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Abstract

Automated dataset curation in the medical domain has long been demanding as AI technologies are often hungry for
annotated data. To curate a high-quality dataset, identifying data variance between the internal and external sources
is a fundamental and crucial step as the data distributions from different sources can vary significantly and thus affect
the performance of the AI models. However, methods to detect shift or variance in data have not been significantly
researched. Challenges to this are the lack of effective approaches to learn dense representation of a dataset by
capturing its semantics and difficulties of sharing private data across medical institutions. To overcome the problems,
we propose a unified pipeline called MedShift to detect the top-level shift samples and thus facilitate the medical
curation. Given an internal dataset A as the base source, we first train anomaly detectors for each class of dataset
A to learn internal distributions in an unsupervised way. Second, without exchanging data across sources, we run
the trained anomaly detectors on an external dataset B for each class. The data samples with high anomaly scores
are identified as shift data. To quantify the shiftness of the external dataset, we cluster B’s data into groups class-
wise based on the obtained scores. We then train a multi-class classifier on A and measure the shiftness with the
classifier’s performance variance on B by gradually dropping the group with the largest anomaly score for each class.
Additionally, we adapt a dataset quality metric to help inspect the distribution differences for multiple medical sources.
We verify the efficacy of MedShift with musculoskeletal radiographs (MURA) and chest X-rays datasets from more
than one external source. Experiments show our proposed shift data detection pipeline can be beneficial for medical
centers to curate high-quality datasets more efficiently. An interface introduction video to visualize our results is
available at https://youtu.be/V3BF0P1sxQE.
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1. Introduction

Supervised deep learning has been promising in solv-
ing various medical image-related tasks, and often re-
quires well-annotated datasets for training, which highly
drives the generation of medical datasets by research in-
stitutions and hospitals. Many of them have established
or plan to establish research data curation services. When
building large data collections for usage in training and
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validation of machine learning, merely collecting a lot
of data is not enough Van Ooijen (2019); Yamoah et al.
(2019). It is essential that the quality of the data is suffi-
cient for the intended application in order to obtain valid
results Van Ooijen (2019). The medical datasets from
different institutions can be heterogeneous and with dis-
tribution shifts. Models trained on an internal dataset
A from a specific institute may show degraded perfor-
mance on an external dataset B from other sources due
to the possible noisy data, distribution shift and poor-
quality data, which are called shift data in this paper.
Dataset/Distribution shift is a common problem in pre-
dictive modelling and present in most practical applica-
tions, for reasons ranging from the bias in introduced
by experimental design the irreproducibility of the test-
ing conditions at training time Quiñonero-Candela et al.
(2009); Wang et al. (2021), of which imbalanced data,
domain shift, source component shift, may be the most
common forms Storkey (2009). The shift data introduces
out-of-distribution (OOD) in the dataset, and should ac-
count for the performance dropping of well-trained mod-
els. Thus, identifying the shift data is crucial for cleaning
the datasets and helpful in enhancing the model’s gen-
eralization with future training. Unfortunately, it still
lacks an effective way to identify the difference for a
bunch of datasets from the same medical domain. The
main challenge lies in the inaccessibility to external med-
ical datasets. Privacy concerns around sharing personally
identifiable information are a major barrier to data shar-
ing in medical research Schütte et al. (2021). To address
these privacy concerns, there has been an impressive num-
ber of large-scale research collaborations to pool and cu-
rate de-identified medical data for open-source research
purposes Clark et al. (2013). Nevertheless, most medi-
cal data is still isolated and locally stored in hospitals and
laboratories due to the worries associated with sharing pa-
tient data Van Panhuis et al. (2014). Therefore, an efficient
way of external dataset curation/cleaning without sharing
data is desired.

To overcome the obstacle, we propose MedShift, a
pipeline for identifying shift data, which takes advantage
of the accessible models trained on the internal dataset
to gain the in-distribution knowledge. As observed by
Ref. Rabanser et al. (2018), domain-discriminating ap-
proaches tend to be helpful for characterizing shifts qual-
itatively and determining if the are harmful. Therefore,

we utilize unsupervised anomaly detectors to learn the
“normality” of in-domain features. Suppose the internal
dataset has multiple classes, the feature representation of
each class is learnt by an OOD detector. Without shar-
ing the internal dataset with others, the shift data is theo-
retically under-represented and should be detected by the
accessible anomaly detectors as outliers from the exter-
nal datasets. Since the supervised deep learning suffers
from the performance dropping when facing the distri-
bution/dataset shifting, especially when training data and
test data are from two sources, two intuitions for exam-
ple, the shiftness of the identified data can be reflected via
the performance variance of a well-trained model. Instead
of checking the shift sample one by one, MedShift quan-
tifies the shiftness for each class in small groups. Based
on the assigned anomaly scores, each class of the exter-
nal datasets is clustered into multiple groups. Data sam-
ples with similar qualities will be grouped together. A
multi-class classifier is then trained on the internal dataset
and evaluated on the external datasets. Each group of
each class in external datasets is gradually dropped in
the decreasing order of anomaly scores. Meanwhile, the
classification performance on the updated external data is
recorded. The corresponding variation in performance,
hence, reflects the significance of the distribution shift
based on the fact that subtle changes in data distribu-
tion may affect the performance of well-trained classi-
fiers. Additionally, we adopt a dataset quality metric
(OTDD Alvarez Melis and Fusi (2020)) for helping fa-
cilitate the comparison of differences among a series of
datasets coming from the same medical domain. We sum-
marize our contributions as follows:

1. We propose an automatic pipeline of identifying shift
data for medical data curation applications and eval-
uating the significance of shift data without sharing
data between the internal and external organizations;

2. We employ two unsupervised anomaly detectors
to learn the internal distribution and identify sam-
ples showing the significant shiftness for external
datasets, and compared their performance;

3. We quantify the effects of the shift data by training
a multi-class classifier that learns internal domain
knowledge and evaluating the classification perfor-
mance for each sub-group of each class in external
domains after dropping the shift data;
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4. We adapt a data quality metric to quantify the dis-
similarity between the internal and external datasets;

5. We experiment on two pairs of representative medi-
cal datasets and show effective qualitative and quan-
titative results, which prove the usefulness of the
suggested pipeline for future medical dataset cura-
tion.

2. Methodology

In Section 2.1 and 2.2, we formulate the dataset shift
identification problem and introduce the necessary nota-
tions. Then, we propose and illustrate the pipeline of shift
identification in Section 2.3; we further dive deep in the
shiftness evaluation in Section 2.4. To complement, we
introduce the details of our anomaly detection architec-
ture used for MedShift pipeline in Section 2.5. Addition-
ally we introduce the dataset quality measurement in Sec-
tion 2.6.

2.1. Problem Statement
In view of the fact that the digital healthcare research

is hugely limited by the data sharing and privacy issues
because of the regulation imposed by Health Insurance
Portability and Accountability Act (HIPPA), MedShift
aims to overcome the barrier by exploiting the advantage
of sharing data quality evaluation models across the or-
ganizations and inspects the shiftness of external datasets
based on the learnt internal domain.

2.2. Formulation and Notation
Given two datasets DA and DB of the same medical

domain with the same classes (say c1, c2, ..., cn, n is the
total number of classes) from two intuitions A and B (e.g.,
a chest X-ray dataset from Emory University DA and a
chest X-ray dataset from Stanford University DB), let DA

be the internal dataset and DB be the external dataset.
Dataset distribution shift is termed the situation where
PDA (Y |X) = PDB (Y |X) but PDA (X) , PDB (X), where Y and
X represent the class labels and input data respectively.

Suppose we are given i.i.d. internal data {XA
ci
}ni=1 with n

classes, and input samples {xAci
j }

NA
ci

j=1 ⊂ XA
ci

(NA
ci

is the sam-
ple number of dataset A’s class ci) from the internal input
distribution, and i.i.d. external data {XB

ci
}ni=1 and input sam-

ples {xBci
j }

NB
ci

j=1 ⊂ XB
ci

(NB
ci

is the sample number of dataset

B’s class ci) from external distribution, the detection of
class-wise distribution shift for dataset DB based on DA

is to identify the anomalous samples X̄B
ci
⊆ XB

ci
. Take DA

class data as in-distribution (ID) data and train machine
learning models (e.g. classification models), the models
can learn the distribution of DA’s classes and make predic-
tions P(yA

ci
|xA

ci
) for some targets yA

ci
given data samples xA

ci

for class ci. Theoretically, given the target model trained
on the ID data XA

ci
, the predictions over set XB

ci
− X̄B

ci
should

produce more relevant results than on the whole set XB
ci

.

