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Abstract

Automated dataset curation in the medical domain has long been demanding as Al technologies are often hungry for
annotated data. To curate a high-quality dataset, identifying data variance between the internal and external sources
is a fundamental and crucial step as the data distributions from different sources can vary significantly and thus affect
the performance of the AI models. However, methods to detect shift or variance in data have not been significantly
researched. Challenges to this are the lack of effective approaches to learn dense representation of a dataset by
capturing its semantics and difficulties of sharing private data across medical institutions. To overcome the problems,
we propose a unified pipeline called MedShift to detect the top-level shift samples and thus facilitate the medical
curation. Given an internal dataset A as the base source, we first train anomaly detectors for each class of dataset
A to learn internal distributions in an unsupervised way. Second, without exchanging data across sources, we run
the trained anomaly detectors on an external dataset B for each class. The data samples with high anomaly scores
are identified as shift data. To quantify the shiftness of the external dataset, we cluster B’s data into groups class-
wise based on the obtained scores. We then train a multi-class classifier on A and measure the shiftness with the
classifier’s performance variance on B by gradually dropping the group with the largest anomaly score for each class.
Additionally, we adapt a dataset quality metric to help inspect the distribution differences for multiple medical sources.
We verify the efficacy of MedShift with musculoskeletal radiographs (MURA) and chest X-rays datasets from more
than one external source. Experiments show our proposed shift data detection pipeline can be beneficial for medical
centers to curate high-quality datasets more efficiently. An interface introduction video to visualize our results is
available at https://youtu.be/V3BFOP1sxQE.
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1. Introduction

*Corresponding author . . L
Email addresses: xiaoyuan.guo@emory . edu (Xiaoyuan Guo), Supervised deep learning has been promising in solv-
judywawira@emory .edu (Judy Wawira Gichoya), ing various medical image-related tasks, and often re-
hari.trivediGemory.edu (Hari Trivedi), saptpurk@iupui.edu quires well-annotated datasets for training, which highly
(Saptarshi Purkayastha), banerjee.imon@mayo . edu (Imon Banerjee) . . . .
drives the generation of medical datasets by research in-
stitutions and hospitals. Many of them have established
or plan to establish research data curation services. When
building large data collections for usage in training and

Preprint submitted to Elsevier December 30, 2021


https://youtu.be/V3BF0P1sxQE

validation of machine learning, merely collecting a lot
of data is not enough Van Ooijen (2019); Yamoah et al.
(2019). It is essential that the quality of the data is suffi-
cient for the intended application in order to obtain valid
results Van Ooijen (2019). The medical datasets from
different institutions can be heterogeneous and with dis-
tribution shifts. Models trained on an internal dataset
A from a specific institute may show degraded perfor-
mance on an external dataset B from other sources due
to the possible noisy data, distribution shift and poor-
quality data, which are called shift data in this paper.
Dataset/Distribution shift is a common problem in pre-
dictive modelling and present in most practical applica-
tions, for reasons ranging from the bias in introduced
by experimental design the irreproducibility of the test-
ing conditions at training time Quifionero-Candela et al.
(2009); Wang et al. (2021), of which imbalanced data,
domain shift, source component shift, may be the most
common forms Storkey (2009). The shift data introduces
out-of-distribution (OOD) in the dataset, and should ac-
count for the performance dropping of well-trained mod-
els. Thus, identifying the shift data is crucial for cleaning
the datasets and helpful in enhancing the model’s gen-
eralization with future training. Unfortunately, it still
lacks an effective way to identify the difference for a
bunch of datasets from the same medical domain. The
main challenge lies in the inaccessibility to external med-
ical datasets. Privacy concerns around sharing personally
identifiable information are a major barrier to data shar-
ing in medical research Schiitte et al. (2021). To address
these privacy concerns, there has been an impressive num-
ber of large-scale research collaborations to pool and cu-
rate de-identified medical data for open-source research
purposes Clark et al. (2013). Nevertheless, most medi-
cal data is still isolated and locally stored in hospitals and
laboratories due to the worries associated with sharing pa-
tient data Van Panhuis et al. (2014). Therefore, an efficient
way of external dataset curation/cleaning without sharing
data is desired.

To overcome the obstacle, we propose MedShift, a
pipeline for identifying shift data, which takes advantage
of the accessible models trained on the internal dataset
to gain the in-distribution knowledge. As observed by
Ref. Rabanser et al. (2018), domain-discriminating ap-
proaches tend to be helpful for characterizing shifts qual-
itatively and determining if the are harmful. Therefore,

we utilize unsupervised anomaly detectors to learn the
“normality” of in-domain features. Suppose the internal
dataset has multiple classes, the feature representation of
each class is learnt by an OOD detector. Without shar-
ing the internal dataset with others, the shift data is theo-
retically under-represented and should be detected by the
accessible anomaly detectors as outliers from the exter-
nal datasets. Since the supervised deep learning suffers
from the performance dropping when facing the distri-
bution/dataset shifting, especially when training data and
test data are from two sources, two intuitions for exam-
ple, the shiftness of the identified data can be reflected via
the performance variance of a well-trained model. Instead
of checking the shift sample one by one, MedShift quan-
tifies the shiftness for each class in small groups. Based
on the assigned anomaly scores, each class of the exter-
nal datasets is clustered into multiple groups. Data sam-
ples with similar qualities will be grouped together. A
multi-class classifier is then trained on the internal dataset
and evaluated on the external datasets. Each group of
each class in external datasets is gradually dropped in
the decreasing order of anomaly scores. Meanwhile, the
classification performance on the updated external data is
recorded. The corresponding variation in performance,
hence, reflects the significance of the distribution shift
based on the fact that subtle changes in data distribu-
tion may affect the performance of well-trained classi-
fiers. Additionally, we adopt a dataset quality metric
(OTDD Alvarez Melis and Fusi (2020)) for helping fa-
cilitate the comparison of differences among a series of
datasets coming from the same medical domain. We sum-
marize our contributions as follows:

1. We propose an automatic pipeline of identifying shift
data for medical data curation applications and eval-
uating the significance of shift data without sharing
data between the internal and external organizations;

2. We employ two unsupervised anomaly detectors
to learn the internal distribution and identify sam-
ples showing the significant shiftness for external
datasets, and compared their performance;

3. We quantify the effects of the shift data by training
a multi-class classifier that learns internal domain
knowledge and evaluating the classification perfor-
mance for each sub-group of each class in external
domains after dropping the shift data;



4. We adapt a data quality metric to quantify the dis-
similarity between the internal and external datasets;

5. We experiment on two pairs of representative medi-
cal datasets and show effective qualitative and quan-
titative results, which prove the usefulness of the
suggested pipeline for future medical dataset cura-
tion.

2. Methodology

In Section 2.1 and 2.2, we formulate the dataset shift
identification problem and introduce the necessary nota-
tions. Then, we propose and illustrate the pipeline of shift
identification in Section 2.3; we further dive deep in the
shiftness evaluation in Section 2.4. To complement, we
introduce the details of our anomaly detection architec-
ture used for MedShift pipeline in Section 2.5. Addition-
ally we introduce the dataset quality measurement in Sec-
tion 2.6.

2.1. Problem Statement

In view of the fact that the digital healthcare research
is hugely limited by the data sharing and privacy issues
because of the regulation imposed by Health Insurance
Portability and Accountability Act (HIPPA), MedShift
aims to overcome the barrier by exploiting the advantage
of sharing data quality evaluation models across the or-
ganizations and inspects the shiftness of external datasets
based on the learnt internal domain.

