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INTRODUCTION
Despite the promise and hope of artificial intelligence (AI) 
to improve patient care, several real-world failures of AI 
systems have been documented. In addition to observing 
overall performance decline secondary to differences in 
data distribution after model deployment, subgroup eval-
uations have shown varying levels of performance with 
poor performance especially for historically underserved 
patients.1,2 These are individuals who have and continue to 
experience systematic and persistent barriers to accessing 
quality healthcare due to various factors, including race, 
ethnicity, socioeconomic status, geography, and language 
barriers. Bias in medical research is defined as the inten-
tional or unintentional introduction of systematic error 
into sampling or testing by, intentionally or not, selecting or 
encouraging one outcome or answer over others.3 Multiple 
publications exist elaborating on the types of (largely 

statistical) bias, and more importantly, how to mitigate their 
influence on the study’s conclusions.4–6 Recently, with the 
introduction of AI and machine learning, there has been a 
resurgence of interest in (once again, largely statistical) bias 
identification7,8 and tools to aid in its mitigation,9 particu-
larly as we move towards the real-world implementation of 
AI systems in various healthcare settings.

Efforts to mitigate these biases are challenging due to—
lack of a unified definition of bias10; focus on a statis-
tical definition of bias and a technocentric definition of 
bias without involving patients and communities; and 
post-hoc reflection on bias rather than as a deliverable 
by design.11 Bias audits for models tend to be piece-
meal—typically performed only during model develop-
ment and validation; health equity considerations should 
commence during data collection and curation through 
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ABSTRACT

Various forms of artificial intelligence (AI) applications are being deployed and used in many healthcare systems. As 
the use of these applications increases, we are learning the failures of these models and how they can perpetuate bias. 
With these new lessons, we need to prioritize bias evaluation and mitigation for radiology applications; all the while not 
ignoring the impact of changes in the larger enterprise AI deployment which may have downstream impact on perfor-
mance of AI models. In this paper, we provide an updated review of known pitfalls causing AI bias and discuss strategies 
for mitigating these biases within the context of AI deployment in the larger healthcare enterprise. We describe these 
pitfalls by framing them in the larger AI lifecycle from problem definition, data set selection and curation, model training 
and deployment emphasizing that bias exists across a spectrum and is a sequela of a combination of both human and 
machine factors.
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post-deployment monitoring.12 The failure and subsequent 
withdrawal of the Epic (TM) sepsis model used by 180 customers 
representing hundreds of hospitals provides a template to study 
AI failure across a spectrum.13,14 Upon testing at Michigan 
Medicine, the algorithm only identified 7% of patients whose 
sepsis diagnosis was missed by a clinician, failed to flag 67% 
of patients with sepsis despite generating alerts on 18% of all 
hospitalized patients resulting in alert fatigue. Before the subse-
quent model overhaul as a result of the publication (rather than 
some planned post-deployment evaluation and monitoring), it 
was observed that one input variable to the model was antibiotic 
orders by a provider—a type of data leakage since an infection 
is already being considered at that point. Many other lessons are 
noted from the sepsis use case including bypassing of regulatory 
oversight (due to packaging of the algorithm as a non-device 
decision-support tool), lack of calibration to various popula-
tion differences and hospital-specific practice patterns, lack of 
access to the proprietary algorithm for inspection of errors and 
biases, and lack of process for real-world evaluation post-model 
deployment. In cases where remote clinicians were deployed 
to monitor the algorithm outputs, the constant interruption 
(up to 18% of hospitalized patients generated an alert) led the 
floor nurses to cover the video camera to limit workflow disrup-
tion.13,14 A similar result is summarized in a systematic review 
of COVID-19 prediction models on CT scans and Chest X-rays 
(CXRs) that found limited clinical utility due to methodological 
flaws and underlying biases stemming from small training data 
sets, data set variability, and limited integration of non-imaging 
data, among others. The methodological flaws likely is a reflec-
tion of the lack of diversity in the development team to allow 
clinicians, data analysts and patient advocacy groups to work 
side-by-side throughout the AI life cycle.15

Imaging is at the center of inpatient and outpatient care delivery, 
touching a vast majority of patients. Prior articles have looked 
at bias in radiology images in isolation of the larger healthcare 
delivery system. In this paper, we provide an updated review 
of known pitfalls causing AI bias and discuss strategies for 
mitigating these biases within the context of AI deployment in 
the larger healthcare enterprise. We describe these pitfalls by 
framing them in the AI development and deployment lifecycle 
from problem definition, data set selection and curation, model 
training and deployment, and post-deployment evaluation and 
monitoring (Figure 1). We emphasize that bias permeates every 
step of the lifecycle and is a sequela of human, machine, and 
systems factors.

