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Abstract

Despite the expert-level performance of artificial intelligence (AI) models for various medical imaging tasks, real-world performance
failures with disparate outputs for various subgroups limit the usefulness of AI in improving patients’ lives. Many definitions of fairness
have been proposed, with discussions of various tensions that arise in the choice of an appropriate metric to use to evaluate bias; for
example, should one aim for individual or group fairness? One central observation is that AI models apply “shortcut learning” whereby
spurious features (such as chest tubes and portable radiographic markers on intensive care unit chest radiography) on medical images are
used for prediction instead of identifying true pathology. Moreover, AI has been shown to have a remarkable ability to detect protected
attributes of age, sex, and race, while the same models demonstrate bias against historically underserved subgroups of age, sex, and race in
disease diagnosis. Therefore, an AI model may take shortcut predictions from these correlations and subsequently generate an outcome
that is biased toward certain subgroups even when protected attributes are not explicitly used as inputs into the model. As a result, these
subgroups became nonprivileged subgroups. In this review, the authors discuss the various types of bias from shortcut learning that may
occur at different phases of AI model development, including data bias, modeling bias, and inference bias. The authors thereafter
summarize various tool kits that can be used to evaluate and mitigate bias and note that these have largely been applied to nonmedical
domains and require more evaluation for medical AI. The authors then summarize current techniques for mitigating bias from pre-
processing (data-centric solutions) and during model development (computational solutions) and postprocessing (recalibration of
learning). Ongoing legal changes where the use of a biased model will be penalized highlight the necessity of understanding, detecting,
and mitigating biases from shortcut learning and will require diverse research teams looking at the whole AI pipeline.
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INTRODUCTION
Artificial intelligence (AI) models in medical imaging are
able to match expert-level accuracy in multiple diagnostic
and prognostic tasks, driven largely by developments in deep
learning. For example, AI performance is at par with spe-
cialists for the diagnosis of common thoracic pathologies [1]
and diabetic retinopathy on fundoscopic images [2] and
outperforms single radiologists in detecting abnormalities
on screening mammography [3]. Despite this high
performance and the clearance of more than 520
algorithms by the FDA [4], the adoption of AI into the
clinical workflow is still lagging. Moreover, studies have
shown that there is a risk for unintended bias in AI
systems affecting individuals unfairly on the basis of race,
sex, and other clinical characteristics [5-8]. Although there
exists no consensus on a single definition of fairness, there
is recognition that bias can arise when AI leverages its
ability to recognize patterns in the training data and
unintentionally associates certain confounding characteristics
with the targeted outcome.

One central observation is that the cause of many pre-
diction failures in AI are not independent phenomena but
are instead connected in the sense that AI follows unin-
tended “shortcut” strategies for the targeted task [9,10]. For
example, AI can diagnose pneumonia, but it uses portable
intensive care unit radiographic markers as surrogates for
the task rather than detecting true underlying pathology
[11]. Similarly, pneumothorax detection uses shortcuts
based on inserted chest tubes [12]. It has been observed
that imaging AI models learn spurious age, sex, and race
correlations from images when trained for seemingly
unrelated tasks [13]. Simultaneously, studies have shown
AI imaging models demonstrate bias against historically
underserved subgroups of age, sex, and race in disease
diagnosis [14]. Therefore, it is concerning that an imaging
AI model may take shortcut predictions from these
correlations and subsequently generate outcomes that are
biased toward certain subgroups (often nonprivileged
groups), even when protected attributes are not explicitly
Fig. 1. Type of bias in different phases of artificial intelligence mo
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used as inputs into the model. In this article, we explore
causes of bias that arise from “shortcut learning” and
discuss methods of detection and mitigation of these biases.
WHAT TYPES OF AI BIAS ARE OBSERVED IN
DIFFERENT STAGES OF AI DEVELOPMENT
THAT LEAD TO “SHORTCUT” LEARNING?
Figure 1 highlights different types of bias that can be
introduced at various stages of imaging AI model
development and validation, resulting in shortcut learning.
These biases tend to be propagated to downstream tasks
and ultimately accumulate, leading to biased outcomes [15].

