
PATH: Evaluation of Boolean Logic using Path-based
In-Memory Computing

Sven Thijssen
sven.thijssen@knights.ucf.edu
University of Central Florida

Orlando, Florida, USA

Sumit Kumar Jha
sumit.jha@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

Rickard Ewetz
rickard.ewetz@ucf.edu

University of Central Florida
Orlando, Florida, USA

ABSTRACT

Processing in-memory breaks von Neumann-based constructs to ac-

celerate data-intensive applications. Noteworthy efforts have been

devoted to executing Boolean logic using digital in-memory com-

puting. The limitation of state-of-the-art paradigms is that they

heavily rely on repeatedly switching the state of the non-volatile

resistive devices using expensive WRITE operations. In this paper,

we propose a new in-memory computing paradigm called path-

based computing for evaluating Boolean logic. Computation within

the paradigm is performed using a one-time expensive compile

phase and a fast and efficient evaluation phase. The key property

of the paradigm is that the execution phase only involves cheap

READ operations. Moreover, a synthesis tool called PATH is pro-

posed to automatically map computation to a single crossbar design.

The PATH tool also supports the synthesis of path-based comput-

ing systems where the total number of crossbars and the num-

ber of inter-crossbar connections are minimized. We evaluate the

proposed paradigm using 10 circuits from the RevLib benchmark

suite. Compared with state-of-the-art digital in-memory computing

paradigms, path-based computing improves energy and latency up

to 4.7X and 8.5X, respectively.

1 INTRODUCTION

The rapidly growing number of sensor devices in the Internet of

Things has increased the accessibility to digital data. The amount

of available digital data is expected to reach 175 𝑍𝐵 by 2025 [16].

This has powered the emergence of data-driven applications such

as decision-making [5], drug discovery [27], and deep neural net-

works [13]. Unfortunately, it is challenging to execute data-intensive

application on today’s high performance computing systems [14].

This is because the separation of memory and computing units

within the vonNeumann architecture introduces bandwidth-limited

and power-hungry data transfer [3].

Processing in-memory using non-volatile memory has recently

attracted significant attention. Non-volatile memory technology

includes memristor, resistive random access memory (ReRAM) [2],

The authors acknowledge support from NSF awards #2113307, #1755825, #1908471,
and #2008339, the DARPA cooperative agreement #HR00112020002, ONR grant
#N000142112332, and the DOE/NNSA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530596

Table 1: Comparison of in-memory logic styles in terms of

underlying operation and evaluated logic complexity.

Digital logic style Representative Operations in each phase

Studies Compile Execute

IMPLY [11, 18] WRITE WRITE+READ

MAGIC [4, 10] WRITE WRITE+READ

FLOW [22, 23] WRITE WRITE+READ

Path-based (this paper) WRITE READ

phase change memory (PCM) [7], spin-transfer torque magnetic

random access memory (STT-MRAM) [9]. By integrating the non-

volatile memory devices into dense crossbar arrays, mathematical

operations can be executed energy-efficiently with high speed. Ana-

log in-memory computing is energy-efficient but it is limited to

arithmetic operations [8]. In contrast, any Boolean function can be

accelerated using digital in-memory computing. Digital in-memory

computing can be performed using logic styles such as IMPLY [11],

MAGIC [10], and FLOW [23]. The logic style defines the input and

output of Boolean operations as analog voltages and states for the

non-volatile memory devices. The system performance is largely

dictated by the properties of the in-memory logic style.

Computation within in-memory paradigms can be divided into a

one-time compile phase and an execution phase that is performed

one-time for each function input. In Table 1, we show the READ and

WRITE operations performed in each phase for the different logic

styles. It can be observed that all previous paradigms use WRITE

operations in the execution phase. WRITE operations are orders of

magnitude more expensive than READ operations [26]. In contrast,

the proposed path-based paradigm evaluates Boolean logic using

cheap READ operations in the execution phase.

