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(a) Separated Sheets

(b) Stacked Sheets

(c) Linked Sheets

Fig. 1. A knitting machine may be programmed to make two opposite-bed sheets (a) at separate needle indices or (b) one in front of the other. However,
changing only the carriers used in (b) can produce (c) a program that makes sheets linked at the edge. We present the formal foundation required to reason
about such subtle equivalences (=) and distinctions (%) among knitting programs.

Machine knitting is a well-established fabrication technique for complex
soft objects, and both companies and researchers have developed tools for
generating machine knitting patterns. However, existing representations
for machine knitted objects are incomplete (do not cover the complete do-
main of machine knittable objects) or overly specific (do not account for
symmetries and equivalences among knitting instruction sequences). This
makes it difficult to define correctness in machine knitting, let alone verify
the correctness of a given program or program transformation. The ma-
jor contribution of this work is a formal semantics for knitout, a low-level
Domain Specific Language for knitting machines. We accomplish this by
using what we call the fenced tangle, which extends concepts from knot
theory to allow for a mathematical definition of knitting program equiv-
alence that matches the intuition behind knit objects. Finally, using this
formal representation, we prove the correctness of a sequence of rewrite
rules; and demonstrate how these rewrite rules can form the foundation
for higher-level tasks such as compiling a program for a specific machine
and optimizing for time/reliability, all while provably generating the same
knit object under our proposed semantics. By establishing formal definitions
of correctness, this work provides a strong foundation for compiling and
optimizing knit programs.
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1 INTRODUCTION

Machine knitting is an additive fabrication process for soft goods
that has experienced a recent surge in popularity due to increased
understanding of the scope and complexity of the objects that can
be made. V-bed weft knitting machines in particular, which use
two parallel rows of needles to create shaped tubes and sheets,
have shifted from making relatively simple garments like socks and
sweaters, to more complicated shapes such as athletic shoes and
architecture [Popescu et al. 2020], to even programmable materials
like actuators [Albaugh et al. 2019] and force sensors [Aigner et al.
2022; Ou et al. 2019]. To complement this development, several high-
level design and programming systems have been developed to aid in
creating increasingly complex objects. Ideally, such systems should
be both complete (support everything that a knitting machine can
make) and correct (make exactly what the user wants).

Unfortunately, there is no system that guarantees correctness on
the complete scope of machine knitting programs. The cause for
this is two-fold: a knit object is a continuous deformation of yarns
in space to form an interlocking structure, making it difficult to
reason about; and knitting machines have an exponential number
of needle configurations which can be used to create a given object.
Existing systems deal with this complexity by limiting the scope of
knit objects to ones where assigning machine needles, or scheduling
the object, is tractable. As it turns out, even when the knit object is
simple, scheduling it can be surprisingly difficult.
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For example, consider a knitting machine program that makes
two 50 X 50 rectangles by alternating between the two of them —
first some of sheet A, then some of sheet B — until both sheets are
finished at about the same time. This program is written such that
Sheet A is scheduled on one row of needles (the front bed) at needle
indices 1 to 50, while sheet B is scheduled on the other row (the
back bed) at needles 51 to 100 (Fig. 1(a)). If we only have access to a
machine that is 50 needles wide, we would not be able to run this
program: back bed needles 51 to 100 do not exist.

A novice programmer might observe that, while sheet A occupies
front bed needles 1 to 50, back bed needles 1 to 50 are unoccupied.
They might consider rewriting the knitout program so that sheet B
is shifted to use back bed needles 1 to 50. As it turns out, however,
depending on which machine part delivers the yarn, i.e., which yarn
carrier is used to knit the sheets, this rewritten program may instead
produce two sheets that are linked at their edges (Fig. 1(c)).

The problem at play here is one of program equivalence. For
most programs, we say that the “meaning” of the program is “the
function it computes.” That is, we say two different programs are
functionally equivalent if they compute the same output for the same
input. Theories of functional equivalence allow the definition of
semantics that form the basis for systematically testing, debugging,
and proving the correctness of program rewrites.

However, programs that control manufacturing machines (e.g.,
CNC routers, FDM printers, or knitting machines) don’t compute
functions - they produce physical objects. The “meaning” of a man-
ufacturing program is therefore “the object that it makes.” Two
different manufacturing programs are objectively equivalent if they
both denote (i.e., represent) the same object. This raises an impor-
tant issue: mathematically, what are the objects created by knitting
machines?

Mathematically defining phys- Compute
ical objects is a surprisingly sub- Tree] _ booleans” Trimesh

tle task. For instance, the analo- “meaning” Computing
gous “meaning” of constructive Regularize Math
solid geometry (CSG) or solid Polyhedra

[Requicha et al.]

modeling programs was not ad-

equately resolved until Requicha’s definition in terms of regular,
closed sets [Requicha 1977], which drew on Kuratowski’s investiga-
tion of closure operators in point-set topology [Kuratowski 1922].
Both the CSG Tree representation (i.e., data structure) and boundary
representation (B-rep) — which may be a polygonal mesh or even
NURBS surface — “mean” a solid object in Requicha’s sense. This
definition clarifies the correct behavior of CSG in many edge cases,
such as two cubes which intersect in exactly a shared face. The
point-set intersection is the shared face (not a solid), but the CSG
intersection (regularized intersection) is empty.

Analogously, it has been observed that an adequate mathematical
description of knit objects ought to be rooted in knot theory [Gris-
hanov et al. 2009; Markande and Matsumoto 2020; Qu and James
2021]. But similar to the situation in solid modeling, existing for-
malisms are subtly insufficient for capturing the complete scope of
machine knit objects.

In this paper we present the fenced tangle, which is an exten-
sion of tangles from knot theory, carefully expanded to match the
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Fig. 2. Formalization approach. The grammar of knitout (Def. 5.1) defines a
set of programs, which is narrowed by our validity relation (Fig. 11). Every
valid knit program denotes (i.e., “means”) a fenced tangle (Def. 4.5) via
formal knitout semantics (Def. 5.6, Fig. 12).

intuition behind machine knitting. Using fenced tangles, we for-
malize the semantics of the machine knitting language knitout
to allow for a mathematical definition of program equivalence.
This formalism is complete - it can

handle anything a v-bed knitting Formal Orewn
machine can create — and allows us Knitout rewites
to reason about correctness - pro-

X R “meaning” Computing
grams are equivalent if they denote
(i.e., “mean”) the same fenced tan- [ pepced Math
gle. We then demonstrate how this Tangles

formalism can be used to prove the

correctness of a set of program rewrite rules that can be combined

to perform high-level scheduling tasks. The formalization structural

overview of the paper is shown in Figure 2.

The contributions of our paper are as follows:

e We propose fenced tangles (Section 4.1) as a mathematical
basis for defining machine knit object equivalence. In addition,
we provide three operations for composing fenced tangles
from simpler primitives.

We use fenced tangles to define a denotational semantics for

knitout (Section 5). This is the first formal semantics that cov-

ers the complete space of v-bed knitting machine programs.

We believe it may also be the first formal semantics whose

denotations are literally pictures/diagrams.

e We demonstrate how our formal semantics can be used to
prove the topological correctness of general knitout program
rewrite rules (Section 6); and give correctness proofs of sev-
eral useful low-level rewrite rules (Appendix D).

e We demonstrate how these low-level rewrites can be used
to schedule and optimize knitout patterns — including multi-
layer objects, which are impossible to create with previous
machine knitting design systems (Sections 7 & 8).

2 MACHINE KNITTING BACKGROUND

We begin by providing a brief overview of knit structures and ma-
chine knitting; for a detailed description of machine operations we
refer the readers to [McCann et al. 2016].

Knitting is the act of taking one or more yarns and manipulating
them into a series of interlocking loops that form a stable fabric. The



inset figure shows an example of a knit structure. The yarns used
to construct a knit fabric are pliable and can slide along other yarns.
This results in soft, deformable fabric structures. Technically, yarn in
a knit structure can be unravelled to undo the loops and transformed
into a completely different object. However this degree of freedom
is counter-productive when trying to characterize the geometric
and topological structure of the object.

Typically, once the end(s) of the yarn(s) in Q Q Q Q

a knit object have been secured, the loops < .1‘\.2‘8.1‘\.1)
constituting the object can continue to c\'/‘\'z's'[‘ '1
slide and the fabric can continue to de- \' /-\' 2-8' 2-\' /
form in 3D space, but the relationships ci ).‘ ).‘ ).Q?
between yarns that constitute the basic

building blocks of the fabric (e.g., the highlighted “knit” stitch) re-
main fixed. Indeed, this set of fixed loop relationships has been
used to accelerate knit simulation [Cirio et al. 2015]. This notion of
strands that can be deformed in 3D space but have fixed relation-
ships to their surrounding structures lends itself well to description
with the topological notion of ‘tangles’ - a portion of a knot bounded
by a circle with fixed points on its boundary. We will use tangles

and extend the idea to a notion of ‘fenced’ tangles in section 4.1 to
formalize the topological structure of knit objects.

[ ==

Fig. 3. Av-bed knitting machine creates fabric by using a carriage to actuate
needles arranged into front and back beds. The beds are positioned in an
inverted “v” shape, with the back bed behind the front bed (and, thus, not
visible in this illustration). Yarn is supplied to the needles by yarn carriers
which run along carrier tracks. (Figure based on [Sanchez et al. 2023].)

V-bed weft knitting machines (Fig. 3) consist of two facing beds
(rows) of hook-shaped needles, each of which can hold a stack of
loops. Between the two beds runs a number of tracks, each of which
has a single yarn carrier that provides yarn. Most machine opera-
tions consist of one or more yarn carriers moving to a particular
location, the needle at which is then actuated to move forward and
pull yarn from the yarn carrier(s) to construct loops on its hook
(tuck). The needle and associated mechanisms can also pull the
new loop through previous loops held on its hook while releasing
these held loops (knit). While yarn carriers provide yarns for nee-
dles to operate with, they also trail yarns between needles. Yarns
produced by different carriers can entangle with each other when
used on needle beds closer or further away from each track, making
the underlying topology of the constructed object challenging to
track. In addition to creating and pulling loops through loops, two
aligned needles on opposite beds can move loops held on one to the
other (xfer). This can be done independently or combined with the
formation of a new loop (split). The back bed can slide left/right
(rack) to change which needles are aligned. By combining basic
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loop-making operations with the ability to move loops between
needles, knitting machines can produce complex knit structures.

The act of actuating the needle itself is performed by a carriage
that rides along the length of the needle beds. The carriage encases
a configurable cam plate that engages with needles on the needle
bed, where each machine operation has a different cam plate setup.
This has two important implications. First, any number of stitches
may be performed in one carriage pass as long as the stitches appear
in order and use compatible cam plate setups and yarn carriers.
Knitting machine program efficiency is generally increased by de-
creasing the number of passes — which means that moving knitting
instructions without changing program meaning is an important
task for knit programmers. Second, any language that allows the
use of all cam plate setups and yarn carriers is a complete knitting
machine language.

3 RELATED WORK

Knitting (both by hand and machine) and other forms of fabric-
making craft have a very rich history [Postrel 2020], with recent
research focusing on high-level and 3D design and interaction tools
for hand and machine knitting as well as specialized knitted struc-
tures for application to various domains. In doing so, a variety of
knitting representations have been developed, though most of them
do not rigorously characterize the object being made. The work
done to mathematically characterize knit objects only apply in more
limited settings.

We begin by reviewing the current state-of-the-art knit program
generation pipelines and their limitations caused by incomplete
characterization of the machine knitting program space. We then
go over existing formalizations of knit objects before covering other
DSL and semantic approaches to fabrication.

3.1 Knitting Machine Program Generation

Traditionally, knit programming occurs directly in the construction
space of the machine - requiring users to figure out the construction
location (at which needle must a stitch be created) and construc-
tion order of stitches (at what time this stitch must be created) at
the same time as they determine stitch type and connectivity. Fur-
ther, it is the programmer’s responsibility to ensure that stitches
and transfer instructions are encoded appropriately and efficiently.
This is done using either the proprietary languages supported by
industrial knitting CAD systems such as KnitPaint [Shima Seiki
2011] and M1 Plus [Stoll 2011] or more recently the knitout lan-
guage [McCann 2017]. To provide high-level control and support
common designs at scale, these CAD systems also support paramet-
ric templates for garments such as sweaters and gloves. Libraries
of textures are also maintained that can be applied to patterns and
further edited [Shima Seiki 2019; Soft Byte Ltd. 1999]. Guidebooks of
advanced techniques do exist that can assist with this process [Un-
derwood 2009]. However, the traditional knitting design process
still requires the knowledge of an expert machine programmer.

In order to lower the barrier of entry to machine knitting, various
systems were developed to decouple knit object design from pro-
gramming by automatically generating machine knitting programs
from high-level representations. Popescu et al. [2018] described
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a system that automatically generates a knit representation for
topologically-disc-shaped patches, which are later connected manu-
ally. However, many intermediate steps including patch segmenta-
tion and machine layout remain manual in their system. Narayanan
et al. [2018] introduced an automatic pipeline that generates all-knit
surfaces from 3D meshes. They later extended the pipeline to handle
color and simple textures [Narayanan et al. 2019]. Jones et al. [2021]
introduce a system to support patch-level pattern editing while
maintaining low-level knittability constraints. Kaspar et al. [2019b]
present a system that learns machine knitting instructions by curat-
ing a dataset of KnitPaint programs and images of the associated
fabricated results. Recently, Nader et al. [2021] presented a graph
rewriting based approach for supporting 3D knitting of meshes with
textures. Finally, Kaspar et al. [2019a; 2021] presented an interactive
design system in the construction space coupled with techniques
to compose textures for surface patterning and force-layout based
embedding. More recently, they presented an approach to turn cut-
and-sew patterns into seamless machine knitting patterns.

