)]
Check for
Updates

PATH: Evaluation of Boolean Logic using Path-based
In-Memory Computing

Sven Thijssen
sven.thijssen@knights.ucf.edu
University of Central Florida
Orlando, Florida, USA

ABSTRACT

Processing in-memory breaks von Neumann-based constructs to ac-
celerate data-intensive applications. Noteworthy efforts have been
devoted to executing Boolean logic using digital in-memory com-
puting. The limitation of state-of-the-art paradigms is that they
heavily rely on repeatedly switching the state of the non-volatile
resistive devices using expensive WRITE operations. In this paper,
we propose a new in-memory computing paradigm called path-
based computing for evaluating Boolean logic. Computation within
the paradigm is performed using a one-time expensive compile
phase and a fast and efficient evaluation phase. The key property
of the paradigm is that the execution phase only involves cheap
READ operations. Moreover, a synthesis tool called PATH is pro-
posed to automatically map computation to a single crossbar design.
The PATH tool also supports the synthesis of path-based comput-
ing systems where the total number of crossbars and the num-
ber of inter-crossbar connections are minimized. We evaluate the
proposed paradigm using 10 circuits from the RevLib benchmark
suite. Compared with state-of-the-art digital in-memory computing
paradigms, path-based computing improves energy and latency up
to 4.7X and 8.5X, respectively.

1 INTRODUCTION

The rapidly growing number of sensor devices in the Internet of
Things has increased the accessibility to digital data. The amount
of available digital data is expected to reach 175 ZB by 2025 [16].
This has powered the emergence of data-driven applications such
as decision-making [5], drug discovery [27], and deep neural net-
works [13]. Unfortunately, it is challenging to execute data-intensive
application on today’s high performance computing systems [14].
This is because the separation of memory and computing units
within the von Neumann architecture introduces bandwidth-limited
and power-hungry data transfer [3].

Processing in-memory using non-volatile memory has recently
attracted significant attention. Non-volatile memory technology
includes memristor, resistive random access memory (ReRAM) [2],

The authors acknowledge support from NSF awards #2113307, #1755825, #1908471,
and #2008339, the DARPA cooperative agreement #HR00112020002, ONR grant
#N000142112332, and the DOE/NNSA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC °22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07...$15.00
https://doi.org/10.1145/3489517.3530596

Sumit Kumar Jha
sumit.jha@utsa.edu
University of Texas at San Antonio
San Antonio, Texas, USA

1129

Rickard Ewetz
rickard.ewetz@ucf.edu
University of Central Florida
Orlando, Florida, USA

Table 1: Comparison of in-memory logic styles in terms of
underlying operation and evaluated logic complexity.

Digital logic style | Representative | Operations in each phase
Studies Compile Execute
IMPLY [11, 18] WRITE | WRITE+READ
MAGIC [4, 10] WRITE | WRITE+READ
FLOW [22, 23] WRITE | WRITE+READ
| Path-based ~ | (thispaper) | WRITE | READ |

phase change memory (PCM) [7], spin-transfer torque magnetic
random access memory (STT-MRAM) [9]. By integrating the non-
volatile memory devices into dense crossbar arrays, mathematical
operations can be executed energy-efficiently with high speed. Ana-
log in-memory computing is energy-efficient but it is limited to
arithmetic operations [8]. In contrast, any Boolean function can be
accelerated using digital in-memory computing. Digital in-memory
computing can be performed using logic styles such as IMPLY [11],
MAGIC [10], and FLOW [23]. The logic style defines the input and
output of Boolean operations as analog voltages and states for the
non-volatile memory devices. The system performance is largely
dictated by the properties of the in-memory logic style.

Computation within in-memory paradigms can be divided into a
one-time compile phase and an execution phase that is performed
one-time for each function input. In Table 1, we show the READ and
WRITE operations performed in each phase for the different logic
styles. It can be observed that all previous paradigms use WRITE
operations in the execution phase. WRITE operations are orders of
magnitude more expensive than READ operations [26]. In contrast,
the proposed path-based paradigm evaluates Boolean logic using
cheap READ operations in the execution phase.

In this paper, we propose a new computing paradigm called path-
based in-memory computing. The paradigm is capable of evaluating
arbitrary Boolean functions using one-transistor one-memristor
(1T1M) crossbar arrays. We also propose a framework called PATH
to automatically map computation to 1T1M crossbars or path-based
computing systems with multiple crossbars. The main innovations
of the paper are summarized, as follows:

e A new computing paradigm called path-based in-memory com-
puting. The paradigm executes Boolean functions fast and effi-
ciently using only READ operations.

e The PATH framework exploits an analogy between Boolean de-
cision diagrams (BDDs) and 1T1M crossbars to map Boolean
functions into crossbar designs. A BDD with n nodes and m
edges can be mapped to a crossbar of dimensions (n)x(m).

o The PATH framework maps larger Boolean functions to multiple
connected crossbars (with constraints on the dimensions). The
framework minimizes a weighted sum of the number of crossbars
and the number of inter-crossbar connections.