Dataset Bias (Data Collection Bias)
It is critical that training data used in machine learning be
representative of the real-world population. Data collection
bias can arise from inconsistencies in training data that do
not accurately represent a model’s intended use case,
resulting in skewed outcomes. Dataset bias can also arise
from sampling and labeling biases as well as confounders
that are learned by the AI models and used as shortcuts.

Selection or Sampling Bias. Selection or sampling bias
occurs because of improper sampling or inclusion of a
population in which a certain subgroup is heavily repre-
sented while others are not. Often, radiologic images are
collected from only a single or a few sites [16-19] and
thus lack geographic and racial diversity. The granularity
of available images also varies with underlying patterns
of systemic racism: Black and Hispanic patients tend to
undergo lower quality and nonadvanced imaging for
similar presenting symptoms in emergency departments
[20]. For example, Black women are less likely to
receive advanced technologies such as 3-D tomosynthesis
(which has been shown to reduce recall rates) and usually
undergo 2-D mammography for breast cancer screening,
highlighting a known fact that technological advancements
do not always benefit historically vulnerable subpopulations
in the early phases of adoption [21]. Other causes of
del development and validation causing “shortcut learning.”
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sampling bias include disparities in access, whereby some
patients will never be imaged and would hypothetically
be included in an ideal dataset [22]. AI models can
easily learn these patterns and use them in their
predictions [22]. Of more concern is the tendency of AI
models to hallucinate and not fail gracefully when they
encounter datasets that are out of the distribution of the
training dataset [23,24]. Further compounding this is the
lack of AI models providing a level of certainty or
uncertainty when rendering a prediction. Sampling bias
can also result in extreme class imbalance, and hence AI
models will learn from the majority case (usually the
privileged class) and not the minority classes (usually the
nonprivileged classes). These models usually result in
good areas under the curve for the majority class but do
not generalize to the minority classes. Moreover,
strategies to mitigate class imbalance can result in further
alteration of the disease distribution of the minority
classes. This is important because minority class
representation in the overall dataset may be small.
However, the burden of disease in the minority classes
may be larger as observed in breast cancer screening, in
which Black women tend to have more aggressive
cancers at diagnosis and at younger ages [25].

Labeling Bias. Most labels of publicly available datasets
are derived using weakly supervised techniques, whereby a
subset of labels are generated by a radiologist, which are then
used to train a model that is used to label the larger dataset
[26]. Although commonly adopted, this strategy can
perpetuate hidden signals in the textual reports that are
then embedded in the image dataset. Studies have shown
that AI models can detect sentiments in text reports, with
the ability to even identify a patient’s self-reported race
from textual descriptions of clinical notes [27]. Broad
classifications of datasets may miss smaller subsets of
categories that are embedded in the dataset, causing
hidden stratification [28]. This has been documented to
result in differences in model performance for
pneumothorax for the overall dataset and when analyzed
for patients with and without chest tubes [28]. Other
causes of reader-based bias include labeling by nonmedical
personnel, including workers on Amazon Mechanical Turk,
without transparency as to the training and standardization
of the labeling process. Delineation or annotation bias oc-
curs because there is significant interreader variability in
delineating regions of interest of diseased regions on imag-
ing, which are often used as one of the input channels for
deep learning or machine learning. This is amplified when
large multisite datasets are leveraged, as several readers are
usually involved in the labeling or annotation process, which
can introduce their biases into the model [29].
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Confounding Bias. The presence of a confounding attri-
bute can create the illusion of an association between certain
variables and the targeted outcome and force the model to
learn an incorrect relationship between the studied variable
and its outcome, leading to wrong conclusions. For
example, Rueckel et al [12,30] demonstrated that AI models
trained on open-source chest radiographic data for pneu-
mothorax detection learned the strong association between a
confounding attribute, the presence of thoracic tubes, and
the diagnosis of pneumothorax. This model makes a sys-
tematic error (false negative) when the thoracic tube is not
present. An area of ongoing research remains understanding
the value of confounders that are helpful in the model
prediction and how to harness such features to mitigate
disparities. For example, Pierson et al [31] demonstrated
that an algorithmic prediction score for the severity of
osteoarthritis mitigates known biases in pain and
osteoarthritis evaluation, yet the same AI models
demonstrate high accuracy in predicting self-reported race
of the patients [13]. In such cases, it is unclear as to the
contribution of the model’s ability to detect a nonbiologic
variable (in this case a confounder) and its contribution to
mitigating existing disparities. More work is required to
differentiate between spurious confounders such as patient
location in the intensive care unit (from radiographic
markers) versus significant confounders such as
demographics.
Bias in Modeling
During the modeling phase of an AI model, bias arises from
systematic errors resulting from erroneous assumptions
about the data, which may cause the model to miss a rele-
vant relationship between data inputs (features) and targeted
outputs (predictions).

