
A Comparative Study of Transformer-based Neural
Text Representation Techniques on Bug Triaging

Atish Kumar Dipongkor
Dept. of Computer Science

University of Central Florida
Orlando, USA

akd@knights.ucf.edu

Kevin Moran
Dept. of Computer Science

University of Central Florida
Orlando, USA

kpmoran@ucf.edu

Abstract—Bug report management has been shown to be an
important and time consuming software maintenance task. Often,
the first step in managing bug reports is related to triaging a bug
to the appropriate developer who is best suited to understand,
localize, and fix the target bug. Additionally, assigning a given
bug to a particular part of a software project can help to expedite
the fixing process. However, despite the importance of these
activities, they are quite challenging, where days can be spent
on the manual triaging process. Past studies have attempted to
leverage the limited textual data of bug reports to train text
classification models that automate this process – to varying
degrees of success. However, the textual representations and
machine learning models used in prior work are limited by their
expressiveness, often failing to capture nuanced textual patterns
that might otherwise aid in the triaging process. Recently, large,
transformer-based, pre-trained neural text representation tech-
niques (i.e., large language models or LLMs) such as BERT and
CodeBERT have achieved greater performance with simplified
training procedures in several natural language processing tasks,
including text classification. However, the potential for using these
techniques to improve upon prior approaches for automated bug
triaging is not well studied or understood.

Therefore, in this paper we offer one of the first investigations
that fine-tunes transformer-based language models for the task of
bug triaging on four open source datasets, spanning a collective
53 years of development history with over 400 developers and
over 150 software project components. Our study includes both a
quantitative and qualitative analysis of effectiveness. Our findings
illustrate that DeBERTa is the most effective technique across the
triaging tasks of developer and component assignment, and the
measured performance delta is statistically significant compared
to other techniques. However, through our qualitative analysis,
we also observe that each technique possesses unique abilities
best suited to certain types of bug reports.

Index Terms—Bug Triaging, Transformer, LLMs, Text-
Embedding, DL4SE

I. INTRODUCTION

Complex software systems have several modules or com-
ponents and can experience a large number of bugs during
their life-cycle. For example, according to Avnik et al. [1],
nearly 300 bugs are found in different Mozilla projects every
day. In the Firefox project alone, an average of eight bugs are
reported daily that need to be triaged. Similarly, the Eclipse
project receives 37 bug reports every day [2]. To resolve these
bugs, the first maintenance task required for addressing an
incoming report is triaging the bug, or associating it with the

general module or component affected and/or the developer
who is best equipped to localize and fix the underlying
fault. Bug triaging for a large-scale software system is not
straightforward, is prone to human errors and inconsistencies,
and often delays bug resolution [3], [4].

In complex open-source software products, a large number
of developers are involved and each developer possesses a
different set of skills and knowledge. Given the complexity
of modern software and sheer amount of expertise required to
effectively assign bugs to proper developers/components, the
task is generally considered to be cognitively challenging and
prone to errors [5]. For instance, 233 developers are involved
in the Mozilla Core project which makes it challenging to
identify whether a particular developer has the appropriate
knowledge to fix a given bug. Likewise, assigning components
or modules to bug reports is also not a trivial task. Large
software products have numerous components, with Mozilla
Core alone consisting of 105 components. As a result, a human
triager must be familiar with each component if (s)he wants
to properly assign them to a reported bug. The challenging
nature of triaging means that this is often performed manu-
ally, and generally consumes a considerable amount of time.
For instance, in Eclipse and Mozilla, it takes about 40 and
180 days, respectively, to assign a bug to a developer [6].
Moreover, in some projects like ArgoUML and PostgreSQL,
the median time-to-fix for bugs can be around 200 days [7].

To address the challenges of manual bug triaging,
researchers have proposed automated Machine Learning
(ML) [8], [9] and Deep Learning (DL) [10], [11] methods
that can learn from past data to recognize and triage incoming
bugs. These methods treat bug triaging as a multi-class text
classification problem, where the bug’s title and description
serve as textual data, and the specific developer and component
are the labels or classes. One of the major limitations of
existing ML and DL techniques is related to the semantic
representation of text, as there is often nuanced patterns
captured in the natural language and code contained within
bug reports that make it challenging to properly classify
such artifacts among large and diverse sets of developers and
components. For example, past ML-based approaches utilize
word-frequency based text representations like TF-IDF (term-
frequency - inverse document frequency), which represent text

1

ar
X

iv
:2

31
0.

06
91

3v
1

 [c
s.S

E]
 1

0
O

ct
 2

02
3

by measuring the frequency of isolated terms. However, the
ordering of words may reveal certain patterns in text that are
not captured by such term representations. Word embedding
techniques such as Word2Vec [12] and ELMo [13] have been
adopted to address this issue by incorporating word order or
context awareness [10], [11], [14]. However, even these word
embedding techniques are limited in that they generate a fixed
embedding for each word which cannot be updated during
training for downstream tasks [13], such as bug triaging, or
other Natural Language Understanding (NLU) tasks. Updating
the weights of the pre-trained model during fine-tuning allows
the model to adapt to the specific patterns and features of the
task at hand. For example, if the downstream task is sentiment
analysis, the fine-tuning process can adjust the weights of
the pre-trained model to better capture the sentiment-related
features in the task-specific data [15].

Recently, transformer-based neural text embedding tech-
niques such as BERT [15] and its variations have shown
remarkable performance in NLU tasks. The Transformer ar-
chitecture’s self-attention mechanism can capture semantic
information about the meaning of a document at a higher
level than previous NLP techniques as it allows for the model
to focus on relevant parts of the input sequence and capture
long-range dependencies between words. Additionally, the pre-
trained weights of these models can be fine-tuned for any
down-stream task, often resulting in better performance on
such tasks as compared to training a model from scratch.
This is due to the fact that pre-trained models gain a rich
understanding of general language semantics and syntax from
self-supervised training procedures (e.g., next token prediction
or masked language modeling (MLM)) and only need to be
adapted to the specifics of the task. However, the software
engineering research community currently does not have a
complete understanding of how these techniques perform when
applied to the task of bug triaging. Thus, in this paper, we
provide findings from a comprehensive empirical study that
applies six recent transformer-based language models to bug
triaging, shedding light on this understudied aspect of bug
triaging and offering promising directions for future work at
the intersection of large language models (LLMs) and bug
report management.

Our study context consists of 136k bug reports collected
from a combined 53 years of maintenance history from four
popular open source software repositories. These repositories
consist of 165 distinct software components to which a com-
bined 462 developers have made contributions. We study 6
neural transformer-based language models (each a variation
of the popular BERT architecture [15] with different key
properties) and one frequency-based (TF-IDF + SVM) based
baseline approach. More specifically we examine ALBERT,
BERT, CodeBERT, DeBERTa, DistilBERT and RoBERTa.
To carry out our comparative study we adopt the sequence
classification strategy of BERT to fine-tune all of our studied
neural-based models to assign developers and components to
bug reports. Then, we conduct both quantitative and qualitative
analyses of various effectiveness metrics, and use statistical

tests to investigate whether one model outperforms another
to a statistically significant degree. We also conduct an or-
thogonality analysis to better understand the unique behavior
of each technique, and an error analysis to investigate the
underlying reasons for common failures. Our results capture
several significant findings that further our understanding of
how transformer-based LMs perform when applied to the
task of bug triaging, and point toward important directions
for future investigation. We make all of our code and data
available in an online appendix [16] to facilitate the replication
and reproducibility of our work, and to encourage future
research on adapting neural transformer-based LMs to the task
of bug triaging. Below we summarize our findings:

• DeBERTa performs significantly better than other
transformer-based language models in both developer and
component assignment tasks;

• Somewhat surprisingly, the simpler TF-IDF-based SVM
baseline performs best, for the task for developer assign-
ment, on two of our four studied datasets, illustrating that
a well-tuned term frequency-based approach can perform
well when triaging bugs to developers;

• Each technique has a certain degree of orthogonality
which indicates that the unique properties of each tech-
nique allow them to capture a different set of patterns
from bug reports;

• Similarity between components and developers hampers
the performance of all transformer-based language mod-
els. There is a positive correlation between these similar-
ities and number of misclassifications.