In this paper, we propose a new computing paradigm called path-

based in-memory computing. The paradigm is capable of evaluating

arbitrary Boolean functions using one-transistor one-memristor

(1T1M) crossbar arrays. We also propose a framework called PATH

to automatically map computation to 1T1M crossbars or path-based

computing systems with multiple crossbars. The main innovations

of the paper are summarized, as follows:

• A new computing paradigm called path-based in-memory com-

puting. The paradigm executes Boolean functions fast and effi-

ciently using only READ operations.

• The PATH framework exploits an analogy between Boolean de-

cision diagrams (BDDs) and 1T1M crossbars to map Boolean

functions into crossbar designs. A BDD with 𝑛 nodes and 𝑚

edges can be mapped to a crossbar of dimensions (𝑛)x(𝑚).

• The PATH framework maps larger Boolean functions to multiple

connected crossbars (with constraints on the dimensions). The

framework minimizes a weighted sum of the number of crossbars

and the number of inter-crossbar connections.

1129

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz

(a) Verilog code (b) Crossbar design D (c) 1T1M crossbar reconfiguration (d) Crossbar instance I (e) Evaluation

Figure 1: Flow for evaluating Boolean functions using path-based computing. (a) A program in Verilog code. (b) The abstract

crossbar design obtained through synthesis. (c) The physical crossbar with the non-volatile memory devices programmed and

Boolean variables assigned to the selector lines. (d) The state of the switches (open/closed) with respect to the state of the non-

volatile memory devices (on/off) and the instance (a,b,c)=(1,1,0) of the Boolean variables. (e) The Boolean function 𝑓 evaluates

to 1 because there is a path from the input to the output.

• The experimental evaluation is performed on 10 circuits from

the RevLib benchmark suite. Compared with the state-of-the-art

in-memory paradigm, PATH improves energy and latency with

at least 4.7X and 8.5X, respectively.

The remainder of the paper is organized, as follows: preliminaries

are provided in Section 2. The path-based paradigm is introduced

in Section 3. The problem formulation is given in Section 4. The

crossbar-level synthesis framework is detailed in Section 5. The

experimental evaluation is performed in Section 6. The paper is

concluded in Section 7.

2 PRELIMINARIES

2.1 Binary Decision Diagrams

A binary decision diagram (BDD) is a graph representation of a

Boolean function. The graph consist of internal decision nodes and

two leaf nodes. The terminal nodes represent the output ‘0’ and

‘1’, respectively. The internal decision nodes each have an assigned

Boolean variable and a positive and negative output edge. A BDD

is evaluated by traversing the graph from the root nodes to one

of the leaf nodes based on an instance of the Boolean variables.

BDDs commonly refer to reduced order binary decision diagrams

(ROBDDs) where nodes and edge have been eliminated to reduce

the size of the representation [6]. When a BDD is used to represent

a multi-output function, the BDD will have a separate root node

for each output of the Boolean function [12].

2.2 Memristor Crossbar Arrays

In this section, we will review one-transistor one-memristor (1T1M)

crossbars and one-diode one-memristor (1D1M) crossbars [24]. The

paradigm mainly relies on (1T1M) crossbars but (1D1M) crossbars

are used to realize routers [15].

A 1T1M crossbar array consists of wordlines, bitlines, and selec-

tor lines. Each wordline is connected to each bitline using a series

connected memristor and access transistor. The vertically aligned

access transistor share a single selector line. Both the memristors

and the access transistors act functionally as switches that can be

turned on and off. The switch corresponding to a memristor is on

(or off) based on if the memristor is programmed to have low (or

high) resistance. The switch corresponding to the access transistor

is turned on (or off) based on if the selector line is charged.

A 1D1M crossbar only has wordlines and bitlines. A crossbar

with dimension (N)x(M) can be used to connect the 𝑁 inputs to any

of the𝑀 outputs by appropriately programming the the memristor

devices, i.e., a 𝑁x𝑀 router.