2.2. Formulation and Notation

Given two datasets D4 and Dp of the same medical
domain with the same classes (say cy, ¢, ...,Cp, 1 is the
total number of classes) from two intuitions A and B (e.g.,
a chest X-ray dataset from Emory University D4 and a
chest X-ray dataset from Stanford University Dp), let Dy
be the internal dataset and Dy be the external dataset.
Dataset distribution shift is termed the situation where
Pp,(Y|X) = Pp,(Y|X) but Pp,(X) # Pp,(X), where Y and
X represent the class labels and input data respectively.

Suppose we are given i.i.d. internal data {XA} with n

N,
dAay ¢ X2 (N2 is the sam-

classes, and input samples { o
ple number of dataset A’s class ¢;) from the internal input
distribution, and i.i.d. external data {XB Y%, and input sam-

e N2
ples {x7}) "}

e X2 (N2 is the sample number of dataset

B’s class c¢;) from external distribution, the detection of
class-wise distribution shift for dataset Dp based on Dy
is to identify the anomalous samples X2 € X?. Take Dy
class data as in-distribution (ID) data and tram machine
learning models (e.g. classification models), the models
can learn the distribution of D4’s classes and make predic-
tions P(yA|x2) for some targets y given data samples x/\
for class ¢;. Theoretically, given the target model trained
on the ID data X2, the predictions over set X — X? should
produce more relevant results than on the whole set Xf

2.3. Shift ldentification

In this section, we introduce the methodology for
identification of image data distribution shift to discrimi-
nate the poor-quality, noisy and under-represented sam-
ples from the external data in an automatic way. The
pipeline is built on top of the anomaly detection archi-
tecture to leverage the anomaly score as illustrated in the
framework in Fig. 1, which involves two separate phases
- internal training and test phase. An interesting chal-
lenge of shift identification is that the anomaly detectors
should be able to identify unknown anomalous patterns of
an external dataset without including any anomalous data
samples in training since in the real situation, exchanging
healthcare data among institutions and manually identify-
ing noisy or anomalous data are not trivial tasks.

During the training phase, only internal data samples
and the anomaly detection models (see introductions in
Sec. 2.5) are involved. As shown in the left blue part of
Fig. 1, a set of anomaly detectors F's for each targeted cat-
egories of D4 are trained on the internal dataset in an un-
supervised fashion, considering the unavailability of ex-
ternal data sources. Each class will then obtain a unique
OOD detector .. The anomaly detector learns to assign
each data item with a specific anomaly score, a higher
score means more possibility of being an anomalous data.
Notably, the anomaly detectors are trained with accessible
internal data, and then shared with the external validation
sites.

In the test phase, no internal data will be shared but
the trained anomaly detector model with shift identifica-
tion capability will be exchanged. As represented with
pink figures and dotted flows in Fig. 1, each trained
anomaly detector is evaluated on each corresponding class
of dataset Dp and assigns anomaly scores for the exter-
nal dataset. To prepare for the shiftness quantification in
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Figure 1: Shift data identification pipeline

Sec. 2.4, an unsupervised clustering algorithm is subse-
quently applied to each class and clusters the data items
into k groups based on the learnt anomaly scores. For each
class, the optimal number of cluster k is determined by
the Elbow Method. As observed during our experiments,
data collected from the same source usually presents sim-
ilar distributions. Therefore, we keep k as the same across
all the classes.

2.4. Shiftness Quantification

The above pipeline can be applied to detect the shift
data and assign each data with an anomaly score for in-
dicating its contribution to the dataset shift. Nonethe-
less, the shiftness of the identified data is not simple and
straightforward to evaluate in relation with the targeted
task. We suggest evaluating them in groups. As prepared
in the first stage of the whole pipeline, the clustering has
split each class of dataset D into multiple groups accord-
ing to the anomaly scores. For simplicity, we assume that
each class has k groups. To evaluate the significance of
detected outliers, we train a multi-class classifier G for
D, and test on Dg. As presented in Fig. 2, we gradu-
ally drop one group that has the largest anomaly scores
among current groups for each class until only one group

remains. The corresponding class-wise classification per-
formance is recorded. The performance variation thus is
an indicator of the shiftness of the specific group.

2.5. Anomaly Detection

As claimed in Sec. 2.3, we propose to utilize anomaly
detection models to not only identify distribution shifts
in the external dataset but also automated cleaning of the
external data without any data sharing. First, we briefly
describe our anomaly detection model - Cascade Varia-
tional autoencoder-based Anomaly Detector (CVAD) Guo
etal. (2021) used in MedShift, which was previously been
tested on both generic and medical image datasets. As
shown in Fig. 3, CVAD is a self-supervised variational
autoencoder-based anomaly detection model which com-
bines latent representation at multiple scales using the
cascade architecture of variational autoencoders and thus,
can reconstruct the in-distribution image 7 with high qual-
ity. Both the original image I and the reconstruction I’
are then fed into a binary discriminator D to separate the
synthetic data from the in-distribution ones. The anomaly
score includes two parts: the reconstruction error S .. in
the first stage and the probability of being the anomaly
class S 45 in the second stage. To adapt the application
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of detecting abnormal data for multiple unknown exter-
nal sources, we modified that anomaly score computation
by simply adding the two parts together S = S ,ec + S 4is-
This gives us the advantage that when dealing with heavy
noisy data, the reconstruction error will be the dominant
indicator for shiftness; when facing the hard distinguished
cases the class probability plays the decision role.

As this method poses no assumption on the input data
and the applied situations, we utilize this anomaly detec-
tion architecture in our pipeline called MedShift_ w_CVAD
across all the experiments. Apart from our anomaly de-
tection model CVAD, we also test other anomaly detector
f-AnoGAN Schlegl et al. (2019) in MedShift for compar-
ison (MedShift_.w_f-AnoGAN in short).

2.6. Dataset Quality Measurement

To further quantify the efficacy of identifying the shift
data among external datasets, we measure the quality of
external datasets compared to the internal dataset and ob-
serve the difference after removing the shift data from the
external sources in an iterative fashion. We apply the
Optimal Transport Dataset Distance Alvarez Melis and
Fusi (2020) (OTDD) measure to calculating similarities,
or distances, between classification datasets. It relies on
optimal transportVillani (2009), which is a flexible ge-
ometric method for comparing probability distributions,
and can be used to compare any two datasets, regardless
of whether their label sets are directly comparable. For-
mally, the optimal transport dataset distance is defined as:

OTDD(Dy, Dp) = min,ren(pA,pB)) f d(z, Z')dﬂ(Z, Z/)
ZxZ
)]
, of which
d(z,7) = (d(x,x )’ + Wa(Py, Py)?)? ()
, where D4, Dp are the two datasets, x, x and v, y/ are
their samples and labels respectively, W, denotes the p-

Wassertein distance. Please refer Ref. Alvarez Melis and
Fusi (2020) for more details.

3. Experiments

3.1. Datasets

There are two categories of medical datasets used in
this paper: (1) Musculoskeletal radiographs - Emory
MURA dataset (internal) and Stanford MURA dataset Ra-
jpurkar et al. (2017) (external); (2) Chest radiographs
- Emory Chest X-rays (internal, Emory_CXR in short),
CheXpert dataset Irvin et al. (2019) (external_1) and
MIMIC dataset Johnson et al. (2019) (external _2).