2.3. Shift Identification
In this section, we introduce the methodology for

identification of image data distribution shift to discrimi-
nate the poor-quality, noisy and under-represented sam-
ples from the external data in an automatic way. The
pipeline is built on top of the anomaly detection archi-
tecture to leverage the anomaly score as illustrated in the
framework in Fig. 1, which involves two separate phases
- internal training and test phase. An interesting chal-
lenge of shift identification is that the anomaly detectors
should be able to identify unknown anomalous patterns of
an external dataset without including any anomalous data
samples in training since in the real situation, exchanging
healthcare data among institutions and manually identify-
ing noisy or anomalous data are not trivial tasks.

During the training phase, only internal data samples
and the anomaly detection models (see introductions in
Sec. 2.5) are involved. As shown in the left blue part of
Fig. 1, a set of anomaly detectors F s for each targeted cat-
egories of DA are trained on the internal dataset in an un-
supervised fashion, considering the unavailability of ex-
ternal data sources. Each class will then obtain a unique
OOD detector Fc. The anomaly detector learns to assign
each data item with a specific anomaly score, a higher
score means more possibility of being an anomalous data.
Notably, the anomaly detectors are trained with accessible
internal data, and then shared with the external validation
sites.

In the test phase, no internal data will be shared but
the trained anomaly detector model with shift identifica-
tion capability will be exchanged. As represented with
pink figures and dotted flows in Fig. 1, each trained
anomaly detector is evaluated on each corresponding class
of dataset DB and assigns anomaly scores for the exter-
nal dataset. To prepare for the shiftness quantification in
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Figure 1: Shift data identification pipeline

Sec. 2.4, an unsupervised clustering algorithm is subse-
quently applied to each class and clusters the data items
into k groups based on the learnt anomaly scores. For each
class, the optimal number of cluster k is determined by
the Elbow Method. As observed during our experiments,
data collected from the same source usually presents sim-
ilar distributions. Therefore, we keep k as the same across
all the classes.

2.4. Shiftness Quantification

The above pipeline can be applied to detect the shift
data and assign each data with an anomaly score for in-
dicating its contribution to the dataset shift. Nonethe-
less, the shiftness of the identified data is not simple and
straightforward to evaluate in relation with the targeted
task. We suggest evaluating them in groups. As prepared
in the first stage of the whole pipeline, the clustering has
split each class of dataset DB into multiple groups accord-
ing to the anomaly scores. For simplicity, we assume that
each class has k groups. To evaluate the significance of
detected outliers, we train a multi-class classifier G for
DA and test on DB. As presented in Fig. 2, we gradu-
ally drop one group that has the largest anomaly scores
among current groups for each class until only one group

remains. The corresponding class-wise classification per-
formance is recorded. The performance variation thus is
an indicator of the shiftness of the specific group.

2.5. Anomaly Detection

As claimed in Sec. 2.3, we propose to utilize anomaly
detection models to not only identify distribution shifts
in the external dataset but also automated cleaning of the
external data without any data sharing. First, we briefly
describe our anomaly detection model - Cascade Varia-
tional autoencoder-based Anomaly Detector (CVAD) Guo
et al. (2021) used in MedShift, which was previously been
tested on both generic and medical image datasets. As
shown in Fig. 3, CVAD is a self-supervised variational
autoencoder-based anomaly detection model which com-
bines latent representation at multiple scales using the
cascade architecture of variational autoencoders and thus,
can reconstruct the in-distribution image I with high qual-
ity. Both the original image I and the reconstruction I

′

are then fed into a binary discriminator D to separate the
synthetic data from the in-distribution ones. The anomaly
score includes two parts: the reconstruction error S rec in
the first stage and the probability of being the anomaly
class S dis in the second stage. To adapt the application
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Figure 2: Shiftness quantification pipeline

Figure 3: CVAD architecture
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of detecting abnormal data for multiple unknown exter-
nal sources, we modified that anomaly score computation
by simply adding the two parts together S = S rec + S dis.
This gives us the advantage that when dealing with heavy
noisy data, the reconstruction error will be the dominant
indicator for shiftness; when facing the hard distinguished
cases the class probability plays the decision role.

As this method poses no assumption on the input data
and the applied situations, we utilize this anomaly detec-
tion architecture in our pipeline called MedShift w CVAD
across all the experiments. Apart from our anomaly de-
tection model CVAD, we also test other anomaly detector
f-AnoGAN Schlegl et al. (2019) in MedShift for compar-
ison (MedShift w f-AnoGAN in short).

2.6. Dataset Quality Measurement

To further quantify the efficacy of identifying the shift
data among external datasets, we measure the quality of
external datasets compared to the internal dataset and ob-
serve the difference after removing the shift data from the
external sources in an iterative fashion. We apply the
Optimal Transport Dataset Distance Alvarez Melis and
Fusi (2020) (OTDD) measure to calculating similarities,
or distances, between classification datasets. It relies on
optimal transportVillani (2009), which is a flexible ge-
ometric method for comparing probability distributions,
and can be used to compare any two datasets, regardless
of whether their label sets are directly comparable. For-
mally, the optimal transport dataset distance is defined as:

OT DD(DA, DB) = minπ∈∏(PA,PB))

∫
Z×Z

d(z, z
′

)dπ(z, z
′

)

(1)
, of which

d(z, z
′

) = (d(x, x
′

)2 + W2(Py, Py′ )
2)

1
2 (2)

, where DA, DB are the two datasets, x, x
′

and y, y
′

are
their samples and labels respectively, Wp denotes the p-
Wassertein distance. Please refer Ref. Alvarez Melis and
Fusi (2020) for more details.

3. Experiments

3.1. Datasets

There are two categories of medical datasets used in
this paper: (1) Musculoskeletal radiographs - Emory
MURA dataset (internal) and Stanford MURA dataset Ra-
jpurkar et al. (2017) (external); (2) Chest radiographs
- Emory Chest X-rays (internal, Emory CXR in short),
CheXpert dataset Irvin et al. (2019) (external 1) and
MIMIC dataset Johnson et al. (2019) (external 2).

MURA (musculoskeletal radiographs) is a large dataset
of bone X-rays. Each MURA dataset has seven classes,
XR HAND, XR FORARM, XR FIGER, XR SHOULDER,
XR ELBOW, XR WRIST, XR HUMERUS. Image exam-
ples are illustrated in Fig. 4a for each class. To demon-
strate the effectiveness of detecting shift data, we have
Emory MURA and Stanford MURA datasets as a pair and
treat Emory MURA as the internal dataset with Stanford
MURA as the external one. More class-wise details of the
datasets are presented in the upper of Table. 1.

For chest X-ray, we used three datasets - Emory CXR
(199,029 training and 12,873 test images retrieved
from Emory Healthcare system), CheXpert and MIMIC
datasets. The bottom part of Table. 1 shows the details
of the three datasets. The chest X-ray datasets have 14
classes (or diagnosis) in total. The classes are No Find-
ing, Enlarged Cardiomediastinum, Cardiomegaly, Lung
Lesion, Lung Opacity, Edema, Consolidation, Pneumo-
nia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural
Other, Fracture, Support Devices. Image examples are
displayed in Fig. 4b. Different from the MURA dataset
where class labels are mutually exclusive, each chest X-
ray data may have multiple common diagnoses.

3.2. Implementation Details

We implement the pipeline using Pytorch 1.5.0, Python
3.7.3 and Cuda compilation tools V10.0.130 on a machine
with 4 NVIDIA RTX A6000 GPUs with 48 GB memory.
More details about the training of anomaly detectors and
classifiers are introduced below.

