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Abstract— We examine a novel setting in which two parties
have partial knowledge of the elements that make up a Markov
Decision Process (MDP) and must cooperate to compute and
execute an optimal policy for the problem constructed from
those elements. This situation arises when one party wants to
give a robot some task, but does not wish to divulge those
details to a second party—while the second party possesses
sensitive data about the robot’s dynamics (information needed
for planning). Both parties want the robot to perform the
task successfully, but neither is willing to disclose any more
information than is absolutely necessary. We utilize techniques
from secure multi-party computation, combining primitives
and algorithms to construct protocols that can compute an
optimal policy while ensuring that the policy remains opaque
by being split across both parties. To execute a split policy,
we also give a protocol that enables the robot to determine
what actions to trigger, while the second party guards against
attempts to probe for information inconsistent with the policy’s
prescribed execution. In order to improve scalability, we find
that basis functions and constraint sampling methods are useful
in forming effective approximate MDPs. We report simulation
results examining performance and precision, and assess the
scaling properties of our Python implementation. We also
describe a hardware proof-of-feasibility implementation using
inexpensive physical robots, which, being a small-scale instance,
can be solved directly.

Index Terms— Linear programming, Markov Decision Pro-
cess, Robotics, Control Systems Privacy.

“There are many things of which a wise man might wish
to be ignorant.” — Ralph Waldo Emerson

I. INTRODUCTION

Autonomous robots that help with household labor, chores,
and routine or repetitious tasks in the domestic sphere remain
frustratingly out of reach—service robots are far from ubig-
uitous, having failed to penetrate markets in any meaningful
way. Indeed, the last five years have been a tougher time for
consumer robots than many —including seasoned technology
entrepreneurs— had anticipated [1]. Perhaps one solution
to these issues is Robots-as-a-Service (RaaS), an alternative
business model in which service providers lease robots to
users, reducing the consumer’s initial outlay and alleviating
uncertainty surrounding maintenance and repair.

Now add to this an important recent trend: the upsurge in
concerns voiced regarding privacy and confidentiality, includ-
ing specific objections to companies selling data collected
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Fig. 1: Oblivious MDPs illustrated. The user gives her robot, A.L.C.
(pronounced Alice), high-level commands (step 1). From this, the robot
constructs a policy w* by interacting with the manufacturer (step 2). Both
keep their respective informative private: the manufacturer does not learn
the task (i.e., reward function); the robot owner does not obtain sensitive
proprietary details of the robot design (i.e., transition dynamics). The pair of
parties keep interacting in order to use the policy (3 & 4), the robot executing
7* without disclosing states, even while subject to uncertain transitions, and
the manufacturer verifying that the queries reflect a plausible execution.

by robots [2]. This paper addresses the question of how
to operate a robot, as a resource shared between parties,
without divulging sensitive information. We imagine a user
who, leasing a robot from a service provider, has some tasks
she wishes the robot to perform, yet does not want to share
details of the work she has the robot carry out. (See Fig. 1.)
The service provider deploys the robot and monitors its
general condition, pushing software upgrades as appropriate.
To boost their market share and attract users who prize
privacy or have concerns over data confidentiality, the service
provider guarantees that they will never track the robot, nor
permit people snooping on network communications to learn
about the robot’s activities. Further, the service provider has
a number of proprietary aspects of the robot they wish to
protect and avoid becoming public. The problem becomes:
(z) how to plan by combining some of the consumer’s
information (the task itself and the robot’s current state) and
some of the service provider’s (aspects of robot performance)
without transmitting that information to the other party, and
(22) having found a plan, how to execute it.

This paper treats the planning problem via the Markov
Decision Processes (MDP) framework. The user places the
robot in her home and specifies the task via a reward function
(we imagine an interface where a goal is selected, putting
a unit reward at the goal state, zero elsewhere). The robot,
which we refer to as Alice, has some control programs that it
can trigger; the hardware and control programs are opaque



and treated as actions in the MDP. The service provider,
Bots-of-Boston™ (or B.O.B., for short) has conducted exten-
sive system identification on these controllers; they consider
the transition dynamics to be sensitive information. (Also,
these may change as the control programs are updated to
incorporate new features.) Some of the information in the
MDP is available to one party, and some is available to the
other. The innovation in this paper is to use secure multi-
party computation (SMPC) [3], [4] to compute and execute
a policy that is shared. After the computation, we propose
an execution protocol in which neither Alice nor B.O.B.
have access to the policy itself, but each has only pieces
that are meaningless without the other. Having completed the
planning phase, the robot uses this shared policy: it localizes
itself and has Alice and B.O.B. compute the action to execute
(i.e., controller to trigger). On Alice’s side, the action is
determined (since the robot must know what to do), but this
occurs without B.O.B. knowing what state the robot is in.
This process is repeated as the robot executes, with B.O.B.
ensuring that the state sequence is plausible, using knowledge
of the transition dynamics without ever learning the states or
reward function that encodes Alice’s task.

II. RELATED WORK

The need for privacy and security in robot applications has
garnered recent attention in the robotics community [5], [6].
Our approach to planning fits within the family of approaches
that use cryptography-based methods in estimation and
control. Several cryptographic techniques have been used,
such as homomorphic encryption for a privacy-preserving
Linear Quadratic Gaussian (LQG) controller in a multi-
party setting [7] and Reinforcement Learning [8] and garbled
circuits for Model Predictive Control [9]. Researchers have
also used alternative methods to achieve privacy guarantees
in control and automation, including differential privacy [10],
[11] and federated learning [12], and models with worst-case
nondeterminism [13], [14], [15].