MURA (musculoskeletal radiographs) is a large dataset
of bone X-rays. Each MURA dataset has seven classes,
XR_HAND, XR_FORARM, XR_FIGER, XR_SHOULDER,
XR_ELBOW, XR_WRIST, XR_ HUMERUS. Image exam-
ples are illustrated in Fig. 4a for each class. To demon-
strate the effectiveness of detecting shift data, we have
Emory MURA and Stanford MURA datasets as a pair and
treat Emory MURA as the internal dataset with Stanford
MURA as the external one. More class-wise details of the
datasets are presented in the upper of Table. 1.

For chest X-ray, we used three datasets - Emory _CXR
(199,029 training and 12,873 test images retrieved
from Emory Healthcare system), CheXpert and MIMIC
datasets. The bottom part of Table. 1 shows the details
of the three datasets. The chest X-ray datasets have 14
classes (or diagnosis) in total. The classes are No Find-
ing, Enlarged Cardiomediastinum, Cardiomegaly, Lung
Lesion, Lung Opacity, Edema, Consolidation, Pneumo-
nia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural
Other, Fracture, Support Devices. Image examples are
displayed in Fig. 4b. Different from the MURA dataset
where class labels are mutually exclusive, each chest X-
ray data may have multiple common diagnoses.

3.2. Implementation Details

We implement the pipeline using Pytorch 1.5.0, Python
3.7.3 and Cuda compilation tools V10.0.130 on a machine
with 4 NVIDIA RTX A6000 GPUs with 48 GB memory.
More details about the training of anomaly detectors and
classifiers are introduced below.

3.2.1. Anomaly Detectors

We resize all the medical images to 256x256Xchannel
for simplicity considering the irregular image sizes. To
train CVAD, we use the Adam optimizer with a batch size
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Figure 4: Sample images from the datasets: (a) MURA examples for each anatomical joint class. (Intensity contrasts are changed for better
visualization); (b) chest X-ray examples for each class. (Image are resized for better visualization);

HAND FOREAMR FINGER SHOULDER ELBOW WRIST HUMERUS
Emory MURA 2,473 (21.33%) 368 (3.17%) 368 (3.17%) 3,451 (29.77%) 1,521 (13.12%) 2,858(24.65%) 553(4.77%)
Stanford_ MURA 3,851 (17.94%) 1,097 (5.11%) 3,660 (17.05%) 5,621 (26.18%) 2,397 (11.16%) 3,993(18.60%) 852(3.97%)
No Enla.rged Cardio- Lung Lung Consoli-  Pneu- Atele-  Pneumo- Pleural  Pleural Support
.o Cardiome- . . Edema . . . . Fracture .
Finding diastinum megaly Lesion Opacity dation monia ctasis thorax Effusion  Other Devices
Emory CXR (train) 57,973 7.825 27,019 6,157 64,439 22,540 6,906 9,188 66,150 11,550 51,828 2,325 2,114 174,768
- (11.35%) (1.53%) (5.29%) (121%) (12.62%) (4.41%) (1.35%) (1.80%) (12.95%) (2.26%) (10.15%) (0.46%) (0.41%) (34.22%)
Emory CXR (test) 7,962 523 1,256 397 2,141 475 151 439 1,684 150 711 98 177 9,995
N (30.44%) (2.00%) (4.80%)  (1.52%)  (8.18%)  (1.82%) (0.58%) (1.68%) (6.44%) (0.57%) (2.72%) (0.37%) (0.68%) (38.21%)
CheXpert 22,381 10,798 27,000 9,186 105,581 52,246 14,783 6,039 33,376 19,448 86,187 3,523 9,040 116,001
(4.34%) (2.09%) (5.24%)  (1.78%) (20.48%) (10.13%) (2.87%) (1.17%) (647%) (3.77%) (16.72%) (0.68%) (1.75%) (22.50%)
MIMIC 143,352 84,073 76,957 76,423 65,047 64,346 36,564 26,222 14,675 14,257 10,801 10,042 7,605 3,460
(22.62%)  (13.26%)  (12.14%) (12.06%) (10.26%) (10.15%) (5.77%) (4.14%) (2.32%) (2.25%) (1.70%) (1.58%) (1.20%)  (0.55%)

Table 1: Dataset details, with total image number and the percentage (in brackets) of each class presented.

MURA datasets and the lower is for Chest X-ray datasets.

Upper part of the table present the



of 256 and 2,048 for MURA and chest X-ray dataset, re-
spectively; we set the learning rate of 1x 107> and 1x 1073
for the generator and the discriminator of CVAD, respec-
tively; we train the generator with 250-500 epochs and the
discriminator with 10-20 epochs.

To train f-AnoGAN, we use the default Adam opti-
mizer with a learning rate of 2 X 10~ and the same batch
sizes as CVAD for the corresponding datasets; we run the
generative adversarial training for 1000-1500 epochs and
the encoder training for 300-500 epochs.

3.2.2. Multi-class Classifiers

To quantify the shiftness of each clustered group for
each class of external dataset Dg, we first train a multi-
class classifier G for the internal dataset D,. The clas-
sifier learns the class latent features of the internal do-
main and is able to predict class labels for test data. For
MURA data, we train ResNet152 He et al. (2016) on the
Emory MURA dataset with the publicly available pre-
trained weights as initialization. We optimize the clas-
sifier using the Adam optimizer with a batch size of 512,
a learning rate of 1 x 1073 for 50 epochs. For chest X-
ray data, we utilize the model proposed by Ref. Yuan
et al. (2021), which originally aims for multi-label clas-
sification of the CheXpert dataset, and modifies it for the
Emory_CXR 14-class classification task. Following the
same implementations in Ref. Yuan et al. (2021), we use
DenseNet121 Huang et al. (2017) as the feature extrac-
tion backbone and initialize it with the public pretrained
model weights. We train the classifier with a batch size of
256 for 20 epochs. The corresponding classification per-
formances, including the Precision, Recall, F1-score and
AUC score are reported in Sec. 3.3.3.

3.3. Results

In this section, we evaluate the performance of our
pipeline on three objectives - (i) shift data identification,
(i1) shift data partition and (iii) shift data significance eval-
uation. To increase readability, one representative class
is selected for explanation and more results about other
classes are supplemented in Appendix A and Appendix
B.

3.3.1. Shift Identification with Anomaly Detection
In the process of identifying the shift data from the ex-
ternal source, each class of the internal dataset will obtain

its own anomaly detector. Figure 5 presents the anomaly
score distributions of the representative class from both
MURA and Chest X-ray obtained by MedShift w_CVAD
architecture. The X-axis represents the anomaly score and
Y-axis stands for the number of images that have anomaly
scores in the corresponding range. In both cases, Emory
data is considered as internal data.

For MURA dataset, the anomaly score distribution for
XR_HAND is shown in the left of Fig. 5, with the blue
curve for Emory XR_HAND and the orange distribution
curve for Stanford XR_HAND data. As can be observed,
the peaks of the two distributions are clearly separated, the
Stanford data generally gets higher OOD scores than the
internal Emory data. The difference between the internal
and external anomaly score distributions can be easily ob-
served. The closer and more similar the two distributions
are, the less shift the external dataset has.