3 PATH-BASED COMPUTING

Path-based computing aims to evaluate Boolean functions using

in-memory computing. The flow is illustrated using an example in

Figure 1. The flow for path-based computing consists of one-time

slow and expensive compile phase and a fast and efficient execution

phase. The input to the compile phase is a Boolean function speci-

fied in a hardware descriptive language (Verilog, VHDL), which is

shown in Figure 1(a). The input is first synthesized into an abstract

crossbar design D, which is shown in Figure 1(b). The 1T1M cross-

bar design specifies the state of each non-volatile memory device

(0/1) and the Boolean variable assigned to each selector line. The in-

put and output assignment to the wordlines are also specified. Next,

the memory devices within a nanoscale crossbar are programmed

(off/on), which is shown in Figure 1(c).

In the execution phase, an instance of Boolean variables is pro-

vided to the selector lines. The selector lines control the switches

represented by the access transistors. The state of the switches

controlled by the memory devices are also shown in Figure 1(d).

Next, an input voltage is applied to the top-most wordline and

an output voltage is measured across a resistor connected to the

bottom-most wordline. If the output voltage is high, the Boolean

function evaluates to true. Otherwise, the function evaluates to

false. For the input instance (a,b,c)=(1,1,0), the function evaluates

to true because there exists a path from the input to the output, as

illustrated in Figure 1(e). In contrast, the function evaluates to false

for the input instance (1,0,0).

1130

PATH: Evaluation of Boolean Logic using Path-based

In-Memory Computing DAC ’22, July 10ś14, 2022, San Francisco, CA, USA

The one-time compile phase is both slow and expensive. Mainly,

due to the expensive WRITE operations used to program the plat-

form. On the other hand, the cost is amortized across each execution

of the Boolean function. The execute phase is fast and efficient be-

cause it only involves charging/decharging the selector lines and

performing READ operations. The advantageous properties com-

pared with other in-memory paradigms comes from the novel use of

the access transistors. No previous paradigms have used the access

transistors to perform logic.

4 PROBLEM FORMULATION

Our overall objective is to synthesize a Boolean function 𝜙 into a

path-based computing system. We approach this larger problem by

solving two smaller problems, as follows:

• Problem I: Synthesize a Boolean function 𝜙 into a crossbar

design D. The objective is to minimize the dimensions of

the synthesized crossbar design.

• Problem II: Synthesize a Boolean function 𝜙 into a path-

based computing system consisting of multiple connected

crossbars with fixed dimensions. The objective is to minimize

a weighted sum of the number of crossbars and the number

of inter-crossbar connections.

We approach the first problem by converting 𝜙 into a BDD. Next,

we develop a one-to-one scheme of mapping a BDD into a crossbar

design D. The limitation is that there are dimensional constraints

on 1T1M crossbars. To handle function𝜙 that cannot fit into a single

crossbar, we solve the second problem by partitioning the BDD into

multiple parts such that each part can fit into a single crossbar. We

perform the partitioning while minimizing the number of crossbars

and the number of inter-crossbar connections.

5 THE PATH FRAMEWORK

In this section, we present the PATH framework that is capable

of automatically mapping Boolean functions to a path-based com-

puting platform with multiple connected crossbar designs D. The

framework consists of threemain steps: graph pre-processing, cross-

bar partitioning, and crossbar synthesis. The flow of the framework

is shown in Figure 2. The framework is illustrated with examples

in Figure 3 and Figure 4.

Figure 2: Flow of crossbar synthesis.

The input to the framework is a BDD of the function 𝜙 obtained

using CUDD [19]. In the graph pre-processing step, the BDD is

converted into an undirected graph 𝐺 . The details are provided in

Section 5.1. In the crossbar partitioning step, the graph is partitioned

into 𝑃 subgraphs such that each subgraph can fit into a crossbar with

specified dimensions. The details of the partitioning are provided in

Section 5.3. In the crossbar synthesis step, each subgraph partition

is mapped into a crossbar design using a crossbar mapping and

routing assignment step. The details are provided in Section 5.2.

We explain the crossbar synthesis step before the partitioning

step because it provides us the guidelines for how the graph should

be partitioned.

