BJR

Received: Accepted: Published online:
08 January 2023 14 August 2023 20 September 2023

Cite this article as:

https://doi.org/10.1259/bjr.20230023

© 2023 The Authors. Published by the British Institute of Radiology under
the terms of the Creative Commons Attribution 4.0 Unported License
http:/creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, distribution and reproduction in any medium, provided the original
author and source are credited.

Gichoya JW, Thomas K, Celi LA, Safdar N, Banerjee |, Banja JD, et al. Al pitfalls and what not to do: mitigating bias in Al. Br J Radiol

(2023) 10.1259/bjr.20230023.

Al IN IMAGING AND THERAPY: INNOVATIONS, ETHICS, AND

IMPACT: REVIEW ARTICLE

Al pitfalls and what not to do: mitigating bias in Al

1JUDY WAWIRA GICHOYA, MD, 'KAESHA THOMAS, MD, 234LEO ANTHONY CELI, MD, 'NABILE SAFDAR, MD, MPH,
5IMON BANERJEE, PhD, $JOHN D BANJA, PhD, ’LALEH SEYYED-KALANTARI, PhD, '"HARI TRIVEDI, MD and

8SAPTARSHI PURKAYASTHA, PhD

'Department of Radiology, Emory University, Atlanta, United States

?Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

SDivision of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
“Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States

5School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, United States

®Emory University Center for Ethics, Emory University, Atlanta, United States

’Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, North York, United States
8School of Informatics and Computing, Indiana University Purdue University, Indianapolis, United States

Address correspondence to:
Dr Judy Wawira Gichoya
E-mail: judywawira@gmail.com
Dr Saptarshi Purkayastha
E-mail: saptpurk@iupui.edu

ABSTRACT

Various forms of artificial intelligence (Al) applications are being deployed and used in many healthcare systems. As
the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias.
With these new lessons, we need to prioritize bias evaluation and mitigation for radiology applications; all the while not
ignoring the impact of changes in the larger enterprise Al deployment which may have downstream impact on perfor-
mance of Al models. In this paper, we provide an updated review of known pitfalls causing Al bias and discuss strategies
for mitigating these biases within the context of Al deployment in the larger healthcare enterprise. We describe these
pitfalls by framing them in the larger Al lifecycle from problem definition, data set selection and curation, model training
and deployment emphasizing that bias exists across a spectrum and is a sequela of a combination of both human and

machine factors.

INTRODUCTION

Despite the promise and hope of artificial intelligence (AI)
to improve patient care, several real-world failures of Al
systems have been documented. In addition to observing
overall performance decline secondary to differences in
data distribution after model deployment, subgroup eval-
uations have shown varying levels of performance with
poor performance especially for historically underserved
patients." These are individuals who have and continue to
experience systematic and persistent barriers to accessing
quality healthcare due to various factors, including race,
ethnicity, socioeconomic status, geography, and language
barriers. Bias in medical research is defined as the inten-
tional or unintentional introduction of systematic error
into sampling or testing by, intentionally or not, selecting or
encouraging one outcome or answer over others.> Multiple
publications exist elaborating on the types of (largely

statistical) bias, and more importantly, how to mitigate their
influence on the study’s conclusions.*™® Recently, with the
introduction of AI and machine learning, there has been a
resurgence of interest in (once again, largely statistical) bias
identification”® and tools to aid in its mitigation,’ particu-
larly as we move towards the real-world implementation of
Al systems in various healthcare settings.

Efforts to mitigate these biases are challenging due to—
lack of a unified definition of bias'% focus on a statis-
tical definition of bias and a technocentric definition of
bias without involving patients and communities; and
post-hoc reflection on bias rather than as a deliverable
by design.!' Bias audits for models tend to be piece-
meal—typically performed only during model develop-
ment and validation; health equity considerations should
commence during data collection and curation through

20z Atenuer gz uo 1senb Aq Gz68612/€200£202/0S ) 1/96/31911E/1[q/Wwod dno-olwapede//:sdiy Wolj papeojumoq


http://creativecommons.org/licenses/by/4.0/
mailto:judywawira@gmail.com
mailto:saptpurk@iupui.edu
https://doi.org/10.1259/bjr.20230023