The similar phenomenon can also be seen in chest X-
ray data when being tested on two external datasets. For
chest X-ray dataset, the OOD detection for Consolidation
is shown in the right of Fig. 5, with the blue histogram
and curve for internal Emory_CXR dataset, the orange
for CheXpert dataset and the green for MIMIC dataset.
The differences in the distributions reflect how different
the external chest X-ray data is from the internal domain.
MIMIC Consolidation has less overlapping with the in-
ternal Emory_CXR compared with the CheXpert distri-
bution, which indicates that MIMIC contains more shift
Consolidation data than the CheXpert dataset.

3.3.2. Shift Data Clustering Results

In this section, we showcase the clustering results based
on anomaly scores for both MURA and chest X-ray
datasets. Specifically, Stanford MURA dataset, CheXpert
and MIMIC data are clustered into different groups ac-
cording to their anomaly scores obtained in the previous
step. The selection of group numbers is decided by the El-
bow distortion curves, please refer to Appendix A.3 and
Appendix A.4 for the curve details.

An XR_HAND example of MURA dataset is shown
in the left of Fig. 6. There are 5 cluster groups in to-
tal, with each row representing one cluster. The groups
are sorted in ascending order, namely, the top row is
with the lowest anomaly scores and the bottom has the
largest anomaly scores. For better understanding, their
corresponding scores are labelled on top of each example
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Figure 5: MedShift_.w_CVAD example results of shift identification with anomaly detection - (left) anomaly score distributions on MURA HAND;
(right) anomaly score distributions for chest X-ray Consolidation. Distributions are truncated on samples with large anomaly scores for better
visualization.
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Figure 6: MedShift.w_CVAD examples of clustering results - (left) clustering results on Stanford MURA HAND data; and (right) clustering results
on CheXpert Consolidation data. Each row represents one group with five example images. The groups are illustrated in ascending order based on
the anomaly scores from top to bottom. The corresponding anomaly score is on top of each image.



item. As can be observed, the hand data gradually shows
more and more variations in terms of image quality, posi-
tioning, and noise, as the anomaly score becomes large,
especially when comparing the group 1 (first row with
lowest anomaly score) to group 5 (last row with high-
est anomaly score). The variance exhibiting in the ab-
normal data indicates the existence of distribution shift in
the external dataset. Nonetheless, the significance of the
detected under-represented/shift data samples in affecting
deep learning models’ prediction/classification remains to
be explored. Similarly, an example of chest X-ray Con-
solidation is presented in the right of Fig. 6. Following
the same arrange order, the difference for each group can
be clearly captured.

3.3.3. Classification Results for Shiftness Evaluation

As introduced in Sec. 3.2.2, a multi-class classifier
has to be trained on the internal dataset to quantify the
effect of removing the shiftness of external datasets for
the two targeted classification tasks. In this section, we
report the classification training and testing performance
on the internal dataset, and the performance on the ex-
ternal datasets after dropping the highest anomaly score
group gradually. The external group-wise shiftness is
thus revealed by the performance variation. An evident
decrease suggests a significant distribution shift in the
dropped group. For comparison, we report the classifica-
tion outcomes on external dataset based on the clustering
results obtained with both anomaly scores computed with
CVAD Guo et al. (2021) and f-AnoGAN Schlegl et al.
(2019) architectures.

Table. 2 shows the classification results for the MURA
data, including the test results of Emory MURA and eval-
uation on Stanford MURA groups. Both the class-wise
and average performances are reported, including Preci-
sion, Recall, FI-score and AUC scores. As the classifi-
cation is evaluated in the order of TOP_k, TOP k-2, ...,
TOP_1 order, which is TOP_5, TOP_4, TOP_3, TOP_2,
TOP_1 for our experiments, meaning that we gradually
drop the group that with the highest anomaly scores and
evaluate the classification performance on the remain-
ing data. There are five groups being clustered for each
class. Therefore, the TOP 5 clusters constitute the whole
external dataset and the corresponding classification re-
sults for CVAD version and f~-AnoGAN version are the
same. For simplicity, only one version is present (see Ta-
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ble. 2 Row Stanford_ MURA_TOP 5). The total num-
ber of images being evaluated on is listed in the row
#images for each class. The amount of data samples in
the dropped group is the number difference between the
adjacent groups. Take XR_HAND for example, group 5
of MedShift_-w_CVAD has 753 samples by calculating the
difference of total image number of TOP 5 clusters (3851)
and TOP 4 clusters (3098), (i.e., 753 = 3851 — 3098)
and group 5 of MedShift_ w_f-AnoGAN has 13 samples
(13 3851 — 3838). As can be observed in the ta-
ble, the classifier’s predictions become more and more
accurate as the groups are discarded gradually based on
their anomaly score order. Look into the AUC scores
of XR_HAND from TOP 5 to TOP 1, the values of both
CVAD and f-AnoGAN are growing, which means the re-
moved group contains data with certain shiftness and will
affect the in-domain model’s ability. The extent of shift-
ness can be inferred via the change of classification mea-
surements for a notable improvement indicates a severe
shifting exists in the dropped group. Although the same
trend is noted for both CVAD and f-AnoGAN versions
in general, the CVAD version can get more increase after
expelling the most anomalous group than the f-AnoGAN
version, which demonstrates the effectiveness of our Med-
Shift framework in determining shift data among external
datasets.

Aside from the quantification results above, we show
the confusion matrices in Fig. 7 to report more details
about the classification performance. Each confusion ma-
trix represents a particular situation of using different
cluster data during evaluation. To be clear, we use the
clustering results based on the pipeline with our CVAD
architecture. From left to right, top to bottom of Fig. 7,
the confusion matrices are for TOP 5, TOP 4, TOP 3, TOP
2, TOP 1 clusters, respectively. Since the groups that are
dropped contain shift data, the classification accuracy is
gradually rising after removing the shift data items, which
can be observed from the confusion matrix differences.

Furthermore, to demonstrate our pipeline’s capability
of separating shift data that are with high anomaly scores,
we random sample the same number of images as the
MedShift w_CVAD’s TOP 1 cluster of Stanford MURA
dataset for each class and run the classifier to evaluate the
classification accuracy. The random sampling confusion
matrix is displayed in Fig 7f. Compared to the confusion
matrix of TOP 1 in Fig. 7e, there are more misclassified



Table 2: MURA classification class-wise results with CVAD (left) and f-AnoGAN (right). The best classification values are in bold for each method.