5.1 Graph pre-processing

The input to the graph pre-processing step is a BDD of 𝜙 . The

graph pre-processing involves removing the zero output node and

all the edges connected to the zero terminal node. The zero terminal

node can be removed because it corresponds to 𝜙 . The one terminal

node will be connected to the input, which we label 𝑖𝑛. The root

node is labeled with 𝑜𝑢𝑡 . The edges in the BDD are labeled with

their respective decision variables. The positive (negative) edge

connected to node with the decision variable 𝑥𝑖 will be labeled 𝑥𝑖
(¬𝑥𝑖). Finally, the edges are made unidirectional and the nodes are

labeled from 1 to𝑀 . The resulting graph of the BDD in Figure 3(a)

is shown in Figure 3(b).

5.2 Crossbar Synthesis

The crossbar synthesis step consists of a crossbar mapping step and

a router assignment step. The crossbar mapping is used to convert

the undirected graph 𝐺 into a crossbar design D in Section 5.2.1.

The router assignment is used to connect the primary inputs to the

crossbar design using a 1D1M routing crossbar in Section 5.2.2.

The outlined mapping algorithm is based on an analogy be-

tween graphs of BDDs and 1T1M crossbars. The nodes and

edges correspond to wordlines and bitline-selector line pairs. Each

node in the graph 𝐺 is assigned to a wordline. Each edge in 𝐺 is

realized using a bitline-selector line pair. The path-based paradigm

is based on creating paths by turning on and off connections in the

crossbar design. The connections correspond with the edges, which

are realized using the bitline-selector line pairs.

5.2.1 Crossbar mapping. The crossbar mapping step maps the

graph 𝐺 in Figure 3(b) into a crossbar design D shown in Fig-

ure 3(c). The crossbar mapping consists of a node assignment step

and an edge assignment step. The node assignment involves assign-

ing the nodes (in order) to the first 𝑀 wordlines of the crossbar.

Next, edge assignment is performed by appropriately assigning a

state to the memristors and Boolean variables to the selector lines.

Consider an edge 𝑒𝑙 ∈ 𝐸 connecting nodes 𝑖 and 𝑗 with label 𝑥𝑘
(or ¬𝑥𝑘). The edge 𝑒𝑙 will be realized using bitline 𝑙 and selector

line 𝑙 . The label 𝑥𝑘 (or ¬𝑥𝑘) is assigned as the input to selector line

𝑙 . All memristors along bitline 𝑙 are programmed to be off except

the memristors intersection with wordline 𝑖 and 𝑗 . The resulting

crossbar of the graph in Figure 3(b) is shown in Figure 3(c).

5.2.2 Router assignment. The input to the router configuration

step is the crossbar design D. In this step, a 1D1M crossbar config-

ured for routing is connected to the crossbar design D. The key

observation is that many input variables (or complemented input

variables) are required to be provided to multiple selector lines.

The routing crossbar takes one instance of the primary inputs and

1131

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz

Figure 3: (a) BDD of 𝜙 . (c) Graph obtained from graph pre-

processing. (d) Crossbar design from crossbar synthesis. (d)

1T1M crossbar design with 1D1M crossbar for routing.

routes the signals to the appropriate selector lines of the cross-

bar design D. In particular, each primary input 𝑥𝑖 is provided to

a buffer and an inverter to generate the inputs 𝑥𝑖 and ¬𝑥𝑖 . The

literals are connected to two separate wordlines. The bitlines of

the 1D1M crossbar are connected to the selector lines of the 1T1M

crossbar. The memristors in the 1D1M crossbar are programmed ap-

propriately to route the primary inputs to the appropriate selector

lines.

5.3 Crossbar partitioning

In this section, we propose a crossbar partitioning method to handle

constraints on the maximum crossbar dimension. We illustrate the

partitioning using an example below. In Section 5.3.1, we formulate

the partitioning problem. We provide a MIP based solution to the

problem in Section 5.3.2.

We illustrate the crossbar partitioning with an example in Fig-

ure 4. The crossbar dimensions are set to 4x4. The graph in fig-

ure 4(a) has 7 nodes and 8 edges, which would require a crossbar

with dimension of 7x8. In Figure 4(b), we label all the nodes with a

partition number (letter for clarity). Some nodes are labeled with

two partitioning numbers because they are required to be placed

in two crossbars. This stems from the fact that edges correspond

to connections that can only be realized within a graph. The three

crossbars and the inter-crossbar connections are shown in Fig-

ure 4(c). We show the nodes for each crossbar in the middle and

the replicated nodes on the edges between the crossbars.