Al Pitfalls and what not to do: mitigating Al Bias

post-deployment monitoring.'> The failure and subsequent
withdrawal of the Epic (™) sepsis model used by 180 customers
representing hundreds of hospitals provides a template to study
Al failure across a spectrum.'*'* Upon testing at Michigan
Medicine, the algorithm only identified 7% of patients whose
sepsis diagnosis was missed by a clinician, failed to flag 67%
of patients with sepsis despite generating alerts on 18% of all
hospitalized patients resulting in alert fatigue. Before the subse-
quent model overhaul as a result of the publication (rather than
some planned post-deployment evaluation and monitoring), it
was observed that one input variable to the model was antibiotic
orders by a provider—a type of data leakage since an infection
is already being considered at that point. Many other lessons are
noted from the sepsis use case including bypassing of regulatory
oversight (due to packaging of the algorithm as a non-device
decision-support tool), lack of calibration to various popula-
tion differences and hospital-specific practice patterns, lack of
access to the proprietary algorithm for inspection of errors and
biases, and lack of process for real-world evaluation post-model
deployment. In cases where remote clinicians were deployed
to monitor the algorithm outputs, the constant interruption
(up to 18% of hospitalized patients generated an alert) led the
floor nurses to cover the video camera to limit workflow disrup-
tion.'*!* A similar result is summarized in a systematic review
of COVID-19 prediction models on CT scans and Chest X-rays
(CXRs) that found limited clinical utility due to methodological
flaws and underlying biases stemming from small training data
sets, data set variability, and limited integration of non-imaging
data, among others. The methodological flaws likely is a reflec-
tion of the lack of diversity in the development team to allow
clinicians, data analysts and patient advocacy groups to work
side-by-side throughout the Al life cycle."
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Imaging is at the center of inpatient and outpatient care delivery,
touching a vast majority of patients. Prior articles have looked
at bias in radiology images in isolation of the larger healthcare
delivery system. In this paper, we provide an updated review
of known pitfalls causing AI bias and discuss strategies for
mitigating these biases within the context of AI deployment in
the larger healthcare enterprise. We describe these pitfalls by
framing them in the AI development and deployment lifecycle
from problem definition, data set selection and curation, model
training and deployment, and post-deployment evaluation and
monitoring (Figure 1). We emphasize that bias permeates every
step of the lifecycle and is a sequela of human, machine, and
systems factors.

Al pitfalls when defining a task

Bias principles are largely considered too late, if at all, when
designing AI. Health outcome prediction may be biased even
when attributes that are associated with suboptimal care are
hidden from a neural network agent. For example, Obermeyer
et al demonstrated racial bias in a commercial prediction
algorithm already in use for hundreds of million ambulatory
patients. The algorithm was supposed to identify patients who
may benefit from referral to a case management team based on
their likelihood to develop complication. The algorithm referred
less Black patients with a similar disease burden compared to
White patients." The algorithm developers in this case did not
use a race variable in their model input to avoid bias. However,
by using healthcare costs as proxy for the need for complex care,
the model learned from a system where Black patients are less
likely to seek and/or receive care compared to matched White
patients.1

Figure 1. Summarizes possible biases at every stage of Al development from model development, including demonstration of the
intersection of human and machine in causing bias. Al, artificial intelligence.
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A similar example is an algorithm used to predict hospital
length of stay to consult case managers for patients with shorter
predicted length of stay to maximize throughput.'® The algorithm
(which was abandoned before deployment) learnt that patients
from less affluent zip codes are likely to have longer hospital
stays and may not benefit from case management facilitation of
early discharge. Al developers must always consider whether the
proxy of a target outcome they are predicting or optimizing may
be reflective of a systemic bias. Examples of such metrics in addi-
tion to healthcare cost include outputs of decision-making such
readmission'’ or patient no-show. Social scientists, in particular,
can help explain systemic bias that may be embedded in the
metric chosen. When defining a research problem or task in the
context of Al the choice of a bias-proof feature or outcome with
a precise consensus definition across various stakeholders is crit-
ical. The need for cognitive diversity within the AI development
team cannot be emphasized enough.

Pitfalls in data acquisition and collection

Bias in data is one of the major source of biased algorithmic
outcome."™® Comprehensive AI data sets are limited and
expensive to curate. Problems in data set development include
limited patient diversity, limited resolution and missing clinical
confounders, limited or suboptimal quality annotations, and
lack of data standards and best practice to ensure quality and
reproducibility. Existing AI data sets are acquired from limited
geographical regions; most lack information necessary to evaluate
subgroup performance of models. Differences in image acquisi-
tion and processing may result in “shortcuts” where models take
cues from non-clinical features. For example, COVID-19 predic-
tion models have been demonstrated to learn which institution
the images were obtained from rather than features pertaining
to the underlying disease.’®> Zech et al demonstrated a similar
finding where models predicted pneumonia by learning where
the CXRs was obtained from.”” To overcome this confounding,
progress must be made to improve model training, evaluation,
and explainability.*!