AI pitfalls when defining a task
Bias principles are largely considered too late, if at all, when 
designing AI. Health outcome prediction may be biased even 
when attributes that are associated with suboptimal care are 
hidden from a neural network agent. For example, Obermeyer 
et al demonstrated racial bias in a commercial prediction 
algorithm already in use for hundreds of million ambulatory 
patients. The algorithm was supposed to identify patients who 
may benefit from referral to a case management team based on 
their likelihood to develop complication. The algorithm referred 
less Black patients with a similar disease burden compared to 
White patients.1 The algorithm developers in this case did not 
use a race variable in their model input to avoid bias. However, 
by using healthcare costs as proxy for the need for complex care, 
the model learned from a system where Black patients are less 
likely to seek and/or receive care compared to matched White 
patients.1

Figure 1. Summarizes possible biases at every stage of AI development from model development, including demonstration of the 
intersection of human and machine in causing bias. AI, artificial intelligence.
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A similar example is an algorithm used to predict hospital 
length of stay to consult case managers for patients with shorter 
predicted length of stay to maximize throughput.16 The algorithm 
(which was abandoned before deployment) learnt that patients 
from less affluent zip codes are likely to have longer hospital 
stays and may not benefit from case management facilitation of 
early discharge. AI developers must always consider whether the 
proxy of a target outcome they are predicting or optimizing may 
be reflective of a systemic bias. Examples of such metrics in addi-
tion to healthcare cost include outputs of decision-making such 
readmission17 or patient no-show. Social scientists, in particular, 
can help explain systemic bias that may be embedded in the 
metric chosen. When defining a research problem or task in the 
context of AI, the choice of a bias-proof feature or outcome with 
a precise consensus definition across various stakeholders is crit-
ical. The need for cognitive diversity within the AI development 
team cannot be emphasized enough.

Pitfalls in data acquisition and collection
Bias in data is one of the major source of biased algorithmic 
outcome.18,19 Comprehensive AI data sets are limited and 
expensive to curate. Problems in data set development include 
limited patient diversity, limited resolution and missing clinical 
confounders, limited or suboptimal quality annotations, and 
lack of data standards and best practice to ensure quality and 
reproducibility. Existing AI data sets are acquired from limited 
geographical regions; most lack information necessary to evaluate 
subgroup performance of models. Differences in image acquisi-
tion and processing may result in “shortcuts” where models take 
cues from non-clinical features. For example, COVID-19 predic-
tion models have been demonstrated to learn which institution 
the images were obtained from rather than features pertaining 
to the underlying disease.15 Zech et al demonstrated a similar 
finding where models predicted pneumonia by learning where 
the CXRs was obtained from.20 To overcome this confounding, 
progress must be made to improve model training, evaluation, 
and explainability.21

A review of published AI articles between 2015 and 2019 in six 
disciplines found that data used for imaging AI models largely 
come from three states—California, Massachusetts, and New 
York—with none from 34 states.22 While there have been initia-
tives to build data sets from “data deserts”, presently, AI models 
are trained on data collected from tertiary care academic insti-
tutions. A review of 23 CXR data sets found that although 
the majority reported age and sex, only 8.7% reported race or 
ethnicity and 4.3% reported insurance status.23 Even large repos-
itories like the UK Biobank that represents a prospective cohort 
of 500,000 patients are limited for some patient groups: only 6% 
of the cohort are of non-European ancestry.24 Presently, it would 
be difficult to further evaluate model bias on these data sets. In 
fact, only 8% of the UK Biobank has been used for research, with 
most of this research focused on patients of European ancestry. 
It is important to note that in some countries collection of infor-
mation such as race and ethnicity are prohibited.25,26

