40] 26.2 17.0 26.2 30.2 27.6
BAGS [24] 25.8 16.5 25.7 30.1 26.5
EQL v2 [39] 27.2 20.6 25.9 31.4 27.9

Federated Loss [52] 27.9 20.9 26.8 32.3 28.8
Seesaw Loss [44] 28.1 20.0 28.0 31.8 28.9

LOCE [13] 28.0 19.5 27.8 32.0 29.0
ECM Loss 28.7 21.9 27.9 32.3 29.4

Cascade Mask R-CNN ResNet-101

CE Loss 27.0 16.6 26.7 32.0 30.3
EQL v1 [40] 27.1 17.0 27.2 31.4 30.4

De-confound TDE [41] 27.1 16.0 26.9 32.1 30.0
BAGS [24] 27.0 16.9 26.9 31.7 30.2

Federated Loss [24] 28.6 20.3 27.5 33.4 31.8
DisAlign [51] 28.9 18.0 29.3 33.3 32.7

Seesaw Loss [44] 30.1 21.4 30.0 33.9 32.8
ECM Loss 30.6 19.7 30.7 35.0 33.4

Cascade Mask R-CNN Swin-B
Seesaw Loss [44] 38.7 34.3 39.6 39.6 42.8

ECM Loss 39.7 33.5 40.6 41.4 43.6

includes 1203 object categories that follow the extreme long-tail distribution.
Object categories in LVIS dataset are divided into three groups by frequency:
frequent, common, and rare. Categories that appear in less than 10 images are
considered rare, more than 10 but less than 100 are common, and others are
frequent. There are about 1.3 M instances in the dataset over 120k images (100k
train, 20k validation split). The OpenImages Object Detection dataset contains
500 object categories over 1.7 M images in a similar long-tail.

Evaluation. We evaluate all models using both the conventional mAP eval-
uation metric and the newly proposed mAPfixed metric [9]. mAP measures the
mean average precision over IoU thresholds from 0.5 to 0.95 [27] over 300 detec-
tions per image. mAPfixed [9] has no limit for detections per image, but instead
limits the number of detections per class over the entire dataset to 10k. Due
to memory limitations, we also limit detections per image to 800 per class. We
further evaluate the boundary IoU mAPboundary [8], the evaluation metric in
this year’s LVIS Challenge. For OpenImages, we follow the evaluation protocol
of Zhou et al. [53] and measure mAP@0.5.
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Table 2: Comparison on LVIS v1 validation set. Models are trained with Mask
R-CNN with ResNet-50 backbone on 1x schedule. Numbers with ∗ use a different
implementation [9]. mAPfixed

boundary and mAPfixed
bbox refer to the new LVIS Challenge

evaluation metrics [8, 9].

Method mAPsegm APr APc APf mAPbbox mAPfixed
boundary mAPfixed

bbox

RFS+CE Loss 21.7 9.5 21.1 27.7 22.2 18.3 25.7
LWS [20] 17.0 2.0 13.5 27.4 17.5 - -
cRT [20] 22.1 11.9 20.2 29.0 22.2 - -
BAGS [24] 23.1 13.1 22.5 28.2 23.7 - 26.2∗

EQL v2 [39] 23.9 12.5 22.7 30.4 24.0 20.3 25.9
Federated Loss [52] 23.9 15.8 23.3 30.7 24.9 - 26.3∗

Seesaw Loss [44] 25.2 16.4 24.4 30.8 25.4 19.8 26.5

ECM Loss 26.3 19.5 26.0 29.8 26.7 21.4 27.4

5.2 Implementation Details.

Our implementation is based on Detectron2 [47] and MMDetection [6], two most
popular open-source libraries for object detection tasks. We train both Mask
R-CNN [17] and Cascade Mask R-CNN [3] with various backbones: ResNet-
50 and ResNet-101 [18] with Feature Pyramid Network [25], and the Swin
Transformer [29]. We use a number of popular one-stage detectors: FCOS [42],
ATSS [50] and VarifocalNet [49]. We largely follow the standard COCO and
LVIS setup and hyperparameters for all models. For OpenImages, we follow the
setup of Zhou et al. [53]. More details are in the supplementary material.