A review of published AI articles between 2015 and 2019 in six
disciplines found that data used for imaging AI models largely
come from three states—California, Massachusetts, and New
York—with none from 34 states. While there have been initia-
tives to build data sets from “data deserts”, presently, Al models
are trained on data collected from tertiary care academic insti-
tutions. A review of 23 CXR data sets found that although
the majority reported age and sex, only 8.7% reported race or
ethnicity and 4.3% reported insurance status.> Even large repos-
itories like the UK Biobank that represents a prospective cohort
of 500,000 patients are limited for some patient groups: only 6%
of the cohort are of non-European ancestry.** Presently, it would
be difficult to further evaluate model bias on these data sets. In
fact, only 8% of the UK Biobank has been used for research, with
most of this research focused on patients of European ancestry.
It is important to note that in some countries collection of infor-
mation such as race and ethnicity are prohibited.*>

Recent studies have shown that AT models can learn features that
are “invisible” to a human expert. For example, CXRs can be used
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to predict ICD-10 codes related to cardiac disease (including
conduction abnormalities) with accuracies of above 0.76.%” More
concerning about these models is that information on social
determinants of health like area deprivation index are learned
and encoded on the CXRs. CXRs can also be used to predict
demographic information—including insurance, self-reported
race, and age.”®* CXRs have also been used to predict biolog-
ical age, cardiac disease outcomes and healthcare cost at 1, 3 and
5 years.’® Despite the surprising performance of AT models to
detect these signals, there are limitations in model explainability.
Why is this concerning? The “race signal” (or societal standing in
general) in images may be used to inform clinical predictions and
optimizations especially in this era of multimodal modeling.>!
The fact that these models demonstrate this superior ability even
when the images are modified in such a way that they are barely
perceptible as medical images implies that mitigating bias will be
difficult at best.

These “hidden signals” in the context of ongoing demonstrations
of bias beyond imaging presents a challenge because biases exist
along the Al lifecycle even before the modeling step. For example,
bias exist in who gets specific types of imaging, and when. Black,
Hispanic, and non-White patients are less likely to undergo
diagnostic imaging in the emergency department.’? Inappro-
priate use among historically underserved patients has been
demonstrated in other areas of diagnostic imaging.>* An inves-
tigation of bystander CPR response for witnessed cardiac arrest
found that Black and Hispanic patients or females are less likely
to get CPR regardless of income level or neighborhood where
the cardiac arrest occurred.®® This means that these patients
would be excluded from an imaging cohort evaluating cardiac
disease outcomes. Bias in clinical parameters such as glomerular
filtration rate, pulse oximetry (with undiagnosed hidden hypox-
emia for historically underserved patients),” differences in ICU
severity scoring®® shape radiology data sets for machine learning
through a cascade effect as they affect ordering patterns for
medical images. Recent NTH funding through AIM-AHEAD?
and Bridge2 AI*® programs identifies this as the most challenging
issue for mitigating bias in available data sets; in addition to a
lack of diversity in the research terms and the absence of experts
to provide guidance on limitations of the data. Some groups have
suggested datasheets™*"—a checklist to guide model developers
on how to use data—to address this problem.

Recently, many strategies have been employed to improve data
availability for AI in medical imaging. Generative adversarial
networks and latent diffusion models have been used to create
synthetic data sets like brain MRI based on age, sex, and brain
structure volumes.*' Our preliminary work found that signals
that identify race are also contained on synthetic data sets.
Theoretically, it may be easier to validate models using these
controlled data sets (since one can specify how many patients to
include in specific subgroups) but more work is needed to vali-
date this. Similarly, foundation models which generate specific
text-image combinations are increasingly applied to radiology.
Using Roentgen,*” a vision-language foundation model for CXR,
we generated pictures of pneumothorax with and without chest
tubes (Figure 2). The need for visual inspection of the images
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Figure 2. The output of Roentgen with the left two images representing “pneumothorax with chest tubes” and the right two
images “pneumothorax without chest tubes”. Visual inspection shows fragmented chest drains and no obvious pneumothorax on

the images without chest tubes.

represents obvious limitations of large-scale data set generation,
but since these models are increasingly available to the public,
guidelines will be required to emphasize their limitations and
direct their appropriate use.