Dataset Metric HAND  FOREARM SHOULDER  FINGER ELBOW WRIST  HUMERUS MacmA"mgf,v,.. §
#images 95 74 691 74 305 572 111 2322
Precision 0.842 0.704 0.979 0312 0.929 0.957 0.875 0.800 0.903
Emory_test Recall 0.970 0.770 0.999 0.068 0.862 0.942 0.820 0.776 0915
Fl-score 0.901 0.735 0.989 0.111 0.895 0.950 0.847 0.775 0.905
AUC 0.960 0.880 0.995 0.531 0.926 0.964 0.907 0.984 0.992
Fimages 3,851 1,097 5.621 3,660 2.397 3,93 852 20471
Stanford TOP 5 | Precision 0.921 0.758 0977 0.765 0.695 0380 0.395 0.699 0.754
Recall 0.450 0.160 0.746 0.188 0.701 0.983 0.664 0.556 0.604
Fl-score 0.605 0.264 0.846 0301 0.698 0.548 0.496 0537 0.594
AUC 0.721 0.578 0.870 0.588 0.831 0.808 0.811 0.902 0915
#images  3.008/3.838 880/ 1,001  4499/5584 2,904/3,658 1923/2.387 3,182/3.033  686/848 17,172/ 21,339
Stanford TOp 4 | Precision 0.92170.921 0758/0.758  0.986/0978  0.768/0.765 0.695/0.695 0.426/0.379 0.545/0.404 | 0.728/0.700 0.772/0.755
- Recall  0.558/0.452 0.195/0.160 0.827/0.750 0.233/0.188 0.777/0.704 0.990/0.987 0.691/0.665 | 0.610/0.558 0.665 / 0.605
Fl-score  0.695/0.606 0311/0265 0.899/0.849 0.358/0302 0.734/0.700 0.596/0.548 0.609/0.503 | 0.600/0.539 0.654/0.596
AUC 0.774/0.722  0596/0.579 0.911/0.872 0.609/0.588 0.867/0.832 0.843/0.811 0.833/0.812 | 0.938/0.903 0.949/0.916
#images  2331/3.814  661/1,019 3368/5410 2,159/3,648 144372367 2.380/3,066  517/808 12,859 /20,201
Stanford TOp 3 | Precision 091370920 0.759/0.758  0986/0981 0.789/0.765 0.690/0.698 0471/0329 0.589/0.414 | 0.743/0.695 0.784/0.764
Recall  0.661/0.455 0253/0.162 0.821/0.769 0.279/0.188 0.831/0.710 0.988/0.991 0.747/0.666 | 0.654/0.563 0.701/0.595
Fl-score 0.767/0.609 0.379/0.267 0.896/0.862 0.413/0302 0.754/0.704 0.638/0.494 0.659/0.511 | 0.644/0.535 0.692/0.593
AUC 0.823/0.723  0.624/0.580 0.908/0.882 0.632/0.588 0.891/0.834 0.867/0.814 0.862/0.813 | 0.953/0.905 0.961/0.916
#images 155373761 440/ 1,068 2.234/3.839 1429/3483 959/2335 1,587/2,048  345/717 8,547/ 17.251
Stanford TOp 2 | Precision 0.894/0.921 0.763/0.771  0984/0979  0.801/0.765 0.666/0.724 0520/0262 0.592/0.483 | 0.746/0.701 0.788/0.770
Recall  0.748/0.461 0359/0.164 0.795/0.818 0.324/0.195 0.842/0.719 0.986/0.991 0.754/0.658 | 0.687/0.572 0.724/0.575
Fl-score 0.815/0.614 0.488/0270 0.879/0.891 0.461/0311 0.744/0.722 0.681/0414 0.663/0.557 | 0.676/0.540 0.717/0.582
AUC 0.864/0.725 0.677/0.580 0.895/0.907 0.654/0.590 0.894/0.838 0.889/0.808 0.866/0.814 | 0.963/0.904 0.968/0.908
#images  773/3.697 21971042 1,110/1,921 7112417  477/2.236  795/1,003  172/463 4257/ 12,799
Stanford TOP 1 | Precision 0855/0.925 0.779/0.799  0.989/0966 0816/0.751 0.612/0.767 0.575/0.184 0559/0.467 | 0.741/0.694 0788 /0.784
- Recall  0.814/0.468 0.434/0.168 0.730/0.791 0.368/0.257 0.881/0.743 0.974/0.997 0.738/0.590 | 0.705/0.573 0.732/0.547
Fl-score 0.834/0.622 0.557/0.278 0.840/0.869 0.508/0.382 0.722/0.755 0.723/0.310 0.637/0.521 | 0.689/0.534 0.726/0.580
AUC 0.892/0.726 0.714/0.582 0.863/0.893 0.676/0.618 0.905/0.848 0.904/0.806 0.857/0.782 | 0.969/0.909 0.971/0.907

cases, especially for XR_HAND class, where there are 629
samples correctly predicted and 144 wrong predictions af-
ter applying our pipeline whereas 354 correct predictions
and 419 misclassified cases for the random sampling situ-
ation. The improvement of classification accuracy man-
ifests that our MedShift can identify the shift data that
will degrade the performance of an in-domain model. The
same observation holds for the chest X-ray experiments,
please refer to Appendix B.3 for the classification details.

3.3.4. Dataset Quality Measurement Results

We report the Stanford MURA dataset quality calcu-
lated via the OTDD metric proposed above in the left of
Fig. 8. We respectively evaluate the quality for TOP_S5,
TOP_4, TOP_3, TOP_2, TOP_1 cases as indicated by the
X-axis values of the plots. To compare, we test our
pipeline with both CVAD and f~-AnoGAN anomaly detec-
tion architectures. As can be seen, the distance between
Stanford MURA and Emory MURA datasets is decreas-
ing when the anomalous groups with shift data are re-
moved gradually. Nevertheless, our CVAD version (in
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blue) shortens the distance more and faster than the f-
AnoGAN (in orange) version. And the general external
dataset quality achieves the best when it is composed by
the group with the lowest anomaly scores, which follows
the same conclusion as the average classification perfor-
mance in Tab. 2.

For the reason that the OTDD method computes the dis-
tance values with label-data pairs, it was not designed for
multi-label datasets. To adapt for the chest X-ray sce-
nario, we report the class quality instead of the whole
dataset. In the right of Fig. 8, we show CheXpert and
MIMIC Consolidation class quality obtained by both the
CVAD and f-AnoGAN versions. Generally, the distances
between the internal and external are shortened in a lim-
ited way with MedShift_. w_CVAD model, but the distance
values are enlarged by the f-AnoGAN version. Since the
distance represents the dissimilarity between the evalu-
ated dataset pair, an increase of distance indicates a failure
of identifying shift data in the external domain. Here, the
CVAD version shows better performance than the Med-
Shift_w_f-AnoGAN model.
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Figure 7: MedShift.w_CVAD confusion matrices for Stanford MURA with different numbers of clusters - (a) confusion matrix of TOP 5 clusters;
(b) confusion matrix of TOP 4 clusters; (¢) confusion matrix of TOP 3 clusters; (d) confusion matrix of TOP 2 clusters; (e) confusion matrix of
TOP 1 cluster; (f) confusion matrix with random sampling the same number of images as the TOP 1 cluster.

Moreover, an increase of distance is also an indicator of
stop sign for detecting shift data of a well-performed shift
identification model. From the anomaly score distribution
plots of Fig. 8, it is clear that external MURA HAND has
more variance than the external chest X-ray Consolida-
tion data. Thus, shift data identification is relatively diffi-
cult for the chest X-ray dataset, and the quality improve-
ment is limited when little shiftness exists in the external
dataset. Depending on the quality expectations, users can
decide to remain the original Consolidation class or re-
move one or two top groups from Consolidation. Due to
the space limitation, only one chest X-ray class case is

illustrated, please refer to Appendix B.4 for more class
quality results.