The rest of this paper is organized as follows. Section II
describes existing works which are closely related to this study.
Our methodology and research questions (RQ) are presented in
Section III. In section IV, we present our findings and answer
the RQs. Finally, our study is concluded in the Section VI
with future directions.

II. RELATED WORK

The field of automatic bug triaging is constantly evolving
and has seen the use of both ML and DL techniques to triage
bug reports. Both types consider bug triaging as a supervised
classification problem, where the output classes are the names
of the developers, and the training data consists of text from
bug reports. However, the primary contrast between them is
that ML techniques are trained using hand-crafted features
while DL techniques learn their features during training. In
the upcoming sub-sections, we categorize the existing studies
and discuss it in detail.

A. Automatic Bug Triaging using ML Techniques

Naı̈ve Bayes, Bayesian Networks, C4.5, SVM, Decision
Tree (DT), k-Nearest Neighbors (kNN) [17] and Logistic
Regression are the most commonly used algorithms for bug
triaging. To train these techniques, various type of features
are used. For instance, some used TF-IFD representation of
the bug reports only while other used categorical features
along with the TF-IFD representation. In addition, some works

2

applied feature selection and extraction techniques on the TF-
IFD representation of the bug report using Latent Semantic
Indexing (LSI), Latent Dirichlet Allocation (LDA), Principal
Component Analysis (PCA) [18], [19]. The motivation of
using feature selection algorithms is to train models using
useful features.

Cubranic and Murphy [20] are credited with proposing ML
algorithms for bug triaging first. They utilized bag of words
to represent bug reports and trained a Naı̈ve Bayes classifier
for the triaging task. However, due to the low accuracy (30%)
of Naı̈ve Bayes, Avnik et al. [1], [21] conducted a subsequent
study. They filtered out noisy data based on bug status and
introduced two additional algorithms, namely SVM and DT
C4.5. According to their findings, SVM outperformed the other
two algorithms on three open source datasets such as Eclipse,
Firefox and GCC.

Sarkar et al. [22] conducted an empirical study on a large-
scale industry project comparing SVM, Naı̈ve Bayes, and
Logistic Regression. They trained these models using TF-IDF
vectorization of textual descriptions and categorical features
of bug reports, and found that Logistic Regression achieved
the highest accuracy. In contrast, Lin et al. [23] reported that
SVM can predict bug assignments and achieve accuracy close
to human triager in a different proprietary project.

Ahsan et al. [24] explored the use of LSI for reducing the
dimension of TF-IDF vectors, and achieved the best results
using SVM. Nasim et al. [25] used Alphabet Frequency Matrix
(AFM) with various ML algorithms and found that SVM or its
variants perform the best in automatic bug triaging. Similarly,
Florea et al. [26] used LDA for dimensionality reduction, and
concluded that SVM outperforms other ML algorithms.

After examining prior research more closely, it is evident
that SVM outperforms other ML algorithms on open source
projects. In addition to this motivation, the work of Fu et
al. [27] drives us to choose SVM as one of our baselines.
They reported that in certain cases, simple ML methods
like SVM can learn more efficiently and deliver superior
results compared to DL algorithms for automating software
engineering tasks. To this end, we trained and compared SVM
with transformer-based neural text embedding techniques.

B. Automatic Bug Triaging using DL Techniques

Using DL for bug triaging, Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) based tech-
niques are the common ones which use Long Short-Term
Memory (LSTM) based text embedding instead of manual
feature engineering. Lee et al. [10] applied Word2Vec [28]
word embedding to train a CNN based classifier for bug
triaging. Similar to the previous one, Guo et al. [29] applied
developer-activity based CNN techniques (CNN-DA) where
they also used Word2Vec for word embedding and applied
word segmentation, stop word removal and stemming tech-
niques in their pre-processing step. Mani et al. [11] used
deep bidirectional recurrent neural network with attention
(DBRNN-A) to handle long word sequences. Zaidi et al.
[14] compared three word embedding such as Word2Vec

[28], GloVe [30] and ELMo [13] with CNN to triage the
bugs of four different open source projects. They concluded
that context-sensitive word embedding, ELMo outperforms the
other two.

Unlike LSTM-based text embedding techniques,
transformer-based text embedding techniques are rarely
studied for bug triaging. Lee et al. [31] proposed Light Bug
Triage framework by compressing RoBERTa using knowledge
distillation [32]. Although they claimed that their framework
can prevent the catastrophic forgetting [33] issue of large
language models (LLM), they did not compare it with any
LLM like [15], [34] or [35].

III. METHODOLOGY

In order to understand the efficiency and effectiveness of
our baselines, we formulate the following research questions.
The upcoming subsections outline the methodologies we use
to address these questions.

• RQ1: How well do Transformer-based Neural Text Em-
bedding Techniques perform for automated bug report
assignment to developers?

• RQ2: How well do Transformer-based Neural Text Em-
bedding Techniques perform for automated bug report
assignment to project components?

• RQ3: What degree of orthogonality exists between our
studied techniques?

• RQ4: Why do we observe the effectiveness of the best
performing techniques?

A. Dataset Description

In our study, we make use of the bug report datasets
originally collected by Hongrun et al. [36], which contain
200,000 and 220,000 fixed bug reports from the Eclipse and
the Mozilla projects, respectively. These projects contain bug
reports from the several products of Eclipse and Mozilla;
among those we consider four products including: Eclipse
JDT, Eclipse Platform, Mozilla Core and Mozilla SeaMonkey.
We choose these products because they contain a higher
number of bug reports compared to others. A bug report
of these datasets consist of crucial details such as the bug’s
‘Summary’, ‘Description’, ‘Assignee’, ‘Component’, ‘Status’
and ‘Timestamp’. To train the benchmark models, we use the
Summary’ and Description’ as input, whereas the Assignee’
and ‘Component’ serve as output when necessary. While
setting the ground truth, we consider bugs with status as
‘VERIFIED’ and ‘FIXED’. In addition, we only consider
active developers in our experiments. Overall, we follow the
same data extraction strategy as other prior works [11], [37],
[38]. Table I provides a summary of our datasets which are
used for our training and evaluation.

B. Preprocessing and Train-Test Split

To preprocess our training and test data, we adopt similar
strategies as those used in previous works of this domain [22],
[37]. Our preprocessing steps include tokenization, removal
of stop words, and stemming. To improve the quality of

3

.

.

.