Crucially, all these systems assume either explicitly or implicitly
that the input representation is a surface where all yarn paths lie
within said surface. While it is true many knit objects are amenable
to such a representation, techniques such as thick spacer fabrics [Al-
baugh et al. 2021] and knit integrated tendons [Albaugh et al. 2019]
involve yarns that move between what could otherwise be char-
acterized as separate surfaces. In fact, our motivating example of
two interlocked sheets (Figure 1) also illustrates a situation where
this assumption does not hold. This limitation is primarily due to
the difficulty of correctly scheduling knit objects with more compli-
cated yarn routing. Of existing systems, KnitKit [Nader et al. 2021]
in theory could be adapted to handle more complicated schedul-
ing problems. However, it still requires an expert to author such a
scheduling algorithm, and - indeed — no foundation exists upon
which to judge the correctness of such an algorithm.

3.2 Formal Characterization of Knit Objects

How should we mathematically represent an object created by a
knitting machine? Unlike rigid machined objects (formalized as
regular, closed subsets of R3 [Requicha 1977]), knit objects are built
out of entangled, flexible yarn. While there has been investigation
into hand knitting as 2D surfaces, such as Belcastro’s [2009] proof
that 2D surfaces of any topology can be hand knit, understanding
the underlying yarn-level structure of knitting remains an interest-
ing and challenging problem. In addition, it is important to note
that human knitters are dexterous and able to form more complex
stitches than v-bed machines. Thus it is useful to narrow our focus
to specifically objects that can be knit by machines.

Most prior work focused on yarn-level knit topology look to knot
theory [Adams 1994] for inspiration. However, directly using math-
ematical “knots” to formalize knit objects runs into three significant
problems: (1) Knots are comprised of closed loops, while knit objects
have loose ends, and there is no canonical way to close these loops
for an arbitrary object. (2) Knot/link diagrams are not composable—
meaning that there are no simple operations for building complex
knot diagrams out of simpler knot diagrams. (3) The topological
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equivalence of knot theory does not account for any metric proper-
ties of a real knit object, which arise from the looseness/tightness
of stitches, as well as non-stitch elements like “misses” (machine-
knitting) or “yarn overs” (hand-knitting) that simply let out more
yarn between stitches.

To address points (1) and (2), prior work is limited to a sub-
set of knit objects. For example, Grishanov [2009] studied textile
structures like knitting and weaving as knots and links on a torus,
while Markande and Matsumoto [2020] focused specifically on knit
swatches, viewing knit stitches as knots on a thickened torus with
an algebra to join them and make a fabric. The choice of the torus
as the embedding space addresses issue of loose ends, while the
algebra introduced by Markande and Matsumoto allows for a type of
composition that provides interesting insight on the periodic nature
of common knit structures. However, these particular abstractions
can only cover infinite periodic structures, making them ill-suited
for describing specific finite programs. Lin and McCann [2021; 2018]
have looked specifically at using the Artin braids to formally define
transfer plan correctness, which is a subset of knitting instructions.
Their choice of the Artin braids for their mathematical formalism
means points (1) and (2) are addressed. However, its definition also
includes a monotonicity condition that conflicts with the loop for-
mation process in knitting. Thus their approach cannot be extended
to all knitting instructions.

As for non-knot theoretic formalizations, TopoKnit is a data struc-
ture that uses graph edges and nodes to describe yarn routing and
intertwining respectively, thus enabling certain topology checks on
machine knit fabrics [Kapllani et al. 2022, 2021]. However, while it
covers a large subset of machine operations, it is still incomplete,
and not all relevant topological features are captured. Several ma-
chine knitting design systems involve graph-based intermediate data
structures that in theory could be extended to describe non-planar
knits [Kaspar et al. 2019a; Nader et al. 2021; Narayanan et al. 2018].
However, they either assume an input from a planar representation
or only consider the planar case.

Our topological formalism is carefully defined to capture the full
scope of machine knitting operations while still addressing points
(1) and (2). While our formalism does not directly address point (3),
we do discuss in Section 7.1.3 how a heuristic approach can be used
to develop basic reasoning on metric properties.

3.3 DSLs for Fabrication

Based on the insight that fabrication plans are programs, graphics
researchers are applying programming language techniques to solve
fabrication problems [Leake et al. 2021; Wu et al. 2019; Zhao et al.
2022]. The Carpentry Compiler uses a set of rewrite rules to perform
equality saturation on programs representing different ways of con-
structing a solid shape from wood [Wu et al. 2019]. This works well
because the construction of each sub-component can be constructed
free of the context of how other sub-components are constructed,
and of how that sub-component will be assembled into the whole.
By contrast, knitting machines have large amounts of state, and
knitting programs are therefore context-sensitive. Consequently,
we must state and apply our rewrites in the context of a particular
program trace, which exposes our state-dependence.
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Fig. 4. Afenced tangle, T, and two projections, K and K°, to fenced tangle
diagrams which differ in their equator orientation.

The idea of user-scheduling, or decoupling the “algorithm” of
what needs to be computed and the “schedule” of how it should
be computed, has been popularized as a way of concisely writing
high-performance code for CPUs and accelerators [Chen et al. 2018;
Ragan-Kelley et al. 2012]. Some of these user-schedulable DSLs
have a “rewrite-based” approach, where their scheduling language
rewrites one IR to the same IR, which helps make the scheduling
language modular and composable [Ikarashi et al. 2022; Steuwer
et al. 2017]. In this paper, we also take a rewrite-based scheduling
approach, and define a set of scheduling rules that rewrite one
knitout representation to another equivalent knitout representation.

4 FENCED TANGLES

In this section, we present a formalism based on a presentation of
tangles, which, roughly speaking, represent a cut-out piece of a knot
diagram. By enriching these tangles with fences, we allow internal
loose ends and prevent local unravelling (Fig. 4). We then address
the issue of composition by defining a standard presentation and
three composition operations.

4.1 Fenced Tangles Definition

The following definition uses some technical terms such as tame,
homeomorphic, etc. We provide precise definitions of these terms in
Appendix A.1 and recommend a knot theory book [Adams 1994] for
a more detailed discussion. In addition, we provide the following
brief, intuitive glossary. Tame can be understood as meaning “not
pathological in strange fractal ways” Homeomorphic (meaning there
exists a homeomorphism between the two shapes/spaces) can be
understood as “has a continuous mapping between them” whereas
saying there is an ambient isotopy between shapes means “can be
continuously deformed into each other without collision”. Thus, all
closed loops in R? are homeomorphic (all equivalently circles in
and of themselves) but are not all ambient isotopic - since they can
be knotted in different ways.

Definition 4.1 (Tangle). Let U C R? be compact and simply con-
nected (i.e., homeomorphic to a closed ball), with equator Q C
bd(U), a tame loop homeomorphic to the circle. A tangle T in U is
a tame embedding of zero or more arcs and loops y; : [0,1] —» U
(continuous and tame), satisfying the following conditions: (i) The
interior of each arc is interior to U (y((0,1)) C int(U)). Either
(il.arc) each endpoint lies interior to U or on the equator (y({0,1}) C
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Fig. 5. Equivalent fenced tangle diagrams are connected by sequences of
smooth 2D deformations along with Reidemeister moves (R1-3) and fenced-
tangle Reidemeister moves (R4, R5), which work regardless of the number
of arcs connected to the fence.

Q U int(U)); or (ii.loop) the endpoints are coincident in the interior
(y(0) = y(1) € int(U)). (iii) no two arcs intersect. Two tangles T1, T»
are equivalent (T; = Tp) if there is an ambient isotopy of R3 carrying
Ti to T.

Rather than reason about tangle equivalence directly, we will
instead work with diagrams.

Definition 4.2 (Tangle Diagram). Let V C R? be compact and
simply connected (i.e., homeomorphic to a closed disc). A tangle
diagram in V is a tame immersion of zero or more arcs and loops
Yi : [0,1] — V, and crossing annotations satisfying the following
conditions: (i) The interior of each arc is interior to V (y((0,1)) € V).
Either (ii.arc) the endpoints may lie anywhere in V; or (ii.loop) the
endpoints are coincident in the interior (y(0) = y(1) € int(V)). (iii)
There are a finite number of transversal intersections p; between
the arcs (including self-intersections) with each such “crossing” an-
notated with one of the two arc segments “passing over” the other.

Two tangle diagrams Ki, K are equivalent (K; = K3) if Kj can
be transformed into Kz by some sequence of the following manip-
ulations: ambient isotopy of R2, or Reidemeister moves 1, 2, or 3
(Fig. 5).

We say that a tangle diagram K is a projection of a tangle T,
Figure 4, if there is a projection of R3 to R? sending U to V, Q to
bd(V), yi in U to y; in V, and such that the crossing annotations
agree with the ordering of arcs in R3 as they are projected.

Definition 4.3 (Flip of a Diagram). Note that if K is a projection
of T, then K° (the diagram obtained by flipping the order of each
crossing, and taking the mirror reflection in R?) is also a projection
of T, but not necessarily an equivalent projection.

Proposition 4.4. Let T, T’ be two tangles and K, K’ their projections.
ThenT = T’ iff K = K’ orK°® = K’ (see Figure 4)

A fenced tangle is defined similarly to a regular tangle, but with
the extra data provided by “fences”, and one key relaxation of the
conditions.

Definition 4.5 (Fenced Tangle (Diagram)). Let T be the data for
a tangle defined on U. Additionally for reference, let Si be the 2-
sphere 52 along with a distinguished equator Qy : §! — Si. Then a
fenced tangle on U is defined by the tangle data T, along with a set
of tame embeddings of this reference “fenced sphere” L; : Si - U.
These fenced spheres must satisfy the following conditions (i) all
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Fig. 6. Tangles without fences (top) can locally “unravel”. Fences (bottom)
prevent unravelling by restricting the motion of arcs at crossings. This is
key to capturing the as-fabricated topology of knit items.

spheres are disjoint in U. (ii) all intersections between arcs and
labels are transverse and occur along the equator L;(Qr) (fence).
Finally, we relax the tangle condition on where endpoints of arcs are
allowed to lie. In a fenced tangle, endpoints of arcs are also allowed
to lie on fences, as well as on the equator of U or joining up into
a loop. Two fenced tangles are equivalent if there is an ambient
isotopy between them which also carries fences to fences (Fig. 6).

Given a fenced tangle diagram K on V, let fences be tame embed-
dings of the circle L; : ' — V satisfying the following conditions:
(i) all fences are disjoint in V. (ii) all intersections between arcs and
labels are transverse. (Similarly, arc endpoints are now allowed to
lie on the fence circles instead of only forming loops or running to
the end of the diagram) A fenced tangle diagram is a tangle diagram
together with a set of fences. Two fenced tangle diagrams K, K are
equivalent if Kj can be transformed into K2 by some sequence of
ambient isotopies of RZ?, Reidemeister moves 1, 2, 3, or fenced-tangle
Reidemeister moves 4, 5 (Fig. 5).

Similar to plain tangles, a fenced tangle diagram K can be a pro-
jection of a fenced tangle T, provided fenced spheres are projected to
fences, meaning that the sphere’s equator is projected to a diagram
fence and the volume enclosed by the fenced sphere is projected to
the area enclosed by the fence. A similar proposition holds for K°.

4.2 Fenced Tangle Composition

Having now defined fenced tangles, it is useful to be able to describe
them using a composition of simpler fenced tangle diagrams. This
enables the proof of several lemmas that can be used to facilitate
proofs of fenced tangle equivalence (see appendix B). To do this, we
first define a standard diagram presentation that will be used for
the rest of the paper:

Definition 4.6 (Slab Presentation). Let K be a fenced tangle diagram
defined on R, a rectangle in the plane. Then we say K is an (n, m)-
slab if there are n arc endpoints lying on the bottom side of the
rectangle and m arc endpoints lying the top side of the rectangle,
and no endpoints on the left or right.

Notation 4.7 (Slab Types). It will be useful to refer to the set of
(n, m)-slabs by SJ*, so that we may simply write K € SJ*.

We then define three types of tangle concatenation (see Fig. 7 for
pictorial intuition).
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M ! K2
:; Kl K2
L [ )| K,
n K1 ® K, Ki oKy K1|K2

Fig. 7. Slab presentation and three types of fenced tangle concatenation.
From left to right, an (n, m)-slab, horizontal concatenation K; ® K3, vertical
concatenation Kj o Ky, and layer concatenation Kj | Ky

Definition 4.8 (Horizontal Concatenation). Let K; € SI* and
Kz € S]. By ambient isotopy, we can scale the rectangles to have
equal height. Then if we glue the right side of K; to the left side of

m+q

K> we get their horizontal concatenation (K; ® K») € S, +p -

Definition 4.9 (Vertical Concatenation). Let K; € S,l: and K; € SI',".
Again, by ambient isotopy, we may assume that the two rectangles
have equal width, and that the p top points of K; align with the
p bottom points of Ky. Then we can construct their vertical con-
catenation (Kj o K) € S} by gluing the two rectangles along the
matching top/bottom.

Definition 4.10 (Interleavings). Let m, n € N. Then, an interleaving
w of mand n (w € I, ) can be specified as a partition of [m + n]
into two sets of size m and n respectively. Let w C [m+n] be the first
set, of size m. Let w € I, , be the opposite interleaving, specified
by the second set of w.

Definition 4.11 (Layer Concatenation). Let K; € S7* and Kz € S,
with both defined on the same rectangular region R (also achievable
by ambient isotopy). Furthermore let 1 € 1,5, and w € I g be
interleavings of endpoints of K; and K3 on the bottom (input) and
top (output) of this common rectangle R. Then, (K1|’K3) € S:ﬁ;q is
the layering of K; over K3 according to this interleaving. Let Ki [’ K>
contain all arcs and labels from both diagrams. Any new crossings
are annotated such that arcs from Kj pass over arcs from Ky. Fur-
thermore, K; |’ K> is only considered well defined if (i) crossings
between arcs and labels from Kj and K3 are transverse, (ii) all arcs
and labels in K lie outside of all labels in K>, and (iii) all arcs and
labels in K3 lie outside of all labels in Kj.