Our work connects to techniques using Secret Sharing
Schemes [16] for privacy-preserving machine learning [17],
[18], [19], [20], optimization [21], [22], [23], sensing [24],
and networking [25]. In our previous work, we proposed
an approach based on garbled circuits and homomorphic
encryption for privacy-preserving rendezvous and collision
avoidance [26] and multi-robot task allocation [27] through
Shamir’s Secret Sharing. Secure Linear Programming [18],
[19] gives a useful coordination primitive. In this paper, we
use it to compute optimal policies for MDPs, which—unlike
the previous two [27],[26]—has a probabilistic model of
uncertainty. The work by Mangasarian et al. [28] proposes
a method to solve a linear program by dividing a matrix
among n agents. While their approach is relevant for seeking
a secure solution, but it is not directly applicable to our
setting because it gives Alice more information than needed.

III. PRELIMINARIES AND PROBLEM FORMULATION

To recap to story so far: we have two parties, Alice and
B.O.B., the former has a navigation task to execute but needs

the latter’s help to do so. This two party setting arises in
the secure rental problem: a person considers using one of
B.O.B.s robots in order to perform useful work for her, but
she is reticent to share either the task specifics or the informa-
tion gleaned during task execution. B.O.B. only obtains a fee
if the user is persuaded, via guarantees of privacy, to rent the
robot. Moreover, B.O.B. wishes to constrain what others can
learn about the design and specific performance parameters
of the robot. Naturally, everyone wishes protection against
third-party attacks during the rental.

Formally speaking, the robot is modeled using a Markov
Decision Process (MDP) a 5-tuple: (S, A, T, R, ) given by
the state space S the action space A; the transition function
T:5xAxS —|0,1], when evaluated as T'(s,a,s’) gives
the probability of arriving to state s’ given the agent was
in state s and applied action a. The function 7" is owned
by B.O.B. as it contains the knowledge about the robot’s
dynamics; the reward function R : Sx A — R, where R(s, a)
is the reward obtained by executing action a at state s; and
0 < v < 1 is the discount factor. Alice owns the reward
function and discount, as she knows the task requirements.

Secure Decentralized MDP: Given the parties Alice, who
owns the reward function and the discount factor, and B.O.B.,
who owns the transition function, build, solve and, execute
an MDP securely, using multi-party computation.

IV. SECURE MULTI-PARTY COMPUTATION FRAMEWORK

This section aims to make the paper self-contained, de-
scribing the elements of secure multi-party computation
needed. More detail appears in standard texts [3], [4], [29].

A. Shamir’s Secret Sharing

In this paper, we use Shamir’s Secret Sharing (SSS)-based
multi-party computation [16]. This scheme splits a secret S
across /¢ parties, by creating a set of ¢ shares indicated by
square brackets: {[S],[S]s, ..., [S]¢} with the property that
secret S can be recovered if and only if a subset of at least
t parties combine their shares.

The SSS scheme depends on the fact that ¢ points suffice
to uniquely define a polynomial of degree less or equal to
t — 1 on a finite field denoted by GF(p) = Z,,, with prime
p. To construct polynomial f(z) = ag + a1x + axx? +
AR o at,lxt’l, we represent the secret S as an element
ag € GF(p) and the ay, ..., a;—; are randomly chosen from
GF(p). After the polynomial has been constructed, ¢ points
are obtained from it and one is given to each participant.
Specifically, for participant i, 1 < i < ¢, the pair (i, f(¢)) is
derived from the polynomial as illustrated in Protocol 1 (for
more detail, see [17]).

Protocol 1 ShamirShare(S, ¢, t, p)
Inputs: S € GF(p) the secret, ¢ parties, ¢ reconstruction threshold
Output: Shares [S]; for each of the £ parties

1 Party P; selects ai,az,...,a:—1 from GF(p)
2 foreach j € {1,2,...,(}
t—1

3 [S]; + S+ Zak]k
k=1
4 Send [S]; to party P;




Reconstruction is via OpenShare(A, [S]), where P is a
set of parties with |P| > t and [S] are shares of the secret.
The routine OpenShare interpolates the polynomial to obtain
f(0) = S, and implements Lagrange interpolation [17].

B. Secure Operations on Secrets

One critical aspect of SSS is that it enables each party
to perform locally linear computations of secrets and public
values. Mostly, we employ basic operations such as addition,
multiplication, comparison, and dot product between two
vectors. (Implementation and other details appear in [30].)
These are building blocks for the more complex protocols
in this work: our initial focus will be a secure solution
for Linear Programming (LP) problems through the simplex
method [31], [22], as the optimal value function of an MDP
can be obtained by solving an LP.

V. METHODS

We chose Linear Programming (LP) over alternatives
like value or policy iteration due to its inherent benefits.
LP provides greater flexibility to customize the objective
function and reduce constraints, and it allows us to use basis
functions, as explained in subsection VI-C. Moreover, LP
requires fewer runtime iterations, enhancing efficiency.

The entire execution consists of 4 parts: A.) converting a
given MDP into an LP through its tableau representation;
B.) solving the result; C.) converting the optimal value func-
tion to a policy for Alice, and D.) execution via interaction.