. Se
lf

A
tte

nt
io

n

A
dd

 &
 N

or
m

al
iz

e

Fe
ed

 F
or

w
ar

d

A
dd

 &
 N

or
m

al
iz

e

Se
lf

A
tte

nt
io

n

A
dd

 &
 N

or
m

al
iz

e

Fe
ed

 F
or

w
ar

d

A
dd

 &
 N

or
m

al
iz

e

Input Tokens Transformer #1 Transformer #N

.

.

Output

So
ftm

ax
La

ye
r

Fig. 1: Architecture for fine-tuning Transformer-based Models

our dataset further, we also eliminate several sources of
noise, including hyperlinks, newlines, and special characters.
Additionally, we exclude bug reports with fewer than 10 words
in their ‘Summary’ + ‘Description’.

When performing train-test splits, we treat our datasets as
time-series data, with the aim of training our models using past
data and evaluating using future data. To achieve this, we first
sort the bug reports for each product in chronological order
based on their ‘Timestamp’. Next, we divide each dataset into
eleven equal folds. During the first run, we train a particular
model using fold 1 and test it using fold 2. In the second run,
we use both fold 1 and 2 for training and fold 3 for evaluation.
We repeat this process up to ten runs, where the overall idea
is to train models using n fold(s) and test on the (n + 1)-th
fold. This approach has also been used in previous work [22],
[39]. Finally, we evaluate a model based on the average of its
ten runs performance.

C. Studied Transformer Text Representation Techniques

Since the introduction of BERT in 2018, subsequent models
have been developed with various improvements to the learned
textual representation that are oriented toward different NLU
tasks. A core question of our study relates to the differing
impact of varying textual representations learned by different
types of BERT-like models. DistilBERT [40] reduces the
number of parameters a BERT model by 40% while retaining
a reported 97% of its language understanding capabilities and
exhibiting 60% faster inference and fine-tuning performance.
Exploring this model allows us to examine how optimized
models perform in our bug triaging task. RoBERTa [35]
improves the performance of BERT by applying dynamic
masking to mask language modeling training objective, re-
moving next sentence prediction, and was trained on a larger
dataset of text. ALBERT [41] reduced the size of BERT by
factorizing the embedding parameters and sharing all parame-
ters across layers. DeBERTa [34] introduced the disentangled
self-attention and a new decoding strategy to improve the
performance of BERT, and it has been shown to handle long

TABLE I: Summary of the Dataset

Dataset Collection Period Components Developers Bug Reports
Eclipse JDT 12 Years 6 41 20565
Eclipse Platform 12 Years 21 108 37240
Mozilla Core 16 Years 105 233 64238
Mozilla SeaMonkey 13 Years 33 80 14312

sequences of text more efficiently than others. CodeBERT [42]
was pre-trained to understand both natural language (NL)
and programming language (PL), while others were pre-
trained only for the former. In this study, we fine-tune all of
these techniques for bug triaging and conduct a comparative
analysis.

D. Benchmark Model Fine-Tuning and Training

In this study, we fine-tune the pre-trained transformer-based
models for developer and component assignment, while we
train the SVM from scratch for the same tasks.

To fine-tune all transformer-based models, we adhere to
the standard sequence classification approach, which involves
appending a classification layer on top of transformers’ out-
puts. Given the similarity in the overall architecture of the
transformer-based models, we utilize it for fine-tuning. The
overall architecture works as follows. Initially, tokenization
of the input sequence is done using a tokenizer. Then, a
special classification token [CLS] is inserted at the sequence’s
beginning, followed by all tokens passed through multiple
transformer layers. Here, it is worth noting that the number
of transformer layers employed in each model distinguishes
them from one another, and the hyperparameters’ settings
vary accordingly. A summary of our transformer-based models
is provided in Table II. The last transformer layer in these
models generates contextualized embeddings for each token,
capturing the token’s context within the entire sequence.
For developer and component classification, only the [CLS]
embeddings are considered since it is used for other sequence
classification [15]. The [CLS] embedding is commonly known
as the aggregated representation of the entire input sequence
and is therefore used for sequence classification. Once the

4

TABLE II: Summary of the Transformer-based models

Model Purpose Pre-training Corpus # Layers # Parameters
BERT (2018) Pre-training for NLP tasks BooksCorpus, English Wikipedia 12 110M
DistilBERT (2019) Smaller and faster version of BERT Same as BERT 6 66M
RoBERTa (2019) Improved pre-training and data processing compared to BERT Same as BERT, CC-News, OpenWebText 12 125M
ALBERT (2019) Model compression without sacrificing performance Same as BERT 12 11M
DeBERTa (2020) Improved handling of long input sequences Same as BERT 12 163M
CodeBERT (2020) Pre-trained on both programming and natural language GitHub Repositories 12 209M

[CLS] embedding is obtained from the last layer, it is fed
into a softmax classification layer for assigning developers and
components to bug reports. Figure 1 provides a schematic of
the overall fine-tuning architecture for all transformer-based
models. We use cross-entropy to minimize loss during fine-
tuning since it performs better for unbalanced data, and the
AdamW optimizer to update our dense layer’s weights. We
fine-tune each model for fifteen epochs using a batch size of
32. The PyTorch [43] and Transformer [44] libraries are used
to implement the fine-tuning architecture, and our source code
is accessible via our online appendix [16].

In contrast to previous works on bug triaging [1], [21], [25],
we employ a distinct approach in training an SVM classifier.
Our method begins with tokenizing bug reports and generating
n-grams, limiting the selection to 1-gram and 2-gram as
previously recommended [1], [21], [25]. We note that certain
n-grams are frequently found in some bug reports while others
are rarely seen. To address this, we apply TF-IDF vectorization
to assign significance to the most significant n-grams. This
results in the creation of a document-term matrix, Mbr ∈
Rr×t, where the rows correspond to the number of training
documents and the columns to the number of unique terms or
n-grams. For each r-th bug report containing the t-th n-gram,
Mbr[r, t] = Stf−idf , where Stf−idf is the TF-IDF score of
the t-th n-gram. Prior works generally trained SVM classifiers
on this TF-IDF representation of bug reports. In contrast, we
conduct additional processing of the TF-IDF representation by
utilizing Singular Value Decomposition (SVD) to reduce the
dimensionality of the matrix. SVD applied to Mbr ∈ Rr×t

generates a lower-dimensional matrix, M ′
br ∈ Rr×t′ , where

t′ is smaller than t and explains the majority of the variance
in the original matrix Mbr ∈ Rr×t. Notably, the t′ elements
are orthogonal to each other, ensuring their independence and
lack of redundancy. In our study, we select t′ to explain 95%
variance of the original matrix Mbr. Once M ′

br ∈ Rr×t′ is
derived from a particular training dataset, we train an SVM
with a linear kernel to predict developer and components. To
implement SVM, we use the scikit-learn [45] python package.
Our source code can be found in our online appendix [16].