A milestone in medical imaging data was achieved in 2022 with
the publication of RadImageNet,"> an open radiologic deep
learning data set that consists of 1.35million radiologic images
for efficient transfer learning. In our experimental evaluation
of the reading race paper where we demonstrated superhuman
ability for AI to predict self-reported race across multiple modal-
ities, we found that some transfer learning tasks are better in
race detection.”® The availability of a radiology specific data
set to facilitate transfer learning is a step towards efficiency in
model development. Such data set will also discourage the use
of Frankenstein data sets—assembled from other data sets and
redistributed under a new name—as pretraining can be done on
RadImageNet and fine-tuned on a smaller data set. RadImageNet
can and should learn from the pitfalls of its non-medical imaging
counterpart, Imagenet, whose labels have had to be revised due to
object co-occurrence, and whose distribution changed reflecting
evolving patterns of Internet use over time.***

Pitfalls in model development

Numerous articles have been published on algorithmic bias in
medical imaging (during augmentation, modeling of loss func-
tions, hyperparameter tuning and transfer learning) and thus
this topic will not be a major focus of this article.*™*® In this
section, we will discuss bias arising from demographic and clin-
ical confounders, lessons from federated learning and the chal-
lenge of dealing with class imbalance and those associated with
multimodal data sets. The greatest challenge of bias detection
and mitigation remains the lack of a consensus definition of algo-
rithmic bias despite many toolkits developed for this purpose. A
model developer must determine, in consultation with clinicians,
patients and communities what bias means for their model. For
example, a developer will have to decide between aiming for
group fairness (Black vs white patients, patients on government
healthcare programs, or a specific age group) vs individual fair-
ness® (where two individuals with similar characteristics are
treated in the same manner). This is further complicated by the
fact that should a developer decide to aim for group fairness,
then various approaches can be applied including ignoring any
protected attribute like race (fairness through unawareness); or

equalizing the proportions of various groups like an equal compo-
sition of images from Blacks and Whites (demographic parity)®%
or the process of equalized odds or opportunity.®® Attempts to be
race agnostic or race neutral are challenging because it remains
difficult to remove race and race proxies like pattern of health
service utilization because of patient and/or provider factors. In
fact, these models have been shown to demonstrate the same bias
patterns even when protective attributes are removed from the
model variables.

This is further complicated when models can pick up “hidden
signals’—clinical, =~ demographic ~ or  technology-related
confounders—in the data sets that may not be obvious to the
model developer. AI models learn the underlying data set
distribution instead of disease characteristics leading to model
failure.”® This phenomenon, also called shortcut learning, can be
mitigated using various techniques including feature disentan-
glement (where you reward a model when it learns disease char-
acteristics and penalize the model when it learns features that
can discriminate between the original data sets where the images
are obtained)’'; applying pre-processing techniques like histo-
gram equalization to correct for differences in the images and
lung masking to exclude areas where pathology is not expected.*
Detecting these shortcuts and avoiding shortcut learning is an
active area of research.

Federated learning—whereby models are trained across multiple
institutions without the data being shared except for the model
weights—has been proposed as a solution to improve model
performance across diverse patient groups. In our own experi-
ence,” we observed that pre-processing of images is important
and affects the federated model performance. When we used
the FedAvg algorithm, the model improved its generalizability
on external data sets but at the expense of some degradation in
internal validation. Moreover, FedAvg is biased to research sites
contributing larger data sets with poor performance reported
for smaller data sets. Overall, when local model performance
matters—then personalized federated learning models (such as
FedBN) should be prioritized, while for external performance,
FedAvg should be used.”® It should be noted that model auditing
and bias detection, which benefit from diverse perspectives
during training and validation, are more difficult in federated
learning where only the weights are shared across the groups of
modelers.
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Class imbalance occurs frequently in radiology. Radiology images
tend to have high pixel dimensions and resolutions, yet pathology
is represented on a small percentage of the pixels. For example, a
screening mammogram has four views, yet the abnormality, e.g.
a small cluster of calcifications, may appear on less than 3% of the
image surface area. Beyond individual images, class imbalance
also occurs due to distribution of positive versus negative cases
(since most studies are normal), and across various demographic
distributions within data sets. Several strategies are applied to
mitigate this imbalance—including downsampling the majority
class, upsampling the minority class, use of image augmentation
techniques—and can change the training data set composition
or cause model overfitting in small data sets with tightly curated
features causing poor performance for the minority class. These
techniques do not address sampling selection bias such as what
in the example described earlier on Black and Hispanic patients
less likely to survive an out-of-hospital cardiac arrest. The Blacks
and Hispanic patients who survive an out-of-hospital cardiac
arrest and are included in a data set may be different from
those who died before reaching the hospital and are included
in the database. Up- and downsampling may worsen bias. It is
important to note that while we do not know the perfect compo-
sition of training and validation data sets to yield fair algorithms,
sex imbalance in the data set has been demonstrated to have
inferior performance for the minority group.”* The assumption
that inclusion of more minority groups in the training data set is
sufficient to fix bias is incorrect for the reasons above and since
patients exist at the intersection of multiple group representation
e.g. Black, Black Males/Females, Black Males/Females (young or
old), Old Black Males/Females (with/without insurance).