Recent studies have shown that AI models can learn features that 
are “invisible” to a human expert. For example, CXRs can be used 

to predict ICD-10 codes related to cardiac disease (including 
conduction abnormalities) with accuracies of above 0.76.27 More 
concerning about these models is that information on social 
determinants of health like area deprivation index are learned 
and encoded on the CXRs. CXRs can also be used to predict 
demographic information—including insurance, self-reported 
race, and age.28,29 CXRs have also been used to predict biolog-
ical age, cardiac disease outcomes and healthcare cost at 1, 3 and 
5 years.30 Despite the surprising performance of AI models to 
detect these signals, there are limitations in model explainability. 
Why is this concerning? The “race signal” (or societal standing in 
general) in images may be used to inform clinical predictions and 
optimizations especially in this era of multimodal modeling.31 
The fact that these models demonstrate this superior ability even 
when the images are modified in such a way that they are barely 
perceptible as medical images implies that mitigating bias will be 
difficult at best.

These “hidden signals” in the context of ongoing demonstrations 
of bias beyond imaging presents a challenge because biases exist 
along the AI lifecycle even before the modeling step. For example, 
bias exist in who gets specific types of imaging, and when. Black, 
Hispanic, and non-White patients are less likely to undergo 
diagnostic imaging in the emergency department.32 Inappro-
priate use among historically underserved patients has been 
demonstrated in other areas of diagnostic imaging.33 An inves-
tigation of bystander CPR response for witnessed cardiac arrest 
found that Black and Hispanic patients or females are less likely 
to get CPR regardless of income level or neighborhood where 
the cardiac arrest occurred.34 This means that these patients 
would be excluded from an imaging cohort evaluating cardiac 
disease outcomes. Bias in clinical parameters such as glomerular 
filtration rate, pulse oximetry (with undiagnosed hidden hypox-
emia for historically underserved patients),35 differences in ICU 
severity scoring36 shape radiology data sets for machine learning 
through a cascade effect as they affect ordering patterns for 
medical images. Recent NIH funding through AIM-AHEAD37 
and Bridge2AI38 programs identifies this as the most challenging 
issue for mitigating bias in available data sets; in addition to a 
lack of diversity in the research terms and the absence of experts 
to provide guidance on limitations of the data. Some groups have 
suggested datasheets39,40—a checklist to guide model developers 
on how to use data—to address this problem.

Recently, many strategies have been employed to improve data 
availability for AI in medical imaging. Generative adversarial 
networks and latent diffusion models have been used to create 
synthetic data sets like brain MRI based on age, sex, and brain 
structure volumes.41 Our preliminary work found that signals 
that identify race are also contained on synthetic data sets. 
Theoretically, it may be easier to validate models using these 
controlled data sets (since one can specify how many patients to 
include in specific subgroups) but more work is needed to vali-
date this. Similarly, foundation models which generate specific 
text-image combinations are increasingly applied to radiology. 
Using Roentgen,42 a vision-language foundation model for CXR, 
we generated pictures of pneumothorax with and without chest 
tubes (Figure  2). The need for visual inspection of the images 
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represents obvious limitations of large-scale data set generation, 
but since these models are increasingly available to the public, 
guidelines will be required to emphasize their limitations and 
direct their appropriate use.

A milestone in medical imaging data was achieved in 2022 with 
the publication of RadImageNet,43 an open radiologic deep 
learning data set that consists of 1.35 million radiologic images 
for efficient transfer learning. In our experimental evaluation 
of the reading race paper where we demonstrated superhuman 
ability for AI to predict self-reported race across multiple modal-
ities, we found that some transfer learning tasks are better in 
race detection.28 The availability of a radiology specific data 
set to facilitate transfer learning is a step towards efficiency in 
model development. Such data set will also discourage the use 
of Frankenstein data sets—assembled from other data sets and 
redistributed under a new name—as pretraining can be done on 
RadImageNet and fine-tuned on a smaller data set. RadImageNet 
can and should learn from the pitfalls of its non-medical imaging 
counterpart, Imagenet, whose labels have had to be revised due to 
object co-occurrence, and whose distribution changed reflecting 
evolving patterns of Internet use over time.44,45