Feature Bias. Various feature selection methods starting
from manual selection on the basis of prior knowledge to
automated methods, such as LASSO, minimum redun-
dancy, maximum relevance ensemble [32], and mutual
information maximization [33], are used to reduce features
(predictors) to the most predictive and robust ones. Such
selection techniques can be misleading for targeted tasks
and can introduce feature selection bias, which can
adversely affect a model’s prediction ability. This occurs
because the model overfits the data in the presence of
selection bias, causing it to not generalize well. Krawczuk
and Łukaszuk [34] demonstrated such feature selection
bias using the genomics dataset for well-studied clinical
use cases (colon cancer, leukemia, and breast cancer) when
the same dataset was used for feature selection and learning.
They demonstrated positive feature selection bias in 28
experiments after applying four selection methods (ReliefF;
Journal of the American College of Radiology
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minimum redundancy, maximum relevance; support vector
machine recursive feature elimination; and relaxed linear
separability), with a difference between validation and test
accuracies of between 2.6% to 41.67%. Incorrect assump-
tions on feature distribution can cause bias. For example,
certain feature selection methods assume a continuous and
gaussian distribution, but often categorical features or those
that are not normally distributed are fed to the feature se-
lection method. This can erroneously remove an important
feature or retain a relatively unimportant feature [35,36].

Algorithmic Bias. “Algorithmic bias” refers to systematic
and repeatable errors in an AI model that create unfair
outcomes for certain subgroups or individuals as a result of
algorithmic design choices during AI model development.
Selecting a loss function on the basis of the overall model
performance rather than for each subgroup skews perfor-
mance to the majority group. Design choices that can bias
the outcome of an algorithm include the choice of regula-
rization techniques, optimization functions, and use of sta-
tistically biased estimators [37]. For example, Ribeiro et al
[38] trained a model to discriminate images representing
wolves and huskies. Despite showing reasonable accuracy
to decide whether the image contained a wolf or not, the
model was inferring spurious correlations: the presence or
absence of snow in the background.

Bias in Inference or Decision Making
At the final stage of an AI model deployment, bias can be
introduced on the basis of how the results of the model are
presented to end users.

Presentation Bias. AI classification models output
numeric scores and rankings that are displayed on a user
interface for human decision makers. For medical imaging
computer vision tasks, it is common to display areas of in-
terest (correlating to areas of high probability) using gradient
class activation mapping and saliency maps. Evaluations of
these visualization techniques have shown that the utility,
repeatability, and reproducibility of these methods are
limited [39]. It is more challenging to use these techniques
to understand some of the shortcuts that the model is
relying on, especially when the evaluator lacks appropriate
medical knowledge. Another factor that can introduce bias
is related to how and when AI results are presented in
the user interfaces. Through visualization, counterexamples,
semantics, and uncertainty estimation, we can expect different
behaviors from end-user radiologists introducing bias [40].