There is increased development of fusion models that combine
other data sources to medical imaging data (pathology, clinical
tabular data, genomics among others).””> These models have
a larger feature space used for training, which require feature
selection early in the training process. Signals to detect race and
other sensitive attributes may become even easier to learn during
training. Ascertaining that these signals do not influence predic-
tions and optimizations by Al becomes even more problematic.

Pitfalls in model evaluation and validation

Model validation remains a barrier that limits incorporation
of Al into clinical care. Many factors affect AI validation—
including high costs of validation (technical pipeline for data
set preparation and curation, diverse team of machine learning
and clinical experts, regulatory approval burden), and lack of
consensus on what is the proper protocol of validation. It is crit-
ical that appropriate metrics are identified and reported for the
clinical task being performed. A review of 151 imaging Al prod-
ucts cleared by the FDA by November 2021 showed that only
64% of these products used clinical data for their validation; and
these clinical data had limited information on demographic and
technical confounders (only 4% had patient demographics and
5% reported machine specifications).*® Moreover, only 34% had
multi-institutional validation and reported which institution(s)
was(were) used for validation.”® It is thus not surprising that
most of these algorithms, despite regulatory approval, demon-
strate bias when deployed to various clinical settings especially
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when the target population is different from the population the
model was trained on. In these cases, the Al models “fail silently”
i.e. they do not provide an output to the user when they do not
recognize the model input. These AI models will make a guess
estimate of the prediction for wrong input data without providing
the level of uncertainty. Differences in data distribution between
model training and real-world deployment or external validation
is also referred to the data being “out of distribution”.

External validation can ensure models generalize well across
populations. Despite infrequent to even non-existent external
validation for both FDA approved and peer reviewed articles,
when external validation is performed, it is typically limited in
scope. A recent systematic review found that 86 studies have a
median of 240 cases used for external validation, with about 47%
of which are positive cases.”” Even on what would be considered
a small sample size for external validation, nearly half of the 86
studies reported a modest increase in external performance with
nearly a quarter reporting a substantial decrease, reiterating on
the challenge of validation.””

It is critical to note that regulatory approval at its current state
does not guarantee model fairness. Bias evaluation and miti-
gation frequently occurs post-hoc, and because the approval
process require resubmission when models are updated, there
are no incentives to address algorithmic bias during the initial
application.

The FDA, Canadian Agency for Drugs and Technology, Euro-
pean Union, and the UK code of conduct for data-driven health-
care technology only provide high-level guidance to promote
fairness. For example, these organizations issue statements like
“consider evaluation of bias’, without clear instructions on how
the evaluation should be performed, and what consequences
result from not performing such evaluation.'" A review of Al
reporting guidelines noted that references to bias are either
absent, made in passing or included in the guideline supplement.
While some people have called for more clinical trials in vali-
dating AI, we must acknowledge the limitations of such trials
including high costs, the fact that most trials never meet their
enrollment proportions, and that bias still exists in clinical trials
despite their rigor. In fact, a review of the use of clinical trials for
machine learning in healthcare found only 41 randomized clin-
ical trials, and most did not adhere to accepted reporting guide-
lines and had limited participation from minority groups.®® The
regulatory landscape is changing as exemplified by the actions of
four federal US agencies who recently issued a joint statement
against biased models and their use including non-medical use
like employment discrimination.”