E. RQ1 & RQ2: Performance Analysis
In order to evaluate developer prediction, we utilize two

metrics: Top@K Accuracy and Mean Reciprocal Rank (MRR).
Top@K Accuracy refers to the percentage of test cases for
which the ground truth label appears in the predicted top K
candidate list. MRR, on the other hand, is used to evaluate the
performance of a ranked list of items, and is defined as the
average of the reciprocal ranks of the first relevant instance

in each ranked list. Both of these metrics are widely used
in recommender systems, and applying them to automated
bug triaging systems provides a more realistic view of model
effectiveness. For instance, let’s assume that a specific model
predicts developer X for solving a bug. However, developer
X might already be occupied with other projects, which could
delay the bug triaging process. In such cases, ranking and
suggesting additional developers could expedite the triaging
process. To evaluate component prediction, we utilize three
metrics: Precision, Recall, and F1-score. Precision measures
the proportion of correct predictions made by the model out
of all the positive predictions it made. Recall measures the
proportion of correct predictions made by the model out of
all the actual positive instances. F1-score is the harmonic
mean of precision and recall and provides a single score
that balances the two metrics. In general, a higher precision
score means fewer false positives, a higher recall score means
fewer false negatives, and a higher F1-score means better
overall performance. In our datasets, we found that each bug
report is assigned to a single component only. Therefore,
suggesting multiple components or evaluating models using
Top@K Accuracy and/or MRR does not make any sense.

We compare different models by taking the average of
MRR and F1-score obtained from n-fold experiments. Fur-
thermore, we conduct hypothesis testing using paired t-test
[46] to determine whether there is a statistically significant
performance difference between the models. For comparing
any two of our baselines, our null hypothesis (H0) is there
is no significant difference between the average performance
(µ0 = µ1) of the two baselines. On the other hand, our
alternative hypothesis is, there is a significant difference
between the average performance (µ0 ̸= µ1) of the two
baselines. Then, we calculate the difference between the two
models for each pair of folds as follows. Let us assume
that a1, a2, . . . , an represents the scores of model A from
n-fold experiments, and b1, b2, . . . , bn represents the scores
of model B. We can then calculate the fold-wise differences
as d1 = a1 − b1, d2 = a2 − b2, . . . , dn = an − bn. After that,
we calculate the t-statistic (Eqn. 3) for the mean performance
difference as given below.

d̄ =
d1 + d2 + · · ·+ dn

n
(1)

σ =

√√√√ 1

n

n∑
i=1

(di − d̄)2 (2)

5

t− statistic =
d̄
σ√
n

(3)

Finally, we determine the p-value with n − 1 degree of
freedom for our measured t-statistic using t-distribution [47].
If the p-value is less than level of significance (α), then we
reject the null hypothesis. Otherwise, we conclude that there
is a significant difference between two models.

F. RQ3: Degree of Orthogonality
The degree of orthogonality of the baselines refers to how

independent these are from each other in terms of assigning
developer or component. In other words, the degree of orthog-
onality measures how much these share in common with each
other. For example, MRR and F1-score of two baselines can
be equivalent but they may perform better for a different set of
bug reports or both may perform better for the same set of bug
reports. To that end, we define the degree of orthogonality of a
baseline Ai as shown in Equation 4. d(Ai) represents the total
number of bug reports for which Ai was able to assign correct
developer or components while other baselines misclassified
these bug reports.

d(Ai) = |ATi
−

 n⋃
j ̸=i

ATj

 | (4)

In the above equation, T denotes the set of bug reports used for
evaluating all baselines, and ATi

denotes the set of bug reports
which are correctly triaged by the baseline Ai.

⋃n
j ̸=i ATj

represents the set of bug reports which are correctly triaged
by other baselines except Ai. Thus, d(Ai) is the cardinality
of the set difference between ATi and

⋃n
j ̸=i ATj .

G. RQ4: Further Investigating Model Performance
We aim to comprehend the nature of misclassified bug

reports that are common among the baselines. Therefore, we
hypothesize that the misclassification may occur due to textual
similarity between the assigned developer or component. Sup-
pose that we have a total of m misclassified bug reports by all
baselines, and let C1, C2, . . . , Cn denote the actual classes of
these reports. To find the similarity between the actual classes,
we define CPi as the set of all bug reports that belong to class
Ci as follows:

CPi = bi1 ⊕ bi2 ⊕ · · · ⊕ bij (5)

Then, we transform CPi into a vector CP v
i using the

TF-IDF method. The textual similarity between two classes
(Ci, Ci′) can be calculated as follows:

cosine similarity(Ci, Ci′) =
CP v

i · CP v
i′

|CP v
i ||CP v

i′ |
(6)

Finally, we compute the correlation between the cosine
similarity of (Ci, Ci′) and the number of times Ci is mis-
classified as Ci′ or vice versa across all baselines. If there is
a positive correlation, we can conclude that similarity is the
reason behind the misclassification across baselines.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

For each research question (RQ), we present and discuss
our findings in the following sections.

A. RQ1: Effectivness of the baselines in developer assignment

The primary aim of this RQ is to examine the effec-
tiveness of our baselines in assigning developers to bug
reports. To address this research question, we assess each
baseline’s performance using Top@1, Top@5, Top@10, and
MRR metrics, which indicate how well the baseline ranks
the correct developer as the top recommendation (Top@1),
within the top 5 (Top@5), within the top 10 (Top@10), and
on average across all the ranked lists (MRR). The average
results for these evaluation metrics across all datasets are
presented in Table III. Additionally, we determine whether
the performance differences between baselines are statistically
significant using their MRR scores. That is, we set H0 as the
average performance of our baselines being the same. The
results of the statistical significance test between baselines
in all datasets are shown in Fig. 2. Each cell of Fig. 2a,
2b, 2c, and 2d represents the corresponding p-value of the
calculated t-statistic (Equation 3) between two baselines. For
this statistical significance test, the significance level (α) is set
to 0.05, which means that if the p-value between two models
is less than α, H0 can be rejected with a 95% confidence level.

In Eclipse JDT dataset, DeBERTa achieves the highest
average Top@1 and Top@5 scores as shown in Table III.
Its Top@10 (0.866) score is almost equivalent to the SVM
(0.873). Using the scores of MRR from Table III, the base-
lines can be ranked as ALBERT < BERT < CodeBERT <
RoBERTa < DistilBERT < SVM < DeBERTa. However, the
result of the statistical significance test in Fig. 2a shows the
performance difference between the top baselines (DistilBERT,
SVM and DeBERTa) is not statistically significant. Other
notable findings from Fig. 2a is given below.

• ALBERT’s performance is not significantly better than
any other model, but it is equivalent to BERT’s perfor-
mance

• BERT’s performance is not significantly better than any
other model, but it is equivalent to SVM and ALBERT’s
performance

• CodeBERT performs significantly better than ALBERT
and BERT, and performs equally as well as DistilBERT,
RoBERTa, and SVM

• DeBERTa performs significantly better than ALBERT,
BERT, CodeBERT, and RoBERTa, but not better than
SVM and DistilBERT

• DistilBERT performs significantly better than ALBERT
and BERT, and performs equally as well as CodeBERT,
RoBERTa, DeBERTa, and SVM

• RoBERTa performs significantly better than ALBERT
and BERT, and performs equally as well as CodeBERT,
DistilBERT, and SVM

• SVM performs significantly better than ALBERT only
and performs equally as well as other baselines

6

TABLE III: Average Top@1, Top@5, Top@10 and MRR of
Developer Assignment. The best-performing model for each
dataset is highlighted in bold.