ECM Loss.Our ECM Loss is a plug-in replacement to the sigmoid function used
in most detectors. Notably, ECM Loss does not require any hyper-parameter.
We use the training set from each dataset to measure αc, nc, n¬c of each class.

5.3 Experimental Results

Table 1 compares our approach on frameworks and backbones using a standard
2× training schedule. We compare different long-tail loss functions under dif-
ferent experimental setups. With Mask R-CNN on a ResNet-50 backbone, our
ECM Loss outperforms all alternative losses by 0.7 mAPsegm and 0.5 mAPbbox.
With Mask R-CNN on a ResNet-101 backbone, our ECM loss outperforms al-
ternatives with a 0.6 mAPsegm and 0.4 mAPbbox. The results also hold up in
the more advanced Cascade R-CNN framework [3] with ResNet-101 and Swin-B
backends. Here the gains are 0.5 mAPsegm and 0.6 mAPbbox for ResNet-101,
and 1 mAPsegm and 0.8 mAPbbox for Swin-B. The overall gains over a simple
cross-entropy baseline are 3-5 mAP throughout all settings. The consistent im-
provement in accuracy throughout all settings highlights the empirical efficacy
of our method, in addition to the grounding in learning theory.
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Table 3: One-stage object detection results on LVIS v1 validation set. We com-
pare popular one-stage detectors with ResNet-50 and ResNet-101 backbones, on
1x schedule.

Framework Backbone Method APr APc APf mAPbbox

FCOS ResNet-50
Focal Loss [26] 11.2 21.0 27.8 22.0
ECM Loss 14.5 22.7 27.6 23.2

FCOS ResNet-101
Focal Loss [26] 14.1 22.6 29.8 24.0
ECM Loss 17.2 24.2 29.6 25.1

ATSS ResNet-50
Focal Loss [26] 8.6 20.5 29.8 22.1
ECM Loss 15.8 23.5 29.5 24.5

ATSS ResNet-101
Focal Loss [26] 12.9 24.0 31.9 25.2
ECM Loss 17.7 25.6 31.5 26.5

VarifocalNet ResNet-50
Varifocal Loss [49] 14.2 23.6 30.7 24.8

ECM Loss 17.1 25.5 29.7 25.7

For reference, Table 2 compares our method on Mask R-CNN with ResNet-50
backbone on 1× schedule. Our ECM Loss outperforms all prior approaches by
1.1 mAPsegm and 1.3 mAPbbox. Our method achieves a 10 mAP gain over cross-
entropy loss baseline, and 3.1 APr gain over the state-of-the-art. Our method
shows similar gains on the new evaluation metrics mAPfixed

boundary and mAPfixed
bbox

whereas prior methods tend show a more moderate improvement on new metrics.
This improvement is particularly noteworthy, as our approach uses no additional
hyperparameters, and is competitive out of the box.

Table 3 compares our ECM Loss with baseline losses on FCOS, ATSS and
VarifocalNet, trained with ResNet-50 and ResNet-101 backbones on 1x schedule.
The ECM Loss shows consistent gains over Focal Loss and its variants. With
FCOS, ECM improves box mAP 1.2 and 1.1 points, respectively, for ResNet-50
and ResNet-101 backbones. With ATSS, ECM Loss improves Focal Loss 7.2 and
4.8 points on APr, and 2.4 and 1.3 points mAP, respectively. We further test on
VarifocalNet, a recently proposed one-stage detector, and show similar advantage
using the ResNet-50 backbone. Our ECM loss consistently improves the overall
performance of a one-stage detector, especially in rare classes. It thus serves as
a true plug-in replacement to the standard cross-entropy or focal losses. Table 4
further analyze our ECM Loss with Focal Loss on FCOS and ATSS trained with
ResNet-50 backbone on 2x schedule. Our ECM maintains improvement of 0.9
point mAP for FCOS, and 0.5 point mAP for ATSS. For APr, both methods
consistently improve 2.7 and 2.1 points, respectively.