Rather than draw out every tangle diagram in full, we will find it
useful to define the structure of some common fenced tangle slabs
and use those to compose more complex fenced tangles.

Definition 4.12 (Identity Slabs). Let id,, € S consist of n arcs
running straight up from the bottom to the top of the slab, called
an/the identity slab. When n can be inferred from the context, we
simply write id. idy is also called the empty tangle.

Definition 4.13 (Permutation Slab). Let o be a permutation of n
things specified (equivalently) as a one-to-one function o : [n] —
[n], which may be notated as a non-repeating list of the numbers
in [n] in any order. Then define the slab 7, € S}, as n strands, each
running from the i® input point to the o(i)™ output point without
crossing itself, and such that whenever the strand starting at input
i and the strand starting at input j cross (with i < j) i crosses over



j. All such slabs are equivalent. 7, ! is defined as the unique slab
s.t. o 0 ;' = idy. However, note that in general ;1 # 7,-1. So
for a given permutation o, the four slabs 7,, 7, 1 TTy-1 and ﬂ'o_}l are
distinct. In particular, ”_711 looks identical to 7,, except the crossings
are all right-over-left, rather than left-over-right. (and similarly for

the other two cases)

Lastly, we want some way to pick and separate out some number
of yarns; and in reverse, a way to merge them back into a group.

Definition 4.14 (Separate and Merge). Let: € I, be an interleav-
ing. Observe that : defines a permutation function as follows: Let o,
be the permutation function that sends the subset i to [0, n) and the
subset 1 to [n, n+p) with the mapping monotonic within each side of

—
the partition. We define separate to the left as V, = m,,, and separate
- —
to the right as V, = m,_. We define merge from the left as A, = 7r0_l1,
—
and merge from the right as A, = 7, !. Thus, the following inverse
- — =
identities hold: A, o V, = A, o V; = idpp. Examples of the four
slabs are given in Fig. 8.

Note that another four similar slabs could have been defined using

o, ! instead of 0,. However, we will have no use for them: because

of the physical constraints of a knitting machine, lower-numbered
yarn carriers must always cross over higher-numbered carriers.

Let ¢ = (12) C [5]
7T v,

\
234 01234
/

-

\
01
i

L
! |
Fig. 8. Given the particular interleaving 1 = (1 2) we can define two separate
and two merge slabs, varying by the direction in which the yarns identified

=l

A,

N

by 1 are merged from or separated to. The arrows act as a mnemonic to
tell us which direction the 1 yarns are being pulled (reading the slab from
bottom to top), and the character acts as mnemonic for whether the yarns
are being merged (A) or separated (V).

5 FORMAL KNITOUT

Formal definitions of computer programming languages typically
consist of at least three major parts: a grammar specifying the
syntax of the language, a type system that further specifies which
programs are “valid,” and a semantics specifying the “meaning” of
any valid program (for a more in-depth review of these concepts,
we refer you to Appendix A.2). While knitout is a control language
for knitting machines, not computers,! we can still use the same
process to formalize it. We specify the grammar of formal knitout
in Definition 5.1 using Backus-Naur form (BNF). In Definition 5.4,

we define our type-checking relation S 2 S’ on abstract machine
states S and S’. Not only does this allow us to restrict our attention

Indeed, knitout does not contain, e.g., variables, function calls, or control flow.
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1 xfer b.2 .2;

2 knit — £.23.0 (2,1.0);
3 xfer f.1 b.1;

4 miss — f.12;

5 xfer b.1 f.1;

(a) Formal knitout program (Definition 5.1)

| xfer b.2 f.2

Lknit — £.23.0 (2,1.0)

Sy =(0,[f1=1][f2—>1],[2 2],[2+ f.2])
| xfer f.1b.1

S3=(0,[b.1 > 1][f2 1],[2 2],[2— f.2])
I miss — f.12

Sy=(0,[b.1 > 1][f21],[21],[2 f.2])
| xfer b.1 f.1

Ss=(0,[f11][f2—1],[2—1],[2 - f.2])

(b) Program trace defined by validity relations (Fig. 11)

cl f1 bl c2 f2 b2 c3

gl b sy PN

E[S4]
&[5 X4, 84 \\\
. &E[S5]
&[Sy == S3]
é/ S‘Z \ ~
&8[51 £, 5] U(\

'\

|

c.1 f.l b1 c2 f2 b.2 c¢3
(c) Denoted fenced tangle (Fig. 12)

&[0 XL, 841

Fig.9. An excerpt of formal knitout code for knitting linen stitch (a) describes
the mechanical actions performed by the machine, but is insufficient for
describing the resulting knit topology. Executing the program on initial
state Sy produces a unique trace Sy k_P> Ss, which proves our program is
well-formed (b). Each machine state denotes points on a slab’s boundary,
while the trace denotes the fenced tangle that connect said points (c).

to only valid formal knitout programs, the information contained
in machine states S and S’ is useful for defining the meaning of
knitout programs (i.e., their semantics). We define the meaning of
individual machine states &[S] in Definition 5.5 as an intermediary
step to defining the fenced tangle denoted by a valid knitout program
&[S ﬁ S’] (Definition 5.6). For clarity, we do not include some
knitout features in the formalization; these differences are explained
in Appendix C. An example of our formal definitions applied to a
specific program instance is found in Fig. 9.
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Definition 5.1 (Knitout). A knitout program ks is defined according
to the following context free grammar:

ks u=  ksy;ksy
| tuckdir n.x 1 (y,s)
| knitdir n.x [ yarns
| splitdir nx n’.x" L yarns
|  missdirnxy
| indirnxy
|  outdirnxy
| dropn.x
|  xfer nxn’.x’
| rackr
| nop
dir € {-+}
nn == f|b
rx, x Z
s, 1 R
yarns == (y,s)? (without repetition)
y € N

S
€

Note that [ is the size of a loop produced by a stitching operation
and s is the length of yarn running between this stitch and the last
stitch using said yarn. dir is the direction in which the carrier is
moving when executing the operation.

Knitout programs refer to needle locations (on which loops are
stored) and yarn carrier locations (at which loose ends of yarn are
held). We make a distinction between logical and physical locations
(Fig. 10). Knitout programs are written in terms of logical locations,
but their validity and semantics are defined in terms of the physical
locations. To organize these concepts and avoid confusion, we make
the following definitions.

Definition 5.2 (Locations).

o A logical needle location is a pair n.x € nLoc where nLoc =
{f,b} X Z is the set of all logical needle locations. Logical
needle locations identify a “front bed” or “back bed” needle
location.

o A logical yarn carrier location is a pair of a logical needle
location and direction (n.x,dir) € yclLoc, where ycLoc =
nLoc X {+, —}. Intuitively, the direction identifies which side
of a needle a yarn carrier is “parked at.”

o A physical needle location is an integer z € Z. The physical
location corresponding to a logical needle location n.x at
racking offset r is [ f.x|, = x and |b.x], = x +r.

o A physical yarn carrier location is an integer z € Z. The phys-
ical location corresponding to a logical yarn carrier location
(n.x,dir) atracking offset r is defined as | n.x, +], = [n.x],+1
and | n.x, -], = | n.x],. Intuitively, yarn carriers immediately
to the left of physical needle location z are assigned physical
location z, while yarn carriers immediately to the right of
physical needle location z are assigned physical location z + 1.
You can think of these as actually sitting at z — 0.5 and z+0.5.
We use whole numbers for simplicity, and we will sometimes
use the notation c.z in diagrams for visual clarity.
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cx fx | bx-rcxtl

Fig. 10. The knitting machine consists of two beds of needles where at
racking r, front bed needle f.x is aligned with back bed needle b.x — r. In
between the needles are yarn carrier tracks. These logical machine locations
are projected from 2D to 1D physical locations using a left-to-right, front-
to-back order, where each carrier projects to a single point and each loop
projects to two points. These ordered points on a line are what is denoted
by a given machine state &[S].

Each knitout operation creates yarn geometry and manipulates
the machine state:

Definition 5.3 (Knitout Machine State). A knitout machine state
S=(r,L,Y,A) consists of:

e r € Z, the racking offset, or the offset of the needles on the
back bed relative to the front bed. At offset r, back needle
b.x — r is across from front needle f.x.

e L € nLoc — N, a partial function with default value 0 that
reports the number of loops on each needle.

e Y € N — Z, a partial function that gives the current physical
position of the yarn carriers. If the value is L (the default
value), then we say that the carrier is inactive.

e A € N — ycloc a partial function that gives the logical
carrier location of where each yarn carrier is attached to a
loop. An inactive carrier (with value L) is not attached.

We define the empty state as S¢ = (0, [], [], []). For a review of
partial function notation, see Definition A.1.

Definition 5.4 ((Valid) Knitout Trace). Given a knitout program
ks and knitout machine states S, S’, we say that executing ks on S

produces S’ if the relation S ks, 8 holds (as defined in Figure 11).

As a shorthand, we may write Sy ﬂ) S1 E) S, for Sy M) Sa,

with the additional information that rule V-seq has been instantiated
with intermediate state S;. We also refer to such composite relations
as traces of knitout programs. We say that a knitout program is
valid or well-formed if it has a trace. We say that a valid knitout
program ks is complete if it both begins and ends with the empty

state S 2 Sp. Note that for a given initial state S and knitout
statement ks, the resulting state S’ is uniquely determined.
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[fxlr =x
lbx]r =x+r

ln.x,+]r = |nx], +1
lnx,—]r = [nx],

S ks S/ S/ ks; SN

(Y,yarns) = (n.x,dir)

(Y, yarns) = (n.x, ~dir)

Yy € yarns : Y(y) = |n.x, dir],

nx || n’.x’ lnxl, =Xy A n¥n

Y’ = Y[yarns — |n.x,dir],]

V-se nop
ksisksz  arr 4 §—S
S5S

(Y, yarns) = (n.x, ~dir)

tuck dir n.x | yarns
- =

(r,L,Y,A)

(Y,yarns) = (n.x,~dir)  L(n.x) >0

knit dir n.x Il yarns

(r,L,LY,A) ——— = 77", (r,L[n.x — #yarns], Y, A")

nx ||y n’.x’

L' =L[nx— 0][n".x" = L(nx)+L(n" x")]

(r,L,Y,A) xfer nxn’x’, (r, LY, Al{y : A(y) = n.x} > n’ x'])

(Y,yarns) = (n.x,~dir) nx|,n"x

V-miss
(r,L,Y,A) Missdirnxyarns | pyr a4y
Y’ = Y([yarns — |n.x,dir
ly L 1] Votuck
r,L[n.x — L(n.x) + #yarns],Y’, Alyarns — n.x
Y Y
Y’ = Y[yarns — |n.x,dir];] | =1
A’ = Alyarns — n.x| . A V-rack
V-knit (rLY,A) 2K 1y, A)
Y(nx) >0
V-xfer V-drop

A" =Al{y : A(y) = n.x} — n’ X' [yarns — n.x]

(r,LY,A) 9P X [nx > 0],Y, A)

Y’ = Y[yarns — |n.x,dir],]

Y(y)=1

— V-split
(r,L,Y,A) splitdir nxln'.x’ yarns (r,L[n.x — #yarns][n’.x" — L(nx) + L(n’ .x")], Y, A")
Y =Y[y — |nx,dir . Y =Y[y— L
It LyA[y L o] Irl Aly) = L Y(y) = [n.x, dir], A = Ahy/ o Jj A(y) # L

V-in
indirnxy

(rLY,A) — 7, (r,L,YA")

V-out

out dir n.x y

(rnLY,A) —— 7, (r,L,Y A")

Fig. 11. Validity relation for knitout programs (see Definition 5.4), where #yarns is the size of the yarn carrier sequence. Only valid knitout programs denote a

fenced tangle. Note that for a fixed S and ks, S” is uniquely determined.

Definition 5.5 (Machine State Denotation). Let S = (r,L,Y, A) be
a machine state. Then &[S], the denotation of S, is a set of points
on a line, which is divided into annotated segments as follows (also
see Figure 10, bottom):

e for each i € Z there is a yarn carrier segment for physical
yarn carrier location i, followed by a front needle segment
for physical needle location i, followed by a back needle loca-
tion segment for physical needle location i (corresponding to
logical location i — r).

o for each k € N'with Y(k) # L, there is a point in yarn carrier
segment | Y (k)] = i. This point is the jt# point if there are
(j—1)yarnswith ! < kand | Y(])], = i.

e foreach nl = (n.x) € nLoc with L(nl) = k, there are 2k points
in the segment corresponding to needle location |nl|, on the
n bed. (These are the k loops on needle nl)

Definition 5.6 (Semantics of Knitout). Let kT = Sy ki) S1 =

- — Sp be a valid knitout program/trace. Then E[kT] is the
fenced tangle which kT denotes, defined inductively. Throughout
the definition, we will work with the slab presentation of fenced
tangle diagrams. As an invariant, the input (bottom) boundary of

&[S E) S’] will match E[S] and the output (top) boundary will
match E[S’].
ksi s kso

First, we will address the inductive case. &[S 221, &' 222, §”'] is

defined to be the vertical concatenation of the two slabs E[S ﬁ)

§'10E[S ki> S’’]. This composed diagram is well-defined because
its constituent diagrams are well-defined (by induction) and because
their shared boundary must identically be E[S’] (by invariant).