A. From MDP problems to LP problems

The initial phase involves Protocol 2, takes as input the
elements of the 5-tuple representing the MDP problem using
the components owned by Alice and B.O.B. and converts it
to an LP problem. The state space S and the action set A are
known by both parties. The transition function 7" is known by
B.O.B. only, while the reward function R, and the discount
factor « are known solely by Alice.

In this formulation, the value function V' : S — R associ-
ated with the MDP problem satisfies the following [32]:

rsnelg Z,u(s)V s
s€S
subject to  V(s) > R(s,a) + v Z T(s,a,s)V(s), @D
s'esS
V(s) >0, forseSandacA.

Here u(s) > 0 for s € S is a probability distribution over
the state space for the initial state. This is converted into its

canonical form, thusly:
min uTv
v 2

subject to r = Mv, v >0, r >0,

which provides a shorthand for the different functions in-
volved. To begin, we need to identify a basic feasible
solution, i.e. a vector v located on a vertex of the constraint
polyhedron. However, the simplex method employed in [22]
is tailored to specific constraint formats, simplifying basic
feasible solution derivation via a single tableau. As (1) lacks

the requisite format, a two-phase simplex algorithm becomes
necessary. The first phase determines a basic feasible solution
by solving the artificial problem derived from (1):

min 1'a
3)
subject to r=Mv+a, v >0, r>0, and a > 0.

Here, 1 = (1,...,1)T, and (v,a) = (0,7) consistently forms
a basic feasible solution, facilitating the standard simplex
method. This strategy deploys two concurrent tableaux, T
for (3) and U for (2),
T:[Alﬁ[ ﬂ:’”}, and u:{]’\j‘, S} )
The second phase of the simplex procedure uses 7 to
select the entering and exiting variables. As detailed shortly,
the standard Gauss pivoting procedure acts on both ma-
trices. Protocol 2 gives MDPTOLP to generate 7 and U
from (S, A, T, R,~). The parentheses () asice, () Bo» denote
elements that are owned by Alice and B.O.B respectively; []
denotes secure elements shared between them.

Protocol 2 MDPToLP(S, A, (T) Bob, {R) Atice, (V) Atice, 1)
Inputs: The MDP (S, A, T, R,~) with transitions, rewards, and
discount; also p an initial probability distribution

Output: Shared tableaux [7] and [U/]

1 Alice shares [y] < ShamirShare ({Y) atice)

2 foreach (s,a) € S x A do locally in parallel

3 Alice shares [R(s,a)] + ShamirShare((R(s,a)) atice)
foreach (s,a,s’) € S x A x S do locally in parallel
[T(
)

!

4

5 s, a, s")] < ShamirShare({(T(s,a, s")) Bob)
6 foreach

7

8

(s a,s') e SxAxS do
[Nsas] < sign([—R(s, a)])(1 — Y][T'(s,a,s")])
foreach (s,a) € S x A do

9 [Ms,a)] < ([Nsasi]; - -+ [Nsasg)])

Ef(s,a)]  sign([—R(s, a)])ef(s,a)]
1 [T(f(s,a), )] <= (Mol [Er(s,)]s [[R(s, a)]])
12 [U(f(s a),)] < (Mgl [riaml [[B(s, a)]l)
13 [T(L,)] + (L,[L77]) > r=(RE=1 @), RET(ISIIAI+1)))
14 UL, 0)] < [(n

Some useful conventions will be adopted in presentation
of subsequent the protocols: if M is a matrix we will refer
to M(i,-) and M(-,j) to its i rows and j® columns
respectively. Also, if = and y are vectors, vector (z,y)
will mean the concatenation of those vectors. In the above
protocol for MDPTOLP, f: S x A — {2,...,|S||A|+1} is
any bijection between S x A and {2,...,|S||A|+1}; also e;
denotes the ™ canonical vector whose size is |A||S|. (Note
that colors are used to help indicate visually when a protocol
is defined herein, or is leveraging the prior work of others.)

B. Solving the LP problem

After obtaining the tableaux, [7] and [U], next, we se-
curely solve the LP. In essence, an implementation is just
successive application of the basic operations mentioned
before, since selecting the entering/exiting variables, and
performing Gaussian elimination on the tableaux can be
achieved through element comparisons and dot products.

Our approach makes heavy use of the secure LP solver
implemented in [22]. The main difference is that, in the



extension TwoPhaselteration (below), we handle the two
tableaux [7] and [U], by using the protocol Iteration as a
subroutine (see call on line 13), it being responsible for a
single simplex iteration. The protocol performs iterations in
a two-phase manner, which required the addition of a flag to
indicate failure in locating, through (3), any basic feasible so-
lution. The primitives GetPivCol, GetPivRow, SecReadRow,
SecRead, UpdateTab, UpdateVar and Iteration perform the
basic pivoting and reduction operations in a single iteration
of the simplex algorithm, and are detailed in [22].