In Table 5, we compare ECM Loss with a variant of Equalization Loss on
the class hierarchy of Zhou et al. [53]. Although OpenImages have a long-tail
distribution of classes, the number of classes and the associated prior probabil-
ities are very different. Nevertheless, ECM Loss improves over the baseline for
1.2 mAP. This result confirms the generality of our method.
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Table 4: One-stage object detection results on LVIS v1 validation set. We com-
pare different methods with ResNet-50 backbone on 2x schedule.

Framework Backbone Method APr APc APf mAPbbox

FCOS ResNet-50
Focal Loss 12.0 22.9 29.5 23.5
ECM Loss 14.7 23.0 29.5 24.4

ATSS ResNet-50
Focal Loss 14.5 24.3 31.8 25.6
ECM Loss 16.6 25.2 31.3 26.1

Table 5: Comparisons of ECM Loss on OpenImages dataset following the eval-
uation protocol of Zhou et al. [53]. We compare using a Cascade R-CNN with
ResNet-50 backbone.

Framework Backbone Method Schedule mAP

Cascade R-CNN ResNet-50
EQL + Hier. [40, 53] 2x 64.6

ECM Loss 2x 65.8

For all our experiments, the class frequencies were measured directly from the
annotation set of LVIS v1 training dataset. Note that for each class, the negative
sample not only includes other foreground classes but also the background class.
However, the prior probability for background class is not defined apriori from
the dataset itself since it solely depends on the particular detection framework
of choice. Hence, we measure the background frequency for each detector of
choice and factor it into the final derivation of overall class frequencies. This can
be done within the first few iterations during training. We then compute the
effective class-margins with the derived optimal solution in Eqn. (8) and finally
define the surrogate scoring function (11).

6 Conclusion

In this paper, we tackle the long-tail object detection problem using a statis-
tical approach. We connect the training objective and the detection evaluation
objective in the form of margin theory. We show how a probabilistic version of
average precision is optimized using a ranking and then margin-based binary
classification problem. We present a novel loss function, called Effective Class-
Margin (ECM) Loss, to optimize the margin-based classification problem. This
ECM loss serves as a plug-in replacement to standard cross-entropy-based losses
across various detection frameworks, backbones, and detector designs. The ECM
loss consistently improves the performance of the detector in a long-tail setting.
The loss is simple and hyperparameter-free.

Acknowledgments. This material is in part based upon work supported by
the National Science Foundation under Grant No. IIS-1845485 and IIS-2006820.
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A Pairwise Ranking Error

In this section, we will prove the second equality of Definition 2.

Rc = Px′∼D¬c,x∼Dc
(sx(x) < sc(x

′)))

= 1− Ex′∼D¬c
[Px∼Dc

(sx(x) > sc(x
′)))]

= Ex′∼D¬c
[1− rc(sc(x

′))]

=

∫ 1

0

Px′∼D¬c
(rc(sc(x

′)) < β)
︸ ︷︷ ︸

=g(β)

dβ = τ.

where the definition of g is

g(β) = Px′∼D¬c

(
sc(x

′) > r−1
c (β)

)
= Px′∼D¬c

(rc(sc(x
′)) < β) .

The above derivation connects the ranking error to g and the recall.

B AP - Pairwise Ranking Error Bound

In this section, we will prove Theorem 2. We first derive the and lower bounds

to the variational objective
∫ 1

0
x

x+αg(x)dx under constraint
∫ 1

0
g(x)dx = τ for

a function g(x) ≥ 0. The AP bounds then directly reduce to the variational
objective.