Latent Bias. In latent bias, models may incorrectly label
something on the basis of historical data or because of a
stereotype that already exists in society [41]. For example, an
algorithm to predict treatment outcomes could learn and
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predict differing outcomes on the basis of patient race,
ethnicity, and socioeconomic factors instead of clinically
relevant information [41].
HOW TO MEASURE BIAS IN AI MODELS?
Bias arising from shortcut learning can be difficult to assess
and requires a combination of domain expertise and technical
ability. Today, imaging AI model performance is measured
primarily in terms of overall accuracy or ratio between
sensitivity and specificity (area under the receiver operating
characteristic curve). However, on a test dataset with a<10%
positivity rate, a biased model may provide 90% accuracy but
only 50% sensitivity. Caution should be given to the selection
of metrics to evaluate the performance of AI algorithms, as
most of them may not be appropriate and, in turn, may result
in a biased estimate of their performance [8,42]. It is
important to record disparity rates (eg, true positive, false
positive) of the nonprivileged subgroups to comprehend the
model performance before deployment. Table 1 summarizes
available open-source tool kits for bias detection. These have
been used for general AI evaluation from 2015 and their use in
health care machine learning is still limited.
HOW TO MITIGATE BIAS IN AN AI MODEL?
There are several ways to combat bias in AI models, which is
traditionally known as debiasing or “fair” AI model devel-
opment, starting with data-centric approaches to computa-
tion methods (Fig. 2). In the following subsection, we group
the methods on the basis of their applicability to different
phases of the AI model development.
Preprocessing Techniques
Preprocessing techniques, particularly those categorized as
“data-centric” approaches, mitigate bias (eg, sampling bias,
confounding bias) in the training data. There are many gen-
eral preprocessing techniques prescribed for AI, including
reweighting [43], disparate impact removal [44], learning fair
representation [45], optimized preprocessing [46], and the
maximum entropy approach [47]. Apart from these general
preprocessing techniques, cross-population training and
testing is the most adopted solution for imaging AI, in which
datasets from multiple institutions are combined to train a
model and validate its performance on a heterogeneous
population. For example, Das et al [48] trained a convolution
model on a mixture of two chest radiographic datasets (with
tuberculosis) and demonstrated that it contributed to a
greater prevalence of positive findings. Similarly, Zech et al
[11] studied the ability of models to detect pneumonia on
chest radiographs by training and testing on data from
different hospital systems in the United States and showed
that training sets with equal incidence across sites achieved
845



Table 1. Available open-source tool kits for bias detection and mitigation

Tool Year Description Target GitHub License Paper
Bias

Detection
Bias

Mitigation

AIF360 [79] 2019 Open-source
Python tool
kit

Performance
benchmarking

https://github.com/
Trusted-AI/AIF360

Apache version
2.0

https://ieeexplore.
ieee.org/abstract/
document/8843
908

Yes Yes

Themis-ML [80] 2017 Open-source
Python tool
kit

Measure fairness
for binary
classification

https://github.com/
cosmicBboy/
themis-ml

MIT open-
source

https://arxiv.org/
abs/1710.06921

Yes Yes

Fairlearn [81] 2020 Open-source
Python tool
kit

Interactive
visualization
dashboard and
unfairness
mitigation

https://github.com/
fairlearn/fairlearn

MIT open-
source

https://www.
microsoft.com/en-
us/research/
publication/
fairlearn-a-toolkit-
for-assessing-and-
improving-
fairness-in-ai/

Yes Yes

FairML [82] 2016 Open-source
Python tool
kit

Audit cumbersome
predictive models

https://github.com/
adebayoj/fairml

MIT open-
source

https://dspace.mit.
edu/
handle/1721.1/1
08212

Yes No

Aequitas [83] 2018 Open-source
Python tool
kit

Visualization of bias
metrics

https://github.com/
dssg/aequitas

MIT open-
source

https://arxiv.org/
abs/1811.05577

Yes No

VerifyML [84] 2022 Open-source
Python tool
kit

Computing fairness
degree

https://github.com/
cylynx/verifyml

Apache version
2.0

https://arxiv.org/
abs/2210.08418

Yes No

Fairkit-Learn
[85]