Figure 4: Example of a graph partitioning. (a) Graph 𝐺 .

(b) Assignment of partition letters A, B, and C to each node.

(c) Three crossbar designs A, B, and C for each partition.

5.3.1 The Crossbar Partitioning Problem. The crossbar partition-

ing problem is a problem of assigning the nodes and edges in the

graph 𝐺 to one or more crossbars (or partitions). The problem is

formulated as follows:

• Each node in 𝐺 is required to be assigned to one or multiple

crossbars.

• Each edge in 𝐺 is required to be assigned to one crossbar.

The adjacent nodes are required to be assigned to the same

crossbar.

• A crossbar can fit at most 𝐷 nodes and 𝐷 edges, where 𝐷x𝐷

are the crossbar dimensions.

• The objective of the partitioning is to minimize the total num-

ber of crossbars and the number or nodes that are assigned

to multiple partitions (inter-crossbar connections).

5.3.2 Partitioning using MIP formulation. In this section, we for-

mulate and solve a MIP to perform the crossbar partitioning. Let the

graph 𝐺 have vertices 𝑉 and edges 𝐸. Let 𝐾 be an overestimate on

the number of required crossbars with dimension (𝐷)x(𝐷). Let 𝑣𝑘𝑖
be a binary variable indicating if the corresponding node is assigned

to crossbar 𝑘 . Let 𝑥𝑘 be a binary variable indicating if crossbar 𝑘 is

utilized. Using the introduced notation, the crossbar partitioning

problem is formulated as follows:

min 𝛼𝑁 + (1 − 𝛼)𝐼 (1)

s.t.
∑

𝑘∈𝐾

𝑥𝑘 = 𝑁 (2)

𝑣𝑘𝑖 ≤ 𝑥𝑘 , ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝑉 (3)
∑

𝑘∈𝐾, 𝑣∈𝑉

𝑣𝑘𝑖 − |𝑉 | = 𝐼 (4)

∑

𝑘∈𝐾

𝑒𝑘𝑖 = 1, ∀𝑖 ∈ 𝑉 (5)

2 · 𝑒𝑘𝑖 ≤ 𝑣𝑘𝑝 + 𝑣𝑘𝑞 , 𝑒𝑖 = (𝑝, 𝑞) ∈ 𝐸 (6)
∑

𝑖∈𝑉

𝑣𝑘𝑖 ≤ 𝐷, ∀𝑘 ∈ 𝐾 (7)

∑

𝑖∈𝐸

𝑒𝑘𝑖 ≤ 𝐷, ∀𝑘 ∈ 𝐾 (8)

𝑥𝑘 ≥ 𝑥𝑘+1, ∀𝑘 ∈ {1, . . . , 𝐾 − 1} (9)

where𝛼 is a user-specified parameter for balancing the total number

of crossbars 𝑁 and the number of inter-crossbar connections 𝐼 . The

first constraint (on line 2) sets 𝑁 to the number of crossbars being

utilized. The constraint on line 3 requires each crossbar 𝑘 to be

used if a node is assigned to it. Line 4 defines the number of inter-

crossbar connections. Line 5 and line 6 ensure that each edge is

1132

PATH: Evaluation of Boolean Logic using Path-based

In-Memory Computing DAC ’22, July 10ś14, 2022, San Francisco, CA, USA

placed in one partition and that the nodes adjacent to the edge are

placed in the same partition. The next two constraints on line 7 and

line 8 ensure that the crossbar dimension constraints are respected.

The last constraint ensures that crossbar (𝑘 + 1) is not used before

crossbar 𝑘 . This eliminates a substantial amount of degenerate

solutions, which results in speed-ups.