Dataset Model Top@1 Top@5 Top@10 MRR

Eclipse JDT

ALBERT 0.291 0.673 0.805 0.461
BERT 0.298 0.663 0.791 0.462
CodeBERT 0.323 0.696 0.812 0.486
DeBERTa 0.344 0.731 0.866 0.513
DistilBERT 0.319 0.703 0.838 0.487
RoBERTa 0.321 0.695 0.816 0.486
SVM 0.333 0.727 0.873 0.506

Eclipse Platform

ALBERT 0.203 0.458 0.570 0.327
BERT 0.191 0.428 0.539 0.307
CodeBERT 0.199 0.460 0.572 0.323
DeBERTa 0.317 0.672 0.795 0.476
DistilBERT 0.262 0.579 0.697 0.406
RoBERTa 0.195 0.456 0.570 0.320
SVM 0.289 0.643 0.771 0.448

Mozilla Core

ALBERT 0.392 0.509 0.569 0.457
BERT 0.346 0.467 0.536 0.415
CodeBERT 0.331 0.441 0.506 0.394
DeBERTa 0.653 0.795 0.838 0.721
DistilBERT 0.562 0.709 0.759 0.633
RoBERTa 0.354 0.465 0.525 0.416
SVM 0.676 0.895 0.923 0.773

Mozilla SeaMonkey

ALBERT 0.351 0.509 0.605 0.438
BERT 0.219 0.387 0.511 0.317
CodeBERT 0.180 0.354 0.466 0.277
DeBERTa 0.613 0.778 0.845 0.692
DistilBERT 0.347 0.535 0.625 0.446
RoBERTa 0.229 0.408 0.517 0.324
SVM 0.682 0.903 0.944 0.780

In Eclipse Platform dataset, DeBERTa achieves the highest
average scores in all three metrics. The ranking of baselines
based on MRR is BERT < RoBERTa < CodeBERT <
ALBERT < DistilBERT < SVM < DeBERTa. In this dataset,
the top baseline’s (DeBERTa) performance is statistically
significant compared to others as displayed in 2b.

In both Mozilla datasets, SVM achieves the highest average
scores in all three metrics. The ranking of baselines based
on MRR is also consistent which is CodeBERT < BERT <
RoBERTa < ALBERT < DistilBERT < DeBERTa < SVM.
Here, SVM’s performance is statistically significant compared
to others as displayed in the Fig. 2c & 2d.

Summary of RQ1: The results indicate that DeBERTa and
SVM exhibit the best performance overall, with the highest
average scores for Top@1, Top@5, Top@10, and MRR across
multiple datasets. Notably, the performance of the models
varies across datasets, with some models showing better results
on specific datasets compared to others. Specifically, DeBERTa
demonstrates statistically significant performance among all
transformer-based neural text embedding techniques, except
in the Eclipse JDT dataset, while SVM exhibits statisti-
cally significant performance among all baselines in both
Mozilla datasets.

B. RQ2: Effectiveness of baselines in component assignment

The aim of this RQ is to evaluate the effectiveness of the
baselines in assigning components to bug reports. Precision,
Recall, and F1-Score are used as evaluation metrics, and
the average results for these metrics across all datasets are

TABLE IV: Average Precision, Recall and F1-Score of Com-
ponent Assignment. The best-performing model for each
dataset is highlighted in bold.

Dataset Model Precision Recall F1-Score

Eclipse JDT

ALBERT 0.808 0.798 0.787
BERT 0.814 0.803 0.794
CodeBERT 0.823 0.813 0.802
DeBERTa 0.826 0.822 0.815
DistilBERT 0.817 0.809 0.799
RoBERTa 0.823 0.814 0.804
SVM 0.783 0.777 0.769

Eclipse Platform

ALBERT 0.748 0.724 0.709
BERT 0.771 0.751 0.736
CodeBERT 0.784 0.755 0.741
DeBERTa 0.780 0.767 0.760
DistilBERT 0.768 0.748 0.732
RoBERTa 0.780 0.755 0.740
SVM 0.721 0.702 0.693

Mozilla Core

ALBERT 0.646 0.546 0.515
BERT 0.684 0.560 0.520
CodeBERT 0.683 0.581 0.544
DeBERTa 0.678 0.644 0.637
DistilBERT 0.669 0.605 0.580
RoBERTa 0.680 0.570 0.531
SVM 0.664 0.618 0.612

Mozilla SeaMonkey

ALBERT 0.716 0.626 0.602
BERT 0.713 0.640 0.609
CodeBERT 0.719 0.642 0.609
DeBERTa 0.741 0.696 0.682
DistilBERT 0.721 0.642 0.612
RoBERTa 0.717 0.650 0.618
SVM 0.737 0.683 0.675

presented in Table IV. Similar to the developer assignment
task, we conduct a statistical significance test between the
baselines based on F1-Scores, using the same α and H0. The
results of this test for all datasets are shown in Fig. 3.

DeBERTa achieves the highest average Precision in Eclipse
JDT and Mozilla SeaMonkey datasets, while CodeBERT and
BERT achieve the highest average Precision in Eclipse Plat-
form and Mozilla Core datasets, respectively. In terms of
Recall and F1-score, DeBERTa consistently obtains the highest
average scores across all datasets, as demonstrated in Table IV.

However, while F1-scores indicate that DeBERTa is the best
performer across all datasets, the statistical significance test
reveals that its performance is similar to SVM in both Mozilla
datasets, as depicted in Fig. 3c & 3d. Nevertheless, in both
Eclipse datasets, DeBERTa’s performance is statistically sig-
nificant compared to other baselines, as shown in Fig. 3a & 3b.

Summary of RQ2: Unlike the developer assignment task,
the performance of the models does not vary significantly
across datasets. From Table IV and Fig. 3, it is evident that
DeBERTa performs consistently and significantly better than
other models in assigning correct components to bug reports.

C. RQ3: Degree of orthogonality between baselines

In RQ1 and RQ2, it was discussed that certain baselines
show similar performance in terms of both developer and
component assignment. This RQ aims to investigate if these
baselines perform better on an independent or the same set
of bug reports. To illustrate the motivation behind this RQ,
a toy example is presented where two baselines, A1 and A2,

7

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

ALBERT(0.461)<BERT(0.462)<CodeBERT(0.486)<RoBERTa(0.48
6)<DistilBERT(0.488)<SVM(0.506)<DeBERTa(0.513)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.8911 0.0035 0.0001 0.0164 0.0003 0.0033

0.8911 0.0000 0.0027 0.0099 0.0052 0.0120 0.0505

0.0035 0.0027 0.0000 0.0289 0.7325 0.8840 0.1880

0.0001 0.0099 0.0289 0.0000 0.0556 0.0146 0.2585

0.0164 0.0052 0.7325 0.0556 0.0000 0.8065 0.2537

0.0003 0.0120 0.8840 0.0146 0.8065 0.0000 0.1350

0.0033 0.0505 0.1880 0.2585 0.2537 0.1350 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(a) Eclipse JDT

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

BERT(0.307)<RoBERTa(0.320)<CodeBERT(0.324)<ALBERT(0.32
7)<DistilBERT(0.406)<SVM(0.448)<DeBERTa(0.476)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.0938 0.7653 0.0001 0.0007 0.6075 0.0012

0.0938 0.0000 0.1088 0.0001 0.0005 0.1315 0.0008

0.7653 0.1088 0.0000 0.0002 0.0012 0.6971 0.0025

0.0001 0.0001 0.0002 0.0000 0.0073 0.0003 0.0013

0.0007 0.0005 0.0012 0.0073 0.0000 0.0017 0.1238

0.6075 0.1315 0.6971 0.0003 0.0017 0.0000 0.0031

0.0012 0.0008 0.0025 0.0013 0.1238 0.0031 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(b) Eclipse Platform