2022 Open-source
interactive
Python tool
kit

Understand fairness
and support
training

https://github.com/
INSPIRED-GMU/
fairkit-learn

— https://people.cs.
umass.edu/
wbrun/pubs/pubs/
Johnson22.pdf

Yes Yes

Fairness
comparison
[86]

2018 Open-source
Python þ R

Access to fairness-
enhancing
classification
algorithms

https://github.com/
algofairness/
fairness-
comparison

Apache version
2.0

https://arxiv.org/
abs/1802.04422

Yes Yes

(continued)
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Table 1. Continued

Tool Year Description Target GitHub License Paper
Bias

Detection
Bias

Mitigation

Fairness
Measures
[87]

2017 Open-source
Python

Measure fairness with
new metrics

https://github.com/
FairnessMeasures/
fairness-measures-
code

GPL-3.0 https://link.springer.
com/article/10.1
007/s10618-017-
0506-1

Yes No

FairTest [88] 2015 Open source
Python þ
MongoDB þ
Python R
interface

Discover confounding
factor

https://github.com/
columbia/fairtest

Apache version
2.0

https://arxiv.org/
abs/1510.02377

Yes No

Google’s What-
If Tool [89]

2020 Open source
Interactive
Python
toolbox

Understanding of a
black-box
classification or
regression ML
model

https://github.com/
pair-code/what-if-
tool

Apache version
2.0

https://pair-code.
github.io/what-if-
tool/

Yes No

IBM Watson
OpenScale
[90]

2022 Cloud engine:
free basic

Monitor AI models for
bias, fairness, and
trust

https://github.com/
IBM/watson-
openscale-samples

Apache version
2.0

https://www.ibm.
com/docs/en/
cloud-paks/cp-
data/3.5.0?
topic¼services-
watson-openscale

Yes Yes
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Fig. 2. Bias mitigation techniques at different phases of artificial intelligence model development.
the best performance on the testing set. Larrazabal et al [49]
showed that sex-balanced training datasets presented mini-
mal bias toward nonprivileged subgroup. However, the
collection of a large, balanced, multi-institutional dataset is
always challenging, and it does not guarantee the inclusion of
every variation and factor of the targeted population.

In contrast to cross-population training, developing
subgroup-specific modeling has been experimented with for
medical imaging. For example, Puyol-Antón et al [50] used two
preprocessing approaches for bias mitigation in cardiac MRI
segmentation: stratified batch sampling and protected group
models. In stratified batch sampling, the data are stratified by
the protected attribute(s) for each training batch, and
samples are selected to ensure that each protected group is
equally represented. The protected group models approach
trains a different segmentation model for each protected
group. Although training an individualized model for each
population subgroup is technically demanding (especially
when there are multiple subgroups), this approach is
necessary when there are biologic differences among various
subgroups, rather than trying to achieve good general
performance or making a diverse dataset [51-53].

Imaging preprocessing techniques are also applied as pre-
processing bias reduction solutions. For example, Rueckel et al
[30] demonstrated that including in-image pixel annotations of
dehiscent visceral pleura for pneumothorax detection on chest
radiography significantly improved algorithmperformance and
reduced the confounding bias caused by inserted thoracic
tubes. To mitigate skin-tone bias while diagnosing diabetic
retinopathy, Burlina et al [54] proposed debiasing by altering
the retinal appearance through augmentation of the training
data via controlled synthetic image generation to include
more data fromunderrepresented subgroups of the population.