The nop instruction does nothing, so &[ DO, S] = id. Next,

we handle the rack instruction. Let kT = S "2K”, . We define
J<[S] to be the partition of &S] into (on the one hand) all yarn
carrier points and loop points corresponding to front (f) needle
locations, and (on the other hand) all loop points corresponding to
back (b) needle locations. We then let 1 = J<oo[S] € I, be the
initial interleaving of front-bed loops and yarn carriers on the one
hand, with the back-bed loops on the other, and let w = T« [S'] €
Im,n be the similar final interleaving after the racking operation.
Note that by the validity of traces, these partition sizes must match.
Then, we define the racking denotation as S[kT] = idp,|“idp. (see
Fig. 12b for an example illustration)
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= — L
\‘ A yarns H
S~ C o
EiS #yarns —~ ot 6
= 2
. | |
yarns Py | - Py R
& 5 Lhe b E LS
S “lls 2 SRR I NP
3 s < = =
d)yin + fxy (e)out — fxy
-
#yarns i - |
I I R v a e s D I B Y ==t H A I
7yarns >~ ~ : : —~
) i & : S
F v (@) | AR
LS T llE
(a) Diagrams for individual knitout instructions are com- Na¥ 2 G =
pleted by being wrapped in this “frame” - ~ ~ ~
(f) split + f.x b.(x —r) I yarns (g) xfer fxb.(x —r) (h) drop f.x
= ? . ? #yarns ’ \77 Key
— /’ ———— -
= —— - = | 11r S
— = = ; : ' ' fence
— = |7 N \ I l | ||
S = + + ~ H — H — — .
) . | N T : : = - sub-diagrams
T g s = Lle Lt ! ! = h o o
L “ s 1L “ = ; ; | . i} (see text)
3 N I | % N 3 e N & & 2 n
= S11S in parallel
(b) Ilustration of rack 1. See text for precise definition L(f.x) = ~ ~ 7t arcs I paratie

(i) knit + f.x I yarns

(jymiss + fxy

Fig. 12. Fenced tangles produced by knitout. Part of the definition of knitout semantics (Definition 5.6). Other than rack, all diagrams are wrapped by the
“frame” diagram, which defines how the yarn carriers being used in an instruction (yarns) are merged (A) separated (V) and how they are plated (7). State
variables (r,Y, L) are all given with respect to the initial state before an instruction, except for Y in the frame diagram, which refers to the state after the
instruction is done. Note that a group of arcs in parallel annotated as 0-many will disappear from the diagram. Also note that all diagrams here are given for
the positive/right-ward knitting direction (+) and in the front-facing variant. The left-ward, back-facing diagrams are flips of these diagrams; and the other
two cases are derived via a careful mirroring of the diagrams. All other instruction variation is parametric.

For the remaining operations with trace kT = S ﬁ, S’, all non-
trivial (i.e., not id) effects will be restricted to a particular phys-
ical needle location x, and its interactions with the yarns imme-
diately to the left and right of the needle (yarn locations x and
x + 1). Given the set of points E[S], we define {E[S] < pl} to
be the subset of all points that correspond to a physical location
less than pl, while {E[S] > pl} is all points greater than pl. An
examination of the validity relation definition (Fig. 11) makes it
clear that {E[S] < |n.x,—],} = {E[S'] < |n.x,—],} and {E[S] >
lnx,+]r} = {E[S’] > [n.x,+]}. Thus the denotation of kT can
be expressed as E[kT] = idy, ® Ty ® idy, where m = #{&[S] <
lnx,—]r}, n = #{E[S] > |nx,+]r}, and T is defined for each
operation according to figure 12.

6 TOPOLOGICALLY CORRECT KNITOUT REWRITES

Having defined a formal semantics on knitout using fenced tangles,
we can now define what it means for two knitout programs to be
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topologically equivalent, and use this equivalence to prove correct-
ness of program rewrites. In this section, we focus specifically on
swapping the execution order of two knitout operations so we can
understand the tools available to us as we both compare specific
program instances and prove general rewrite rules; motivation for
performing this program transformation is deferred to Section 7.
We start by defining what we mean for two knitout programs to be
topologically equivalent.

Definition 6.1 (Topological Equivalence of Valid Knitout Programs).
Let ks; and ksy be (partial) knitout programs. If both programs are

valid on starting state S and take it to state S’ (i.e., S k_sl_> S’ and

S kSz

&[S &, S’], we say that ks; and ks, are equivalent in the context
of S and write:

§’) and these traces denote the same tangle, E[S ﬁ) S =

S+ kst = ksy



"""""""""""""" c2 f2
(a) ksy; ks3; kss

b.1

[l
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f2 b2 c3

c.2
(b) ks3; ksq; kss

f.2 f.2

% (c) ks3; kss; ksq

Fig. 13. The fenced tangle diagrams denoted by programs (a) and (b) are topologically equivalent. The diagram transformation is a simple application of
ambient isotopy, and their equivalence can also be proven using Lemma 6.5. In contrast, fenced tangles (b) and (c) are not equivalent due to the change in

crossing annotations in the circled region.

Corollary 6.2 (Local Rewrites). Let ksi; ksg; ks3 and ks; ksé; kss be

two valid knitout programs, where S LN IfS’ v ks = ks}, then

S+ ksi;ksaskss = ksysksy;kss .

6.1 Proving Fenced Tangle Equivalence
Let us consider the example program shown in Fig. 9, specifically
the subprogram ksy; kss3; ksy:
2 knit - f.2 3.0 (2,
3 xfer f.1 b.1;
4 miss - f.1 2;

1.0);

In figure 13 we see the tangle denoted by reordered sub-programs

S1 M S4 and S1 m S4 (note that in this specific
example, the knitout trace for both rewrites is valid, but that is not
necessarily true for all knitout programs). We see that Fig. 13a can
be transformed into Fig. 13b by an ambient isotopy. By contrast,
Fig. 13c and Fig. 13b have different crossings between the loop at
b.1 and carrier 2 (circled). These diagrams can’t be transitioned
between using any combination of Reidemeister moves and ambient
isotopies. Thus the first pair of fenced tangle diagrams prove that
S1 F ksg; kss = ks3; ks and the second pair seem to strongly suggest
that Sy + ks3; ksg % ksq; kss.

Note, however, that these three tangle diagrams are the deno-
tations of these specific three program fragments executed on a
specific machine state. Proving that two slightly different program
fragments are equivalent would require a new sequence of fenced
tangle diagrams, and the correct sequence of Reidemeister moves
may be less trivial. While we can (and do) use templated tangle
diagrams akin to the ones used in Fig. 12, a purely diagrammatic
approach quickly becomes intractable as fenced tangle complexity
increases. Fortunately, fenced tangle composition is not only useful
for defining fenced tangles, but also for proving topological equiva-
lence. For example, let us consider the following two lemmas (proof
left as an exercise for the reader):

Lemma 6.3. For any fenced tangle slab K € S}}*, vertical concatena-
tion of the identity results in an equivalent fenced tangle:

idpoK =K =Koidy

Lemma 6.4 (o-® Distributivity). Let K, € Sp' and K}, € Sﬁll
be one pair of vertically composable fenced tangles, and K. € S,':;Z

and Ky € Sﬁfz be a second pair. Then the following compositions are
equivalent:

(Ka o Kp) ® (Kc 0 Ky) = (Ka ® Ke¢) o (Kp, ® Ky)

These lemmas can then be used to prove a general statement
about commutativity of horizontally separated sub-tangles:

Lemma 6.5 (Commutativity by Horizontal Separation). For any
K1 € 8 and K; € Sg the following equation holds:

(K1 ® idp) o (idm ® K2) = (id, ® Kp) o (K1 ® idq)

Proor. We begin by using Lemma 6.4 to rewrite (K1 ® idp) o
(idm ® K3) into (Kj o idy) ® (idp o Kz). Lemma 6.3 can then be
used to slide K; up and Ky down to produce fenced tangle ((idy, o
K1) ® (K3 o idg)), which is congruent to (id, ® K2) o (K1 ® idg) by
another application of Lemma 6.4.

A L

idm K Ki idg

1R

K; idp idp, K
[ [ M o

Many knitout operations denote (Definition 5.6) a tangle of the
form id ® K ® id; and knitout program composition maps to vertical
composition (o) of fenced tangles. Thus, intuitively, we should be
able to use Lemma 6.5 to prove the correctness of swapping some,
but not all, pairs of operations. In fact, we can go one step further and
define an extent function ex(ks) (Definition D.3) that maps any valid
knitout program to a rectangle [Rymin, Rxmax] X [Rymin, Rymax]
that contains the non-id part of its fenced tangle. This rectangle
can not only be used to generate the horizontal decomposition of

&[S & S’], but its depth-wise decomposition as well, for which
we prove a similar commutativity property using Lemma B.9. Using
this extent function, we can state the following generalized Rewrite
Rule for swapping knitout subprograms:

Rewrite Rule 1 (Swap). Two operations can be swapped if their
extents are disjoint: S + ksi;ksy = ksp; ks; whenever ex(ksy) N
ex(ksy) =0
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If we return to our example program rewrite S; + ksp;ksz =
ks3; ksz, we find that ex(ksy) = [1.5,2.5] X [2, 0] and ex(ks3) =
{1} X [—00, o], making it an example covered by Rewrite Rule Swap.
Meanwhile, ex(ksq) = [1.5,2.5] X {2} intersects with ex(ks3) in
both dimensions. Thus Rewrite Rule Swap cannot be applied. By
proving small, general statements on program equivalence that
can be applied within a larger context, we develop a powerful tool
for reasoning about the correctness of more complicated program
transformations.

7 IMPLEMENTING A REWRITE-EDITOR

Now that we’ve demonstrated the importance of a suite of low-level
rewrite rules as well as how we can prove their correctness, it is
natural to ask what rewrite rules we should prove. A reasonable
starting point would be rewrite rules useful to practical high-level
compilation tasks. In the following section we examine some com-
mon motivations for rewriting programs and provide an overview
of the rewrite rules we validated. A high-level summary of our
rewrites and their corresponding proofs in the appendix are located
in Table 1.

7.1 Rewrite Motivations

7.1.1  Fabrication Time. Recall that the knitting machine has two
rows of needles known as beds and a larger piece called the carriage
that moves along the needle bed and actuates individual operations
via a cam system. Each movement of the carriage along the bed is
known as a carriage pass, and depending on the machine’s particular
cam sets, different operations can be grouped into a single pass. The
amount of time required for a carriage pass is roughly independent
of the number of needle operations it contains. This is because
much of the pass consists of a constant acceleration/deceleration
phase, and the carriage can actuate any needles it passes over at no
additional cost. Thus when optimizing a knitting program to reduce
fabrication time, the goal is not necessarily to minimize operation
count, but to change when operations are executed such that pass
count is minimized. Rewrite Rule 1 (Swap) is used for changing
operation order. In addition to the extent analysis we performed on

Table 1. Rewriting equivalences (rules) proven in this paper. Rules with
asterisks have preconditions not present in this figure (see associated proof).

Name Rule Proof
« k51 - k82
Swap ksy = ksy §D.1
o k51 -
Merge ksy = nop §D.2
’ ’
Squish xfer nxn.x’ xfer n’.x" n.x §D.2

xfer n’.x n.x

Slide tuck dir n.x (y,s) N tuck dir n’ x" (y,s) §D3
xfer n.x n’.x’ xfer n.x n’.x’
miss — f.x —1yarns
SHIFT(f.x,r,—1)
Conjugate* | ks(+, f.x) = ks(+ f.x - 1) §D.3
miss + f.x yarns
SHIFT(fx—1,r—1,1)
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general subprograms in Definition D.2, we perform a special case
analysis of the SHIFT macro used in Rewrite Rule 5 (Lemma D.8).

7.1.2  Program Reliability. While knitting machines are generally
quite robust, any operation has some chance of failure. For example,
repeated rack operations may introduce excess strain on yarn, while
xfer operations may not cleanly send all loops from source needle
n.x to destination needle n’.x’. Thus one aspect of improving knit
program reliability is to remove unnecessary operations. Rewrite
Rule Merge does this by considering pairs of operations that are
clear inverses:

Rewrite Rule 2 (Merge). Racking in one direction and then back
in the other direction is the same as doing nothing.

S+ (rack (r+1); rack r) = nop

where r is the initial racking value in S.
Missing at n.x in one direction and then back in the other is the
same as doing nothing.

S+ (miss dir n.x y; miss —dir n.x y) = nop

Similarly, Rewrite Rule Squish considers how pairs of aligned
xfer operations cancel:

Rewrite Rule 3 (Squish).
S+ xfer n.x n’.x";xfer n’ .x" n.x = xfer n’.x" n.x
Furthermore, when L(n’.x) = 0 in initial state S,
S+ xfer n’.x" n.x = nop

7.1.3  Machine Specific Compatibility. So far, our formalism has
assumed an abstract knitting machine with infinitely wide needle
beds that can be racked to any value, as well as infinitely many
carriers. As a result, there will always be enough space to execute
a valid knitting program. In practice, the number of needles and
carriers is finite (typically on the order of 10® and 10 respectively),
and the beds cannot be racked infinitely. These machine constraints
can be formalized as follows:

Needle and carrier sets A machine has a finite set of avail-
able needles and carriers. Thus, only needles in the range
[Xmins Xmax] exist. The loop count state function L : nLoc —
N must be zero for any n.x with x outside of [Xmin, Xmax]-
There are also a finite number of yarn carriers ycount. So, the
yarn carrier state must be a partial function Y : [ycount] —
[Xmin, Xmax]-

Racking Valid racking is constrained to range [rmin, 'max)-

In addition, our semantics is geared towards defining topological
correctness; thus it makes no use of loop size parameter / and yarn
length parameters s, which control the amount of yarn used for op-
erations. However, specific machines are not only limited to certain /
and s values; they have validity conditions that are quite complicated
and often state dependent. For example, while yarn may stretch and
slide a small amount, it will eventually break when stretched too
far. This means that the validity of yarn length parameter s depends
on which loops it is attached to. While fully capturing this logic is
beyond the scope of this paper, we can define the following basic
metric constraints to ensure physical plausibility:



b.-1 c.0 £f.0 b.0 c.l f.1 b.1 c.2
2 1
5:knit
1 1
1
4:xfer
1
1
3:xfer
1
1
2:miss
1
1 1
l:tuck
[ ) 1
1 0
0:tuck

(a) A screenshot of our rewrite-editor. Knitout instruc-
tions are shown as nodes in a graph, while loops and
yarns are shown as edges.
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b.1-r

knit + .18 (1,1)

xfer b.0 .1

rack 1

xfer £.0 b.0

miss + f.01

tuck — .08 (1,1)

tuck — .18 (1, 1)

(b) The fenced tangle and knitout code corresponding to the screen-
shot. Note that knitout code is read from bottom up to match the
fenced tangle presentation. The yarn carrier id is 1 and the yarn
lengths are all 1 needle spacing unit.