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

CodeBERT(0.394)<BERT(0.415)<RoBERTa(0.416)<ALBERT(0.45
7)<DistilBERT(0.633)<DeBERTa(0.721)<SVM(0.773)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.2139 0.0528 0.0032 0.0045 0.1404 0.0016

0.2139 0.0000 0.2710 0.0006 0.0005 0.9624 0.0003

0.0528 0.2710 0.0000 0.0009 0.0011 0.0235 0.0005

0.0032 0.0006 0.0009 0.0000 0.0108 0.0023 0.0000

0.0045 0.0005 0.0011 0.0108 0.0000 0.0035 0.0020

0.1404 0.9624 0.0235 0.0023 0.0035 0.0000 0.0012

0.0016 0.0003 0.0005 0.0000 0.0020 0.0012 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(c) Mozilla Core

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

CodeBERT(0.277)<BERT(0.317)<RoBERTa(0.324)<ALBERT(0.43
8)<DistilBERT(0.446)<DeBERTa(0.692)<SVM(0.780)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.0003 0.0000 0.0000 0.7873 0.0040 0.0000

0.0003 0.0000 0.0095 0.0000 0.0098 0.6368 0.0000

0.0000 0.0095 0.0000 0.0000 0.0012 0.0550 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

0.7873 0.0098 0.0012 0.0000 0.0000 0.0225 0.0000

0.0040 0.6368 0.0550 0.0000 0.0225 0.0000 0.0000

0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(d) Mozilla SeaMonkey

Fig. 2: Statistical significance test of the MMR scores of our baselines in terms of developer assignment across all datasets

are tested on a set of bug reports T = {B1, B2, . . . , B10}.
When statistical significance indicates that A1 and A2 perform
similarly, there could be several cases.

The first case is when both baselines correctly identify the
same set of bug reports, such as {B2, B3, B4}. The second
case is when both baselines correctly identify two different
sets of bug reports, such as A1 = {B2, B3, B4} and A2 =
{B4, B5, B6}. The third case is when there are some common
bug reports between the correct predictions, such as A1 =
{B2, B3, B4} and A2 = {B2, B5, B6}.

All cases indicate that both baselines are similar based on
MRR or F1-score and statistical significance tests. However,
if the second or third case occurs, it suggests that there is
uniqueness between the baselines as they perform better for
two different sets of bug reports, indicating orthogonality
between A1 and A2. Fig. 4 presents the result of the orthogo-
nality analysis across datasets and baselines based on correct
predictions. Top@1 accuracy is used to measure the degree

of orthogonality in developer assignment, while precision is
used to calculate the degree of orthogonality in component
assignment.

In Fig. 4a or 4b, the value in the common area indicates
the cardinality of the set of bug reports from all datasets that
are correctly assigned to developers or components, respec-
tively, by all baselines. For instance, in Fig. 4a, all baselines
assign 18895 bugs to the correct developer from all datasets.
Conversely, in Fig. 4b, all baselines assign 53180 bugs to the
correct component from all datasets. The exclusive areas in
Fig. 4a and 4b indicate the degree of orthogonality of each
baseline. For example, ALBERT has a degree of orthogonality
of 588 (Fig. 4a) in the developer assignment task, whereas
its degree of orthogonality is 867 (Fig. 4b) in the component
assignment task. Similar to ALBERT, other baselines have also
a significant degree of orthogonality in both task. Additionally,
the degree of commonality between baselines can be found in
Fig. 4a and 4b. For instance, in Fig. 4a, SVM and DeBERTa

8

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

SVM(0.769)<ALBERT(0.787)<BERT(0.794)<DistilBERT(0.799)
<CodeBERT(0.802)<RoBERTa(0.804)<DeBERTa(0.815)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.1857 0.0056 0.0015 0.0568 0.0188 0.0785

0.1857 0.0000 0.0219 0.0005 0.1088 0.0442 0.0126

0.0056 0.0219 0.0000 0.0443 0.4311 0.6260 0.0052

0.0015 0.0005 0.0443 0.0000 0.0078 0.0182 0.0000

0.0568 0.1088 0.4311 0.0078 0.0000 0.1382 0.0060

0.0188 0.0442 0.6260 0.0182 0.1382 0.0000 0.0011

0.0785 0.0126 0.0052 0.0000 0.0060 0.0011 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(a) Eclipse JDT

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

SVM(0.693)<ALBERT(0.709)<DistilBERT(0.732)<BERT(0.736)
<RoBERTa(0.740)<CodeBERT(0.741)<DeBERTa(0.760)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.2670

0.0000 0.0000 0.1677 0.0030 0.1551 0.1765 0.0066

0.0000 0.1677 0.0000 0.0232 0.0038 0.5442 0.0075

0.0001 0.0030 0.0232 0.0000 0.0059 0.0162 0.0000

0.0000 0.1551 0.0038 0.0059 0.0000 0.0034 0.0201

0.0000 0.1765 0.5442 0.0162 0.0034 0.0000 0.0073

0.2670 0.0066 0.0075 0.0000 0.0201 0.0073 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(b) Eclipse Platform

A
LB

ER
T

B
ER

T

C
od

eB
ER

T

D
eB

ER
Ta

D
is

til
B

ER
T

R
oB

ER
Ta

SV
M

ALBERT(0.515)<BERT(0.520)<RoBERTa(0.531)<CodeBERT(0.544)
<DistilBERT(0.580)<SVM(0.612)<DeBERTa(0.637)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.8330 0.0449 0.0001 0.0009 0.3402 0.0057

0.8330 0.0000 0.0919 0.0039 0.0354 0.1251 0.0498

0.0449 0.0919 0.0000 0.0022 0.0375 0.2012 0.0615

0.0001 0.0039 0.0022 0.0000 0.0001 0.0028 0.0534

0.0009 0.0354 0.0375 0.0001 0.0000 0.0377 0.1024

0.3402 0.1251 0.2012 0.0028 0.0377 0.0000 0.0527

0.0057 0.0498 0.0615 0.0534 0.1024 0.0527 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(c) Mozilla Core

AL
BE

RT

BE
RT

Co
de

BE
RT

De
BE

RT
a

Di
st

ilB
ER

T

Ro
BE

RT
a

SV
M

ALBERT(0.602)<BERT(0.609)<CodeBERT(0.609)<DistilBERT(0
.612)<RoBERTa(0.618)<SVM(0.675)<DeBERTa(0.682)

ALBERT

BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

0.0000 0.5527 0.5821 0.0013 0.2053 0.0428 0.0155

0.5527 0.0000 0.9786 0.0014 0.7797 0.4335 0.0178

0.5821 0.9786 0.0000 0.0076 0.6940 0.4025 0.0492

0.0013 0.0014 0.0076 0.0000 0.0051 0.0074 0.4583

0.2053 0.7797 0.6940 0.0051 0.0000 0.3007 0.0457

0.0428 0.4335 0.4025 0.0074 0.3007 0.0000 0.0559

0.0155 0.0178 0.0492 0.4583 0.0457 0.0559 0.0000
0.00

0.01

0.02

0.03

0.04

0.05

(d) Mozilla SeaMonkey

Fig. 3: Statistical significance test of F1-Scores of our baselines in terms of component assignment across all datasets

together assign correct developers to 9528 bug reports.
Summary of RQ3: In conclusion, RQ3 reveals that there

is orthogonality or uniqueness between baselines in both
developer and component assignment tasks, despite their
similarities in MRR, F1-score or statistical significance test
results. Among all baselines, SVM demonstrates the highest
degree of orthogonality in both tasks. Meanwhile, among all
transformer-based techniques, DeBERTa displays the highest
degree of orthogonality.