Lemma 1. Consider the following variational problem

minimizeg

∫ 1

0

x

x+ αg(x)
dx

subject to

∫ 1

0

g(x)dx = τ

g(x) ≥ 0

The solution to this problem is

max

(

1−
√

2

3
ατ,

4

9

1
1
2 + ατ

)

Proof. Consider the associated Euler-Lagrangian equation:

L(x, v(x), λ) =

∫ 1

0

x

x+ αv(x)2
dx+ λ

(
∫ 1

0

v(x)2dx− τ

)
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where g(x) = v(x)2 for the non-negativity constraint. To solve for minima

d

dv(x)
L(x, v(x), λ) = − αxv(x)

(x+ αv(x)2)2
+ λv(x) = 0

v(x)αx = λv(x)(x+ αv(x)2)2

=⇒ v(x) = 0 or x+ αv(x)2 =

√
xα

λ
=

√
x

√
α

λ

=⇒ v(x)2 = max

(

0,

√
x

αλ
− x

α

)

= 1[x≤α

λ
]

(√
x

αλ
− x

α

)

=⇒
∫ 1

0

αv(x)2dx = ατ =

∫ 1

0

1[x≤α

λ
]

(√
αx

λ
− x

)

dx

=

∫ κ

0

(√
αx

λ
− x

)

dx =
2

3
κ

3
2

√
α

λ
− κ2

2

where κ = min(1, α
λ ). For κ = 1:

ατ =
2

3

√
α

λ
− 1

2
=⇒

√
α

λ
=

3

2

(

ατ +
1

2

)

=⇒ x+ αv(x)2 =
√
x

√
α

λ
=

√
x
3

2

(

ατ +
1

2

)

=⇒
∫ 1

0

x

x+ αv(x)2
dx =

∫ 1

0

x√
x 3
2 (ατ + 1

2 )
dx =

∫ 1

0

√
xdx

1
3
2 (

1
2 + ατ)

=
4

9

1
1
2 + ατ

For κ < 1:

ατ =
2

3

(
α

λ

) 3
2
√

α

λ
− 1

2

(
α

λ

)2

=
1

6

(
α
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√
α
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0
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x+ αv(x)2
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∫ κ
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x
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=
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Each case yields on lower bound, hence the combined lower bound is

max

(

1−
√

2

3
ατ,

4

9

1
1
2 + ατ

)

⊓⊔

Bonus: The two bounds meet at 2
3 :

4

9

1
1
2 + ατ

= 1−
√

2

3
ατ =

2

3
for ατ =

1

6
.

Lemma 2. Consider the following variational problem

maximizeg

∫ 1

0

x

x+ αg(x)
dx

subject to

∫ 1

0

g(x)dx = τ

g(x) ≥ 0

Proof. First, let us re-formulate the problem as following

minimizeg

∫ 1

0

αg(x)

x+ αg(x)
dx

subject to

∫ 1

0

g(x)dx = τ

g(x) ≥ 0

Without the equality constraint
∫ 1

0
g(x)dx = τ , the objective is minimized at

g(x) = 0 for all x ∈ [0, 1]. The equality constraint assigns certain values g(x)
a positive mass. The optimal solution will assign g(x) = 0 for x < 1 − τ , and
g(x) = 1 for x ≥ 1 − τ . To see this, consider a value g(x1) =

ϵ
α for x1 < 1 − τ

and one or move values g(x2) ≤ 1− ϵ
α for x2 > 1−τ . Here, a solution ĝ(x1) = 0

and ĝ(x2) = g(x2) +
ϵ
α has a lower objective

∆ =

(
αg(x1)

x1 + αg(x1)
+

αg(x2)

x2 + αg(x2)

)

−
(

αĝ(x1)

x1 + αĝ(x1)
+

αĝ(x2)

x2 + αĝ(x2)

)

=

(
αg(x1)

x1 + αg(x1)
+

αg(x2)

x2 + αg(x2)

)