Fig. 14. Knitout code shown in our rewrite-editor and the corresponding fenced tangle.

Needle width All needles have some width [,,,;;, that serves as

a lower bound for the set of valid loop sizes.

Needle spacing Yarn length y must be greater than the physi-
cal distance between the operation and its attach point. Put

formally, for each knitout trace S ks, §" where ks is a sin-

Note that this rule does not apply to the knit operation. This is
because changing which bed a knit operation occurs on changes
its structure. Moving a loop to a needle on the same bed requires a
more involved series of operations:

Definition 7.1 (Rack and Shift Macros). Let

gle operation with needle argument n.x and yarn carrier

sequence yarns, VY(y,s) € yarns : |Y(y) — A(y)| < s, where

A is the spacing between needles.

RACK(r,j) :=rackr+1;rack r+2;...;rackr+j

be a knitout program that racks j times to the right starting at
racking position r; if j < 0, then similarly let RACK expand to a

Critically, it is necessary to rewrite a program in a way that pre-
serves the denoted fenced tangle, but changes the elements of the
machine state upon which feasible length construction depends. Le.,
the needle locations of loops (L), attach points (A) of yarn carriers,
and racking (r) when each operation is executed. Changing machine
racking can be trivially accomplished with a sequence of rack op-
erations, and loops can be moved to the opposite bed with a single
xfer. This is useful for changing the needle location where tuck
operations are performed:

sequence of decrementing rack instructions. Furthermore, let
S+ SHIFT(f.x,r,j) = xfer f.x b.(x — r); RACK(r, j);
xfer b.(x —r) f.(x + j)
Sk SHIFT(b.x,r,b.(x + j)) = xfer b.x f.(x +r); RACK(r, —j);
xfer f.(x+r) b.(x + j)

be a knitout program that transfers loops from any one needle to
any one other needle on the same bed by using an intermediate

Rewrite Rule 4 (Slide). Let n.x and n’.x’ be defined such that they needle on the opposite bed

are the pair f.z and b.z — r, or the pair b.z —r and f.z. Then let
ks(n.x) = tuck dir n.x I (y, s). The SHIFT macro and miss instructions can be combined to route
loops and yarn carriers to a new physical location, where an opera-

S+ ks(n.x); xfer nx n’.x” = ks(n’ x"); xfer n.x n’ x’ tion can be performed before re-routing everything back to produce
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Fig. 15. Screenshots of the rewrite-editor for Squish rewrite rule and the
corresponding fenced tangles.

the same ending state. The correct sequence of routing operations
is non-trivial to describe and dependent on the operation’s initial
bed {f, b}, its dir parameter {+, —}, and whether the physical nee-
dle location is incremented or decremented {Right, Left}. Thus for
clarity, we present only one of six cases here:

Rewrite Rule 5 (Conjugate [f, +, Left]). Let ks(dir, n.x) be either
a knit or tuck instruction ks(dir,n.x) = knit dir n.x [ yarns
or ks(dir,n.x) = tuck dir n.x I (y,s) (we will simply refer to
(y,s) as yarns in the tuck case). Let S be the state prior to ks. If
the following needles are empty L(b.x —r) = 0, L(f.x - 1) = 0,
and if there are no yarn carriers in the way that we are not using
Y~Y(|f.x,~]r) = yarns, then

St ks(+ f.x) =miss — f.x —1yarns; SHIFT(f.x,r, —1);
ks(+ f.x—1);
miss + f.x yarns; SHIFT(f.x-1, r-1, 1)

(where miss on multiple yarns is simply a sequence of miss opera-
tions, one for each yarn)

7.2 Knitout Editor Implementation

We implemented an editor for applying our rewrite rules to formal
knitout programs. The editor is written in JavaScript and runs on a
browser. The interface implements common useful interactions such
as multi-select, zoom, drag, etc. The interface of the rewrite-editor
is shown in Fig. 14a, and the corresponding fenced tangles and the
formal knitout code is shown in Fig. 14b.
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Because knitout is time monotonic by definition, it can be visual-
ized as an upward time-dependent graph. Each knitout instruction
is visualized as a block that spans needle locations which the in-
struction uses. For example, @ shows an instruction that is a
tuck operation, and is the 13th operation in the program. Note that
numbers such as 13 are timestamps, not unique instruction IDs.
Therefore they can change after the rewrites. The rewrite-editor
visualizes all the knitout instructions except for the rack instruction.
Instead, the machine’s racking value is tracked for each instruction
internally.

Instruction nodes are augmented with orange circles such as
@, which annotate each loop with an id and the location of the
incoming and outgoing loop, and green circles such as @, which
visualize the yarn carrier id and the location of the incoming and
outgoing yarn. Empty loops and yarns are visualized as gray circles
@. When one loop or yarn connects two instructions, we draw a
vertical dependency line with the corresponding color.

For each needle location, the front bed is visualized as a white
column and the back bed is visualized as a grey column. The yarn
carrier location exists on both sides of the needle locations, and is
visualized as a green column. Program rewrites are performed by
selecting instructions followed by the appropriate rule (Fig. 15). The
rewrite is applied only if it is correct given the program context.

8 RESULTS

To demonstrate the expressivity of the rewrite rules, we programmed
four examples using the rewrite-editor and knit them on a Shima
Seiki SWG091N2 (15 gauge) two-bed knitting machine. All the in-
puts to the rewrite-editor were either handwritten or produced by
simple JavaScript code, and all the rewrites were performed on the
rewrite-editor to produce the output. Since the rewrite rules apply
on individual instructions, scheduling large knitout programs can be
challenging. Thus, we did rewrites on small versions of each knitout
program and then expanded them using a Python script that dupli-
cates and enlarges the program. Length annotation parameter units
are based on the spacing between needles (approximately 1.7mm on
our machine). Thus a length annotation of 1 can be respected if the
yarn connects adjacent needle location, but is invalid if the loops
are two needles apart. Loop length parameters are kept constant
throughout the examples at 8 (which we decided would correspond
to our machine’s default loop length setting).

8.1 Pass Optimization

When teaching, we have noticed that machine knitting novices
tend to write knitout that is correct but inefficient. For example,
when writing knitout instructions to back bed knit (a ‘purl’ in
hand-knitting) several loops held on the front bed, a novice will
write a transfer-knit-transfer sequence for each loop. This sequence
is visualized on the rewrite editor in Fig. 16 (left). Such per-stich
interleavings are inefficient because knit and xfer operations re-
quire separate carriage passes. Re-ordering the code to group knits
and xfers into separate blocks results in fewer passes and a shorter
knitting time.



“ulj;::; TR xfer b.2 f.2 e ’u“;::‘: I xfer b.3 .3
i m,kn}c : knit — b.28 (3,1) mlmf xfer b.2 £.2
9:3«3; xfer f.2b.2 i 9=kni:t . knit — b.28 (3,1)
s;f.: xfer b.3 f.3 J s,m} | knit - b38(3,1)
. m,.i} | knit - b.38(3,1) 7,:fe: xfer .3 b.3
s:sxfe: xfer f.3b.3 6:‘x£e; xfer .2 b.2
Swap *5

5 carriage pass —————————» 3 carriage pass

Fig. 16. Rewrite-editor screenshot and the corresponding knitout code of
the pass optimization example. See Definition 5.1 for the formal knitout
syntax. Left is typical knitout that novices tend to write, which is correct
but inefficient due to unnecessary carriage passes. After applying the Swap
rewrite rule five times, we can consolidate knit and xfer instructions so
that the number of carriage passes becomes three. This is a small example,
but the impact of the optimization increases as the size of the program gets
larger.

We optimized the carriage passes by applying a sequence of Swap
operations on the original knitout code. Fig. 16 shows a small exam-
ple of how such optimization can be done in the rewrite-editor using
the following sequence of Swap operations. Note that numbers in
nodes are not unique IDs but are timestamps.

(1) Swap (8:xfer, 9:xfer)
(2) Swap (9:xfer, 10:knit)
(3) Swap (10:xfer, 11:xfer)
(4) Swap (7:knit, 8:xfer)
(5) Swap (6:xfer, 7:xfer)

The input knit structure had 60 rows and 30 columns. Before
scheduling, there were two knit-xfer switches per row and column.
Therefore, the initial number of passes was 2 * 60 % 30 = 3600. After
applying the rewrite Swap, there are only four knit-xfer switches
per row, because xfers and knits are consolidated across columns.
Therefore, the number of passes is 60 * 4 = 240.

The manufacturer’s design software for our knitting machine [Shima
Seiki 2011] estimates the original code’s runtime at 50 minutes 30 sec-
onds while the optimized version needs only 3 minutes 26 seconds.
The rewrite optimized version is 14.7x faster, which roughly corre-
sponds to the ratio of the number of passes, which is 3600/240 = 15.

8.2 Full to Half Gauge

Consider a tightly knit sheet of knit fabric, constructed on a con-
tiguous sequence of machine needles. The same sheet can also be
produced by using needles that are further spaced out, for example
using every other needle (i.e., on ‘half-gauge’). While this change
in gauge affects the ability of a machine to respect yarn length pa-
rameters, the topology of the underlying structure remains intact.
Adjusting the gauge and moving instructions to desired locations
while preserving topological equivalence is a ubiquitous task in
machine knitting. Given this, we demonstrate how our rewrite rules
can be used to transform a full-gauge fabric to half-gauge.

Semantics and Scheduling for Machine Knitting Compilers « 143:15

(a) Full-gauge sheet (b) Sheet transformed to half-gauge

(c) Full-gauge tube  (d) Tube transformed to half-gauge

Fig. 17. Examples of sheets and tubes converted from full gauge to half
gauge using rewrite rules to guarantee topological equivalence.

In the following example, we use a rewrite sequence pattern for
moving the instructions to a neighboring needle, which is illustrated
in Fig. 18. We first apply the rule Conjugate Right to two knit
instructions 3:knit and @:knit. Conjugate Right will insert misses
and xfers as described in section Section 7. Then, we Swap the
xfers until they are next to each other and apply Squish to cancel
redundant xfers.

We scheduled a full gauge sheet (Fig. 17a) to a half gauge sheet
(Fig. 17b), and a full gauge tube (Fig. 17¢) to a half gauge tube
(Fig. 17d) by moving each knit and tuck instruction to the right.
Note that the half-gauge examples are wider than their full-gauge
despite having the same topology. This is because the increased
spacing in the half gauge example prevents the annotated yarn
length from being respected.

8.3 Sheet Stacking

Recall the example discussed in the introduction, where a novice
attempted to reschedule two sheets with interleaved construction
passes so that instead of lying adjacent on the machine, one sheet
was directly in front of the other. We scheduled two separate, ad-
jacent sheets (Fig. 1a) so that they were correctly stacked (Fig. 1b)
using the rewrite-editor. We performed this scheduling task by first
moving all the knit instructions in the back bed sheet to use the
same physical needle locations as the front bed sheet, using the same
sequence of rewrite rules as Fig. 18. Then, we used the Swap rule to
swap knit instructions until the sheets were correctly interleaved.
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Fig. 18. Rewrite-editor screenshot and the corresponding knitout of the rewrite sequence for moving the knit/tuck instruction one to the left or right. The
sequence of rewrites in this example moves two knits (3:knit and @:knit) from needle f.2 to f.3.

(a) 1/4th gauge, before rewrites (b) 2/3rd gauge, after rewrites

Fig. 19. Photos of the fabricated pleated tube examples

Note that the proof for the Swap rule relies on the swapped instruc-
tions having disjoint extents. This scenario requires repeated swap-

ping of instructionknit dir f.x 8 (yy, 1) withknit dir b.x 8 (yp, 1).

In our original program, y = 3 and y;, = 4. This means the extents
of the operations are disjoint, and the Swap rule is safe to perform.
If instead y¢ = 5, the instructions would no longer be disjoint, mak-
ing the rewrite unsafe. Executing the program with this change in
carriers results in the error seen in Fig 1c.

8.4 Pleated Tube

Existing knit design systems that automatically schedule knitout
programs all have the limitation that they cannot schedule structures
that require overlapping more than two sheets at the same physical
needle location. This excludes structures like pleats, where a fold in
the fabric is secured at one end. However, using a technique known
as fractional gauging, it is possible to machine knit such structures.
At a high level, n separate sheets can be scheduled to the machine
by abstracting the needle bed as bins of width n needles. The i-th
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sheet in the stack is then assigned to the i-th needle in a bin. This
technique requires careful usage of transfers to keep the sheets from
intertangling. Therefore, it normally involves much trial and error
by an experienced knitting machine programmer.

We got an experienced knitting machine programmer to make a
tube with pleats. The tube has locations where there are 4 layers at
the same time. Therefore, the program was written in 1/4th gauge
(each layer uses one out of every four needle indices). However, knit-
ting at 1/4th gauge means the machine is forced to put more yarn
between each loop. Put another way, s > 4 for all s parameters in
the program. We can see this extra yarn in the fabricated result (Fig.
19a). In addition, the program had many extraneous transfers, which
reduces fabrication reliability. These ideally should be removed.

To address these issues, we rewrote the program from 1/4th gauge
to 2/3rd gauge (each layer uses one out of every three needle indices,
where two layers share the same index). This gauge adjustment used
high-level rewrite strategies similar to the full to half gauge and
sheet intersection examples (see Fig.18). Extraneous transfers were
removed using Squish and Slide. In the resulting pleated tube, we
can see that it is narrower and that the bottom of the tube, where
most of the extra transfers occurred, looks neater (Fig. 19b).