D. RQ4: Why do baselines fail or possess unique behavior?

In this RQ, we try to understand when all baselines mis-
clasify a set of bug reports, and when they exhibit unique
behavior.

Fig. 5 presents the result of the orthogonality analysis
based on incorrect component assignments in Eclipse JDT.
In this figure, the exclusive areas represent each model’s
degree of orthogonality of misclassification. The value in

the common area indicates the cardinality of the set of bug
reports misclassified by all baselines. That is, all baselines
fail to assign correct component to 1184 bug reports. Fig. 6a
represents the cosine similarity (Eqn. 6) between the actual
components of these bug reports. For instance, UI & Text are
93.06% similar, and UI & Core are 94.92% similar. Fig. 6a
represents the confusion matrix of 1184 bug reports across all
baselines. Each cell of this figure represents the total number
of confusions across all baselines. For example, in total 2955
times UI was assigned as Text or vice-versa by all baselines.
Similarly, in total 2271 times UI was assigned as Core or vice-
versa by all baselines. From Fig. 6a & 6a, it is apparent that
when the similarity between two components is high, baselines
fail to assign the correct component. To understand it better,
we measure correlation between the similarity and the total
number of confusions of all baselines. Our result indicates that
there is positive correlation between these two. We conduct
the same study for both developer and component assignment

9

8276

376

162

1175

1101

75

87

5164

9528

145

213

1583

8220

138

319

474

168

216

122

99

56

83

92

150
98

140
169

78

137

155

348

496

196

104
74

145

14069

55

105

153

5136

178

772

64

162

145

62

234
91

66
87 175
275

59
45

97124

75

215

286

812

588

270

112

62

182

253

64

82

246

610

71

66

412

3493

146

898

108

76

150

124

91

90

128

149

52

42

70
112

83

219

282

939

184

92

70

47

132
122

83

126

59

55

58

194

131

602

187

1027

96

61

361
248

68
118

789

1440
32

55

225
459

102

346

2707

18895

ALBERT
BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

(a) Degree of orthogonality in Developer Assignment

3306

568

267

656

480

151

113

2099

2289

324

233

372

847

128

246

723

309

364

221

179

154

148

147

343
204

378
353

180

266

328

584

592

300

166
110

254

212138

161

215

187

133162

192

281

201

423

173

122

171
125

146
169 257
396

141
161

346411

222

446

981

3050

867

410

188

134

217

239

107

128

248

311

141

167

157

592

137

279

222

154

175

166

102

139

156

223

172

161

301
405

139

431

478

1359

191

160

110

107

195
241

172

307

94

160

118

199

188

401

423

1276

124

107

182
251

171
321

546

1473
131

166

536
1088

380

1190

5625

53180

ALBERT
BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

(b) Degree of orthogonality in Component Assignment

Fig. 4: Degree of orthogonality based on correct predictions of all baselines across all dataset in term of developer and
component assignment

905

215

47

200

80

26

17

213

49

62

20

28

9

11

10

244

64

64

28

37

9

13

21

45

23

57
32

17

9

17

24

239

82

33
17

87

5619

30

25

23

15
12

21

19

22

19

48

22

24
12

38

19 21

29

16

13

2628

23

27

48

85

373

113

49

23

43

53

18

14

39

32

23

21

18

18

17

21

48

24

42

18

21

16

18

22

19

13

33
24

21

17

24

62

63

39

16

21

45
56

27

48

10

21

21

21

26

52

29

88

15

16

20
20

34
35

41

98
9

13

39
52

34

68

217

1184

ALBERT
BERT

CodeBERT

DeBERTa

DistilBERT

RoBERTa

SVM

Fig. 5: Degree of orthogonality of based on incorrect compo-
nent assignments in Eclipse JDT dataset

in other datasets and found positive correlation also. Since the
number of components and developers in other datasets is very
high (Table I), we could not present and discuss it here.

Summary of RQ4: Similarity between components and
developers is a big issue for all baselines. When there is a
high textual similarity between components or developers, no
baseline can identify them correctly.

V. THREATS TO VALIDITY

In this section, we discuss some potential validity threats of
our work which we want to focus in our future research.

External Validity: Our study focuses solely on experiments
conducted using transformer-based deep learning techniques.
While we did not compare these techniques to other deep
learning methods such as LSTM and CNN, it’s worth noting
that transformer-based neural text embedding techniques have
been shown to outperform other deep learning-based tech-
niques in various NLP tasks, including text summarization,
question-answering, and document classification [15], [48].
Additionally, the artifacts from existing works on bug triaging
[31], [37] are not publicly available, which makes it chal-
lenging to compare transformer-based techniques with other
deep learning-based techniques. As a result, our study may be
limited in its external validity.

Conclusion Validity: Based on the findings we gathered
from four open-source datasets, we make all statistical con-
clusions regarding the baselines. However, it’s important to
note that these statistical conclusions may or may not apply to
industrial projects. As there is currently no publicly available
industrial dataset, our plan for the future is to collect datasets
from the industry and conduct a similar study.

VI. CONCLUSIONS & FUTURE WORK

We have presented a comprehensive empirical study that ex-
amines the potential for using pre-trained transformer language
models, trained on both code and natural language across a
variety of architectures, to automate the task of automated
bug triaging. Our study context consists of 136k bug reports

10

APT Core Debug Doc Text UI

A
PT

C
or

e
D

eb
ug

D
oc

Te
xt

U
I

100.00 85.48 59.26 69.46 84.83 82.86

85.48 100.00 71.72 75.21 96.52 94.92

59.26 71.72 100.00 55.55 68.21 70.76

69.46 75.21 55.55 100.00 74.41 73.47

84.83 96.52 68.21 74.41 100.00 93.06

82.86 94.92 70.76 73.47 93.06 100.00

(a) Similarity between components

APT Core Debug Doc Text UI

A
PT

C
or

e
D

eb
ug

D
oc

Te
xt

U
I

0 130 20 12 8 74

130 0 595 81 679 2271

20 595 0 72 173 957

12 81 72 0 16 245

8 679 173 16 0 2955

74 2271 957 245 2955 0

(b) Confusion between components

Fig. 6: Similarity and confusion between the components in Eclipse JDT

collected from a combined 53 years of maintenance history
from four popular open source software repositories. These
repositories consist of 165 distinct software components to
which a combined 462 developers have made contributions.
The results of our study illustrate that DeBERTa performs
significantly better other transformer-based language models
in both developer and component assignment tasks. Some-
what surprisingly, the simpler TF-IDF-based SVM baseline
performs best, for the task for developer assignment, on two
of our four studied datasets, illustrating that a well-tuned term,
frequency-based approach can perform well when triaging
bugs to developers. Each technique has a certain degree
of orthogonality which indicates that the unique properties
of each technique allow them to capture a different set of
patterns from bug reports. Similarity between components and
developers hampers the performance of all transformer-based
language models. There is a positive correlation between these
similarities and number of misclassifications.

Some of the findings of our study illustrate promising av-
enues for future work. First, given that models seem to struggle
when there is high textual similarity between developers and
components, project maintainers should be aware of these sit-
uations and look toward other techniques for bug triaging. The
research community should investigate alternative techniques
for triaging when likely assigned developers are similar to one
another. Second, given that there is a somewhat substantial
degree of orthogonality between our studied techniques, future
work should examine the potential for ensemble techniques
that combine the relative strengths of each model such that
overall performance might be improved.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing, 2006, pp. 361–370.