4. Discussion

In this paper, we have designed an automated pipeline -
MedShift, for medical dataset curation based on anomaly
score. Under-the-hood, MedShift identifies image data
distribution shift based on anomaly detection and unsu-
pervised clustering to discriminate the poor-quality, noisy
and under-represented samples from the external data.
The anomaly detection architecture involves two separate
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Figure 8: Dataset quality measurement results - (left) Stanford MURA whole dataset’s quality; (right) CheXpert and MIMIC Consolidation class
quality. X-axis values represent situations of the groups in use, and Y-axis values indicate the distance between the internal and external datasets
(the lower the better). Distance mean and stdev values of ten rounds of evaluations are present in the plots.

implementation phases - (1) internal training - time con-
suming and needs to be trained for each targeted class la-
bel, and (2) test phase - quick, only forward pass which
needs minimal data pre-processing and cleaning from the
external sites. Once trained, the anomaly detectors should
be able to identify unknown anomalous patterns from an
external dataset without ever seeing such anomalous data
examples in training. This quality makes the proposed
pipeline particularly suitable for medical image dataset
curation since exchanging healthcare data among institu-
tions and manually identifying noisy or anomalous data
are both extremely challenging in the current healthcare
situation.

Our pipeline is flexible towards the particular anomaly
detector architectures. We evaluated two use-cases - diag-
nosis from chest X-ray and classifying anatomical joints
from MURA and applied two different anomaly detectors
CVAD and f-AnoGAN. Even though our CVAD version
efficiently shortens the data quality matrix (OTDD) faster
than f-AnoGAN and reaches convergence for the shift
data removal by dropping lower number of cases from ex-
ternal data, the targeted final classification performance
stays similar for both architectures.

Our experiments showed that being trained only on in-
ternal Emory datasets, deep learning models classifica-
tion accuracy is gradually rising on the external dataset
after removing the shift data items via MedShift and ul-
timately achieved performance close to the internal data.
The improvement of classification accuracy represents the
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fact that the MedShift can identify relevant shift data that
will degrade the performance of an in-domain model and
be able to reproduce the internal performance on unseen
external data. Moreover, the brief cluster exploration on
the external dataset showed that higher anomaly cluster
groups contain more variations in terms of image qual-
ity, positioning, noise, and the pipeline correctly identi-
fied the shift data. As an immediate future study, we plan
to conduct a reader study with expert radiologists to inter-
actively evaluate the proposed platform and quantify the
performance based on user-feedback matrices.

In its current state, the proposed pipeline MedShift can
serve domain-specific quality checks and derive power-
ful and actionable insights. The suggested workflow will
be beneficial in future non-shareable healthcare collabo-
ration where the MedShift pipeline will be set up as a
browser-based service within the local firewall for auto-
mated dataset curation with multi-class labels.



Appendix A. MURA Results

Appendix A.l1. Anomaly Score Distribution Results with CVAD
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Figure A.9: MedShift.w_CVAD’s MURA anomaly score distribution results for classes FOREARM, SHOULDER, FINGER, ELBOW, WRIST and
HUMERUS from left to right, top to bottom.
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Appendix A.2. Anomaly Score Distribution Results with f-AnoGAN
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Figure A.10: MedShift_.w_f-AnoGAN’s MURA anomaly score distribution results for classes HAND, FOREARM, SHOULDER, FINGER, ELBOW,

WRIST and HUMERUS from left to right, top to bottom.
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Appendix A.3. MedShift w_CVAD Elbow Distortion Curve Results
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Figure A.11: MedShift.w_CVAD’s elbow distortion curves on Stanford MURA dataset. From left to right, top to bottom, there are plots for

XR_HAND, XR_FOREARM, XR_SHOULDER, XR_FINGER, XR_ELB
selection of K, the number of groups to be clustered into, and Y-axis v

OW, XR_WRIST, XR_HUMERUS, respectively. X-axis values represent the
alues indicate the distortion.
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Appendix A.4. MedShift . w_fAnoGAN Elbow Distortion Curve Results
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Figure A.12: MedShift_-w_fAnoGAN’s elbow distortion curves on Stanford MURA dataset. From left to right, top to bottom, there are plots for
XR_HAND, XR_FOREARM, XR_SHOULDER, XR_FINGER, XR_ELBOW, XR_WRIST, XR_HUMERUS, respectively. X-axis values represent the

selection of K, the number of groups to be clustered into, and Y-axis values indicate the distortion.
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Appendix A.5. Clustering Results with CVAD
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Figure A.13: MedShift.w_CVAD’s clustering results of Stanford MURA classes (a) FOREARM; (b) FINGER;, (c) SHOULDER;, and (d) ELBOW.
Each row represents one group with five example images. The groups are illustrated in ascending order based on the anomaly scores from top to
bottom. The corresponding anomaly score is on top of each image.
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Figure A.14: More MedShift_.w_CVAD’s clustering results of Stanford MURA classes (a) WRIST; (b) HUMERUS following the same arrangement
style of Fig. A.13.
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Appendix A.6. Clustering Results with f~-AnoGAN
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Figure A.15: MedShift_-w_f-AnoGAN’s clustering results of Stanford MURA classes (a) HAND;, (b) FOREARM; (c) FINGER and (d) SHOULDER.
Each row represents one group with five example images. The groups are illustrated in ascending order based on the anomaly scores from top to

bottom. The corresponding anomaly score is on top of each image.
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Figure A.16: More MedShift_-w_f-AnoGAN’s clustering results of Stanford MURA classes (a) ELBOW; (b) WRIST and (c) HUMERUS following
the same arrangement style of Fig. A.13.

(c) HUMERUS _fanogan
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Appendix B. Chest X-ray Results

Appendix B.1. Anomaly Score Distribution Results
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Figure B.17: MedShift_-w_CVAD class-wise chest X-ray anomaly score distributions for Emory_CXR (blue), CheXpert (orange) and MIMIC (green)
datasets. Distributions may be truncated for better visualization.
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Figure B.18: More MedShift.w_CVAD class-wise chest X-ray anomaly score distributions for Emory_CXR (blue), CheXpert (orange) and MIMIC
(green) datasets. Distributions may be truncated for better visualization.



Appendix B.2. Clustering Results
Appendix B.2.1. Clustering Results for CheXpert
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Figure B.19: MedShift_.w_CVAD CheXpert clustering results for classes (a) No Finding; (b) Enlarge Cardiomediastinum; (c) Cardiomegaly and (d)
Lung Lesion following the same arrangement style of Fig. A.13.
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Figure B.20: More MedShift-w_CVAD CheXpert clustering results for classes (a) Lung Opacity; (b) Edema; (c) Pneumonia and (d) Atelectasis
following the same arrangement style of Fig. A.13.
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Figure B.21: More MedShift_-w_CVAD CheXpert clustering results for classes (a) Pneumothorax; (b) Pleural Effusion; (c) Pleural Other and (d)

Fracture following the same arrangement style of Fig. A.13.
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Figure B.22: More MedShift w_CVAD CheXpert clustering results for classes (a) Support Devices following the same arrangement style of
Fig. A.13.

27



Appendix B.2.2. Clustering Results for MIMIC
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Figure B.23: MedShift.w_CVAD MIMIC clustering results for classes (a) No Finding; (b) Enlarge Cardiomediastinum; (c) Cardiomegaly and (d)
Lung Lesion following the same arrangement style of Fig. A.13.
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Figure B.24: MedShift_-w_CVAD MIMIC clustering results for classes (a) Lung Opacity; (b) Edema; (c) Consolidation and (d) Pneumonia following
the same arrangement style of Fig. A.13.
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Figure B.25: MedShift-w_CVAD MIMIC clustering results for classes (a) Atelectasis; (b) Pneumothorax; (c) Pleural Effusion and (d) Pleural Other

following the same arrangement style of Fig. A.13.
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Figure B.26: MedShift.w_CVAD MIMIC clustering results for classes (a) Fracture; (b) Support Devices following the same arrangement style of
Fig. A.13.
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Appendix B.3. Classification Results

Table B.3: Chest X-ray data classification class-wise results with CVAD (left) and f-AnoGAN (right) architectures.