3.2.1. Anomaly Detectors
We resize all the medical images to 256×256×channel

for simplicity considering the irregular image sizes. To
train CVAD, we use the Adam optimizer with a batch size
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(a)

(b)

Figure 4: Sample images from the datasets: (a) MURA examples for each anatomical joint class. (Intensity contrasts are changed for better
visualization); (b) chest X-ray examples for each class. (Image are resized for better visualization);

HAND FOREAMR FINGER SHOULDER ELBOW WRIST HUMERUS
Emory MURA 2,473 (21.33%) 368 (3.17%) 368 (3.17%) 3,451 (29.77%) 1,521 (13.12%) 2,858(24.65%) 553(4.77%)
Stanford MURA 3,851 (17.94%) 1,097 (5.11%) 3,660 (17.05%) 5,621 (26.18%) 2,397 (11.16%) 3,993(18.60%) 852(3.97%)

No
Finding

Enlarged
Cardiome-
diastinum

Cardio-
megaly

Lung
Lesion

Lung
Opacity Edema Consoli-

dation
Pneu-
monia

Atele-
ctasis

Pneumo-
thorax

Pleural
Effusion

Pleural
Other Fracture Support

Devices

Emory CXR (train) 57,973
(11.35%)

7,825
(1.53%)

27,019
(5.29%)

6,157
(1.21%)

64,439
(12.62%)

22,540
(4.41%)

6,906
(1.35%)

9,188
(1.80%)

66,150
(12.95%)

11,550
(2.26%)

51,828
(10.15%)

2,325
(0.46%)

2,114
(0.41%)

174,768
(34.22%)

Emory CXR (test) 7,962
(30.44%)

523
(2.00%)

1,256
(4.80%)

397
(1.52%)

2,141
(8.18%)

475
(1.82%)

151
(0.58%)

439
(1.68%)

1,684
(6.44%)

150
(0.57%)

711
(2.72%)

98
(0.37%)

177
(0.68%)

9,995
(38.21%)

CheXpert 22,381
(4.34%)

10,798
(2.09%)

27,000
(5.24%)

9,186
(1.78%)

105,581
(20.48%)

52,246
(10.13%)

14,783
(2.87%)

6,039
(1.17%)

33,376
(6.47%)

19,448
(3.77%)

86,187
(16.72%)

3,523
(0.68%)

9,040
(1.75%)

116,001
(22.50%)

MIMIC 143,352
(22.62%)

84,073
(13.26%)

76,957
(12.14%)

76,423
(12.06%)

65,047
(10.26%)

64,346
(10.15%)

36,564
(5.77%)

26,222
(4.14%)

14,675
(2.32%)

14,257
(2.25%)

10,801
(1.70%)

10,042
(1.58%)

7,605
(1.20%)

3,460
(0.55%)

Table 1: Dataset details, with total image number and the percentage (in brackets) of each class presented. Upper part of the table present the
MURA datasets and the lower is for Chest X-ray datasets.
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of 256 and 2,048 for MURA and chest X-ray dataset, re-
spectively; we set the learning rate of 1×10−5 and 1×10−3

for the generator and the discriminator of CVAD, respec-
tively; we train the generator with 250-500 epochs and the
discriminator with 10-20 epochs.

To train f-AnoGAN, we use the default Adam opti-
mizer with a learning rate of 2 × 10−4 and the same batch
sizes as CVAD for the corresponding datasets; we run the
generative adversarial training for 1000-1500 epochs and
the encoder training for 300-500 epochs.

3.2.2. Multi-class Classifiers
To quantify the shiftness of each clustered group for

each class of external dataset DB, we first train a multi-
class classifier G for the internal dataset DA. The clas-
sifier learns the class latent features of the internal do-
main and is able to predict class labels for test data. For
MURA data, we train ResNet152 He et al. (2016) on the
Emory MURA dataset with the publicly available pre-
trained weights as initialization. We optimize the clas-
sifier using the Adam optimizer with a batch size of 512,
a learning rate of 1 × 10−3 for 50 epochs. For chest X-
ray data, we utilize the model proposed by Ref. Yuan
et al. (2021), which originally aims for multi-label clas-
sification of the CheXpert dataset, and modifies it for the
Emory CXR 14-class classification task. Following the
same implementations in Ref. Yuan et al. (2021), we use
DenseNet121 Huang et al. (2017) as the feature extrac-
tion backbone and initialize it with the public pretrained
model weights. We train the classifier with a batch size of
256 for 20 epochs. The corresponding classification per-
formances, including the Precision, Recall, F1-score and
AUC score are reported in Sec. 3.3.3.

3.3. Results
In this section, we evaluate the performance of our

pipeline on three objectives - (i) shift data identification,
(ii) shift data partition and (iii) shift data significance eval-
uation. To increase readability, one representative class
is selected for explanation and more results about other
classes are supplemented in Appendix A and Appendix
B.

3.3.1. Shift Identification with Anomaly Detection
In the process of identifying the shift data from the ex-

ternal source, each class of the internal dataset will obtain

its own anomaly detector. Figure 5 presents the anomaly
score distributions of the representative class from both
MURA and Chest X-ray obtained by MedShift w CVAD
architecture. The X-axis represents the anomaly score and
Y-axis stands for the number of images that have anomaly
scores in the corresponding range. In both cases, Emory
data is considered as internal data.

For MURA dataset, the anomaly score distribution for
XR HAND is shown in the left of Fig. 5, with the blue
curve for Emory XR HAND and the orange distribution
curve for Stanford XR HAND data. As can be observed,
the peaks of the two distributions are clearly separated, the
Stanford data generally gets higher OOD scores than the
internal Emory data. The difference between the internal
and external anomaly score distributions can be easily ob-
served. The closer and more similar the two distributions
are, the less shift the external dataset has.

The similar phenomenon can also be seen in chest X-
ray data when being tested on two external datasets. For
chest X-ray dataset, the OOD detection for Consolidation
is shown in the right of Fig. 5, with the blue histogram
and curve for internal Emory CXR dataset, the orange
for CheXpert dataset and the green for MIMIC dataset.
The differences in the distributions reflect how different
the external chest X-ray data is from the internal domain.
MIMIC Consolidation has less overlapping with the in-
ternal Emory CXR compared with the CheXpert distri-
bution, which indicates that MIMIC contains more shift
Consolidation data than the CheXpert dataset.

3.3.2. Shift Data Clustering Results
In this section, we showcase the clustering results based

on anomaly scores for both MURA and chest X-ray
datasets. Specifically, Stanford MURA dataset, CheXpert
and MIMIC data are clustered into different groups ac-
cording to their anomaly scores obtained in the previous
step. The selection of group numbers is decided by the El-
bow distortion curves, please refer to Appendix A.3 and
Appendix A.4 for the curve details.

An XR HAND example of MURA dataset is shown
in the left of Fig. 6. There are 5 cluster groups in to-
tal, with each row representing one cluster. The groups
are sorted in ascending order, namely, the top row is
with the lowest anomaly scores and the bottom has the
largest anomaly scores. For better understanding, their
corresponding scores are labelled on top of each example

8



Figure 5: MedShift w CVAD example results of shift identification with anomaly detection - (left) anomaly score distributions on MURA HAND;
(right) anomaly score distributions for chest X-ray Consolidation. Distributions are truncated on samples with large anomaly scores for better
visualization.

Figure 6: MedShift w CVAD examples of clustering results - (left) clustering results on Stanford MURA HAND data; and (right) clustering results
on CheXpert Consolidation data. Each row represents one group with five example images. The groups are illustrated in ascending order based on
the anomaly scores from top to bottom. The corresponding anomaly score is on top of each image.
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item. As can be observed, the hand data gradually shows
more and more variations in terms of image quality, posi-
tioning, and noise, as the anomaly score becomes large,
especially when comparing the group 1 (first row with
lowest anomaly score) to group 5 (last row with high-
est anomaly score). The variance exhibiting in the ab-
normal data indicates the existence of distribution shift in
the external dataset. Nonetheless, the significance of the
detected under-represented/shift data samples in affecting
deep learning models’ prediction/classification remains to
be explored. Similarly, an example of chest X-ray Con-
solidation is presented in the right of Fig. 6. Following
the same arrange order, the difference for each group can
be clearly captured.

3.3.3. Classification Results for Shiftness Evaluation
As introduced in Sec. 3.2.2, a multi-class classifier

has to be trained on the internal dataset to quantify the
effect of removing the shiftness of external datasets for
the two targeted classification tasks. In this section, we
report the classification training and testing performance
on the internal dataset, and the performance on the ex-
ternal datasets after dropping the highest anomaly score
group gradually. The external group-wise shiftness is
thus revealed by the performance variation. An evident
decrease suggests a significant distribution shift in the
dropped group. For comparison, we report the classifica-
tion outcomes on external dataset based on the clustering
results obtained with both anomaly scores computed with
CVAD Guo et al. (2021) and f-AnoGAN Schlegl et al.
(2019) architectures.