Proprietary models present an additional layer of complexity
because they are usually trained and validated on private data
sets that are not accessible for other researchers to evaluate the
model. This “black box inside a black box” nature of commercial
AT models and concerns for protecting intellectual is recipe for
Al perpetuating or even scaling health inequities.® Evaluation
of proprietary algorithms, when performed, involves simulations
to try and replicate model performance. Academic-industry
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partnerships will be required to perform comprehensive model
evaluation including bias. It is encouraging to note that the tech-
nology to support these types of experiments (including some
that show portions of the data or blind the code to the evaluators)
are being developed as part of trusted research environments.

Pitfalls in model implementation and deployment
Despite obtaining the relevant regulatory approval, safely trans-
lating models from bench to bedside is even more challenging
than algorithm development. Vendors must navigate the convo-
luted process of integrating with current hospital IT systems, and
engaging clinicians and patients. Moreover, in many cases, the
models do not automatically perform well out of the box and
require some fine tuning and calibration to the local site data.
This test data must be created by the local IT team and then
curated carefully by the local clinicians who may not be familiar
with the requisite subgroup model performance evaluation and
other unintended consequences of Al bias.®® Due to lack of IT
infrastructure and process for continuous model monitoring,
changes in software or image acquisition equipment or proto-
cols can result in model failure that may not be immediately
detected, if at all. An interesting observation is that the type of
explanation matters when it comes to biasing the end user. For
example, the use of a machine learning algorithm by pathologists
to differentiate different liver cancer types found that the pathol-
ogist accuracy did not improve when the model’s prediction was
correct; however, the pathologist performance worsened when
the model’s prediction was incorrect.®> Human-machine collab-
oration is now at the forefront of improving model performance,
and to prevent unintended consequences including automation
bias.

DISCUSSION

In this paper, we highlight bias that can occur at each stage of
AT model development. Moreover, we frame this discussion in
the context of known AI model pitfalls potential where medical
imaging Al can fail. As highlighted in Figure 1, bias at each stage
of model development can occur due to machine factors, human
factors or a combination of both. Moreover, bias at one stage can
be propagated to other stages, hence efforts to detect and mitigate
bias should be at each stage. At each stage of the manuscript, we
provide suggestions on how to avoid bias. In the section below,
we recap on some broad principles for mitigating bias in AI for
medical imaging.

First and foremost, we urge researchers and practitioners
should avoid the exclusion of diverse and underrepresented
populations when collecting and selecting training data. We
also caution against broad grouping of underrepresented
populations into the “Other” category which is common when
researchers have small sample sizes. Neglecting continents
and ethnically diverse locations perpetuates health inequities
and hinders the growth and applicability of AI models. Simi-
larly, relying on data sets with narrow geographic and other
dimensions of diversity can further biases and limits generaliz-
ability of AI technologies. Reproducibility of results is another
concern that must be addressed. Failure to provide transparent
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documentation and detailed methodologies especially for
commercial algorithms has potential to perpetuate biases and
prevent critical analysis. Following guidelines for research
documentation and complete reporting increases transpar-
ency.®>%* We encourage researchers to ensure that their work
is reproducible, allowing for independent validation and bias
detection. We urge caution on relying on only mathematical
approaches of fairness evaluation (e.g. relying solely on fairness
through unawareness, demographic parity, or equalized odds
or opportunity), as these approaches may overlook nuanced
biases and fail to address systemic issues. The most challenging
issue for bias in medical imaging arises from techniques to
address class imbalance and how to evaluate and mitigate
harmful “hidden signals” in imaging data sets, as they can lead
to shortcut learning and reinforce existing biases.

To mitigate bias, we must continue to create and use diverse and
representative data sets, develop and test rigorous testing and
validation protocols, perform ongoing monitoring and evalua-
tion of model performance. Bias risk assessment tools can facil-
itate this process.®® Bias mitigation is especially important as we
understand human-machine partnership, with early findings
showing worsening performance for experts when presented
with biased model outputs. Most importantly, we cannot over-
emphasize the need for diverse teams to work on this challenging
topic. By taking a comprehensive and multifaceted approach to
addressing bias in AI model development, researchers and prac-
titioners can help to ensure that these technologies are used ethi-
cally and responsibly to benefit all patients.

CONCLUSION

Bias occurs across the Al life cycle, and hence must be tackled
at each step from problem definition all the way through post-
deployment monitoring. Radiology AI performance is affected
by other underlying practice patterns which can appear as
hidden signals in AI data sets. Due to limited AI explainability,
these hidden signals can be difficult to detect and have led to
algorithmic bias that encrypts health inequities into practice.
Ensuring that AT works for all will require diverse teams in addi-
tion to diverse data sets.
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