In-Processing Techniques
There are multiple in-processing techniques prescribed for
AI debiasing for generic image analysis (eg, facial images,
natural images), including meta-fair classifier [55], prejudice
remover [56], grid search reduction and exponentiated
gradient reduction [57], GerryFair classifier [58],
848
adversarial debiasing [59,60], and adding fairness
constraints [61-64]. An example of application of an in
processing technique is the work of Dinsdale et al [65],
who constructed a multi-institutional AI model for detect-
ing age on brain MR images and identified that a model is
biased toward the data source and MR scanner subtypes.
They were able to improve the classification performance of
the model by domain adaptation, whereby they removed
confounding factors by creating a feature space that was
invariant to the acquisition scanner. After this debiasing, the
model’s ability to identify the site of origin decreased from
96% accuracy to 56%, with only a slight decrease in the
model task performance.

Correa et al [66] developed a two-step adversarial
debiasing approach with partial learning that reduced
disparity while preserving the performance of the targeted
diagnosis or classification task. They experimented with two
independent medical image case studies and showed bias
reduction while preserving the targeted performance on
both internal and external datasets in radiology and
dermatology. Puyol-Antón et al [50] added a meta-fair
classifier to the segmentation network, which classified
protected attributes along with the cardiac MRI
segmentations.

Researchers have also experimented by combining pre-
processing and in-processing techniques through federated
learning, in which a model is trained in a distributed,
collaborative fashion on decentralized data distribution,
without having direct access to patient-sensitive data [67].
However, existing federated learning methods focus on
minimizing the average aggregated loss functions [68,69],
leading to a biased model that performs well for some
hospitals while exhibiting undesirable performance for
other sites [70]. Recently, Hosseini et al [71] proposed a
new federated learning scheme, Prop-FFL, for “fair” AI
model training, which uses a novel optimization objective
function to decrease performance variations among partici-
pating hospitals. There is promise in using texture-agnostic
imaging biomarkers that are less sensitive to scanner and site
specific variations [72].
Journal of the American College of Radiology
Volume 20 n Number 9 n September 2023



Postprocessing Techniques
The most common postprocessing techniques for AI
debiasing are equalized odds/calibrated equalized odds
[73,74], reject option classification [43], and discrimination-
aware ensemble [43]. Marcinkevi�cs et al [75] proposed a
debiasing technique of an already trained network for
CXR classification on the basis of fine-tuning and pruning
to minimize unknown sources of bias and demonstrated that
this method reduces the classification disparity. In the task
of real age estimation from human facial images, Clapés et al
[76] used a simple postprocessing technique for bias
correction by shifting apparent age toward the
corresponding real age value.
DISCUSSION AND CONCLUSION
Shortcut learning, especially for protected attributes such
as demographics (rather than learning true disease char-
acteristics) that are barely, if at all, perceptible to the
clinician interpreting medical images, affect performance
of the affected subgroups, causing bias. Notably, this
occurs even when the model input does not include the
protected attribute, as shown in the work of Obermeyer
et al [8], in which race is not included as input in the
model. The challenge of these proxies is that they are
difficult to audit and remove from datasets, as
demonstrated by the work of Gichoya et al [13] on
AI’s ability to recognize self-reported races without a
clear explanation. Recent changes in legislation calling
for health care organizations to be penalized for using
biased models [77,78] highlight the challenge of
evaluating when shortcut learning is the root cause of
biased outcome. It is important for the AI community
to design AI solutions with bias in mind from the
point of idea development, data acquisition and
curation, model development and evaluation, and at
the point of deployment. To mitigate errors from
shortcuts, the AI team must be diverse, combining
both domain knowledge and technical expertise to
evaluate and then subsequently mitigate bias. We also
challenge the community to develop mechanisms
through which useful shortcuts that mitigate existing
disparities are harnessed to develop more equitable
algorithms that work for everyone.
J
B

TAKE-HOME POINTS

- Models use shortcuts as confounders in their
predictions.

- These shortcuts are not always obvious, and are often
hidden to the human eye which makes their evalua-
tion difficult.
ournal of the American College of Radiology
anerjee et al n Shortcut Bias in Radiology AI
- Various bias mitigation strategies including pre-
processing, post processing and algorithmic ap-
proaches can be applied to remove bias arising from
shortcuts.
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