Protocol 3 TwoPhaselteration([T], U], [B], [INs])
Inputs: Shared tableaux [7] and [I/], and initialized vectors corre-
sponding to the basic and non basic variables [B] and [INp]

Output: Tableau [U{], vector [B] with the basic variables and a

flag € {Opt, Unb, Unf} indicating the state of the LP problem
(Opt: problem solved, Unb: it is unbounded, Unf: no feasible solution)
1 while True do

2 ([V],av) « GetPivCol([T(1,1,...,n)])
if a, = 0 then break
[C] « SecReadCol (T, [V])
(W], aw) « GetPivRow([T (1,...,m,n+ 1)],[C])

[R] < SecReadRow ([T], [W])

[p] - SecRead([R], [V])
9 [T] + UpdateTab([T}, [C], [R], [V], [W], [p])
10 [U] + UpdateTab([U],[C], [R], [V], W], [p])
1t ([B], [Ny]) = UpdateVar([B], [Ne], [V], [W])
12 if flag = Unf then return ([i{], [B], flag)
3 (U], [B], flag) « Iteration([U], [B], [Ns])
14 return ([4], [B], flag)

’;
4
5
6 if a, = 0 then flag < Unf break
7
8

Lastly, TwoPhaseSimplex (below as Protocol 4) calls pro-
tocols InitVar, GetSolution from [22] and protocol TwoPha-
selteration to perform the entire two-phase simplex to obtain
the optimal value function [V*(s)]. The first phase will
locate some feasible basic solution (the artificial problem
(3) condensed in the tableau 7), and the second phase will
find the optimal solution to (2) (in the tableau Uf).

Protocol 4 TwoPhaseSimplex ([T], U], (m,n))
Inputs: Shared tableaux [T, [{{] and (m,n) the dimensions M
Output: Shared optimal value function [V (s)]

1 ([B],[Ns]) < InitVar(m,n)

2 ([T],[B], flag) < TwoPhaselteration([T], [U], [B], [Ns])

3 if flag = Unf then return Unf

4 if flag = Unb then return Unb

5 [X] <« GetSolution([{U(-,n + 1)], [N])

6 [V*(s)] « [X(1,...,[S])]

7 return [V*(s)]

C. Obtaining the optimal policy

For an MDP, a deterministic optimal policy is a mapping
*: S — A that maximizes each state’s value. In our case,
we are interested in obtaining the optimal policy 7*(s) from
an optimum state value function V*(s), both are related by

7 (s) —argmaxg (s,a,s")
acA s'es

(R(s,a) + 7 V'(s)). ()
H/—’ —————
Owned by B.O.B. Owned by Alice

ValueToPolicy obtains the policy using the ArgMax func-
tion [30] where ArgMax([Q(s,-)]) = argmax,c 4[Q(s,a)].

Alice B.O.B.

[esn,l][ﬂ'* (Snfl)] . [637171][71—* (snfl)]
Alice moves from s, —1 to sp,

Both check movement validity

Alice shares her state

M sns[snl [sn]
<>§ Both one-hot encode s,
8 [esn] [6371}
g. Both verify valid encoding
=
[ - 7] Compute secure dot product [y - 7]
[7* (sn)] Obtain shares of the action [7* (5n)]
[7* (sn)], 7* (5n) B.O.B. sends his share [ (5n)]

Fig. 2: Policy Execution. An interactive scheme where, after the iteration,
Alice and B.O.B. will possess shares [es,, | and [7* (sy,)]. When both check
valid encoding it means to make sure that es,, is indeed a canonical vector.

Protocol 5 ValueToPolicy ([V*(s)], [T], [R], [v])

Inputs: Value function [V*(s)]
Output: Shared policy [7*(s)] associated with [V*(s)]
1 foreach( )€S><A
2 (s,a)] = > [T(s,a,8)([R(s',@)] + DIV (5)])

s’'eS
3 foreach s € S

4 17 (s)] & ArgMax([Q(s, -)])
5 return [77(s)]

D. Policy execution

After completing the preceding steps, an optimal policy
has been computed, but neither party can query it alone.

1) Protecting Alice: During the execution phase, each
time she performs an action, Alice has to retrieve the policy
value at her current state. To reconstruct it, she needs to
ask B.O.B. about his part of the policy in her state. But
she never wishes to reveal to him which state she occupies
or has occupied. To guarantee that Alice’s state will not be
disclosed, she creates secure shares of her position using
the ShamirShare primitive, as a one-hot vector represen-
tation, i.e., state s, is encoded as the canonical vector
es,. Then, with a secure dot product, the parties compute
es, - (m*(51), ..., 7 (8]5])) = 7*(84). Finally, B.O.B. sends
his share of the result to Alice, who can reconstruct the
value and execute the action. Alice’s state is not disclosed to
B.O.B. Even if B.O.B. compares his shared part of the policy
with his shared part of 7* (s, ), he gains no information as his
shared part of 7*(s,) needs Alice’s half of 7*(s,), and her
half of vector e,,. This argument relies on the fact that one
agent cannot manipulate their shares to change the shared
value as a change in shares will result in a random change
to the shared value (refer to protocol ShamirShare); therefore
no agent can manipulate this computation individually.

2) Protecting B.O.B.: On the other hand, B.O.B. wants
to ensure that Alice follows the optimal policy, seeking to
protect his robot from misuse. To do so, without disclosing
the transition function or learning Alice’s state, suppose we
are at the n™ step during the execution of the policy. At this
juncture, Alice will have shared her state s,,_; through the
shared canonical vector [es, ,] when she queried the action
[7*($n—1)]. If that action was executed as it should have
been, it leads to her next state. To ascertain veracity, we



determine whether the state Alice’s claims to be her current
state, s,, could indeed be achieved from prior state s,_1
after execution of action 7*(s,,—1). Thus, we wish to verify
T(Sp—1,7(Sn—-1),Sn) > 0 securely. Observe that to extract
a specific element [A];; from A € R™*™, we perform the
matrix product e Ae;. Define matrix T, € RISI¥IS| where
a € Aand [T,)ss = [T(s,a,s")] for (s,8") € § xS, and,
finally, let [e,, ], [es,] € RIS and [eq«(s, ;)] € R4 be,
respectively, one-hot encoded vectors of the Alice’s last state,
current state, and the action given by the policy at Alice’s
last state. Then, compute [T'(s,—1, T (8n—1), 8n)] > 0 via

[ed, ] (Z e )] [Ta]) lea] >0, ©)

acA

where [egi)(snil)] is the a'™ component of [e+(s, ,)]. This

value certifies the consistency of Alice’s movement, which
we call checking movement validity.