6 EXPERIMENTAL EVALUATION

The experiments are conducted on a machine with 20 Intel Core i9-

9900X and 128GB RAM. The framework is implemented in Python

3.8 and the source code is publicly available on GitHub1. CPLEX [1]

is used as ILP solver for the graph partitioning and a timeout of 1h is

set. After that we simply query the best feasible solution (it is easy to

find a feasible solution due to the structure of the problem). Within

the ILP formulation, we have set 𝛼 = 0.5 and 𝐾 = 1.5×
max(|𝑉 |, |𝐸 |)

𝐷
as the overestimate for the number of crossbars. In Table 2, an

overview is provided of 10 benchmarks of the RevLib benchmark

suite [25].

Table 2: Overview of 10 input circuits from RevLib [25].

Benchmark Inputs Outputs

in0 15 11

apex2 39 3

spla 16 46

pdc 16 40

misex3 14 14

tial 14 8

apex4 9 19

cps 24 109

apex5 117 88

seq 41 35

We evaluate the path-based computing systems by building a

complete architectural model with crossbars, peripheral circuitry,

and buses for inter-crossbar connections. Most properties of each

circuit component in terms of power, area, and latency are obtained

from [17, 22]. The power consumption for the bus, crossbar, buffers,

and inverters are 13mW, 0.3mW, 0.109𝜇W, and 0.218𝜇W. The area

for the respective components are 0.2𝜇m2, 15.7mm2, 6mm2, and

12mm2. The latency for the respective components are 15ns, 100ns,

3.29ps, and 1.6425ps. The power and area are obtained from the

architecture level model. The latency for PATH is proportional to

the length of the critical path among the crossbar inter-connections.

We compare PATHwith the state-of-the-art paradigms for FLOW

and MAGIC paradigms, i.e., COMPACT [22] and CONTRA [4]. The

results for the paradigms are obtained using the same circuit level

parameters using the models in [4, 22]. We have obtained both

tools from GitHub. For COMPACT and CONTRA, we use 0.39nJ

and 50.88ns for the write energy and latency, respectively [20].

In Section 6.1, we evaluate the proposed path-based in-memory

computing paradigm and the effectiveness of the PATH framework.

In Section 6.2, we compare the PATH framework with state-of-the-

art in-memory computing paradigms.

6.1 Evaluation of the PATH framework

In this section, we evaluate the path-based paradigm and the effec-

tiveness of the PATH framework.

1https://github.com/sventhijssen/path

Table 3: BDD, graph, and crossbar design properties without

dimensional constraints.

Benchmark

BDD Graph Crossbar design

Nodes Edges Nodes Edges Rows Columns

(num) (num) (num) (num) (num) (num)

in0 385 766 384 680 384 680

apex2 567 1130 566 1042 566 1042

spla 594 1184 593 864 593 864

pdc 621 1238 620 887 620 887

misex3 674 1344 673 1094 673 1094

tial 897 1790 896 1717 896 1717

apex4 990 1976 989 1874 990 1874

cps 1080 2156 1079 1633 1080 1633

apex5 1259 2514 1258 2387 1259 2387

seq 1302 2600 1301 2041 1301 2041

Norm. 1.00 1.00 1.00 0.85 1.00 0.85

First, we evaluate mapping Boolean functions 𝜙 to crossbar de-

signs without constraints on the dimensions. In Table 3, the columns

are labeled with the number of nodes and edges in the BDD, the

number of nodes and edges in the pre-processed graph 𝐺 , and

the number of rows and columns in the resulting crossbars. The

synthesis time is less than 3 seconds for all the circuits. It can be

observed that the graph has one less node and fewer edges than

the BDD. This is the result of removing the zero terminal node and

the adjacent edges. There is a one-to-one correlation between the

number of nodes and edges in the graph and the dimensions of

the crossbar design. A graph with |𝑉 | edges and |𝐸 | nodes results

in a crossbar with dimensions of |𝑉 |x|𝐸 |. This allows the crossbar

partitioning to easily handle the crossbar dimension constraints.

The crossbar partitioning is necessary as it is not expected that we

will be able to fabricate crossbars of dimension 1258x2387.

Table 4: Evaluation of PATHusing crossbars with dimension

of 𝐷x𝐷 = 128x128.