− αg(x2) + ϵ

x2 + αg(x2) + ϵ

=
ϵ

x1 + ϵ
− ϵx2

(x2 + αg(x2))(x2 + αg(x2) + ϵ)
> 0

Here ∆ > 0 and the new objective is lower since x2 + αg(x2) > x2 and x2 > x1

thus (x2 + αg(x2))(x2 + αg(x2) + ϵ) > x2(x1 + ϵ).
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Thus the zero-mass region should be where x is low as lower x increases the
objective. Hence, the optimality will happen when g(x) = 0 for x ∈ [0, 1−τ ], and
g(x) = 1 for x ∈ [1− τ, 1]. Thus:

∫ 1

1−τ

α

α+ x
dx = α

∫ 1

1−τ

1

α+ x
dx = α(log(1 + α)− log(1− τ + α))

= −α log

(

1− τ

1 + α

)

=⇒ max
g

∫ 1

0

x

x+ αg(x)
dx = 1 + α log

(

1− τ

1 + α

)

which concludes the proof. ⊓⊔
Lemma 1 and Lemma 2 for the bounds to the AP.

Theorem 4. Average Precision can be bounded from above and below as follow-
ing

1 + αc log

(

1− Rc

1 + αc

)

≥ APc ≥ max

(

1−
√

2

3
αcRc,

8

9

1

1 + 2αcRc

)

(12)

Proof. Let us recap the definitions of AP and R:

APc =

∫ 1

0

β

β + αcPx∼D¬c
(sc(x) > r−1

c (β))
dβ

=

∫ 1

0

β

β + αc Px∼D¬c
(rc(sc(x)) < β)

︸ ︷︷ ︸

=g(β)

dβ

Rc =

∫ 1

0

Px′∼D¬c
(rc(sc(x

′)) < β)
︸ ︷︷ ︸

=g(β)

dβ = τ

where the second line of APc is because rc is strictly monotonously decreasing.
With x = β and g(x) = Px∼D¬c

(rc(sc(x)) < β), Lemma 1 and Lemma 2 are
directly applicable for a function 0 ≤ g(x) ≤ 1 with a fixed Rc = τ . The corre-
sponding upper and lower bounds of LDet

c in Theorem 2 is a direct consequence
of this theorem since LDet

c = 1−APc. ⊓⊔

C Optimal Margins

Similar to Cao et al. [4], we aim to find optimal binary margins γ+ and γ− under
separability condition. This reduces the problem into following:

minimizeγ+,γ−

1

γ+

√

1

n+
+

1

γ−

√

1

n−
(13)

subject to γ+ + γ− = 1 (14)
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Here the constraint is due to the fact that s−(x) = 1− s+(x) in binary case and
thus γ− = 1− γ+. Solving the constrained optimization problem

L(γ+, γ−, λ) =
1

γ+

√

1

n+
+

1

γ−

√

1

n−
+ λ(γ+ + γ− − 1) (15)

=⇒ ∂

∂γ+
L(γ+, γ−, λ) = − 1

γ+2

√

1

n+
+ λ = 0 (16)

=⇒ γ+ =

√

n+
− 1

2

λ
, γ− =

√

n−
− 1

2

λ
(17)

=⇒ ∂

∂λ
L(γ+, γ−, λ) = γ+ + γ− − 1 = 0 (18)

=⇒ γ+ + γ− =

√

n+
− 1

2

λ
+

√

n−
− 1

2

λ
= 1 (19)

=⇒
√
λ =

√

n+
− 1

2 +

√

n−
− 1

2

1
(20)

=⇒ γ+ =
n+

− 1
4

n+
− 1

4 + n−
− 1

4

=
n−

1
4

n+
1
4 + n−

1
4

(21)

γ− =
n−

− 1
4

n+
− 1

4 + n−
− 1

4

=
n+

1
4

n+
1
4 + n−

1
4

(22)

which are as desired. The exact same process can be repeated for each class
c ∈ C and we will have our Effective Class-Margins. ⊓⊔

D Surrogate Scoring Function

In this section, we will justify the choice of our surrogate scoring function.