Table. 2 shows the classification results for the MURA
data, including the test results of Emory MURA and eval-
uation on Stanford MURA groups. Both the class-wise
and average performances are reported, including Preci-
sion, Recall, F1-score and AUC scores. As the classifi-
cation is evaluated in the order of TOP k, TOP k-2, ...,
TOP 1 order, which is TOP 5, TOP 4, TOP 3, TOP 2,
TOP 1 for our experiments, meaning that we gradually
drop the group that with the highest anomaly scores and
evaluate the classification performance on the remain-
ing data. There are five groups being clustered for each
class. Therefore, the TOP 5 clusters constitute the whole
external dataset and the corresponding classification re-
sults for CVAD version and f-AnoGAN version are the
same. For simplicity, only one version is present (see Ta-

ble. 2 Row Stanford MURA TOP 5). The total num-
ber of images being evaluated on is listed in the row
#images for each class. The amount of data samples in
the dropped group is the number difference between the
adjacent groups. Take XR HAND for example, group 5
of MedShift w CVAD has 753 samples by calculating the
difference of total image number of TOP 5 clusters (3851)
and TOP 4 clusters (3098), (i.e., 753 = 3851 − 3098)
and group 5 of MedShift w f-AnoGAN has 13 samples
(13 = 3851 − 3838). As can be observed in the ta-
ble, the classifier’s predictions become more and more
accurate as the groups are discarded gradually based on
their anomaly score order. Look into the AUC scores
of XR HAND from TOP 5 to TOP 1, the values of both
CVAD and f-AnoGAN are growing, which means the re-
moved group contains data with certain shiftness and will
affect the in-domain model’s ability. The extent of shift-
ness can be inferred via the change of classification mea-
surements for a notable improvement indicates a severe
shifting exists in the dropped group. Although the same
trend is noted for both CVAD and f-AnoGAN versions
in general, the CVAD version can get more increase after
expelling the most anomalous group than the f-AnoGAN
version, which demonstrates the effectiveness of our Med-
Shift framework in determining shift data among external
datasets.

Aside from the quantification results above, we show
the confusion matrices in Fig. 7 to report more details
about the classification performance. Each confusion ma-
trix represents a particular situation of using different
cluster data during evaluation. To be clear, we use the
clustering results based on the pipeline with our CVAD
architecture. From left to right, top to bottom of Fig. 7,
the confusion matrices are for TOP 5, TOP 4, TOP 3, TOP
2, TOP 1 clusters, respectively. Since the groups that are
dropped contain shift data, the classification accuracy is
gradually rising after removing the shift data items, which
can be observed from the confusion matrix differences.

Furthermore, to demonstrate our pipeline’s capability
of separating shift data that are with high anomaly scores,
we random sample the same number of images as the
MedShift w CVAD’s TOP 1 cluster of Stanford MURA
dataset for each class and run the classifier to evaluate the
classification accuracy. The random sampling confusion
matrix is displayed in Fig 7f. Compared to the confusion
matrix of TOP 1 in Fig. 7e, there are more misclassified
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Table 2: MURA classification class-wise results with CVAD (left) and f-AnoGAN (right). The best classification values are in bold for each method.

Dataset Metric HAND FOREARM SHOULDER FINGER ELBOW WRIST HUMERUS Average
Macro Weighted

Emory test

#images 495 74 691 74 305 572 111 2,322
Precision 0.842 0.704 0.979 0.312 0.929 0.957 0.875 0.800 0.903
Recall 0.970 0.770 0.999 0.068 0.862 0.942 0.820 0.776 0.915
F1-score 0.901 0.735 0.989 0.111 0.895 0.950 0.847 0.775 0.905
AUC 0.960 0.880 0.995 0.531 0.926 0.964 0.907 0.984 0.992

Stanford TOP 5

#images 3,851 1,097 5,621 3,660 2,397 3,993 852 21,471
Precision 0.921 0.758 0.977 0.765 0.695 0.380 0.395 0.699 0.754
Recall 0.450 0.160 0.746 0.188 0.701 0.983 0.664 0.556 0.604
F1-score 0.605 0.264 0.846 0.301 0.698 0.548 0.496 0.537 0.594
AUC 0.721 0.578 0.870 0.588 0.831 0.808 0.811 0.902 0.915

Stanford TOP 4

#images 3,098 / 3,838 880 / 1,091 4,499 / 5,584 2,904 / 3,658 1,923 / 2,387 3,182 / 3,933 686 / 848 17,172 / 21,339
Precision 0.921 / 0.921 0.758 / 0.758 0.986 / 0.978 0.768 / 0.765 0.695 / 0.695 0.426 / 0.379 0.545 / 0.404 0.728 / 0.700 0.772 / 0.755
Recall 0.558 / 0.452 0.195 / 0.160 0.827 / 0.750 0.233 / 0.188 0.777 / 0.704 0.990 / 0.987 0.691 / 0.665 0.610 / 0.558 0.665 / 0.605
F1-score 0.695 / 0.606 0.311 / 0.265 0.899 / 0.849 0.358 / 0.302 0.734 / 0.700 0.596 / 0.548 0.609 / 0.503 0.600 / 0.539 0.654 / 0.596
AUC 0.774 / 0.722 0.596 / 0.579 0.911 / 0.872 0.609 / 0.588 0.867 / 0.832 0.843 / 0.811 0.833 / 0.812 0.938 / 0.903 0.949 / 0.916

Stanford TOP 3

#images 2,331 / 3,814 661 / 1,079 3,368 / 5,419 2,159 / 3,648 1,443 / 2,367 2,380 / 3,066 517 / 808 12,859 / 20,201
Precision 0.913 / 0.920 0.759 / 0.758 0.986 / 0.981 0.789 / 0.765 0.690 / 0.698 0.471 / 0.329 0.589 / 0.414 0.743 / 0.695 0.784 / 0.764
Recall 0.661 / 0.455 0.253 / 0.162 0.821 / 0.769 0.279 / 0.188 0.831 / 0.710 0.988 / 0.991 0.747 / 0.666 0.654 / 0.563 0.701 / 0.595
F1-score 0.767 / 0.609 0.379 / 0.267 0.896 / 0.862 0.413 / 0.302 0.754 / 0.704 0.638 / 0.494 0.659 / 0.511 0.644 / 0.535 0.692 / 0.593
AUC 0.823 / 0.723 0.624 / 0.580 0.908 / 0.882 0.632 / 0.588 0.891 / 0.834 0.867 / 0.814 0.862 / 0.813 0.953 / 0.905 0.961 / 0.916

Stanford TOP 2

#images 1,553 / 3,761 440 / 1,068 2,234 / 3,839 1,429 / 3,483 959 / 2,335 1,587 / 2,048 345 / 717 8,547 / 17,251
Precision 0.894 / 0.921 0.763 / 0.771 0.984 / 0.979 0.801 / 0.765 0.666 / 0.724 0.520 / 0.262 0.592 / 0.483 0.746 / 0.701 0.788 / 0.770
Recall 0.748 / 0.461 0.359 / 0.164 0.795 / 0.818 0.324 / 0.195 0.842 / 0.719 0.986 / 0.991 0.754 / 0.658 0.687 / 0.572 0.724 / 0.575
F1-score 0.815 / 0.614 0.488 / 0.270 0.879 / 0.891 0.461 / 0.311 0.744 / 0.722 0.681 / 0.414 0.663 / 0.557 0.676 / 0.540 0.717 / 0.582
AUC 0.864 / 0.725 0.677 / 0.580 0.895 / 0.907 0.654 / 0.590 0.894 / 0.838 0.889 / 0.808 0.866 / 0.814 0.963 / 0.904 0.968 / 0.908

Stanford TOP 1

#images 773 / 3,697 219 / 1,042 1,110 / 1,921 711 / 2,417 477 / 2,236 795 / 1,023 172 / 463 4,257 / 12,799
Precision 0.855 / 0.925 0.779 / 0.799 0.989 / 0.966 0.816 / 0.751 0.612 / 0.767 0.575 / 0.184 0.559 / 0.467 0.741 / 0.694 0.788 / 0.784
Recall 0.814 / 0.468 0.434 / 0.168 0.730 / 0.791 0.368 / 0.257 0.881 / 0.743 0.974 / 0.997 0.738 / 0.590 0.705 / 0.573 0.732 / 0.547
F1-score 0.834 / 0.622 0.557 / 0.278 0.840 / 0.869 0.508 / 0.382 0.722 / 0.755 0.723 / 0.310 0.637 / 0.521 0.689 / 0.534 0.726 / 0.580
AUC 0.892 / 0.726 0.714 / 0.582 0.863 / 0.893 0.676 / 0.618 0.905 / 0.848 0.904 / 0.806 0.857 / 0.782 0.969 / 0.909 0.971 / 0.907

cases, especially for XR HAND class, where there are 629
samples correctly predicted and 144 wrong predictions af-
ter applying our pipeline whereas 354 correct predictions
and 419 misclassified cases for the random sampling situ-
ation. The improvement of classification accuracy man-
ifests that our MedShift can identify the shift data that
will degrade the performance of an in-domain model. The
same observation holds for the chest X-ray experiments,
please refer to Appendix B.3 for the classification details.