Dataset Metrics Enlarged Cardiomegaly :‘ﬁ“:ﬁl 0';‘:(‘% Edema Consolidation  Pneumonia Atelectasis  Pneumothorax :":““s::; ‘:'i::i' Fracture K‘:f;’: Micro Mac r:VERA(\,J\i ihied  Samples
Fimages 93 522 1256 397 2,141 830 151 739 2315 150 711 9% 77 9,994
Precision 0.753 0.082 0.385 0.090 0.531 0416 0.107 0.153 0.577 0.066 0516 0.066 0,058 0.93 0.489 0338 0.705 0.633
Emory.CXR | Test Recall 0960 0232 0697 0.446 0.588 0.627 0.437 0490 0.580 0433 0686 0.520 0277 0.109 0514 0.506 0.514 0.537
Fl-score 0.844 0.121 0496 0.150 0.558 0.500 0.171 0233 0.579 0115 0.589 0.118 0.096 0.195 0502 0.340 0477 0.54
Avc 0124 0.561 0.788 0.652 0742 0783 0.697 0.697 0743 0.681 0.824 0732 0.607 0.540 0710 0.698 0.719 0.661
Fimages 22,381 10,798 27,000 9.186 10,5581 52046 14,783 6.039 33376 10,448 86,187 3523 9,040 T16.001 712273
Precision 0356 0.098 0319 0.081 0.581 0.462 0.122 0055 0.19% 0118 0623 0.033 0.091 0.670 0343 0272 0479 0351
CheXpert | Recall 0.684 0.073 0610 0.610 0832 0.625 0.556 0495 0318 0.384 0.835 0.461 0.173 0.845 0752 0.607 052 0722
Fl-score 0.468 0.084 0419 0.143 0.684 0531 0.200 0.098 0316 0.208 0714 0.061 0.120 0.747 0471 0342 0.566 0.446
ToPs Avc 0.754 0512 0.651 0.638 0.654 0.746 0.662 0.603 0.694 0.697 0775 0.625 0533 0756 0726 0.664 0724 0.709
Fimages 43352 10,042 64,396 T0.80T 76423 36,564 12675 26,222 65,047 14257 76957 3460 7.605 84073
Precision 0.674 0.040 0412 0.060 0318 0358 0.096 0133 0315 0.084 0.564 0.028 0.036 0502 0315 0.259 0433 04
MIMIC | Recall 0.754 0.078 0.440 0539 0.740 0.619 0.543 0428 0.754 0.719 0.700 0379 0.158 0.739 0.661 0542 0.661 0.661
Fl-score 0712 0.053 0425 0.108 0.445 0454 0.164 0202 0.445 0.151 0.624 0.052 0.058 0.598 0427 0321 0.504 0.464
Avuc 0757 0515 0.656 0.639 0.650 0.764 0.661 0.602 0.693 0.693 0.786 0.631 0.531 0.759 0731 0.667 0727 0712
Fimages | 17834/ 4,845 889974282 22846/11,259 7.518/2.600 S8278/39.924 45.239/21838 12217/5845  4934/2.106 28414/ 13,719 15.609/6520 73.595/35.301 3.141/1.079 7.464/3.325 97280745373 173,664/ 68.757
Precision | 0.382/0327 0.099/0.112 0315/0369  0.085/0078 0.583/0.645  0463/0.528  0.119/0.138  0.054/0.059  0.199/0234  0.115/0.120  0626/0.693 0.037/0031 0.098/0.120 0.670/0.759 |0.351/0.395 0275/0.301 0.483/0.545 0.358/0.399
CheXpert | Recall 0.640/0.638 0.071/0.064 0.624/0631  0.602/0594 0848/0.853  0.647/0.660  0.553/0.562  0.505/0.519  0.833/0.848  0.884/0902  0.855/0858  0.469/0450 0.157/0.146  0.864/0.865 | 0.765/0.772 0.611/0.614 0765/0.772 0.737/0.750
Fl-score | 0478/0433 0.083/0.082 0419/0466  0.150/0.138  0.691/0.735  0.540/0.587  0.196/0222  0.098/0.106  0.321/0.366  0.204/0212  0723/0767 0.069/0059 0.121/0.132 0.755/0.808 | 0.481/0.522 0.346/0.365 0.573/0.618 0.457/0.498
ToP4 AUC 0.760/0.769 0.518/0.515 0709/0.710  0655/0659  0.611/0.602  0.691/0.693  0622/0618  0.623/0.629  0.589/0.577  0.607/0.605  0740/0.728  0.623/0.614 0.546/0.546  0.661/0.666 | 0.729/0.733 0.640/0.638 0.715/0.722 0661 /0.656
Fimages | 115457725060 8.303/4.053  53.833/24040 9.033/2.629 63.674/26.173 30636/ 18797 12159/6.136 21,621 /8548 54.894/25083 11.529/4943 63.605/30863 2015/ 1.192 6.223/2.236 70,786/ 33346 290,657789.536
Precision | 0.675/0.634 0.042/0.057 0413/0.503  0.062/0062 0322/0386  0359/0422  0.097/0135  0.133/0.163  0323/0407  0.084/0.107  0565/0.653 0.029/0039 0.036/0.048 0.506/0.643 | 0.319/0.374 0260/0.304 0.433/0476 03990421
MIMIC | Recall 0.749/0.726 0.082/0.070 045170472 0540/0510  0.739/0.786  0.645/0.675  0542/0556  0431/0471  0756/0809  0.704/0.715  0716/0.750 0381/0.400 0.158/0.140  0.749/0.764 | 0.666/0.681 0546/0.560 0.666/0.681 0.663/0.673
Fl-score | 0.710/0.677 0.056/0.063 043170487  O.111/0.111  0449/0518  0461/0.519  0.165/0217  0203/0242  0.453/0.541  0.150/0.186  0.632/0.698 0.055/0072 0.058/0.072 0.604/0.698 | 0.431/0.483 0324/0.364 0.507/0.543 0.464/0.487
AUC 0.755/0.782 0.513/0.508 0653/0.650  0.639/0638  0.651/0.635  0.754/0.746 _ 0.661/0646  0.602/0.608  0.694/0.675  0.693/0.683  0779/0.770 _ 0.627/0634 0.532/0535 _ 0.757/0.750 | 0.727/0.726 0.665/0.661 _0.724/0.720 _0.710/0.702
Fimages | 13.296/5,030 6.986/4.55 8241/11.723 5.773/2.968 G68914/41990 35897/22654 0479/6006  3.781/2455 22396/ 14376 11.697/7.688 58410/36.948 2498/1249 5.796/3.788 75410/48573 133,375/73.685
Precision | 0.394/0302 0.104/0.113 0315/0.367  0.089/0083  0.586/0.638  0462/0.524  0.118/0.133  0.054/0.064  0202/0229  0.114/0.132  0630/0.681  0.041/0.033 0.100/0.115  0.667/0.762 | 0357/0.392 0277/0298 0.485/0.539 0.364/0.394
CheXpert | Recall 0.607/0.623 0.075/0.067 0.638/0628  0.582/0597 0.856/0.853  0.669/0.660  0.548/0.552  0.515/0.514  0.842/0.844  0876/0.899  0.866/0851 0.467/0441 0.130/0.132 0.875/0.861 |0.772/0.768 0.610/0.609 0.772/0.768 0.745/0.745
Fl-score | 04780407 0.087/0.084 042170463 0.154/0.146  0.696/0.730  0.547/0.584  0.194/0214  0.097/0.114  0.326/0.360  0202/0231  0.729/0756  0.075/0061 0.113/0.123  0.757/0.809 | 0.488/0.519 0.348/0.363 0.577/0.612 0.464/0.493