ŝc(x) =
w+

c e
f(x)c

w+
c ef(x)c + w−

c e−f(x)c
(23)

The decision boundary is then

ŝc(x) = ŝ¬c(x) = 1− ŝc(x) (24)

=⇒ w+
c e

f(x)c

w+
c ef(x)c + w−

c e−f(x)c
=

w−
c e

−f(x)c

w+
c ef(x)c + w−

c e−f(x)c
(25)

=⇒ logw+
c + f(x)c = logw−

c − f(x)c (26)

=⇒ f(x)c =
1

2
(logw−

c − logw+
c ) (27)
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In the unweighted sigmoid function, this point will lie at

sc(x) =
ef(x)c

ef(x)c + e−f(x)c
(28)

=
e

1
2
(logw−

c
−logw+

c
)

e
1
2
(logw−

c −logw+
c ) + e

1
2
(logw+

c −logw−
c )

(29)

=

√
w−

c

w+
c

√
w−

c

w+
c

+
√

w+
c

w−
c

=

√
γ+
c

γ−
c

√
γ+
c

γ−
c

+
√

γ−
c

γ+
c

=
γ+
c

γ+
c + γ−

c
(30)

= γ+
c (31)

=⇒ s¬c(x) = γ−
c (32)

since γ+
c + γ−

c = 1. Hence, we have shown that our surrogate scoring function
with effective class-margins shifts the decision boundary of sigmoid function to
γ+
c and γ−

c as desired. ⊓⊔
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Fig. 5: Visualization of the positive and negative gradients from ECM Loss with
different positive and negative samples ratios.

E Margins vs Weights vs Gradients

In this section, we provide more intuitions about the relationship between mar-
gins, weights, and gradients. The gradient of positive and negative samples with
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Fig. 6: Visualization of the positive and negative margins and weights as a func-
tion of the sample ratio αc.
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Fig. 7: Visualization of the computed the positive and negative weights used in
our scoring function ŝc for each class c ∈ C. The prior distribution is from LVIS
v1 training annotations over 1203 classes. The weights are sorted in ascending
order and background probability is measured with Mask R-CNN with ResNet-
50 backbone.

ECM Loss is the following:

∂

∂f(x)c
ℓECM(x, y) =

2w¬ce
f(x)¬c

wcef(x)c + w¬cef(x)¬c

∝ w¬c =
1

γ¬c
∝ n¬c (33)

∂

∂f(x)¬c
ℓECM(x, y) =

2wce
f(x)c

wcef(x)c + w¬cef(x)¬c

∝ wc =
1

γc
∝ nc (34)

where we omit detection weightmc for simplicity. The positive gradient is greater
for rare classes (higher n¬c) compared to frequent classes, whereas the negative
gradient is lower. This coincides with the intuitions from prior works based
on heuristics or indirect measure of a model. Below, we show visualization of
positive and negative gradients as a function of logit with different positive and
negative ratios ac =

n¬c

nc

. In Figure 5, low a means frequent classes whereas high
a means rare classes. Our surrogate scoring function ŝc balances the gradient
values based on the frequency of each class. Frequent classes get lower positive
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gradient and higher negative gradient (red in 5) whereas rare classes get higher
positive gradient and lower negative gradient (blue in 5). In Figure 6, we further
visualize the relationship between the positive and negative margins and weights
as a function of the ratio αc. In Figure 7, we visualize the computed weights for
our scoring function ŝc in Equation 11 for w+

c (left) and w−
c (right).

F Implementation Details

In this section, we will discuss details of the experiments and implementation.