3.3.4. Dataset Quality Measurement Results
We report the Stanford MURA dataset quality calcu-

lated via the OTDD metric proposed above in the left of
Fig. 8. We respectively evaluate the quality for TOP 5,
TOP 4, TOP 3, TOP 2, TOP 1 cases as indicated by the
X-axis values of the plots. To compare, we test our
pipeline with both CVAD and f-AnoGAN anomaly detec-
tion architectures. As can be seen, the distance between
Stanford MURA and Emory MURA datasets is decreas-
ing when the anomalous groups with shift data are re-
moved gradually. Nevertheless, our CVAD version (in

blue) shortens the distance more and faster than the f-
AnoGAN (in orange) version. And the general external
dataset quality achieves the best when it is composed by
the group with the lowest anomaly scores, which follows
the same conclusion as the average classification perfor-
mance in Tab. 2.

For the reason that the OTDD method computes the dis-
tance values with label-data pairs, it was not designed for
multi-label datasets. To adapt for the chest X-ray sce-
nario, we report the class quality instead of the whole
dataset. In the right of Fig. 8, we show CheXpert and
MIMIC Consolidation class quality obtained by both the
CVAD and f-AnoGAN versions. Generally, the distances
between the internal and external are shortened in a lim-
ited way with MedShift w CVAD model, but the distance
values are enlarged by the f-AnoGAN version. Since the
distance represents the dissimilarity between the evalu-
ated dataset pair, an increase of distance indicates a failure
of identifying shift data in the external domain. Here, the
CVAD version shows better performance than the Med-
Shift w f-AnoGAN model.
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(a) (b) (c)

(d) (e) (f)

Figure 7: MedShift w CVAD confusion matrices for Stanford MURA with different numbers of clusters - (a) confusion matrix of TOP 5 clusters;
(b) confusion matrix of TOP 4 clusters; (c) confusion matrix of TOP 3 clusters; (d) confusion matrix of TOP 2 clusters; (e) confusion matrix of
TOP 1 cluster; (f) confusion matrix with random sampling the same number of images as the TOP 1 cluster.

Moreover, an increase of distance is also an indicator of
stop sign for detecting shift data of a well-performed shift
identification model. From the anomaly score distribution
plots of Fig. 8, it is clear that external MURA HAND has
more variance than the external chest X-ray Consolida-
tion data. Thus, shift data identification is relatively diffi-
cult for the chest X-ray dataset, and the quality improve-
ment is limited when little shiftness exists in the external
dataset. Depending on the quality expectations, users can
decide to remain the original Consolidation class or re-
move one or two top groups from Consolidation. Due to
the space limitation, only one chest X-ray class case is

illustrated, please refer to Appendix B.4 for more class
quality results.

4. Discussion

In this paper, we have designed an automated pipeline -
MedShift, for medical dataset curation based on anomaly
score. Under-the-hood, MedShift identifies image data
distribution shift based on anomaly detection and unsu-
pervised clustering to discriminate the poor-quality, noisy
and under-represented samples from the external data.
The anomaly detection architecture involves two separate
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Figure 8: Dataset quality measurement results - (left) Stanford MURA whole dataset’s quality; (right) CheXpert and MIMIC Consolidation class
quality. X-axis values represent situations of the groups in use, and Y-axis values indicate the distance between the internal and external datasets
(the lower the better). Distance mean and stdev values of ten rounds of evaluations are present in the plots.

implementation phases - (1) internal training - time con-
suming and needs to be trained for each targeted class la-
bel, and (2) test phase - quick, only forward pass which
needs minimal data pre-processing and cleaning from the
external sites. Once trained, the anomaly detectors should
be able to identify unknown anomalous patterns from an
external dataset without ever seeing such anomalous data
examples in training. This quality makes the proposed
pipeline particularly suitable for medical image dataset
curation since exchanging healthcare data among institu-
tions and manually identifying noisy or anomalous data
are both extremely challenging in the current healthcare
situation.

Our pipeline is flexible towards the particular anomaly
detector architectures. We evaluated two use-cases - diag-
nosis from chest X-ray and classifying anatomical joints
from MURA and applied two different anomaly detectors
CVAD and f-AnoGAN. Even though our CVAD version
efficiently shortens the data quality matrix (OTDD) faster
than f-AnoGAN and reaches convergence for the shift
data removal by dropping lower number of cases from ex-
ternal data, the targeted final classification performance
stays similar for both architectures.

Our experiments showed that being trained only on in-
ternal Emory datasets, deep learning models classifica-
tion accuracy is gradually rising on the external dataset
after removing the shift data items via MedShift and ul-
timately achieved performance close to the internal data.
The improvement of classification accuracy represents the

fact that the MedShift can identify relevant shift data that
will degrade the performance of an in-domain model and
be able to reproduce the internal performance on unseen
external data. Moreover, the brief cluster exploration on
the external dataset showed that higher anomaly cluster
groups contain more variations in terms of image qual-
ity, positioning, noise, and the pipeline correctly identi-
fied the shift data. As an immediate future study, we plan
to conduct a reader study with expert radiologists to inter-
actively evaluate the proposed platform and quantify the
performance based on user-feedback matrices.

In its current state, the proposed pipeline MedShift can
serve domain-specific quality checks and derive power-
ful and actionable insights. The suggested workflow will
be beneficial in future non-shareable healthcare collabo-
ration where the MedShift pipeline will be set up as a
browser-based service within the local firewall for auto-
mated dataset curation with multi-class labels.
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Appendix A. MURA Results

Appendix A.1. Anomaly Score Distribution Results with CVAD

Figure A.9: MedShift w CVAD’s MURA anomaly score distribution results for classes FOREARM, SHOULDER, FINGER, ELBOW, WRIST and
HUMERUS from left to right, top to bottom.
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Appendix A.2. Anomaly Score Distribution Results with f-AnoGAN

Figure A.10: MedShift w f-AnoGAN’s MURA anomaly score distribution results for classes HAND, FOREARM, SHOULDER, FINGER, ELBOW,
WRIST and HUMERUS from left to right, top to bottom.
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Appendix A.3. MedShift w CVAD Elbow Distortion Curve Results

Figure A.11: MedShift w CVAD’s elbow distortion curves on Stanford MURA dataset. From left to right, top to bottom, there are plots for
XR HAND, XR FOREARM, XR SHOULDER, XR FINGER, XR ELBOW, XR WRIST, XR HUMERUS, respectively. X-axis values represent the
selection of K, the number of groups to be clustered into, and Y-axis values indicate the distortion.
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Appendix A.4. MedShift w fAnoGAN Elbow Distortion Curve Results

Figure A.12: MedShift w fAnoGAN’s elbow distortion curves on Stanford MURA dataset. From left to right, top to bottom, there are plots for
XR HAND, XR FOREARM, XR SHOULDER, XR FINGER, XR ELBOW, XR WRIST, XR HUMERUS, respectively. X-axis values represent the
selection of K, the number of groups to be clustered into, and Y-axis values indicate the distortion.
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Appendix A.5. Clustering Results with CVAD

(a) FOREARM (b) FINGER

(c) SHOULDER (d) ELBOW

Figure A.13: MedShift w CVAD’s clustering results of Stanford MURA classes (a) FOREARM; (b) FINGER; (c) SHOULDER; and (d) ELBOW.
Each row represents one group with five example images. The groups are illustrated in ascending order based on the anomaly scores from top to
bottom. The corresponding anomaly score is on top of each image.
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(a) WRIST (b) HUMERUS

Figure A.14: More MedShift w CVAD’s clustering results of Stanford MURA classes (a) WRIST; (b) HUMERUS following the same arrangement
style of Fig. A.13.
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Appendix A.6. Clustering Results with f-AnoGAN