Pitfalls in model development
Numerous articles have been published on algorithmic bias in 
medical imaging (during augmentation, modeling of loss func-
tions, hyperparameter tuning and transfer learning) and thus 
this topic will not be a major focus of this article.46–48 In this 
section, we will discuss bias arising from demographic and clin-
ical confounders, lessons from federated learning and the chal-
lenge of dealing with class imbalance and those associated with 
multimodal data sets. The greatest challenge of bias detection 
and mitigation remains the lack of a consensus definition of algo-
rithmic bias despite many toolkits developed for this purpose. A 
model developer must determine, in consultation with clinicians, 
patients and communities what bias means for their model. For 
example, a developer will have to decide between aiming for 
group fairness (Black vs white patients, patients on government 
healthcare programs, or a specific age group) vs individual fair-
ness49 (where two individuals with similar characteristics are 
treated in the same manner). This is further complicated by the 
fact that should a developer decide to aim for group fairness, 
then various approaches can be applied including ignoring any 
protected attribute like race (fairness through unawareness); or 

equalizing the proportions of various groups like an equal compo-
sition of images from Blacks and Whites (demographic parity)50; 
or the process of equalized odds or opportunity.50 Attempts to be 
race agnostic or race neutral are challenging because it remains 
difficult to remove race and race proxies like pattern of health 
service utilization because of patient and/or provider factors. In 
fact, these models have been shown to demonstrate the same bias 
patterns even when protective attributes are removed from the 
model variables.1

This is further complicated when models can pick up “hidden 
signals”—clinical, demographic or technology-related 
confounders—in the data sets that may not be obvious to the 
model developer. AI models learn the underlying data set 
distribution instead of disease characteristics leading to model 
failure.51 This phenomenon, also called shortcut learning, can be 
mitigated using various techniques including feature disentan-
glement (where you reward a model when it learns disease char-
acteristics and penalize the model when it learns features that 
can discriminate between the original data sets where the images 
are obtained)51; applying pre-processing techniques like histo-
gram equalization to correct for differences in the images and 
lung masking to exclude areas where pathology is not expected.52 
Detecting these shortcuts and avoiding shortcut learning is an 
active area of research.

Federated learning—whereby models are trained across multiple 
institutions without the data being shared except for the model 
weights—has been proposed as a solution to improve model 
performance across diverse patient groups. In our own experi-
ence,53 we observed that pre-processing of images is important 
and affects the federated model performance. When we used 
the FedAvg algorithm, the model improved its generalizability 
on external data sets but at the expense of some degradation in 
internal validation. Moreover, FedAvg is biased to research sites 
contributing larger data sets with poor performance reported 
for smaller data sets. Overall, when local model performance 
matters—then personalized federated learning models (such as 
FedBN) should be prioritized, while for external performance, 
FedAvg should be used.53 It should be noted that model auditing 
and bias detection, which benefit from diverse perspectives 
during training and validation, are more difficult in federated 
learning where only the weights are shared across the groups of 
modelers.

Figure 2. The output of Roentgen with the left two images representing “pneumothorax with chest tubes” and the right two 
images “pneumothorax without chest tubes”. Visual inspection shows fragmented chest drains and no obvious pneumothorax on 
the images without chest tubes.
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Class imbalance occurs frequently in radiology. Radiology images 
tend to have high pixel dimensions and resolutions, yet pathology 
is represented on a small percentage of the pixels. For example, a 
screening mammogram has four views, yet the abnormality, e.g. 
a small cluster of calcifications, may appear on less than 3% of the 
image surface area. Beyond individual images, class imbalance 
also occurs due to distribution of positive versus negative cases 
(since most studies are normal), and across various demographic 
distributions within data sets. Several strategies are applied to 
mitigate this imbalance—including downsampling the majority 
class, upsampling the minority class, use of image augmentation 
techniques—and can change the training data set composition 
or cause model overfitting in small data sets with tightly curated 
features causing poor performance for the minority class. These 
techniques do not address sampling selection bias such as what 
in the example described earlier on Black and Hispanic patients 
less likely to survive an out-of-hospital cardiac arrest. The Blacks 
and Hispanic patients who survive an out-of-hospital cardiac 
arrest and are included in a data set may be different from 
those who died before reaching the hospital and are included 
in the database. Up- and downsampling may worsen bias. It is 
important to note that while we do not know the perfect compo-
sition of training and validation data sets to yield fair algorithms, 
sex imbalance in the data set has been demonstrated to have 
inferior performance for the minority group.54 The assumption 
that inclusion of more minority groups in the training data set is 
sufficient to fix bias is incorrect for the reasons above and since 
patients exist at the intersection of multiple group representation 
e.g. Black, Black Males/Females, Black Males/Females (young or 
old), Old Black Males/Females (with/without insurance).