Background count. We empirically measure the frequency of background sam-
ples as a ratio of foreground and background samples within a batch, r, in the
classification layer of a detector during the first few iterations. This ratio will
then be used to derive dataset-level count of background samples as

nbg = r
∑

c∈C

nc (35)

where nc is the number of positive samples of class c in the training dataset.
Then, we compute the sample count of each class with background as

n+
c = nc (36)

n−
c =

( ∑

c′∈C∪{bg}

nc′

)

− nc (37)

and use it to compute the effective class-margins. For one-stage detectors, we
only count for foreground classes as foreground and background imbalance is
managed from focal weight [26].

Two-stage detectors. We train two-stage instance segmentation models based
on Mask R-CNN [17] and Cascade Mask R-CNN [3] with various backbones,
ResNet-50 and ResNet-101 [18] with Feature Pyramid Network [25] pretrained
on ImageNet-1K [10], Swin Transformer [29] pretrained on ImageNet-21K with
224x224 image resolution. We train with for 12 or 24 epochs with Repeated
Factor Sampler (RFS) [16] on a 1× or 2× schedule respectively. For CNN back-
bones, we use the SGD optimizer with 0.9 momentum, initial learning rate of
0.02, weight decay of 0.0001, with step-wise scheduler decaying learning rate by
0.1 after 8 and 11 epochs for 1x, and 20 and 22 epochs for 2x, and batch size
of 16 on 8 GPUs. Please note that the baseline methods are trained with their
optimal learning rate schedule with decaying schedule of 16 and 22 epochs. For
example, Mask R-CNN with ResNet-50 trained with Seesaw Loss [44] on decay-
ing schedule of 20 and 22 epochs result with 26.7 mAPsegm and 26.9 mAPbbox,
whereas decaying schedule of 16 and 22 (default) result with 26.7 mAPsegm and
27.3 mAPbbox. For Transformer backbones, we use the AdamW optimizer with
an initial learning rate of 0.00005, beta set to (0.9, 0.999), weight decay of 0.05,
with Cosine-annealing scheduler. For all our models, we follow the standard data
augmentation during training: random horizontal flipping and multi-scale image
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resizing to fit the shorter side of image to (640, 672, 704, 736, 768, 800) at random,
and the longer side kept smaller than 1333. For Swin Transformer, we use a larger
range of scale of the short side of image from 480 to 800. For two-stage detectors,
we normalize the classification layers with temperature τ = 20 for both box and
mask classifications, and apply foreground calibration as post-process following
prior practices [9,44,51]. LVIS has more instances than COCO. We thus increase
the per-image detection limit to 300 from 100 and set the confidence threshold
to 0.0001. This is common practice in LVIS [16]. For OpenImages, we train Cas-
cade R-CNN with ResNet-50 backbone following the baseline and experimental
setup of Zhou et al. [53]. All models in this experiment were trained for 180k
iterations with a class-aware Sampler.

One-stage detectors. For one-stage detectors, Focal Loss [26] is the standard
choice of the loss function. It effectively diminishes loss values for “easy” samples
such as the background. In this experiment, we test the compatibility of our
method with Focal weights. Specifically, we apply the computed focal weights
to our ECM Loss. Instead of a binary cross-entropy on the surrogate scoring
function ŝ, we use the focal loss. We use a number of popular one-stage detectors:
FCOS [42], ATSS [50] and VarifocalNet [49]. Each method uses either Focal Loss
or a variant [49]. We use the default hyperparameter for all types of focal weights:
γ = 2, α = 0.25 for Focal Loss, γ = 2 and α = 0.75 for Varifocal Loss [49]. In LVIS
v1.0 models expect to see more instances. We thus double the per-pyramid level
number of anchor candidates from 9 to 18 for ATSS and VarifocalNet. Similar to
2-stage detectors, we increased per-image detection to 300 and set the confidence
threshold to 0.0001. We train on ResNet-50 and ResNet-101 backbones for 12
epochs for 1x and 24 epochs for 2x, batch size of 16 on 8 GPUs. We set the
learning rate to be 0.01 which was the optimal learning rate for the baselines.
For all other settings, we follow the two-stage experiments.
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