(a) HAND fanogan (b) FOREARM fanogan

(c) FINGER fanogan (d) SHOULDER fanogan

Figure A.15: MedShift w f-AnoGAN’s clustering results of Stanford MURA classes (a) HAND; (b) FOREARM; (c) FINGER and (d) SHOULDER.
Each row represents one group with five example images. The groups are illustrated in ascending order based on the anomaly scores from top to
bottom. The corresponding anomaly score is on top of each image.
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(a) ELBOW fanogan (b) WRIST fanogan

(c) HUMERUS fanogan

Figure A.16: More MedShift w f-AnoGAN’s clustering results of Stanford MURA classes (a) ELBOW; (b) WRIST and (c) HUMERUS following
the same arrangement style of Fig. A.13.
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Appendix B. Chest X-ray Results

Appendix B.1. Anomaly Score Distribution Results

Figure B.17: MedShift w CVAD class-wise chest X-ray anomaly score distributions for Emory CXR (blue), CheXpert (orange) and MIMIC (green)
datasets. Distributions may be truncated for better visualization.
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Figure B.18: More MedShift w CVAD class-wise chest X-ray anomaly score distributions for Emory CXR (blue), CheXpert (orange) and MIMIC
(green) datasets. Distributions may be truncated for better visualization.
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Appendix B.2. Clustering Results

Appendix B.2.1. Clustering Results for CheXpert

(a) No Finding (b) Enlarge Cardiomediastinum

(c) Cardiomegaly (d) Lung Lesion

Figure B.19: MedShift w CVAD CheXpert clustering results for classes (a) No Finding; (b) Enlarge Cardiomediastinum; (c) Cardiomegaly and (d)
Lung Lesion following the same arrangement style of Fig. A.13.
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(a) Lung Opacity (b) Edema

(c) Pneumonia (d) Atelectasis

Figure B.20: More MedShift w CVAD CheXpert clustering results for classes (a) Lung Opacity; (b) Edema; (c) Pneumonia and (d) Atelectasis
following the same arrangement style of Fig. A.13.
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(a) Pneumothorax (b) Pleural Effusion

(c) Pleural Other (d) Fracture

Figure B.21: More MedShift w CVAD CheXpert clustering results for classes (a) Pneumothorax; (b) Pleural Effusion; (c) Pleural Other and (d)
Fracture following the same arrangement style of Fig. A.13.
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(a) Support Devices

Figure B.22: More MedShift w CVAD CheXpert clustering results for classes (a) Support Devices following the same arrangement style of
Fig. A.13.
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Appendix B.2.2. Clustering Results for MIMIC

(a) No Finding (b) Enlarge Cardiomediastinum

(c) Cardiomegaly (d) Lung Lesion

Figure B.23: MedShift w CVAD MIMIC clustering results for classes (a) No Finding; (b) Enlarge Cardiomediastinum; (c) Cardiomegaly and (d)
Lung Lesion following the same arrangement style of Fig. A.13.
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(a) Lung Opacity (b) Edema

(c) Consolidation (d) Pneumonia

Figure B.24: MedShift w CVAD MIMIC clustering results for classes (a) Lung Opacity; (b) Edema; (c) Consolidation and (d) Pneumonia following
the same arrangement style of Fig. A.13.
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(a) Atelectasis (b) Pneumothorax

(c) Pleural Effusion (d) Pleural Other

Figure B.25: MedShift w CVAD MIMIC clustering results for classes (a) Atelectasis; (b) Pneumothorax; (c) Pleural Effusion and (d) Pleural Other
following the same arrangement style of Fig. A.13.
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(a) Fracture (b) Support Devices

Figure B.26: MedShift w CVAD MIMIC clustering results for classes (a) Fracture; (b) Support Devices following the same arrangement style of
Fig. A.13.

31



Appendix B.3. Classification Results

Table B.3: Chest X-ray data classification class-wise results with CVAD (left) and f-AnoGAN (right) architectures.

Dataset Metrics No Finding Enlarged
Cardiomediastinum Cardiomegaly Lung

Lesion
Lung

Opacity Edema Consolidation Pneumonia Atelectasis Pneumothorax Pleural
Effusion

Pleural
Other Fracture Support

Devices
AVERAGE

Micro Macro Weighted Samples

Emory CXR Test

#images 7,936 522 1,256 397 2,141 830 151 439 2,315 150 711 98 177 9,994
Precision 0.753 0.082 0.385 0.090 0.531 0.416 0.107 0.153 0.577 0.066 0.516 0.066 0.058 0.93 0.489 0.338 0.705 0.633
Recall 0.960 0.232 0.697 0.446 0.588 0.627 0.437 0.490 0.580 0.433 0.686 0.520 0.277 0.109 0.514 0.506 0.514 0.537
F1-score 0.844 0.121 0.496 0.150 0.558 0.500 0.171 0.233 0.579 0.115 0.589 0.118 0.096 0.195 0.502 0.340 0.477 0.54
AUC 0.724 0.561 0.788 0.652 0.742 0.783 0.697 0.697 0.743 0.681 0.824 0.732 0.607 0.540 0.710 0.698 0.719 0.661

TOP 5

CheXpert

#images 22,381 10,798 27,000 9,186 10,5581 52,246 14,783 6,039 33,376 19,448 86,187 3,523 9,040 116,001 212,273
Precision 0.356 0.098 0.319 0.081 0.581 0.462 0.122 0.055 0.196 0.118 0.623 0.033 0.091 0.670 0.343 0.272 0.479 0.351
Recall 0.684 0.073 0.610 0.610 0.832 0.625 0.556 0.495 0.818 0.884 0.835 0.461 0.173 0.845 0.752 0.607 0.752 0.722
F1-score 0.468 0.084 0.419 0.143 0.684 0.531 0.200 0.098 0.316 0.208 0.714 0.061 0.120 0.747 0.471 0.342 0.566 0.446
AUC 0.754 0.512 0.651 0.638 0.654 0.746 0.662 0.603 0.694 0.697 0.775 0.625 0.533 0.756 0.726 0.664 0.724 0.709

MIMIC

#images 143,352 10,042 64,346 10,801 76,423 36,564 14,675 26,222 65,047 14,257 76,957 3,460 7,605 84,073
Precision 0.674 0.040 0.412 0.060 0.318 0.358 0.096 0.133 0.315 0.084 0.564 0.028 0.036 0.502 0.315 0.259 0.433 0.4
Recall 0.754 0.078 0.440 0.539 0.740 0.619 0.543 0.428 0.754 0.719 0.700 0.379 0.158 0.739 0.661 0.542 0.661 0.661
F1-score 0.712 0.053 0.425 0.108 0.445 0.454 0.164 0.202 0.445 0.151 0.624 0.052 0.058 0.598 0.427 0.321 0.504 0.464
AUC 0.757 0.515 0.656 0.639 0.650 0.764 0.661 0.602 0.693 0.693 0.786 0.631 0.531 0.759 0.731 0.667 0.727 0.712

TOP 4

CheXpert

#images 17,834 / 4,845 8,899 / 4,282 22,846 / 11,259 7,518 / 2,609 88,278 / 39,924 45,239 / 21,838 12,217 / 5,845 4,934 / 2,106 28,414 / 13,719 15,609 / 6,520 73,595 / 35,301 3,141 / 1,079 7,464 / 3,325 97,280 / 45,373 173,664 / 68,757
Precision 0.382 / 0.327 0.099 / 0.112 0.315 / 0.369 0.085 / 0.078 0.583 / 0.645 0.463 / 0.528 0.119 / 0.138 0.054 / 0.059 0.199 / 0.234 0.115 / 0.120 0.626 / 0.693 0.037 / 0.031 0.098 / 0.120 0.670 / 0.759 0.351 / 0.395 0.275 / 0.301 0.483 / 0.545 0.358 / 0.399
Recall 0.640 / 0.638 0.071 / 0.064 0.624 / 0.631 0.602 / 0.594 0.848 / 0.853 0.647 / 0.660 0.553 / 0.562 0.505 / 0.519 0.833 / 0.848 0.884 / 0.902 0.855 / 0.858 0.469 / 0.450 0.157 / 0.146 0.864 / 0.865 0.765 / 0.772 0.611 / 0.614 0.765 / 0.772 0.737 / 0.750
F1-score 0.478 / 0.433 0.083 / 0.082 0.419 / 0.466 0.150 / 0.138 0.691 / 0.735 0.540 / 0.587 0.196 / 0.222 0.098 / 0.106 0.321 / 0.366 0.204 / 0.212 0.723 / 0.767 0.069 / 0.059 0.121 / 0.132 0.755 / 0.808 0.481 / 0.522 0.346 / 0.365 0.573 / 0.618 0.457 / 0.498
AUC 0.760 / 0.769 0.518 / 0.515 0.709 / 0.710 0.655 / 0.659 0.611 / 0.602 0.691 / 0.693 0.622 / 0.618 0.623 / 0.629 0.589 / 0.577 0.607 / 0.605 0.740 / 0.728 0.623 / 0.614 0.546 / 0.546 0.661 / 0.666 0.729 / 0.733 0.640 / 0.638 0.715 / 0.722 0.661 /0.656