ToP3 Avc 0.752/0759 0.520/0516 0.709/0711  0.656/0.660  0.604/0.606  0.691/0.697  0.617/0.616 _ 0.625/0.628 _ 0.585/0.577 _ 0.610/0.607 _ 0.735/0725 _ 0.629/0.609 0.538/0.538 _ 0.653/0.666 | 0.732/0.732 _0.637/0.637 _0.719/0.720 _0.656/0.656
Fimages | 86,898 /25331 6641 /4208 41.600/24530 6.006/3022 48975/27.226 24.134/15.108 02686248  16549/9331 43.116/25.603  8.600/5.750  50432/31.506 2282/ 1199 4.758/ 2884 35,161 /35891 220,463 /92,731
Precision | 0.681/0.618 0.045/0.059 0408/0494  0.064/0070  0.325/0385  0359/0414  0.098/0.131  0.133/0.167  0329/0401  0.086/0.120  0567/0.639 0.033/0.039 0.037/0.054 0.509/0.641 | 0326/0.371 0262/0302 0.435/0466 0.404/0.413
MIMIC | Recall 0.741/0712 0.090/0.070 0472/0465  0528/0522  0739/0785  0677/0.681  0541/0556  0432/0.461  0766/0813  0.686/0.719  0740/0.750 0380/0405 0.149/0.128  0.764/0.767 | 0.673/0.678 0550/ 0.673/0.678  0.668/0.668
Fl-score | 0.710/0.662 0.060/0.064 0437/0479  0.114/0.123  0452/0516  0469/0.515  0.166/0212  0204/0245  0461/0.537  0.153/0206  0642/0.691  0.060/0.070 0.059/0.076  0.611/0.698 | 0439/0480 0328/0364 0511/0535 0.469/0.480
AUC 0.757/0.773 0.515/0.508 0.656/0.647  0.639/0.643  0.650/0.632  0.764/0.747 _ 0.661/0.645  0.602/0.602  0.693/0.674  0.694/0.685  0.786/0.766 _ 0.631/0.637 0.531/0.528 0.759/0.748 | 0.731/0.723 0.667/0.660 0.727/0.716 0.712/0.698
Fimages | 8.808/5.020 3011 /4,668 13010/ 11951 3027/4193 47.078/43264 25529/22808 64986155  2585/2.639  15.707/14707  7841/8.602 41341/37.688 1754/1700 4022/3803 51.977/50012 91.428/76.520
Precision | 0.406/0.270 0.109/0.098 0313/0.360  0.092/0.111  0.590/0.632  0459/0.517  0.115/0.130  0.053/0.067  0204/0227  0.115/0.142  0634/0.676  0.044/0.044 0.106/0.104  0.665/0.755 | 0364/0.389 0279/0295 0.487/0529 0.371/0390
CheXpert | Recall 0.579/0.603 0.079/0.057 0.659/0611  0.554/0.603 0.865/0.848  0.697/0.659  0.544/0.548  0.524/0.519  0.845/0.839  0963/0.892  0.876/0843 0.452/0459 0.105/0.133 0.884/0.855 |0.779/0.762 0.609/0.605 0.779/0.762 0.754/0.738
Fl-score | 0477/0373 0.092/0.072 0425/0453  0.158/0.187  0.701/0.725  0.554/0.579  0.190/0210  0.096/0.118  0.329/0.357  0202/0.245  0.736/0750  0.080/0.080 0.106/0.116 0.759/0.802 | 0.496/0.515 0350/0.362 0.582/0.603 0.473/0.487
Top2 AUC 0.744/0.744 0.521/0512 0.710/0705 _ 0.655/0.661 _ 0.600/0.603  0.690/0.699  0.612/0.613  0.626/0.630  0.581/0.579  0.619/0.605 _ 0.729/0.725  0.630/0.616 0.532/0.536  0.648/0.666 | 0.736/0.729 0.636/0.635 0.723/0.717 _0.653/0.655
Fimages | 57,859 /25.256 458174386 28.853/24.588 4.648/3.500 33249/27.724 17.193/15187 6,303/6311 TLIS8/10.120 30.295/25939  5799/6271  34920/31,486 1.563/1.502 3.256/3.008 38400/36,113 147,080/ 94,532
Precision | 0.692/0.593 0.046/0.049 0399/0491  0.070/0079 0327/0385  0.359/0413  0.101/0.130  0.134/0.174  0.336/0.39  0093/0.129  0.568/0631 0.037/0045 0.038/0050 0.513/0.634 |0.338/0366 0265/0.300 0.438/0.457 0.414/0.405
MIMIC | Recall 0.731/0.698 0.100/0.058 0505/0464  0.492/0523  0.740/0785  0721/0.676  0545/0553  0.434/0.456  0778/0.805  0.658/0.720  0766/0.738  0367/039 0.120/0.120  0.780/0.767 | 0.683/0.671 0553/0.554 0.683/0671 0.676/0.658
Fl-score | 0.711/0.641 0.063/0.053 0446/0477  0.123/0.138  0454/0516  0479/0512  0.170/0210  0205/0252  0470/0.531  0.163/0218  0.653/0.680 0.068/0.081 0.058/0.071 0.619/0.6904 | 0452/0.474 0334/0.363 0516/0.526 0.480/0471
Avc 0.761/0.762 0.517/0.502 0660/0.647  0.640/0.642  0.650/0.632 07760746 0.664/0.644  0.603/0.598  0.691/0.670  0.699/0.687  0.793/0.761 _ 0.633/0.630 0.526/0523  0.761/0.747 | 0.738/0.719 0.670/0.656 0.732/0.711 _0.715/0.694
Fimages | 4:390/4,040 2.582/4,805 7357/11.902  2,000/5.579 25328/44,160 13.047/22810 3390/6248  1313/2545 8368/ 14778  3930/0.632 22.005/37.642 899/ 1787 2049/3268 26,981 /50,665 ATA11/78.200
Precision | 0.422/0.249 0.116/0.095 0319/0.358  0.100/0.138  0.59/0.631  0453/0.515  0.113/0.128  0052/0.060  0206/0222  0.117/0.157  0638/0.667 0.050/0.044 0.108/0.076 0.661/0.750 | 0.374/0.386 0.282/0292 0.489/0523 0.381/0386
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Appendix

B.4. Chest X-ray Quality Results
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Figure B.27: Chest X-ray dataset quality measurement results. From left to right, top to bottom, there are plots for classes No Finding, Enlarged
Cardiomediastinum, Cardiomegaly, Lung Lesion, Lung Opacity, Edema, Consolidation and Pneumonia respectively.
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Figure B.28: More Chest X-ray dataset quality measurement results. From left to right, top to bottom, there are plots for classes Atelectasis,
Pneumothorax, Pleural Effusion, Pleural Other, Fracture and Support Devices respectively.
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