The steps of the interactive procedure just described have
been summarized in Fig. 2. It allows B.O.B. to verify that
the sequence of queries Alice generates is consistent with
the execution of the policy, doing so without disclosing her
states at each point or revealing the transition dynamics.
Alice needn’t know the transition dynamics but need only act
faithfully in a world with those dynamics. Finally, to prevent
excessive policy leakage B.O.B. will limit the number of
policy queries, for instance to %\/E ([33] has a similar
quantification). For queries exceeding this number, B.O.B.
will conclude that the policy is being probed and will, thus,
cease communication with Alice.

E. Complexity

1) Computational Complexity: The computational cost
of the planning procedure, before executing the the pol-
icy is dominated by the protocols TwoPhaselteration and
TwoPhaseSimplex, which are the simplex method. Although
the algorithm has an exponential time worst-case, several
works report that those cases are rare and even minuscule
modifications to the constraints can make them polynomial-
time solvable, e.g., cf. [34]. Moreover, [31] and [34] agree
that algorithms solving LP problems with n variables and
m constraints, including simplex, have average complexity
O(nm?) = O(|A|?|S]3). During the execution phase, we
need to calculate one dot product for extracting the action
from the policy, | A| matrix sums, and |.S|+2 dot products to
evaluate the movement validity, for a total cost of O(]A||S|?)
per iteration.

2) Communication Complexity: The usual bottleneck for
interactive protocols is the communication between agents.
To be useful, a metric for complexity should consider the data
transmissions: one measure is the number of invocations of
primitives that require information transmission; another is
round complexity, which tallies the number of invocations
done sequentially and evaluates the delay between mes-
sages. The simplex procedure, during planning, dominates
the entire procedure. Extrapolating the analysis of [22],
protocols TwoPhaselteration and TwoPhaseSimplex are per-

formed in O(mlog(nm)) = O(]A||S|log(|A||S|?)) rounds
and O(nm?) = O(]A|*|S|3) invocations in the average case.

During policy execution, each agent can perform matrix
additions locally (so no triggering of a round or invocation
is needed). However, |A[|S|? single products and |S| + 2
dot products do have to be computed as shown in Fig.2. An
efficient dot product implementation requires only one round
and one invocation each [22]. In total, execution steps require
O(]A]|S|?) rounds and invocations per query.

FE. Correctness and Convergence

The protocols are sequential so termination follows from
the termination of the schemes employed. Protocols MDP-
ToLP and ValueToPolicy directly apply the definitions to
construct the LP problem and extract the optimal policy from
the optimal value function—these procedures converge in a
finite number of steps. On the other hand, TwoPhaselteration
and TwoPhaseSimplex perform the simplex method; their
convergence depends upon Dantzig’s pivot rule [31], which
is guaranteed to converge whether it finds an optimal solution
or determines no solution exists (either being unbounded
or infeasible). Finally, the execution phase complexity is
bounded by the the number of queries Alice is permitted.

G. Security Analysis

The SSS framework provides strong guarantees: perfect or
statistical security [30], [22]. We use secure blocks in order
to take advantage of Canetti’s Universal Composition frame-
work [35], which ensures that composing different secure
primitives yields a more complex protocol but maintains its
security characteristics.

VI. EXPERIMENTAL RESULTS

We tested our approach on simulation experiments and
using physical platforms.

A. Simulation Experiments

We conducted our simulation experiments using a single
machine with an Intel i7 3.60 GHz CPU and 16 GB RAM,
running Ubuntu 18.04 LTS, Python 3, and Robot Operating
System (ROS). Each run has random starting and goal
positions, and a random obstacle region. We used the Secure
Multiparty Computation framework (MPyC) to enable both
parties to perform computations on secret-shared values.
Both Alice and B.O.B. interact by exchanging messages via
peer-to-peer connections, each with a virtual network inter-
face used for MPyC configured for asynchronous operation,
as detailed in [36].

Each experimental run consists of two steps. First, both
agents solve the MDP and construct the policy shares.
Secondly, Alice queries the policy using the procedure
mentioned in Section V-D.1, while B.O.B. checks movement
validity through the scheme in Section V-D.2.

We studied the time needed to compute the policy in
worlds of increasing size and varying the discount factor .
During this process, we fixed the number of bits needed for
the computation’s secure (secret-shared) fixed-point numer-
ical representation to 200 bits. On one hand, we increased
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Fig. 3: Planning time and needed numerical precision plotted as a problem
instance size (top) and MDP discount factor (bottom) vary while fixing the
number of bits to 200.

the world size to range across 3 x {3,4,...,11} and kept
v = 0.99 fixed. The impact on running time is shown in
the solid blue curve in the plot in Fig. 3a. We observed
that the running time increases at a polynomial rate. On the
other hand, we also examined how the discount factor plays
a role. Fixing the 3 x 4 grid, we varied v between 0.6 and
0.99, which yields the result in Fig 3b. Unlike value iteration
techniques (as we mentioned above), running time is usually
nearly constant regardless of v for LP-based approaches.