Benchmarks

Crossbars Inter- Critical Power Latency Area

connections path

(num) (num) (num) (mW) (𝜇s) (mm2)

in0 7 426 5 35.0 1.03 34.52

apex2 9 763 9 37.6 1.82 39.90

spla 9 732 9 37.6 1.82 39.90

pdc 9 728 9 37.6 1.82 39.90

misex3 10 785 10 38.9 2.02 42.58

tial 17 1335 15 47.9 3.02 61.40

apex4 18 1628 18 49.2 3.62 64.09

cps 16 1508 16 46.7 3.22 58.71

apex5 23 1805 22 55.7 4.42 77.53

seq 20 1884 20 51.8 4.02 69.47

Next, we evaluate the effectiveness of the PATH framework to

map the input Boolean functions 𝜙 to crossbars with dimensions of

128x128. In Table 4, we show the number of crossbars, the number

of inter-crossbar connections, the number of crossbars connected

in series. We also show the performance in terms of power, latency

and area. We observe that PATH is able to successfully meet the

hardware constraints for all of the designs. This demonstrates the

high fidelity of the PATH framework. The synthesis time is one

hour for all the circuits. The runtime is dominated by solving the

ILP formulation. Remember we query the best feasible solution

after one hour. The structure of the ILP formulation ensures that

a feasible solution of reasonable good quality always exists (less

than 10% duality gap).

1133

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz

Now we evaluate the sensitivity of the crossbar dimensions on

the circuit 𝑠𝑒𝑞 in Figure 5. We observe that the total number of

crossbars and the number of inter-crossbar connections are reduced

when the crossbar dimensions are scaled up in (a) and (b) of Figure 5.

We evaluate the performance in terms of power consumption and

latency. As expected, the power and latency have improved due to

the fewer crossbars and fewer interconnections. For 𝐷 = 1024, the

power consumption slightly increases due to underutilization.

Figure 5: Number of crossbars, interconnections, power con-

sumption, and latency for increasing dimension 𝐷 .

6.2 Comparison with state-of-the-art
in-memory computing paradigms

In this section, we compare PATH with CONTRA [4], the state-of-

the-art framework for MAGIC-based in-memory computing, and

with COMPACT [22], the state-of-the-art framework for FLOW-

based in-memory computing. No comparison has been made with

IMPLY [11], considering MAGIC outperforms IMPLY [21].

In Figure 6, the normalized energy consumption and latency are

given for PATH, COMPACT, and CONTRA. Compared with PATH,

COMPACT results in 4.7X higher energy and 8.5X longer latency.

The advantageous performance mainly stems from that COMPACT

is a flow-based computing framework where the devices are contin-

uously switched for each evaluation, resulting in many expensive

(in terms of energy and latency) WRITE operations. Compared with

PATH, we observe that CONTRA consumes 18.12X higher energy

and is 85.69X slower. Similarly to previous argument, CONTRA

is much less energy-efficient and slower than PATH due to the

large number of write operations. The path-based paradigm only

utilizes WRITE operations in the compile phase. The cost of these

operations is amortized across multiple evaluations.

7 SUMMARY AND FUTURE WORK

We have introduced a new READ-based in-memory computing

paradigm, called path-based computing by leveraging access tran-

sistors to perform logic. We have introduced the PATH framework

to automatically synthesize Boolean circuits into multiple crossbar

partitions for path-based computing. Finally, we have demonstrated

that the paradigm is orders of magnitude faster and more energy-

efficient than state-of-the-art in-memory computing paradigms.

Figure 6: Comparison of the energy consumption and la-

tency for PATH, COMPACT, and CONTRA.

REFERENCES
[1] [n. d.]. CPLEX optimizer. https://www.ibm.com/analytics/cplex-optimizer
[2] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access memory

(ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010), 2237ś2251.
[3] John Backus. 1978. Can programming be liberated from the von Neumann style?