MIMIC

#images 115,457 / 25,060 8,503 / 4,053 53,833 / 24,040 9,033 / 2,629 63,674 / 26,173 30,636 / 14,797 12,159 / 6,146 21,621 / 8,548 54,894 / 25,083 11,529 / 4,943 64,695 / 30,863 2,915 / 1,192 6,223 / 2,236 70,786 / 34,346 290,657 / 89,546
Precision 0.675 / 0.634 0.042 / 0.057 0.413 / 0.503 0.062 / 0.062 0.322 / 0.386 0.359 / 0.422 0.097 / 0.135 0.133 / 0.163 0.323 / 0.407 0.084 / 0.107 0.565 / 0.653 0.029 / 0.039 0.036 / 0.048 0.506 / 0.643 0.319 / 0.374 0.260 / 0.304 0.433 / 0.476 0.399 / 0.421
Recall 0.749 / 0.726 0.082 / 0.070 0.451 / 0.472 0.540 / 0.510 0.739 / 0.786 0.645 / 0.675 0.542 / 0.556 0.431 / 0.471 0.756 / 0.809 0.704 / 0.715 0.716 / 0.750 0.381 / 0.400 0.158 / 0.140 0.749 / 0.764 0.666 / 0.681 0.546 / 0.560 0.666 / 0.681 0.663 / 0.673
F1-score 0.710 / 0.677 0.056 / 0.063 0.431 / 0.487 0.111 / 0.111 0.449 / 0.518 0.461 / 0.519 0.165 / 0.217 0.203 / 0.242 0.453 / 0.541 0.150 / 0.186 0.632 / 0.698 0.055 / 0.072 0.058 / 0.072 0.604 / 0.698 0.431 / 0.483 0.324 / 0.364 0.507 / 0.543 0.464 / 0.487
AUC 0.755 / 0.782 0.513 / 0.508 0.653 / 0.650 0.639 / 0.638 0.651 / 0.635 0.754 / 0.746 0.661 / 0.646 0.602 / 0.608 0.694 / 0.675 0.693 / 0.683 0.779 / 0.770 0.627 / 0.634 0.532 / 0.535 0.757 / 0.750 0.727 / 0.726 0.665 / 0.661 0.724 / 0.720 0.710 / 0.702

TOP 3

CheXpert

#images 13,296 / 5,030 6,986 / 4,554 18,241 / 11,723 5,773 / 2,968 68,914 / 41,990 35,897 / 22,654 9,479 / 6,006 3,781 / 2,455 22,396 / 14,376 11,697 / 7,688 58,410 / 36,948 2,498 / 1,249 5,796 / 3,788 75,410 / 48,873 133,375 / 73,685
Precision 0.394 / 0.302 0.104 / 0.113 0.315 / 0.367 0.089 / 0.083 0.586 / 0.638 0.462 / 0.524 0.118 / 0.133 0.054 / 0.064 0.202 / 0.229 0.114 / 0.132 0.630 / 0.681 0.041 / 0.033 0.100 / 0.115 0.667 / 0.762 0.357 / 0.392 0.277 / 0.298 0.485 / 0.539 0.364 / 0.394
Recall 0.607 / 0.623 0.075 / 0.067 0.638 / 0.628 0.582 / 0.597 0.856 / 0.853 0.669 / 0.660 0.548 / 0.552 0.515 / 0.514 0.842 / 0.844 0.876 / 0.899 0.866 / 0.851 0.467 / 0.441 0.130 / 0.132 0.875 / 0.861 0.772 / 0.768 0.610 / 0.609 0.772 / 0.768 0.745 / 0.745
F1-score 0.478 / 0.407 0.087 / 0.084 0.421 / 0.463 0.154 / 0.146 0.696 / 0.730 0.547 / 0.584 0.194 / 0.214 0.097 / 0.114 0.326 / 0.360 0.202 / 0.231 0.729 / 0.756 0.075 / 0.061 0.113 / 0.123 0.757 / 0.809 0.488 / 0.519 0.348 / 0.363 0.577 / 0.612 0.464 / 0.493
AUC 0.752 / 0.759 0.520 / 0.516 0.709 / 0.711 0.656 / 0.660 0.604 / 0.606 0.691 / 0.697 0.617 / 0.616 0.625 / 0.628 0.585 / 0.577 0.610 / 0.607 0.735 / 0.725 0.629 / 0.609 0.538 / 0.538 0.653 / 0.666 0.732 / 0.732 0.637 / 0.637 0.719 / 0.720 0.656 / 0.656

MIMIC

#images 86,898 / 25,331 6,641 / 4,228 41,690 / 24,530 6,906 / 3,022 48,975 / 27,226 24,134 / 15,108 9,268 / 6,248 16,549 / 9,331 43,116 / 25,693 8,690 / 5,759 50,432 / 31,506 2,282 / 1,199 4,758 / 2,884 55,161 / 35,891 220,463 / 92,741
Precision 0.681 / 0.618 0.045 / 0.059 0.408 / 0.494 0.064 / 0.070 0.325 / 0.385 0.359 / 0.414 0.098 / 0.131 0.133 / 0.167 0.329 / 0.401 0.086 / 0.120 0.567 / 0.639 0.033 / 0.039 0.037 / 0.054 0.509 / 0.641 0.326 / 0.371 0.262 / 0.302 0.435 / 0.466 0.404 / 0.413
Recall 0.741 / 0.712 0.090 / 0.070 0.472 / 0.465 0.528 / 0.522 0.739 / 0.785 0.677 / 0.681 0.541 / 0.556 0.432 / 0.461 0.766 / 0.813 0.686 / 0.719 0.740 / 0.750 0.380 / 0.405 0.149 / 0.128 0.764 / 0.767 0.673 / 0.678 0.550 / 0.560 0.673 / 0.678 0.668 / 0.668
F1-score 0.710 / 0.662 0.060 / 0.064 0.437 / 0.479 0.114 / 0.123 0.452 / 0.516 0.469 / 0.515 0.166 / 0.212 0.204 / 0.245 0.461 / 0.537 0.153 / 0.206 0.642 / 0.691 0.060 / 0.070 0.059 / 0.076 0.611 / 0.698 0.439 / 0.480 0.328 / 0.364 0.511 / 0.535 0.469 / 0.480
AUC 0.757 / 0.773 0.515 / 0.508 0.656 / 0.647 0.639 / 0.643 0.650 / 0.632 0.764 / 0.747 0.661 / 0.645 0.602 / 0.602 0.693 / 0.674 0.694 / 0.685 0.786 / 0.766 0.631 / 0.637 0.531 / 0.528 0.759 / 0.748 0.731 / 0.723 0.667 / 0.660 0.727 / 0.716 0.712 / 0.698