B. Mobile Robot Experiments

We conducted physical experiments with two Raspberry
Pi-embedded computers: one situated on a mobile robot
(Alice), the other being statically placed (for B.O.B.). The
robot is an iRobot Create device running Robot Operating
System (ROS), with the AprilTag visual fiducial system [37]
used for localization purposes. Both parties communicate
through a wireless router using ROS messages. In the phys-
ical world, we considered specific obstacles positioned at
particular locations. When the robot (Alice) encounters an
obstacle, it automatically returns to its previous position.
The communication between robots is facilitated through
ROS, inheriting the associated limitations in communica-
tion capabilities. A video of the physical experiments can
be found at https://youtu.be/QvtoHtYEKhQ?si=
ImX7L-_2fxm2h0OkT

Fig. 4 shows a policy computed and executed to navigate
a 3 x 3 grid world. Initially, Alice and B.O.B. start by
computing the MDP’s policy. Then, Alice queries and makes
her first move according to the policy. B.O.B. validates every
query, helping to ensure there is no misuse of the robot.

A more interesting execution is shown in Fig. 5, wherein
Alice takes the first action as before, but (modeling transition
uncertainty) has been shifted to move to the diagonally
adjacent grid cell. B.O.B. validates the move’s outcome as
permissible under the probabilistic transition dynamics, and
then Alice queries again en route the final state.

In contrast, if Alice breaches the policy by moving to an

(© (d)

Fig. 4: Navigation from the initial to the goal position: (a) Alice and B.O.B.
begin the planning step and, after 4.36 min, the optimal policy is computed;
(b) Alice makes her first query and moves (the action is to move West) in
21 sec; (c) At 22sec, Alice encoded and shared her action and state with
B.O.B. who verified the query to validate that Alice had executed the correct
action; (d) Following the policy successfully, Alice arrives at the goal.

(b)

(©) (d)

Fig. 5: Navigation that arrives in a diagonal cell: (a) Alice and B.O.B. begin
solving the MDP; (b) Alice queries and the action is to move West; (c) her
action outcome has been a diagonal motion to a state that is South-East;
B.O.B. determines that Alice could have arrived there under the transition
model while executing the policy honestly; (d) Alice reaches the goal.

incompatible state or querying the policy from such a state,
B.O.B. terminates communication (Fig. 6). Milder options
could be triggering a request for Alice to reaffirm the EULA,

or by throttling the user by delaying policy execution.

C. Scalability

The experiments so far have shown the approach to be
feasible for small-sized scenarios. Some further innovation
appears to be needed in order to address larger MDPs, as
the required computation rises dramatically. Our approach
for large state spaces, following [38], is to express the value
function as a sum of a set of basis functions h;(s) : S — R:

k
V(s) = wihi(s), where k < |S]. (M
=1

Problem (1) then becomes
k

S wiS uls)hils)

=1 seS

min
Wy, W

k k
subject to Z wih;(s) > R(s,a) +v Z wj Z T(s,a,s )hi(s"),
i=1

i=1 s'eS
w; >0, forseS, acAandi=1,... )k ®)



(b)

(d)

Fig. 6: Alice’s attempted misuse of the policy: (a) Alice and B.O.B. start
computing the MDP; (b) Alice queries and follows the policy in her first
move (West); (c) Alice again queries, but now misbehaves, executing a
different action causing her to be in a state with zero probability, shown
in (d). Here Alice remains because B.O.B. ceases to engage in the protocol.

for some bounded k. This technique reduces computational
and communication complexities by O(|S|). Still, this does
not emend the requirement of |S||A| constraints in the LP,
which remains challenging when the number of states is not
small. To surmount this difficulty, we further employ the
constraint sampling scheme championed by [39]: when the
number of variables is much smaller than the number of
constraints (k < |S||A]), this suggests that there are likely
many redundant constraints. The idea is that sampling a
reduced number of constraints can produce solutions with
a high probability of satisfying all but a small number
of constraints. The hope is that omitted constraints are
redundant, so will not significantly impact the solution. Let

mzé(kln(?)-l—ln (;)) )

Then taking m to be the number of samples in the constraint
sampling scheme, one determines that the probability that a
reduced set of that size will be enough to satisfy almost
every constraint. Specifically, with a probability of at least
1—46, sampling m constraints uniformly and independently at
random will lead to at most €(|S||A|) unsatisfied constraints.
Importantly, the value of m does not depend on the size of
the state or action spaces—hence the scheme reduces the
computational and communication complexity by O(|S||A|),
at the cost of a small error margin of e.

In attempting to scale to larger problem instances, both
techniques were employed together. The value function was
assumed to be a plane, i.e., V(s) = hi(s)wr + waha(s) +
wshg(s) = V(z,y) = w1 + waz + wsy where s, interpreted
as the pair (z,y), indicates a grid position. Taking ¢ = 0.22,
0 = 0.1, and k£ = 3 expression (9) gives m ~ 256. We
conducted simulation experiments and measured the running
time for larger grids to assess the overall effectiveness. Fig. 7
shows that the reduction in running time is dramatic, at the
cost of having assumed the value function’s specific form.