There is increased development of fusion models that combine 
other data sources to medical imaging data (pathology, clinical 
tabular data, genomics among others).55 These models have 
a larger feature space used for training, which require feature 
selection early in the training process. Signals to detect race and 
other sensitive attributes may become even easier to learn during 
training. Ascertaining that these signals do not influence predic-
tions and optimizations by AI becomes even more problematic.

Pitfalls in model evaluation and validation
Model validation remains a barrier that limits incorporation 
of AI into clinical care. Many factors affect AI validation—
including high costs of validation (technical pipeline for data 
set preparation and curation, diverse team of machine learning 
and clinical experts, regulatory approval burden), and lack of 
consensus on what is the proper protocol of validation. It is crit-
ical that appropriate metrics are identified and reported for the 
clinical task being performed. A review of 151 imaging AI prod-
ucts cleared by the FDA by November 2021 showed that only 
64% of these products used clinical data for their validation; and 
these clinical data had limited information on demographic and 
technical confounders (only 4% had patient demographics and 
5% reported machine specifications).56 Moreover, only 34% had 
multi-institutional validation and reported which institution(s) 
was(were) used for validation.56 It is thus not surprising that 
most of these algorithms, despite regulatory approval, demon-
strate bias when deployed to various clinical settings especially 

when the target population is different from the population the 
model was trained on. In these cases, the AI models “fail silently” 
i.e. they do not provide an output to the user when they do not 
recognize the model input. These AI models will make a guess 
estimate of the prediction for wrong input data without providing 
the level of uncertainty. Differences in data distribution between 
model training and real-world deployment or external validation 
is also referred to the data being “out of distribution”.

External validation can ensure models generalize well across 
populations. Despite infrequent to even non-existent external 
validation for both FDA approved and peer reviewed articles, 
when external validation is performed, it is typically limited in 
scope. A recent systematic review found that 86 studies have a 
median of 240 cases used for external validation, with about 47% 
of which are positive cases.57 Even on what would be considered 
a small sample size for external validation, nearly half of the 86 
studies reported a modest increase in external performance with 
nearly a quarter reporting a substantial decrease, reiterating on 
the challenge of validation.57

It is critical to note that regulatory approval at its current state 
does not guarantee model fairness. Bias evaluation and miti-
gation frequently occurs post-hoc, and because the approval 
process require resubmission when models are updated, there 
are no incentives to address algorithmic bias during the initial 
application.

The FDA, Canadian Agency for Drugs and Technology, Euro-
pean Union, and the UK code of conduct for data-driven health-
care technology only provide high-level guidance to promote 
fairness. For example, these organizations issue statements like 
“consider evaluation of bias”, without clear instructions on how 
the evaluation should be performed, and what consequences 
result from not performing such evaluation.11 A review of AI 
reporting guidelines noted that references to bias are either 
absent, made in passing or included in the guideline supplement. 
While some people have called for more clinical trials in vali-
dating AI, we must acknowledge the limitations of such trials 
including high costs, the fact that most trials never meet their 
enrollment proportions, and that bias still exists in clinical trials 
despite their rigor. In fact, a review of the use of clinical trials for 
machine learning in healthcare found only 41 randomized clin-
ical trials, and most did not adhere to accepted reporting guide-
lines and had limited participation from minority groups.58 The 
regulatory landscape is changing as exemplified by the actions of 
four federal US agencies who recently issued a joint statement 
against biased models and their use including non-medical use 
like employment discrimination.59

Proprietary models present an additional layer of complexity 
because they are usually trained and validated on private data 
sets that are not accessible for other researchers to evaluate the 
model. This “black box inside a black box” nature of commercial 
AI models and concerns for protecting intellectual is recipe for 
AI perpetuating or even scaling health inequities.60 Evaluation 
of proprietary algorithms, when performed, involves simulations 
to try and replicate model performance. Academic-industry 
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partnerships will be required to perform comprehensive model 
evaluation including bias. It is encouraging to note that the tech-
nology to support these types of experiments (including some 
that show portions of the data or blind the code to the evaluators) 
are being developed as part of trusted research environments.