[2] J. Anvik, “Automating bug report assignment,” in Proceedings of the
28th international conference on Software engineering, 2006, pp. 937–
940.

[3] K. Crowston, J. Howison, and H. Annabi, “Information systems success
in free and open source software development: Theory and measures,”
Software Process: Improvement and Practice, vol. 11, no. 2, pp. 123–
148, 2006.

[4] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug
tossing graphs,” in Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2009, pp. 111–120.

[5] T. Zhang, H. Jiang, X. Luo, and A. T. Chan, “A literature review of
research in bug resolution: Tasks, challenges and future directions,” The
Computer Journal, vol. 59, no. 5, pp. 741–773, 2016.

[6] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2275–2292, 2012.

[7] S. Kim and E. J. Whitehead Jr, “How long did it take to fix bugs?”
in Proceedings of the 2006 international workshop on Mining software
repositories, 2006, pp. 173–174.

[8] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic
bug triage using semi-supervised text classification,” arXiv preprint
arXiv:1704.04769, 2017.

[9] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug triage
and severity prediction based on topic model and multi-feature of bug
reports,” in 2014 IEEE 38th Annual Computer Software and Applications
Conference. IEEE, 2014, pp. 97–106.

[10] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, “Applying
deep learning based automatic bug triager to industrial projects,” in
Proceedings of the 2017 11th Joint Meeting on foundations of software
engineering, 2017, pp. 926–931.

[11] S. Mani, A. Sankaran, and R. Aralikatte, “Deeptriage: Exploring the
effectiveness of deep learning for bug triaging,” in Proceedings of
the ACM India Joint International Conference on Data Science and
Management of Data, 2019, pp. 171–179.

[12] K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23,
no. 1, pp. 155–162, 2017.

[13] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June
1-6, 2018, Volume 1 (Long Papers), M. A. Walker, H. Ji, and A. Stent,
Eds. Association for Computational Linguistics, 2018, pp. 2227–2237.
[Online]. Available: https://doi.org/10.18653/v1/n18-1202

[14] S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C.-G. Lee, “Ap-
plying convolutional neural networks with different word representation
techniques to recommend bug fixers,” IEEE Access, vol. 8, pp. 213 729–
213 747, 2020.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] Anonymous, “Neural bug triaging online appendix,” https://sagelab.io/
neural-bug-triaging, 2023.

11

https://doi.org/10.18653/v1/n18-1202
https://sagelab.io/neural-bug-triaging
https://sagelab.io/neural-bug-triaging

[17] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 72–81.

[18] V. Nath, D. Sheldon, and J. Alphonso-Gibbs, “Principal component
analysis and entropy-based selection for the improvement of bug triage,”
in 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2021, pp. 541–546.

[19] T. T. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Topic-based, time-
aware bug assignment,” ACM SIGSOFT Software Engineering Notes,
vol. 39, no. 1, pp. 1–4, 2014.

[20] G. Murphy and D. Cubranic, “Automatic bug triage using text catego-
rization,” in Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering. Citeseer, 2004, pp.
1–6.

[21] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 3, pp.
1–35, 2011.

[22] A. Sarkar, P. C. Rigby, and B. Bartalos, “Improving bug triaging with
high confidence predictions at ericsson,” in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2019, pp. 81–91.

[23] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An empirical study
on bug assignment automation using chinese bug data,” in 2009 3rd
International Symposium on Empirical Software Engineering and Mea-
surement. IEEE, 2009, pp. 451–455.

[24] S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic software bug
triage system (bts) based on latent semantic indexing and support
vector machine,” in 2009 Fourth International Conference on Software
Engineering Advances. IEEE, 2009, pp. 216–221.

[25] S. Nasim, S. Razzaq, and J. Ferzund, “Automated change request
triage using alpha frequency matrix,” in 2011 Frontiers of Information
Technology. IEEE, 2011, pp. 298–302.

[26] A.-C. Florea, J. Anvik, and R. Andonie, “Spark-based cluster implemen-
tation of a bug report assignment recommender system,” in International
Conference on artificial intelligence and soft computing. Springer, 2017,
pp. 31–42.

[27] W. Fu and T. Menzies, “Easy over hard: A case study on deep learning,”
in Proceedings of the 2017 11th joint meeting on foundations of software
engineering, 2017, pp. 49–60.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[29] S. Guo, X. Zhang, X. Yang, R. Chen, C. Guo, H. Li, and T. Li,
“Developer activity motivated bug triaging: via convolutional neural
network,” Neural Processing Letters, vol. 51, no. 3, pp. 2589–2606,
2020.

[30] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,

a Special Interest Group of the ACL, A. Moschitti, B. Pang, and
W. Daelemans, Eds. ACL, 2014, pp. 1532–1543. [Online]. Available:
https://doi.org/10.3115/v1/d14-1162

[31] J. Lee, K. Han, and H. Yu, “A light bug triage framework for applying
large pre-trained language model,” in 37th IEEE/ACM International
Conference on Automated Software Engineering, 2022, pp. 1–11.

[32] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 535–541.

[33] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[34] P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert
with disentangled attention,” arXiv preprint arXiv:2006.03654, 2020.

[35] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[36] H. Wu, H. Liu, and Y. Ma, “Empirical study on developer factors
affecting tossing path length of bug reports,” IET Software, vol. 12,
no. 3, pp. 258–270, 2018.

[37] W. Zhang, “Efficient bug triage for industrial environments,” in 2020
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2020, pp. 727–735.

[38] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 25–35.

[39] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and
multi-feature tossing graphs to improve bug triaging,” in 2010 IEEE
International Conference on Software Maintenance. IEEE, 2010, pp.
1–10.

[40] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[41] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[42] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” 2020.

[43] pytorch.org, “TyTorch,” https://pytorch.org/, [Online], [Accessed 10-13-
2022].

[44] huggingface.co, “Transformers,” https://huggingface.co/, [Online], [Ac-
cessed 10-13-2022].

[45] scikit learn.org, “scikit-learn — Machine Learning in Python,” https:
//scikit-learn.org/stable/index.html, [Online], [Accessed 10-13-2022].

[46] D. J. Lilja, Measuring computer performance: a practitioner’s guide.
Cambridge university press, 2005.

[47] W. Mendenhall, R. Beaver, and B. Beaver, Introduction to Probability
and Statistics. Cengage Learning, 2013.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

12

http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/d14-1162
https://pytorch.org/
https://huggingface.co/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html

	Introduction
	Related Work
	Automatic Bug Triaging using ML Techniques
	Automatic Bug Triaging using DL Techniques

	Methodology
	Dataset Description
	Preprocessing and Train-Test Split
	Studied Transformer Text Representation Techniques
	Benchmark Model Fine-Tuning and Training
	RQ1 & RQ2: Performance Analysis
	RQ3: Degree of Orthogonality
	RQ4: Further Investigating Model Performance

	Experimental Results and Analysis
	RQ1: Effectivness of the baselines in developer assignment
	RQ2: Effectiveness of baselines in component assignment
	RQ3: Degree of orthogonality between baselines
	RQ4: Why do baselines fail or possess unique behavior?

	Threats to Validity
	Conclusions & Future Work
	References