To appraise the loss in accuracy this incurs, we used two
metrics from [39]: L, norm and Hamming distance. We
applied these metrics to measure the distance between the
real optimal value function V*(s) and the value function

obtained by solving (8), which we denote as V*(s). The L,
norm weighted by the vector ¢ > 0 is defined as

- 1/p
pe = (ch|xl|p) .

=1

||z (10)

We used || - ||p,c to portray the distance between V*(s)
and V*(s), taking p = 1 and ¢ as p, the initial distribution.

To compare the quality of the policies produced by these
value functions, denoted 7*(s) and 7*(s) respectively, we
counted the number of states where 7*(s) # 7*(s) and
weighted this by the vector p. Known as the Hamming
distance, it corresponds also to the norm || - ||o ..

To aid in interpreting the results, the distances are reported
as normalized, given by ratios of relative L; distance and
relative Hamming distances:

V7(8) = VZ ()l 7" (s) = 7" (5)llou
V*)lhw 7 |5
The ratios give an idea of the accuracy relative to the
optimal functions, independent of the grid size. In Fig. 7,
see how, though the relative L; increases, the effect on the
resulting policy is minimal (i.e., the relative Hamming dis-
tance remains bounded). The approximated value function,
thus, manages to represent the overall behavior of the MDP
problem even with few basis functions (qualitatively, this can
be seen more directly within the visualization in Fig 8).
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Fig. 7: Planning time when employing features to improve scalability: basis
functions and constraint sampling. This also allows the numerical precision
to be kept constant at 80 bits. The relative error in value functions and
policies, expressed via L1 and Hamming metrics, share the rightmost axis.
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Fig. 8: Visualizations of V*(s) and V*(s), plotted as heatmaps; policies

7*(s) and #*(s) show their actions as arrows (and dots for the stay action).
The goal point is marked as the yellow star.
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VII. CONCLUSIONS AND FUTURE WORK

This paper explores how two parties can jointly compute
and execute an optimal policy for an MDP while protecting
their inputs. It focuses on Robots-as-a-Service scenarios



where privacy-conscious customers consider renting a robot.
The study demonstrates that planning and execution are
feasible but only for small-scale problems. To address this
limitation, the paper proposes methods for approximating
solutions, significantly increasing the scale of feasible prob-
lem instances. Being aware of the algorithm’s execution
time can disrupt methods like policy or value iteration. The
simplex algorithm maintains a steady average running time.
To introduce variability, B.O.B. and Alice can add random
positive numbers in the bit representation (see Section VI-A).

An interesting aspect of the protocol we have described
is that while one party knows (in the sense of owning a
mathematical description of) the transition dynamics, the
other party represents the executor which ‘experiences’ those
dynamics. When there is mild noise, the execution will
mostly follow the nominal trajectory, and so any queries
outside of this path (if that agent is curious and, hence,
deviates) will be easily found out; thus, the physical tran-
sitions somehow affect what can be protected. Future work
should explore the ramifications of the physical system’s
noise obscuring actual utilization, along with the prospects
of non-optimal policies (and as well as other means) to
constrain how much experience the robot is permitted, e.g.,
to limit data gathered on its own dynamics.

REFERENCES

[11 G. Nichols, “Another one bites the dust: Why consumer robotics
companies keep folding.” ZDNET/Innovation, 1 May 2019.
https://www.zdnet.com/article/another-one-bites—-the-
dust-why-consumer-robotics—-companies-keep-folding/,
Last access: 5 Sept. 2022.

[2] L. Vaas, “Privacy dust-up as Roomba maker mulls selling
maps of users’ homes,” Naked Security, July 2017. https:
//nakedsecurity.sophos.com/2017/07/26/privacy-dust-up—
as-roomba-maker-mulls-selling-maps-of-users—-homes/,
Last access: 5 Sept. 2022.

[3] D. Evans, V. Kolesnikov, M. Rosulek, et al., “A pragmatic introduction
to secure multi-party computation,” Foundations and Trends® in
Privacy and Security, vol. 2, no. 2-3, pp. 70-246, 2018.

[4] R. Cramer, 1. B. Damgard, and J. B. Nielsen, Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

[5] N. DeMarinis, S. Tellex, V. P. Kemerlis, G. Konidaris, and R. Fonseca,
“Scanning the Internet for ROS: A View of Security in Robotics Re-
search,” in Proc. IEEE Conf. on Robotics and Automation, pp. 8514—
8521, 2019.

[6] S. Eick and A. I. Ant6n, “Enhancing privacy in robotics via judicious
sensor selection,” in Proc. IEEE Conf. on Robotics and Automation,
pp. 7156-7165, 2020.

[71 K. Tjell, N. Schliiter, P. Binfet, and M. S. Darup, “Secure learning-
based mpc via garbled circuit,” in Proc IEEE Conf. on Decision and
Control, pp. 4907-4914, 2021.

[8] J. Park, D. S. Kim, and H. Lim, “Privacy-preserving reinforcement
learning using homomorphic encryption in cloud computing infras-
tructures,” IEEE Access, vol. 8, pp. 203564-203579, 2020.

[9]1 K. Tjell, N. Schliiter, P. Binfet, and M. S. Darup, “Secure learning-

based MPC via garbled circuit,” in Proc IEEE Conf. on Decision and

Control, pp. 4907-4914, 2021.