TOP 2

CheXpert

#images 8,808 / 5,029 4,911 / 4,668 13,019 / 11,951 3,927 / 4,193 47,978 / 43,264 25,529 / 22,804 6,498 / 6,155 2,585 / 2,639 15,707 / 14,707 7,841 / 8,602 41,341 / 37,688 1,754 / 1,700 4,022 / 3,803 51,977 / 50,012 91,428 / 76,520
Precision 0.406 / 0.270 0.109 / 0.098 0.313 / 0.360 0.092 / 0.111 0.590 / 0.632 0.459 / 0.517 0.115 / 0.130 0.053 / 0.067 0.204 / 0.227 0.115 / 0.142 0.634 / 0.676 0.044 / 0.044 0.106 / 0.104 0.665 / 0.755 0.364 / 0.389 0.279 / 0.295 0.487 / 0.529 0.371 / 0.390
Recall 0.579 / 0.603 0.079 / 0.057 0.659 / 0.611 0.554 / 0.603 0.865 / 0.848 0.697 / 0.659 0.544 / 0.548 0.524 / 0.519 0.845 / 0.839 0.963 / 0.892 0.876 / 0.843 0.452 / 0.459 0.105 / 0.133 0.884 / 0.855 0.779 / 0.762 0.609 / 0.605 0.779 / 0.762 0.754 / 0.738
F1-score 0.477 / 0.373 0.092 / 0.072 0.425 / 0.453 0.158 / 0.187 0.701 / 0.725 0.554 / 0.579 0.190 / 0.210 0.096 / 0.118 0.329 / 0.357 0.202 / 0.245 0.736 / 0.750 0.080 / 0.080 0.106 / 0.116 0.759 / 0.802 0.496 / 0.515 0.350 / 0.362 0.582 / 0.603 0.473 / 0.487
AUC 0.744 / 0.744 0.521 / 0.512 0.710 / 0.705 0.655 / 0.661 0.600 / 0.603 0.690 / 0.699 0.612 / 0.613 0.626 / 0.630 0.581 / 0.579 0.619 / 0.605 0.729 / 0.725 0.630 / 0.616 0.532 / 0.536 0.648 / 0.666 0.736 / 0.729 0.636 / 0.635 0.723 / 0.717 0.653 / 0.655

MIMIC

#images 57,859 / 25,256 4,581 / 4,386 28,853 / 24,588 4,648 / 3,590 33,249 / 27,724 17,193 / 15,187 6,303 / 6,311 11,188 / 10,120 30,295 / 25,939 5,799 / 6,271 34,920 / 31,486 1,563 / 1,502 3,256 / 3,008 38,400 / 36,113 147,980 / 94,532
Precision 0.692 / 0.593 0.046 / 0.049 0.399 / 0.491 0.070 / 0.079 0.327 / 0.385 0.359 / 0.413 0.101 / 0.130 0.134 / 0.174 0.336 / 0.396 0.093 / 0.129 0.568 / 0.631 0.037 / 0.045 0.038 / 0.050 0.513 / 0.634 0.338 / 0.366 0.265 / 0.300 0.438 / 0.457 0.414 / 0.405
Recall 0.731 / 0.698 0.100 / 0.058 0.505 / 0.464 0.492 / 0.523 0.740 / 0.785 0.721 / 0.676 0.545 / 0.553 0.434 / 0.456 0.778 / 0.805 0.658 / 0.720 0.766 / 0.738 0.367 / 0.396 0.120 / 0.120 0.780 / 0.767 0.683 / 0.671 0.553 / 0.554 0.683 / 0.671 0.676 / 0.658
F1-score 0.711 / 0.641 0.063 / 0.053 0.446 / 0.477 0.123 / 0.138 0.454 / 0.516 0.479 / 0.512 0.170 / 0.210 0.205 / 0.252 0.470 / 0.531 0.163 / 0.218 0.653 / 0.680 0.068 / 0.081 0.058 / 0.071 0.619 / 0.694 0.452 / 0.474 0.334 / 0.363 0.516 / 0.526 0.480 / 0.471
AUC 0.761 / 0.762 0.517 / 0.502 0.660 / 0.647 0.640 / 0.642 0.650 / 0.632 0.776 / 0.746 0.664 / 0.644 0.603 / 0.598 0.691 / 0.670 0.699 / 0.687 0.793 / 0.761 0.633 / 0.630 0.526 / 0.523 0.761 / 0.747 0.738 / 0.719 0.670 / 0.656 0.732 / 0.711 0.715 / 0.694

TOP 1

CheXpert

#images 4,390 / 4,940 2,582 / 4,805 7,357 / 11,902 2,000 / 5,579 25,328 / 44,160 13,947 / 22,810 3,390 / 6,248 1,313 / 2,545 8,368 / 14,778 3,930 / 9,632 22,005 / 37,642 899 / 1,787 2,049 / 3,268 26,981 / 50,665 47,411 / 78,209
Precision 0.422 / 0.249 0.116 / 0.095 0.319 / 0.358 0.100 / 0.138 0.596 / 0.631 0.453 / 0.515 0.113 / 0.128 0.052 / 0.060 0.206 / 0.222 0.117 / 0.157 0.638 / 0.667 0.050 / 0.044 0.108 / 0.076 0.661 / 0.750 0.374 / 0.386 0.282 / 0.292 0.489 / 0.523 0.381 / 0.386
Recall 0.549 / 0.591 0.098 / 0.055 0.689 / 0.606 0.511 / 0.600 0.871 / 0.845 0.731 / 0.663 0.533 / 0.551 0.548 / 0.511 0.839 / 0.824 0.832 / 0.890 0.886 / 0.833 0.445 / 0.465 0.068 / 0.119 0.890 / 0.855 0.786 / 0.759 0.606 / 0.600 0.786 / 0.759 0.761 / 0.735
F1-score 0.477 / 0.351 0.106 / 0.069 0.436 / 0.450 0.168 / 0.224 0.707 / 0.722 0.559 / 0.580 0.187 / 0.207 0.095 / 0.108 0.330 / 0.350 0.205 / 0.266 0.741 / 0.741 0.089 / 0.080 0.084 / 0.092 0.759 / 0.799 0.507 / 0.511 0.353 / 0.360 0.586 / 0.597 0.483 / 0.483
AUC 0.736 / 0.735 0.527 / 0.510 0.709 / 0.705 0.655 / 0.656 0.596 / 0.602 0.681 / 0.703 0.606 / 0.612 0.632 / 0.621 0.572 / 0.576 0.632 / 0.608 0.725 / 0.723 0.640 / 0.613 0.521 / 0.528 0.644 / 0.665 0.741 / 0.727 0.634 / 0.633 0.729 / 0.715 0.649 / 0.654

MIMIC

#images 28,790 / 25,017 2,477 / 4,634 15,163 / 24,714 2,329 / 6,930 17,072 / 29,313 9,478 / 15,219 3,241 / 6,644 5,655 / 11,005 16,002 / 25,970 2,901 / 6,464 18,178 / 31,759 780 / 1,550 1,636 / 2,380 20,628 / 35,968 74,374 / 97,347
Precision 0.706 / 0.555 0.048 / 0.051 0.390 / 0.483 0.083 / 0.145 0.334 / 0.388 0.351 / 0.412 0.102 / 0.129 0.136 / 0.176 0.341 / 0.384 0.109 / 0.128 0.567 / 0.623 0.046 / 0.042 0.044 / 0.035 0.532 / 0.620 0.357 / 0.359 0.271 / 0.298 0.442 / 0.442 0.434 / 0.393
Recall 0.718 / 0.686 0.121 / 0.057 0.564 / 0.456 0.421 / 0.542 0.744 / 0.780 0.774 / 0.679 0.530 / 0.554 0.443 / 0.450 0.785 / 0.784 0.577 / 0.720 0.789 / 0.722 0.335 / 0.398 0.075 / 0.118 0.800 / 0.760 0.694 / 0.661 0.548 / 0.550 0.694 / 0.661 0.686 / 0.648
F1-score 0.712 / 0.614 0.068 / 0.054 0.461 / 0.470 0.139 / 0.229 0.461 / 0.518 0.483 / 0.513 0.171 / 0.209 0.208 / 0.253 0.476 / 0.516 0.183 / 0.217 0.660 / 0.669 0.080 / 0.077 0.055 / 0.054 0.639 / 0.683 0.472 / 0.466 0.343 / 0.362 0.524 / 0.513 0.498 / 0.459
AUC 0.765 / 0.748 0.519 / 0.502 0.669 / 0.645 0.636 / 0.649 0.651 / 0.625 0.783 / 0.750 0.659 / 0.640 0.606 / 0.591 0.685 / 0.663 0.693 / 0.685 0.797 / 0.755 0.630 / 0.626 0.519 / 0.519 0.765 / 0.747 0.747 / 0.712 0.670 / 0.653 0.740 / 0.704 0.718 / 0.688
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Appendix B.4. Chest X-ray Quality Results

Figure B.27: Chest X-ray dataset quality measurement results. From left to right, top to bottom, there are plots for classes No Finding, Enlarged
Cardiomediastinum, Cardiomegaly, Lung Lesion, Lung Opacity, Edema, Consolidation and Pneumonia respectively.
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Figure B.28: More Chest X-ray dataset quality measurement results. From left to right, top to bottom, there are plots for classes Atelectasis,
Pneumothorax, Pleural Effusion, Pleural Other, Fracture and Support Devices respectively.
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