CACM 21, 8 (1978), 613ś641.
[4] Debjyoti Bhattacharjee et al. 2020. CONTRA: area-constrained technology map-

ping framework for memristive memory processing unit. In ICCAD’20. 1ś9.
[5] Alexandros Bousdekis et al. 2021. A Review of Data-Driven Decision-Making

Methods for Industry 4.0 Maintenance Applications. Electronics 10, 7 (2021), 828.
[6] Karl S Brace, Richard L Rudell, and Randal E Bryant. 1990. Efficient implementa-

tion of a BDD package. In DAC’90. IEEE, 40ś45.
[7] Geoffrey W Burr et al. 2010. Phase change memory technology. JVST B 28, 2

(2010), 223ś262.
[8] Miao Hu et al. 2018. Memristor-based analog computation and neural network

classification with a dot product engine. Advanced Materials 30, 9 (2018), 1705914.
[9] Yiming Huai et al. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges

and prospects. AAPPS bulletin 18, 6 (2008), 33ś40.
[10] Shahar Kvatinsky et al. 2014. MAGICÐMemristor-aided logic. IEEE TCAS-II 61,

11 (2014), 895ś899.
[11] Eero Lehtonen, Jussi Poikonen, and Mika Laiho. 2012. Implication logic synthesis

methods for memristors. In ISCAS’12. IEEE, 2441ś2444.
[12] Shin-ichi Minato et al. 1990. Shared binary decision diagram with attributed

edges for efficient Boolean function manipulation. In DAC’90. IEEE, 52ś57.
[13] Mehdi Mohammadi et al. 2018. Deep learning for IoT big data and streaming

analytics: A survey. COMST 20, 4 (2018), 2923ś2960.
[14] Giacomo Pedretti et al. 2020. A spiking recurrent neural network with phase-

change memory neurons and synapses for the accelerated solution of constraint
satisfaction problems. JXCDC 6, 1 (2020), 89ś97.

[15] Alexander Pisarev et al. 2021. Fabrication technology and electrophysical prop-
erties of a composite memristor-diode crossbar used as a basis for hardware
implementation of a biomorphic neuroprocessor. Microelectronic Engineering 236
(2021), 111471.

[16] David Reinsel-John Gantz-John Rydning. 2018. The digitization of the world
from edge to core. Framingham: International Data Corporation (2018), 16.

[17] Ali Shafiee et al. 2016. ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. ACM SIGARCH 44, 3 (2016), 14ś26.

[18] Saeideh Shirinzadeh, Mathias Soeken, and Rolf Drechsler. 2016. Multi-objective
BDD optimization for RRAM circuit design. In IEEE DDECS 2016. 1ś6.

[19] Fabio Somenzi. 2012. CUDD: CU decision diagram package-release 2.4. 0. Uni-
versity of Colorado at Boulder (2012).

[20] Linghao Song et al. 2017. Pipelayer: A pipelined reram-based accelerator for
deep learning. In HPCA. IEEE, 541ś552.

[21] Phrangboklang Lyngton Thangkhiew, Rahul Gharpinde, and Kamalika Datta.
2018. Efficient mapping of Boolean functions to memristor crossbar using MAGIC
NOR gates. TCAS-I 65, 8 (2018), 2466ś2476.

[22] Sven Thijssen et al. 2021. COMPACT: Flow-Based Computing on Nanoscale
Crossbars with Minimal Semiperimeter. In DATE. IEEE, 232ś237.

[23] Alvaro Velasquez and Sumit Jha. 2015. Automated synthesis of crossbars for
nanoscale computing using formal methods. In NANOARCH’15. IEEE, 130ś136.

[24] Miao Wang et al. 2015. A selector device based on grapheneśoxide heterostruc-
tures for memristor crossbar applications. Appl. Phys. A 120, 2 (2015), 403ś407.

[25] Robert Wille et al. 2008. RevLib: An online resource for reversible functions and
reversible circuits. In ISMVL’08. IEEE, 220ś225.

[26] Cong Xu et al. 2015. Overcoming the challenges of crossbar resistive memory
architectures. In HPCA’15. IEEE, 476ś488.

[27] Linlin Zhao et al. 2020. Advancing computer-aided drug discovery (CADD) by big
data and data-driven machine learning modeling. Drug discovery today (2020).

1134

	Go to Previous View
	Search
	Print