9 DISCUSSION

Design Decisions. While the topology of the arcs used to define
the knitout semantics does match the yarn topology produced by the
machine, the choice of fence location was just that: a choice. Knitted
objects do not have little boxes around each loop that constrain
their range of motion, and arguments can be made for a different
choice of fence location and granularity. That said, in order to have
a mathematical object with a useful definition of equivalence, some
choice of constraints must be made to prevent unravelling. We be-
lieve that our particular semantics manages to strike the balance
between preserving local patterns important in machine knitting



while not excessively constraining transformations that physical
knit objects would undergo. However, different applications might
be better served by different decisions. Hand knitting, for example,
is both more flexible and more prone to variation than machines.
Thus, an attempt to formalize hand knit objects using fenced tangles
might decide on a different set of topological features as important to
preserve and define labels appropriately. We have demonstrated the
strength of fenced tangles as a mathematical tool for machine knit-
ting semantics and believe that it would be productive future work
to use them to define equivalence on other yarn-based structures.

Metric Correctness. As alluded to in Section 7.1.3, our semantics
focuses on formalizing topological correctness, but has no direct
consideration for metric correctness, which is crucial for compilation
tasks such as respecting machine compatibility. While one could
apply metric annotations to arc segments within a fenced tangle
and then use said annotations to define heuristics for valid loop and
stitch size parameters, fully capturing the complexity of a given
machine’s metric constraints will inevitably require confronting the
continuous nature of yarn. Again, there is no physical box around
each loop that prevents yarn from sliding in and out of it. Yet in
practice, arbitrary lengths of yarn do not slide around the object; if
it did, all the length could slide out one end and essentially unravel
the knit. There are many potential avenues for addressing metric
correctness, and it will be interesting to see how our work with
fenced tangles influences any future approaches.

Rewrite Expressivity. Our presented set of rewrites is not complete;
given two knitout programs that denote the same fenced tangle, it is
not always possible to move between them using just these rewrites.
For example, knit + f.x and knit — b.x produce topologically
equivalent fenced tangles, but we did not introduce a rewrite to
transform between them. Furthermore, because our rewrite rules
are all fairly low-level, manually performing high-level program
rewriting tasks with our editor is tedious and time-intensive (10’s to
100’s of minutes for the examples shown). We consider our rewrite
editor to be a proof-of-concept demonstration of edits that should
be used as the foundation of higher-level user-facing tools.

Unscheduled Machine Knitting. This paper formally defines the
semantics of knitout, which is a low-level, scheduled representa-
tion of machine knitting. However, many machine knitting design
tools work with unscheduled representations, where machine in-
structions have not yet been assigned to specific needles. Extending
this work to unscheduled representations would not only enable
reasoning about transformations within those representations, it is
critical for developing provably correct compilers from unscheduled
representations to scheduled machine instructions.

In addition, while prior works make claims about machine knitta-
bility constraints [Narayanan et al. 2018], what they actually define
are constraints on the types of knit representations for which they
can schedule a “correct” program. Our pleated tube is an example of
an object that violates said constraints but in reality can be machine
knit. It would be interesting if insights from knitout semantics could
be used to prove a tighter bound on the machine knittability of
unscheduled knitting representations.
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A PRELIMINARY DEFINITIONS

The following section provides a more in-depth review of concepts
used by this paper.

A.1  Topology Terminology

For the basic definitions of, e.g., a topological space and continu-
ous functions between such spaces, please see a standard refer-
ence [Munkres 2000]. A homeomorphism between topological spaces
is a bijective function that is continuous in both directions. Despite
the similar sounding name, a homotopy does not necessarily express
the equivalence of two things. A homotopy between two continuous
functions f,g: X — Y (X and Y topological spaces) is a continuous
function H : X X [0,1] — Y s.t. H(x,0) = f(x) and H(x, 1) = g(x).
Intuitively, the second parameter of H can be understood as “time”
s.t. the whole homotopy can be understood as a continuous motion
or interpolation between f and g. If f and g are also embeddings
(meaning they are both continuous and injective) then we say H is
an isotopy between f and g if H(-, t) is an embedding for every ¢.

An ambient isotopy between two embeddings f,g: X — Yisan
isotopy H from the identity id : Y — Y to some other homeomor-
phism h : Y — Y sit. H(f(x),1) = g(x). That is, intuitively H is a
warp of the entire ambient space H that warps f into g.

A tame arcin Y (for Y = R? or Y = R®) is any embedding
y : [0,1] — Y s.t. y is ambiently isotopic to a straight line segment.
A tame loop in Y (same as before) is any embedding of the circle
y : S! — Y s.t. the restriction of y to any closed subinterval of the
circle is a tame arc. There are a number of simpler and more intuitive
properties which are sufficient to ensure that a knot/arc is tame. For
instance, if we require all of our embeddings to be smooth, then
they are necessarily tame. If we require all of our embeddings to
be composed of a finite number of piecewise linear segments, then
they are necessarily tame. The usual examples of non-tame (aka.
wild) knots/arcs use constructions similar to the Topologist’s sine
curve (sin(%)), in which knotted bits of the path occur infinitely
frequently as one limits towards some particular point.

A.2  Formalizing Programming Languages

The formal study of programming languages developed in order to
unambiguously specify programming languages and prove proper-
ties about them. At one extreme, such theories have allowed us to


https://doi.org/10.1145/3450626.3459752
http://eudml.org/doc/213290
https://doi.org/10.1145/3450626.3459853
http://xavierleroy.org/publi/erts2016_compcert.pdf
https://doi.org/10.1109/ICRA48506.2021.9562113
http://archive.bridgesmathart.org/2020/bridges2020-103.html
http://archive.bridgesmathart.org/2020/bridges2020-103.html
https://textiles-lab.github.io/knitout/knitout.html
https://textiles-lab.github.io/knitout/knitout.html
https://books.google.com/books?id=XjoZAQAAIAAJ
https://books.google.com/books?id=XjoZAQAAIAAJ
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459778
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1002/adfm.202212541
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202212541
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://www.shimaseiki.com/product/design/
https://www.shimaseiki.com/product/design/
https://www.softbyte.co.uk/designaknit.htm
https://www.softbyte.co.uk/designaknit.htm
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://doi.org/10.1145/3508499

construct mechanically verified C compilers [Leroy et al. 2016]. Even
without such mechanized proofs, formalization has influenced the
design of major programming languages such as Java [Igarashi et al.
2001] and newer domain-specific-languages, such as the network
configuration language P4 [Doenges et al. 2021].

To illustrate the concepts of used by this paper as well as our nota-
tional conventions, we will describe a simple language. For instance,
consider the following program in an assembly-like language. It
compares two numbers held in variables R. 1 and R. 2, and subtracts
the smaller variable from the larger.

LT R.3 R.1 R.2 ;
IF R.3 {

SWAP R.1T R.2
Y
SUB R.4 R.1 R.2

To specify a language including such a program, we must first
specify the grammar. We do this using the well-known Backus-Naur
form (BNF) for a context-free grammar. In the following grammar,
we specify that a program or statement (s) is defined to be either
a sequence of two other statements or one of four instructions. (A
non-toy example would include more primitive instructions.)

s u= d1;s1 | iy
i = LTrirnr
| SUBrirars
| SWAP ry ra
| IFr{s}
r == R.n
n € N

Grammars are one example of a structurally inductive definition.
Formally, the grammar is defining a set of strings (or equivalently,
ASTs) via induction. To be explicit, let Sy = 0 be the set of all height-
0 ASTs. Then, S; is the set of all 1-instruction programs. In general S;
is the set of all programs that can be constructed from the grammar
rules, assuming s; € S;—1. The set of all grammatical statements is
then the union (or “least fixed point”) of all S;, namely S = 72, S;.
Analogously, the syntax for our formalization of knitout can be
found in Definition 5.1.

In general, not every grammatical program may be error-free.
In fact, we may not even be able to say what every grammatical
program means. For example, the LT instruction computes and stores
a Boolean value into ry, and the IF instruction branches based on a
Boolean value. We could define every non-0 value to be “truthy” as
in languages like C or Javascript, but for the sake of our example,
let’s instead say that using an integer where we expect a Boolean is
an error.

We now have a decision to make. How do we formalize errors in
our language? One approach (which we do not use in this paper) is
to specify the meaning of errors via some kind of error state. If we
were to go down this route, then we might expect to prove that a
type-system for our language prevents such errors.

In this paper, we follow a second approach to typing. For us,
the type-system serves to restrict our attention to a subset W € S
of “valid” programs. Then we will only worry about specifying
the meaning (i.e., semantics) of these valid programs. Additionally,
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the typing will annotate our AST with additional information that
makes it easier to specify the meaning of our programs.

Let I : {r} — {Int,Bool} be a partial function mapping register
names to types, where our partial function notation is as follows:

Definition A.1 (Partial function notation). Let A and B be sets
with a distinguished default element L of B. Then a partial function
o € A — Bis a function from A to B with the following notational
conventions and operations defined.

o [] is the empty partial function defined as [](a) = L.

e [a — b] is a singleton partial function, defined as [a +—
b](a) =band [a+ b](a’) = L whena #d’.

e Given 0 € A — B, o[a > b] is an extension of a partial
function defined as o[a + b](a) = b and o[a +— b](a’) =
o(a’) whena # d’.

e Given two partial functions 0,6’ € A — B, g0’ is their
concatenation (not function composition) defined as o6’ (a) =
o’ (a) if ¢’ (a) # L, and o0’ (a) = o(a) otherwise. (i.e., first
lookup in ¢’ and then lookup in ¢ if that fails)

e For a partial function 0 € A — B, we say that a € o if
o(a) # L

We call this the typing environment. Then we can define a type-
checking relation Ty + s 4 I, which says that if the registers hold
values with types specified by I', and program s is run, then it
will run successfully and leave the registers holding values with
types specified by Iy. Like the grammar itself, we define this typing
relation via structural induction. For historical and conventional
reasons, we do this using a horizontal line, known as sequent nota-
tion: A rule of the form ‘% is equivalent to the logical statement
“If A and B, then C”

INridly hFsAHI3
Dri;sdIs

I'(r1) =T(rz)
T+ (SWAPryrp) 4T

T-SWAP

I'(r2) =Int  T(r3) =Int
T+ (LTryryrs) 4T [r1 — Bool]

T-LT

I'(rz) =Int  T(r3) =Int
T+ (SUBryrgrs) 4T [r; — Int]

T-SUB

I'(r)=Bool TFrsHT
TH(IFr{s}AT

Using these rules, our original example program is well-typed
with initial typing environment Iy = [R.1 + Int, R.2 > Int] and
final typing environment I'” = I[R.3 — Bool, R.4 > Int]. (We
omit the derivation to save space.)

For knitout, our analogue of this type-checking rule can be found
in Definition 5.4 and Fig. 11. Rather than writing I + s 4 I, we

T-IF

write Sy ﬁ S1, where Sp and S; are abstract states of our knitting
machine. We use this notation because type-checking of knitting
programs is equivalent to performing a kind of abstract execution
or simulation of the knitting machine — sufficient to determine
whether all resources are always present in the correct places for an
execution of the machine to make sense. Despite our use of arrows
(—) this is not a specification of knitting program semantics.
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To complete the definition of our toy language, we must specify
what the programs actually mean. The meaning of most compu-
tational programs is the function which that program computes.
In particular, let o : {r} — (Z U B) be a partial function mapping
register names to integers or Booleans. We call o the store, and use
2r to mean the set of all possible stores whose values are consistent
with the typing environment I'. Then given a well-typed program
Iy + s 4 T, the denotation (aka. meaning or semantics) of the pro-
gram is a function between stores &[Ip + s 4 I1] : 35, — Zr,. In
total, the function & specifies the semantics of our entire language,
rather than a single program. We write & to suggest “evaluation”

Like every other part of the language, we again use structural
induction to define the function &.

8[F1 FsH rz]O
Elori4Ty] (o)

E[Ty - LT ry rar3 4T1](0) = o[r1 = (a(r2) < a(r3))]
E[To - SUB 11 12 13 4 T1](0) = o[r1 = (a(r2) — a(r3))]
E[To + SWAP r1 rp 4T1](0) = a[r1  a(ra), r2 — o(r1)]

E[TrsHT], o(r) = true
o, otherwise

E[lori;s4z](o0) = (

8[Fl—IFr{s}—|l"](0')={

There are other (non-denotational) approaches to programming
language semantics. However, for our formalization of knitout, the
denotational approach made the most sense. Unlike usual denota-
tional semantics, where programs denote functions (e.g., the toy
language of this section), knitout programs denote mathematical
representations of the objects they manufacture. One of the main
concerns of this paper is to find a suitable mathematical object for
knitout programs to denote.

Finally, observe that if we wanted to optimize programs in our
toy language, we would be able to prove that certain rewritings of
programs are correct — by appeal to the semantics we have just de-
fined. For example, it should be the case that swapping the contents
of two registers, and then immediately swapping those contents
back is equivalent to the identity function (or empty program). A
real programming language may allow us to deduce many such
equivalences, or rewrite rules. Such rules form an important part
of compilers, but are tricky to get right in general. Among other
uses, formal language semantics allow us to precisely determine the
validity of such rules, and thus develop more reliable and powerful
compilers for a language.

B FENCED TANGLE LEMMAS

We begin with some basic properties of fenced tangles elided in
the main text for clarity before progressing to more complicated
lemmas important to our proofs of rewrite rule correctness.