Pitfalls in model implementation and deployment
Despite obtaining the relevant regulatory approval, safely trans-
lating models from bench to bedside is even more challenging 
than algorithm development. Vendors must navigate the convo-
luted process of integrating with current hospital IT systems, and 
engaging clinicians and patients. Moreover, in many cases, the 
models do not automatically perform well out of the box and 
require some fine tuning and calibration to the local site data. 
This test data must be created by the local IT team and then 
curated carefully by the local clinicians who may not be familiar 
with the requisite subgroup model performance evaluation and 
other unintended consequences of AI bias.61 Due to lack of IT 
infrastructure and process for continuous model monitoring, 
changes in software or image acquisition equipment or proto-
cols can result in model failure that may not be immediately 
detected, if at all. An interesting observation is that the type of 
explanation matters when it comes to biasing the end user. For 
example, the use of a machine learning algorithm by pathologists 
to differentiate different liver cancer types found that the pathol-
ogist accuracy did not improve when the model’s prediction was 
correct; however, the pathologist performance worsened when 
the model’s prediction was incorrect.62 Human–machine collab-
oration is now at the forefront of improving model performance, 
and to prevent unintended consequences including automation 
bias.

DISCUSSION
In this paper, we highlight bias that can occur at each stage of 
AI model development. Moreover, we frame this discussion in 
the context of known AI model pitfalls potential where medical 
imaging AI can fail. As highlighted in Figure 1, bias at each stage 
of model development can occur due to machine factors, human 
factors or a combination of both. Moreover, bias at one stage can 
be propagated to other stages, hence efforts to detect and mitigate 
bias should be at each stage. At each stage of the manuscript, we 
provide suggestions on how to avoid bias. In the section below, 
we recap on some broad principles for mitigating bias in AI for 
medical imaging.

First and foremost, we urge researchers and practitioners 
should avoid the exclusion of diverse and underrepresented 
populations when collecting and selecting training data. We 
also caution against broad grouping of underrepresented 
populations into the “Other” category which is common when 
researchers have small sample sizes. Neglecting continents 
and ethnically diverse locations perpetuates health inequities 
and hinders the growth and applicability of AI models. Simi-
larly, relying on data sets with narrow geographic and other 
dimensions of diversity can further biases and limits generaliz-
ability of AI technologies. Reproducibility of results is another 
concern that must be addressed. Failure to provide transparent 

documentation and detailed methodologies especially for 
commercial algorithms has potential to perpetuate biases and 
prevent critical analysis. Following guidelines for research 
documentation and complete reporting increases transpar-
ency.63,64 We encourage researchers to ensure that their work 
is reproducible, allowing for independent validation and bias 
detection. We urge caution on relying on only mathematical 
approaches of fairness evaluation (e.g. relying solely on fairness 
through unawareness, demographic parity, or equalized odds 
or opportunity), as these approaches may overlook nuanced 
biases and fail to address systemic issues. The most challenging 
issue for bias in medical imaging arises from techniques to 
address class imbalance and how to evaluate and mitigate 
harmful “hidden signals” in imaging data sets, as they can lead 
to shortcut learning and reinforce existing biases.

To mitigate bias, we must continue to create and use diverse and 
representative data sets, develop and test rigorous testing and 
validation protocols, perform ongoing monitoring and evalua-
tion of model performance. Bias risk assessment tools can facil-
itate this process.65 Bias mitigation is especially important as we 
understand human–machine partnership, with early findings 
showing worsening performance for experts when presented 
with biased model outputs. Most importantly, we cannot over-
emphasize the need for diverse teams to work on this challenging 
topic. By taking a comprehensive and multifaceted approach to 
addressing bias in AI model development, researchers and prac-
titioners can help to ensure that these technologies are used ethi-
cally and responsibly to benefit all patients.

CONCLUSION
Bias occurs across the AI life cycle, and hence must be tackled 
at each step from problem definition all the way through post-
deployment monitoring. Radiology AI performance is affected 
by other underlying practice patterns which can appear as 
hidden signals in AI data sets. Due to limited AI explainability, 
these hidden signals can be difficult to detect and have led to 
algorithmic bias that encrypts health inequities into practice. 
Ensuring that AI works for all will require diverse teams in addi-
tion to diverse data sets.
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