S. Han and G. J. Pappas, “Privacy in control and dynamical systems,”

Annual Review of Control, Robotics, and Autonomous Systems, vol. 1,

no. 1, pp. 309-332, 2018.

V. Pacelli and A. Majumdar, “Robust control under uncertainty via

bounded rationality and differential privacy,” in Proc. IEEE Conf. on

Robotics and Automation, pp. 3467-3474, 2022.

S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri,

“Opportunities of federated learning in connected, cooperative, and au-

tomated industrial systems,” IEEE Communications Magazine, vol. 59,

no. 2, pp. 16-21, 2021.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371
[38]

[39]

J. M. O’Kane and D. A. Shell, “Automatic design of discreet discrete
filters,” in Proc. IEEE Conf. on Robotics and Automation, pp. 353—
360, 2015.

Y. Zhang and D. A. Shell, “Complete characterization of a class
of privacy-preserving tracking problems,” International Journal of
Robotics Research, vol. 38, no. 2-3, pp. 299-315, 2019.

Y. Zhang, D. A. Shell, and J. M. O’Kane, “Finding Plans Subject to
Stipulations on What Information They Divulge,” in Proc. Workshop
on Algorithmic Foundations of Robotics (WAFR), pp. 106-124, 2018.
A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

P. Chen, “Secure multiparty computation for privacy preserving data
mining,” Master’s thesis, Eindhoven University of Technology, 2012.
S. de Hoogh, B. Schoenmakers, P. Chen, and H. op den Akker,
“Practical secure decision tree learning in a teletreatment application,”
in Int’l Conf. on Financial Cryptography and Data Security, pp. 179—
194, 2014.

F. Blom, N. J. Bouman, B. Schoenmakers, and N. de Vreede, “Efficient
secure ridge regression from randomized gaussian elimination,” in
Int’l Symp. on Cyber Security Cryptography and Machine Learning,
pp. 301-316, 2021.

M. Abspoel, N. J. Bouman, B. Schoenmakers, and N. de Vreede,
“Fast secure comparison for medium-sized integers and its application
in binarized neural networks,” in Topics in Cryptology (CT-RSA),
pp. 453-472, 2019.

T. Toft, “Solving linear programs using multiparty computation,”
in Financial Cryptography and Data Security (R. Dingledine and
P. Golle, eds.), pp. 90-107, Springer, 2009.

O. Catrina and S. de Hoogh, “Secure Multiparty Linear Programming
Using Fixed-Point Arithmetic,” in Computer Security (ESORICS),
pp. 134-150, 2010.

S. de Hoogh, Design of large scale applications of secure multiparty
computation: secure linear programming. PhD thesis, Technische
Universiteit Eindhoven, Mathematics and Computer Science, 2012.
P. Mainali and C. Shepherd, “Privacy-enhancing fall detection from
remote sensor data using multi-party computation,” in Proc. of Intl.
Conf. on Availability, Reliability and Security, pp. 1-10, 2019.

D. Moser, Modern Attacker Models and Countermeasures in Wireless
Communication Systems—The Case of Air Traffic Communication. PhD
thesis, ETH Zurich, 2021.

L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell, “Coor-
dinated multi-robot planning while preserving individual privacy,” in
Proc. IEEE Conf. on Robotics and Automation, pp. 2188-2194, 2019.
M. Alsayegh, P. Vanegas, A. A. R. Newaz, L. Bobadilla, and
D. A. Shell, “Privacy-preserving multi-robot task allocation via secure
multi-party computation,” in Proc. of European Control Conference,
pp. 1274-1281, 2022.

O. L. Mangasarian, “Privacy-preserving linear programming,” Opti-
mization Letters, vol. 5, pp. 165-172, 2011.

0. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge University Press, 2009.

B. Schoenmakers, “MPyC: Secure multiparty computation in Python.”
https://github.com/lschoe/mpyc, May 2018.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming
and network flows. John Wiley & Sons, 4th ed., 2008.

M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang, “Federated deep
reinforcement learning,” 2020. arXiv: 1901.08277.

D. A. Spielman and S.-H. Teng, “Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time,” Journal
of the ACM, vol. 51, p. 385-463, May 2004.

R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proc. IEEE Symp. on Foundations of
Computer Science, pp. 136-145, 2001.

I. Damgard, M. Geisler, M. Krgigaard, and J. B. Nielsen, “Asyn-
chronous multiparty computation: Theory and implementation,” in
Public Key Cryptography (PKC), Springer, 2009.

E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in
Proc. IEEE Conf. on Robotics and Automation, pp. 3400-3407, 2011.
C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
mdps,” in Advances in Neural Inf. Processing Systems, vol. 14, 2001.
D. P. De Farias and B. Van Roy, “On constraint sampling in the
linear programming approach to approximate dynamic programming,”
Mathematics of operations research, vol. 29, no. 3, pp. 462—478, 2004.



	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Secure Multi-Party Computation Framework
	Shamir's Secret Sharing
	Secure Operations on Secrets

	Methods
	From MDP problems to LP problems
	Solving the LP problem
	Obtaining the optimal policy
	Policy execution
	Protecting Alice
	Protecting B.O.B.

	Complexity
	Computational Complexity
	Communication Complexity

	Correctness and Convergence
	Security Analysis

	Experimental Results
	Simulation Experiments
	Mobile Robot Experiments
	Scalability

	Conclusions and Future Work
	References