Lemma B.1 (Concatenations are Equivalence-Invariant). Let K =
K| € i, Ky = K} € S, andKs = K} € S, Then K oK; = K] oK};
K1 ® Kz = K| ® K;; and for any choice of 1 and 0, K1|°Kz = K{|{’K;,

Proor. For Kj o K3 and Kj ® Ky, this follows trivially from dis-
jointness of the two composite diagrams in the plane. For K1|*K>

the argument is less trivial. K1 and Ky can be unprojected into fenced
tangles T; and T, on regions Uy and Uy, sharing a common equator
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and a boundary disk in common. The interiors of U; and U, are
disjoint, and so can be arbitrarily modified with ambient isotopies
before being reprojected into a layered diagram. O

Lemma B.2. The three concatenation operators are associative, and
each has a unit slab: idy ® K = K = K ® idy; id0|§gK =K = Klégido;
and for K an (n,m)-slab, id, o K = K = K o idy,. Therefore it is
Jjustified to omit parentheses when repeatedly concatenating in the
same way. Furthermore, idy ® idy, = idy|idy = idpem

Proor. Immediate from drawing diagrams for the relevant equa-
tions. O

Notation B.3 (Concatenation of Interleavings). Let 11 € I p and
12 € I q be interleavings. Then 11 Uiz € Ty4m p+q is an interleaving
defined (using set representations) as 11 L1z = 13 U {i+n+pli € i2}.

Lemma B.4 (|-® Distributivity). Let K, € S,rzl, Ky € S,’Zz, K. €
Sgll, and K, € ng. Furthermore, let 11 € In, p,, 01 € I, q,, 12 €

Ty.p2> and @z € Iy, g, be interleavings. Then,

(Kali'Ke) ® (Kpli2?Kq) = (Ka ® Kp)[12! 10 (Ke ® Kg)

Uiy

Proor. immediate from picture ml

Lemma B.5 (o-| Distributivity). Let K, € Sp}', Kp € Sp.2, Ke €
S;’j;l, and K; € S%. Furthermore, let 1 € In, n,, 4t € Imym,, and
o € Ip p, be interleaving functions. Then,

(Ka 0 Ko (Kp 0 Kg) = (Kal!'Kp) o (Ke9Ky)
Proor. immediate from picture O

Since our semantics will assign a fenced tangle to each knitout
program, we will want to know under what circumstances differ-
ent sub-programs can be re-ordered (i.e., commute). The following
lemmas will help us develop such commutativity principles by allow-
ing cleaner reasoning about various kinds of sub-diagrams. Recall
Lemma 6.5. We begin by noting that the lemma can be trivially
extended as follows:

Corollary B.6 (Commutativity by Horizontal Separation). The
preceding two lemmas imply that for any g € N, K; € S)', and K3 €
Sg the following equation holds, permitting the vertical commuting
of horizontally non-overlapping sub-tangles.

(K1 ® idgip) o (idm+g ® K2) = (idn+g ® K2) 0 (K1 ® idg+q)

In principle we also ought to be able to commute operations oc-
curring in wholly different layers. However, we can develop even
stronger machinery. In many cases, we can explicitly convert com-
position by layer into horizontal composition.

Lemma B.7 (No-Overlap Layering). Let K1 € S)' and K € Sg.
Then,
K1|;ZK2 =K1 ®K,

Proor. By Lemma B.1, we may assume that the entirety of K; and
K are disjoint, with no overlaps, since there are no interleavings of
their loose ends. Consequently the sub-diagrams of Kj |i2K2 are hor-
izontally separated—and can therefore equally well be interpreted
as K1 ® Ks. m]



Lemma B.8 (Layer Decomposition of Separate and Merge). Let
1€y be an interleaving. Then,

- )
Ve = idy | idy
N .

Vi = idy |14id,
ﬁ . n .
A = idp ”’d idp,
— . L.
A, = idy |id idp

PRrOOF. By the definition of a permutation slab, all crossings must
be oriented consistently in merge and separation slabs. Furthermore,
because the permutation o, derived from the interleaving is required
to be monotonic within each half of the partition, we know that the
diagram viewed on each such subset of the yarns must be the identity
slab. Therefore, all of these slabs must decompose into a layering of
two identity slabs. Inspection of the four cases confirms the above
formulas as correctly specifying the various interleavings. O

The following lemma allows us to convert layering composition
into horizontal composition in general by “sliding apart” the differ-
ent layers composing a diagram. This makes it easy to modify layers
independently and separately from the concerns of interleaving
patterns.

Lemma B.9 (Sliding Door Lemma). LetK; € SJ*, Ky € Sg and let
1 € Inp, € I q be interleavings. Then,

— —
Ki|’Ky = V, 0 (K1 ®Kz) 0 Ay
— —
(note: A may be used instead of A)

PrOOF.
Ki[K, (idn o K1 0 idm)|{’(idp o Kz 0 idg) (by Lemma B.2)
(idnli?idy) © (K1[[GK2) o (idm|5yidg) (by Lem B.5)
Vo (Kl%Kz) o A® (by Lemma B.8)

— —
V, 0 (K1 ®Kz) o A® (by Lemma B.7)

R

IR

IR

]

C TRANSLATION BETWEEN FORMAL KNITOUT AND
ACTUAL KNITOUT

Formal knitout differs from knitout [McCann 2017] (hereafter “ac-
tual knitout”) in a few specifics discussed below. These details do not
change the expressively of the language, but do make formal knitout
slightly easier to reason about. We include our implementation of a
translator from actual knitout to formal knitout in our supplemental
material, and we characterize the differences between the two in
this section.

Actual knitout is a UTF-8-encoded text file where operations are
new-line separated, and comments are annotated with the charac-
ter ;. Optional headers may be used to assign carriers string-based
aliases as well as provide optional definitions such as target machine
model and yarn type. The operation syntax is also less verbose: in
and out only have a carrier ID parameter, and location is inferred
from the first operation that uses that carrier. Needle locations do
not have a period dividing the bed and index (f1 vs f.1). Stitch
length [ is a global state parameter that is set with the command
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stitch or extension x-stitch-length, while yarn length s is im-
plicit (though s can be somewhat controlled via a combination of
tuck and drop operations). Formal knitout doesn’t support frac-
tional racking (rack 0.5) or transferring to sliders, but as the former
does not affect object topology, and the latter can be simulated using
existing transfers, we chose to omit them for simplicity.

In actual knitout, the miss, in, and out operations can also accept
a carrier sequence instead of just a single carrier. In addition, a single
miss is allowed to move past multiple needles, and a single rack
can change the racking to any value. These can all be represented
in formal knitout with a sequence of formal operations.

Finally, while formal knitout treats each operation as updating
a carrier’s physical location, actual knitout operations set a logical
location and update the physical location to match as needed. This
affects the rack operation, where in actual knitout, back-bed ref-
erenced carriers will move to maintain the same relative location
to their back-bed needles. Furthermore, in actual knitout xfer and
split operations update a carrier’s logical location: for all carriers
not in the yarn carrier sequence, if their logical location is relative
to source needle n.x, it is updated to be relative to target needle
n’.x’. This can be simulated in formal knitout by tracking logical
carrier locations and inserting miss operations as is appropriate.

D KNITOUT PROGRAM REWRITES

We will use the heading Rewrite Rule to designate particular lem-
mas (i.e., propositions) which are stated so that they are immediately
applicable to the rewriting/scheduling of knitout programs.

D.1  Subprogram Commutativity

Intuitively, if two instructions have “disjoint” effects, then they
should commute (ab = ba). In order to capture this intuition, we
will define instruction extents, which allow us to narrowly confine
their non-trivial (i.e., non-id) behavior to a rectangle. Intuitively,
the two dimensions of the extent rectangle correspond to horizontal
and depth-wise decomposition respectively?. To be able to define
the extent of any valid program, we can conservatively take the join
of the extents of the underlying subprograms.

Definition D.1 (Join of Rectangles). Let

Ry =
Rg =

[Axmin,Axmax] X [Aymin,Aymax]

[mein,meax] X [Bymin,Bymax]

be two rectangles R4 € Q%,, Rg € Q%,. (where Qo = QU {—00, c0})
Their join is defined as the smallest rectangle enclosing both R4 and
Rg:
Ra U Rp = [min(Axmin, Bxmin), max(Axmax, Bxmax)] X
[min(Aymin, Bymin), maX(AymaXs Bymax)]
Definition D.2 (Extent). We define the extent of a valid knitout

program ex(S ﬁ §’) C Q7% as a 2D interval (rectangle). Where S
and S’ can be inferred from context, we will notate the extent as

2Inspection of Lemma B.2 makes it clear why a third dimension for vertical decomposi-
tion is unnecessary.
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ex(ks). We will use [z + %] as shorthand for [z — % zZ+ %]

ex($ K5, o7 2, g7y = ex(s KL ) Lex(s” K2, 57)
ex(tuck dir f.x I (y,5)) = [LFx)y + %] % [=00, ]
ex(tuck dir b.x I (y,s)) = [|b.x], £ %] X [y, o]
ex(knit dir f.x [ yarns) = [|[f.x], £ %] X [—09, Ymax]
ex(knit dir b.x [ yarns) = [|b.x], £ %] X [Ymin, o]

ex(split dir n.x n’.x" | yarns)
= [y + 51 % [-o0,o]
ex(miss dir n.x y) = [|n.x], £ %] x{y}
1

ex(in + nxy) = {|lnx], + >

|
—
X
—_
<
—

ex(in — nxy) = {|nx], - %} x {y}
ex(out + nxy) = {|lnx], + %} x {y}

ex(out — nxy) = {|lnx], - %} x {y}
ex(drop f.x ) = {|f.x],} X {—oc0}
ex(drop b.x ) = {|b.x],} x {0}

ex(xfer n.x n’.x" ) = {{n.x];} X [0, 00]

ex(rack r) = [—co, 00] X {co}

where ymax and ymin are the minimum and maximum across yarns.

To use these operation extents to decompose the denoted fenced
tangles, we begin by defining 2D coordinates for every point in
&[S].

Definition D.3 (Coordinates of State Denotations). Let

R = [Xmin, Xmax] X [Ymin, Ymax] S Qc2>o

be an extent rectangle, S be a machine state, and &[S] the denota-
tion of that machine state (where the extent rectangle for specific
programs is defined in Definition D.2).

Points in &[S] either arise from loops at physical needle locations
or active yarn carriers at physical carrier locations. For each of
these points, define “coordinates” p € QZ, as follows: a point arising
from L(f.x) > 0 has coordinates (x,—c0); a point arising from
L(b.(x —r)) > 0 has coordinates (x, o); finally, the point for an

active yarn Y(y) # L has coordinates (Y(y) - %, y).

Put in words, loops are depth-located in front of or behind every-
thing else, at the specified whole number needle. Meanwhile, yarns
are located in depth according to their yarn id, and at % between
needles.

Lemma D.4 (Extent Decomposition). LetS 2 S’ be a valid knitout
program with extent R = ex(ks). First, we can define various partitions
of the set of points &[S]. Let R™ consist of all points with x-coordinate
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less than R and R™ similarly points with x-coordinate greater than R;
meanwhile, let RIX be the remaining set of points whose x-coordinate
overlaps R. The tri-partition R™Y, R*Y and RlY may similarly and
independently be defined using y-coordinates.

Then there exist both horizontal and depth-wise decompositions:

E[S X, 8 = idy~ ® K ® idyex
= idy-v|2 (K' |iﬁf+idn+y)

where n=* = #R™*, and similarly for other n®; the points in each
id slab corresponding to the appropriate partition of the state by the
extent.

Proor. The proof proceeds inductively.

First, consider the case of ksi;ksp. Let Ry = ex(ks1) and Ry =
ex(ksz) be the extents of each sub-program. We will prove the
case of the horizontal decomposition; the depth-wise case proceeds
similarly. Let n™* = min(n*,n;*), and ntx = max(n;'x, n;x
Then, both decompositions can be rectified with each other to
share this common trivial slab on the outside, since (e.g.) idnl—x =
idp-x ® idy-x_p-x (and similarly for ni*, ny*, and n}®).

sls £, 5 k2, 911

=&[s B, s o Bls K2, 5]
= (l'dn*x ® l‘dnlfx_nfx ®K; ® idn;-x_n+x ® idn+x) o
(l.dnfx ® idn;X,nfx ®Ky® l'dn;x_n+x ® idn+x)

l'dnlfx_n—x ®K1® idnTX—n+xo

=idp-x ® . .
" ldn;x_n—x ®K2® ldn;X_n'f-x

® idp+x

=idyp-x ® K ® idy+x

All other cases concern individual instructions. We justify these
by examining the preceding definition of the extent function, the
preceding definition of coordinates, and the denotations in Fig. 12.
The cases of tuck, knit, split, and miss are all justified because
both the denotation diagram and the extent encompass the needles
at a location and yarns before and after that needle location. The
cases of in, out, drop, and xfer require closer inspection to ob-
serve that all non-trivial behavior in the diagram is confined more
narrowly to a single yarn, or single needle location (front and back).
Finally the rack instruction acts non-trivially on the entire back
bed but leaves the front-bed fixed. O

Having laid the groundwork with the extent function, we can
now prove our first rewrite rule in earnest.

Rewrite Rule 1 (Swap).
S+ ksy;ksy = ksy; kst
whenever ex(ks1) N ex(ksz) =0

Proor. If ex(ksy) Nex(ksy) = Ry N Ry = 0, the Ry and Ry must
be horizontally disjoint or depth-wise disjoint. Without loss of gen-
erality, assume they are horizontally disjoint. Furthermore without
loss of generality assume that Kz occurs to the right of Kj. Let



So = S, so that we begin with the trace Sy EL S E@ Sa2. By

Lemma D.4, we can make the initial decompositions &[Sy ﬁl_;
$1] = idn;x ®Ki ® idn;-x and 8[S; ki) Sy] = idn;x R®Kr ® idn%-x
where K; € Sgll and Ky € ng In addition, since the operations
are horizontally disjoint, there must exist some number of yarns,
g € N in-between the output of K; and the input of K3 such that
nt* = g+ps+ny* and n;* = n* +q1 +g. The middle step follows
from Corollary B.6.

&[S0 X1, 81 K2 65

= ((idnl’x ®Kp)® idg+p2+n;x) ° (idnl’x+q1+g ® (K2 ® idn;x))
= (idnl_x+p1+g ® (K2 ® idn;"‘)) ° ((idnl_x ® K1) ® idg+qz+n;x)

=8[50 £2, 5110 818) B 5y

In the case of depth-wise decomposition, one uses the Sliding Door
Lemma (B.9) to convert depth-wise composition to horizontal com-
position, thus reducing to the already handled case. O

While this swap rewrite handles most permissible exchange be-
tween non-interacting instructions, the extent-based analysis is far
too conservative when encountering rack instructions, which have
an extent of [—oo, 00] X {co} due to how racking affects the whole
back bed. However, racking can be combined with xfer operations
in the SHIFT macro to locally rearrange loops between needles (Def-
inition 7.1). Unless we have some way to localize the effect of this
pattern, rack will form an insurmountable barrier to our attempts to
reschedule knitting programs. To streamline the proof of this special
case extent function, we define the following modified macro:

Definition D.5 (Move Macro). The MOVE macro is the SHIFT macro
with an additional RACK to reset the machine’s racking to r:
MOVE(f.x,r, f.(x + j)) := SHIFT(f.x,r, f.(x + j));
RACK(r + j, —j)
MOVE (b.x, 7, b.(x + j)) := SHIFT(b.x,r, b.x + j)
RACK(r = Jj, j)

Definition D.6 (Move Extent). Let ks be exactly a MOVE sub-program
as just defined. Then the move-extent of ks is a rectangle, like for
a basic extent. However, unlike basic extents, move-extents are
context-sensitive: their definition depends on the state S of the
knitting machine immediately prior to the MOVE sub-program.

eXm (S,MOVE(f.x,r, f.(x + J))) = [x,x + j] X [—00, Ymax]
eXm (S,MOVE(b.x,r,b.(x + j))) = [x = r,x = r + j] X [Ymin, 0]

where ymax is o0 if L(b.x —r) > 0, otherwise it is max{y | y €
Y~1(x’) and x < x’ < x + j} or —co if there are no yarn-carriers
parked between x and x + j in the state S. Similarly, ypmip is —co if
L(b.x +r) > 0 and oo otherwise.

Much like the previously defined extents on individual operations,

eXny, is used to horizontally and layer decompose &[S MOVE, s/ ] as
an intermediate step in proving when a MOVE subprogram can be
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swapped with another program. A more detailed proof of this is as
follows.

Lemma D.7 (Move Decomposition). Letkss = MOVE(f.x,r, f.(x + j))
and let ks, = MOVE(b.x, r,b.(x + j)). Let S be an initial state s.t. in the
case of ksg, L(b.(x —r)) = 0; and in the case of ksp, L(f.(x + 1)) = 0.
ks¢ admits horizontal and layer decompositions, of the forms

&[S K5, 81 = idy- x K X idys
=K'|“id,,

where for R = exp, (S, ksg), n~ = #R™%, n™ = #R™, and m = #R*Y.
ksy admits horizontal and layer decompositions, of the forms

&[S X, 8 = idy- x K x idys
= idm|’K’

where for R = expm (S, ksp), n~ = #R™*, n* = #R™, and m = #R™Y.

Proor. Consider the case of ks first. Since L(f.x +r) = 0, no
loops transferred to the temporary front-bed needle will get stacked
together with any other loops. Any loops that are temporarily trans-
ferred to the front bed, all loops on the front bed, and all yarn carriers
remain horizontally stationary over all of the MOVE operation prior
to the final rack operation. Consequently, after the second xfer
operation, the entire back-bed can be layer-separated from the rest
of the denoted tangle, and the final racking respects this decompo-
sition. Thus, the second decomposition is justified. In the case of
the first decomposition, observe that in this final diagram all paths
except those starting at | b.x |, and ending at | b.x + j ]|, are perfectly
vertical. Therefore, horizontally we can separate out an identity slab
of everything to the left of | b.x], and an identity of everything to
the right of [b.x + j|,.

Now consider the case of ks¢, which would ideally be symmetric
with ksp. Unfortunately, the transferred loops no longer remain
stationary during the racking in-between the transfers. Rather, they
and the entire back bed move in between the two transfers. Once the
transferred loops are back on the front-bed and the racking undone,
the same basic argument as above justifies the horizontal decompo-
sition. However, the layer decomposition is less obvious. Since the
transferred loops move in tandem with all of the back-bed loops, no
crossings between them are introduced prior to the final racking se-
quence. At this point we can introduce a layer decomposition of the
back bed. This would justify consistency with a rectangular interval
of [—09, 00) in the y-coordinate. However, observe that by definition
there are no yarns between y,,4x and oo inside the horizontal extent
of ks¢. Therefore, we can layer decompose everything strictly after
Ymax from everything at or before ymqgyx. O

Lemma D.8 (Move Swap). Let ks be a MOVE subprogram and ks,

some other knitout program. Let S be an initial state, s.t. S k_sl_> s ﬁz_)
S” is valid. We consider the two MOVE cases separately.

Ifks; = MOVE(f.x,r,fx+ j); L(b.(x —r)) = 0in S and S’; and
exm (S, ks1) N ex(ksy) = O; then

S+ ksi;ksy = ksy; kst
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Ifks; = MOVE(b.x,r,b.x + j); L(f.(x+7r)) = 0in S and S’; and
exm (S, ks1) Nex(ksy) = 0; then

S+ ksisksy = ks ksy

Proor. The proof is structurally the same as for Rewrite Rule 1,
with the additional use of Lemma D.7. Because of the additional
preconditions and context-sensitivity of the move decomposition
lemma, we must ensure that the preconditions are satisfied in both
S and S’; but these are already explicit preconditions of this rewrite.

O

D.2 Canceling Subprograms

Next we consider programs which in some way cancel each other,
akin to the algebraic law a~!a = id in group theory. As one might
expect, these rules all involve operations which do not produce
fences since it can be trivially proven that equivalent fenced tangles
must have an equal number of fences.

Rewrite Rule 2 (Merge). Racking in one direction and then back in
the other direction is the same as doing nothing.

S+ (rack (r +1); rack r) = nop

where r is the initial racking value in S.
Missing at n.x in one direction and then back in the other is the
same as doing nothing.

S+ (miss dir n.x y; miss —dir n.x y) = nop

Proor. First we consider merging the two rack operations ksy; ksj.

Recall that E[S rackr, N idn|f/idm where | = I.o[S] and
' = T<oo[S’]. Then, again by distributivity

(idnu’idm) o (idn|" idm)

(idn o idn)”(idm 0 idm)

rack (r+1);rack r
R AN

&[S s]

= idn+m
&[5 22 5]

Similarly, the proof for merging the two miss operations m; my
for yarn y proceeds by observing that both miss operations have a
compatible layer decomposition, and that the composition within
each layer is simply id.

Let S’ be the state between the two miss operations. Let i« =
T<y[S] € In,m+1 be the interleaving of all yarns and loops in front of
yarny and i> = 15 4 [S] € I3 m, be the interleaving of the yarn y with
all of the yarns and loops behind yarn y. Similarly, let i, = 7 [S’]

and /. = I.,[S']. Then E[S ™ §'] = idy|:< (idy|"” idy) and

1>

[ 2, 5] = idn|i,<(id1|i,> idm). Therefore, by distributivity

&[S imz, g

(idnl:= (i 112 i) ) o (idnl'5 (i i) )
(idn o idp) 12 ((idy © idy)|1 (idn © id)
= idpt1+m

E[S P, 3]
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Rewrite Rule 3 (Squish).
S+ xfer n.x n’ . x’;xfer n’ x’ n.x = xfer n’ .x" n.x
Furthermore, when L(n.x) = 0 in initial state S,

S+ xfer n.x n’.x" = nop

[ L(b.(z — 1))

L(f.z) \(
| | l
| f.z | b.(z — 1) |

Proor. Either n.x = f.z, in which case n’.x’ = b.(z—r); or
n.x =b.(z - r) and n’.x" = f.z. Without loss of generality, assume
the latter case (the former is symmetric via flipping the diagrams
180°). The non-trivial part of the diagram denoted by this com-
posite program is shown above. Once composed, this is the same
diagram that xfer f.z b.(z —r) denotes. If L(f.z) = 0 in S, then
this sub-diagram is simply ids,, which is denoted by nop as well—
demonstrating the second claim. O

D.3 Subprogram Machine Location

We have now explained how to cancel and commute various knitout
instructions relative to each other. This allows us to change the
order in which we perform operations and remove redundant oper-
ations. However, it doesn’t yet allow us to “reschedule” programs
in the sense of adjusting gauge or changing which needle we use to
perform a substantive operation (e.g., knit, tuck).

In the case of the tuck operation, which produces the same yarn
topology independent of the bed it occurs in, a single xfer operation
can be used to change the needle argument to the same physical
location on the opposite bed.

Rewrite Rule 4 (Slide). Let n.x and n’.x’ be defined such that they
are the pair f.z and b.z —r, or the pair b.z —r and f.z. Then let
ks(n.x) = tuck dir n.x I (y,s).

S+ ks(n.x); xfer n.x n’ x" = ks(n’ .x’); xfer n.x n’ .x’

Proor. Without loss of generality, assume n.x = f.z, n’.x" =
b.z —r, and dir = + (the other cases involve symmetric diagrams
of equivalent complexity). We can see that a simple application
of Reidemeister moves R3 and R4 can be used to slide the fence
produced by tuck under front bed loops and over the back bed
loops to transform from the diagram on the left to the diagram on
the right. Further, observe that in the case where L(n.x) = 0, the
diagram can be further simplified and a xfer instruction removed
via Rewrite Rule 3.
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Table 2. When performing operation ks(dir, n.x) = knit dir n.x | yarns or ks(dir,n.x) = tuck dir n.x I (y, s), conjugate either moves ks one needle
to the left (n.x-1) or one needle to the right (n.x+1). In the back bed case ks(dir,b.n), conjugate only uses the SHIFT macro. In contrast, the front bed case
ks(dir, f.n) requires additional miss instructions to route yarns to the correct physical carrier location. The correct ordering of miss and SHIFT operations

that prevents intertwining of loops and carriers depends on the dir parameter, producing two extra cases each. Note that all six cases require preconditions

similar to those described in the proof of Rewrite Rule 5.

Front

Back

+

- any

Left

miss — f.x —1yarns
SHIFT(f.x,r,—1)
ks(+, fx—1)

miss + f.x yarns

SHIFT(f.x—1,r—1,1)

SHIFT(f.x,r,—1)
miss — f.x yarns
ks(—, fx—1)

SHIFT(fx—1,r—1,1)

miss + f.x —1 yarns

SHIFT(b.x,r,—1)
ks(dir,b.x — 1)

SHIFT(b.x — 1,r —1,1)

Right

SHIFT(f.x,r, 1)
miss + f.x yarns
ks(+ f.x+1)

miss + f.x+1yarns
SHIFT(f.x,r,+1)
ks(—, fx+1)

SHIFT(b.x,r, 1)
ks(dir,b.x + 1)

SHIFT(fx+1,r+1,-1)
miss — f.x+1yarns

miss — f.x yarns
SHIFT(fx+1,r+1,-1)

SHIFT(b.x+1,r+1,-1)

f:,z 777777 b zZ-r

. T

,,,,,,,,,,,,,, /) L
U
L(f\[\[ Lbzr)

z)
fz T bz=r

IR

]

In order to move an operation to a different needle on the same
bed, we must use a sequence of operations. All resulting loops and
yarn carriers produced by the operation would then need to be
moved back to match the appropriate end state S’. This is partic-
ularly important for the knit instruction, which has a mirrored
structure depending on which bed it’s performed on (the difference
between a knit and a purl in hand-knitting). Continuing the alge-
braic analogy to group theory, we might expect a structure similar
to ghg™! (the conjugation of h by g) and h to be similar or equivalent
given a suitably trivial g. In fact, this is the right way to think about
moving operations around, though the exact knitout operations in g
and g~ ! vary depending on the operation being conjugated. Due to
the asymmetry in machine operations rack, knit, and tuck, gener-
ating the correct sequence of routing operations requires breaking
conjugate into six different cases seen in Table 2. All six cases use

similar logic for transforming between the fenced tangle diagrams.
Thus we walk through the proof of only one case below.

Rewrite Rule 5 (Conjugate [f, +, Left]). Let ks(dir, n.x) be either
a knit or tuck instruction ks(dir,n.x) = knit dir n.x I yarns or
ks(dir,n.x) = tuck dir n.x I (y,s). (we will simply refer to (y,s) as
yarns in the tuck case). Let S be the state prior to ks. If the following

needles are empty L(b.x — r) = 0, L(f.x — 1) = 0, and if there are no
yarn carriers in the way that we are not using Y1 (| f.x, ~|,) = yarns,

then
St ks(+ f.x) 2miss — f.x —1yarns; SHIFT(f.x,r, —1);
ks(+ f.x—1);
miss + f.x yarns; SHIFT(f.x-1, r-1, 1)

(wheremiss on multiple yarns is simply a sequence ofmiss operations,
one for each yarn)

Proor. The proof is given in figure 20. We briefly expound on
details here.
Because only and exactly yarns are present at | f.x, —|,, the un-

conjugated diagram has no initiale)yams; only the final (Kyams.
In the conjugation diagram, this final merge cancels against the
initial separation of the knit instruction, allowing yarns to become
separated from the other yarns initially parked at | f.x — 1, —],. The
rest of the diagram fairly trivially deforms back to the unconjugated
diagram, using standard Reidemeister moves. o
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| c.(z —1) | f.(z —1) | b.(z —r—1) | c.(x) | £.(x) b.(z — 1) | c.(xz+1) |
! ! ! N

L;(b.(x —7r—1))

[
<
R
3
3
I

A

Li(b.(z — 7 —1)) L;(f.z) Y, (@4 1)
e
Ayarns
#yarns
Y, Nz — 1) !
| | | | | | | |
| c@w—1) | f@-1 Ib@-r-10l @ | t@ | bd@-r | c@+1) |

Fig. 20. The fenced tangle denoted by the conjugate left program. Note it is equivalent to the fenced tangle for knit + f.x [ yarns as seen in figure 12i.
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