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Compile Phase
(one-time slow and expensive)

Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz

; Execute Phase
§ (fast and efficient)

| a=1, b=1, c=0 |
Input —»{ Crossbar Design > Programmed ; ¥ Program Execution
(Verilog or VHDL) g Platform _._>| Crossbar instance }—D &
"Telfela| " Labai Tl
on Ol on H
module oct_example (a, b, ¢, f); In* 0 o i e i - ﬁ.+ ~ ITL_‘;
input a, b, ¢; I
output F; o o 0 W' *qlg_& flfl *HLE'_EL 3 ﬁ.L ﬁ._ V
i f=(a&b)|c; = ! =Vout
i QO @ou ™ W l{alin ™ T T 7 | LI T+
| | e n Ny
a b c SL| BL |
a b ¢ 110
WL: Wordline BL: Bitline SL: Selectorline
(a) Verilog code (b) Crossbar design O (c) 1T1M crossbar reconfiguration (d) Crossbar instance 7 (e) Evaluation

Figure 1: Flow for evaluating Boolean functions using path-based computing. (a) A program in Verilog code. (b) The abstract
crossbar design obtained through synthesis. (c) The physical crossbar with the non-volatile memory devices programmed and
Boolean variables assigned to the selector lines. (d) The state of the switches (open/closed) with respect to the state of the non-
volatile memory devices (on/off) and the instance (a,b,c)=(1,1,0) of the Boolean variables. (¢) The Boolean function f evaluates

to 1 because there is a path from the input to the output.

o The experimental evaluation is performed on 10 circuits from
the RevLib benchmark suite. Compared with the state-of-the-art
in-memory paradigm, PATH improves energy and latency with

at least 4.7X and 8.5X, respectively.

The remainder of the paper is organized, as follows: preliminaries
are provided in Section 2. The path-based paradigm is introduced
in Section 3. The problem formulation is given in Section 4. The
crossbar-level synthesis framework is detailed in Section 5. The
experimental evaluation is performed in Section 6. The paper is
concluded in Section 7.

2 PRELIMINARIES

2.1 Binary Decision Diagrams

A binary decision diagram (BDD) is a graph representation of a
Boolean function. The graph consist of internal decision nodes and
two leaf nodes. The terminal nodes represent the output ‘0’ and
‘1’, respectively. The internal decision nodes each have an assigned
Boolean variable and a positive and negative output edge. A BDD
is evaluated by traversing the graph from the root nodes to one
of the leaf nodes based on an instance of the Boolean variables.
BDDs commonly refer to reduced order binary decision diagrams
(ROBDDs) where nodes and edge have been eliminated to reduce
the size of the representation [6]. When a BDD is used to represent
a multi-output function, the BDD will have a separate root node
for each output of the Boolean function [12].

2.2 Memristor Crossbar Arrays

In this section, we will review one-transistor one-memristor (1T1M)
crossbars and one-diode one-memristor (1D1M) crossbars [24]. The
paradigm mainly relies on (1T1M) crossbars but (1ID1M) crossbars
are used to realize routers [15].

A 1T1M crossbar array consists of wordlines, bitlines, and selec-
tor lines. Each wordline is connected to each bitline using a series
connected memristor and access transistor. The vertically aligned
access transistor share a single selector line. Both the memristors

1130

and the access transistors act functionally as switches that can be
turned on and off. The switch corresponding to a memristor is on
(or off) based on if the memristor is programmed to have low (or
high) resistance. The switch corresponding to the access transistor
is turned on (or off) based on if the selector line is charged.

A 1D1M crossbar only has wordlines and bitlines. A crossbar
with dimension (N)x(M) can be used to connect the N inputs to any
of the M outputs by appropriately programming the the memristor
devices, i.e., a NxM router.

3 PATH-BASED COMPUTING

Path-based computing aims to evaluate Boolean functions using
in-memory computing. The flow is illustrated using an example in
Figure 1. The flow for path-based computing consists of one-time
slow and expensive compile phase and a fast and efficient execution
phase. The input to the compile phase is a Boolean function speci-
fied in a hardware descriptive language (Verilog, VHDL), which is
shown in Figure 1(a). The input is first synthesized into an abstract
crossbar design O, which is shown in Figure 1(b). The 1T1M cross-
bar design specifies the state of each non-volatile memory device
(0/1) and the Boolean variable assigned to each selector line. The in-
put and output assignment to the wordlines are also specified. Next,
the memory devices within a nanoscale crossbar are programmed
(off/on), which is shown in Figure 1(c).

In the execution phase, an instance of Boolean variables is pro-
vided to the selector lines. The selector lines control the switches
represented by the access transistors. The state of the switches
controlled by the memory devices are also shown in Figure 1(d).
Next, an input voltage is applied to the top-most wordline and
an output voltage is measured across a resistor connected to the
bottom-most wordline. If the output voltage is high, the Boolean
function evaluates to true. Otherwise, the function evaluates to
false. For the input instance (a,b,c)=(1,1,0), the function evaluates
to true because there exists a path from the input to the output, as
illustrated in Figure 1(e). In contrast, the function evaluates to false
for the input instance (1,0,0).

PATH: Evaluation of Boolean Logic using Path-based
In-Memory Computing

The one-time compile phase is both slow and expensive. Mainly,
due to the expensive WRITE operations used to program the plat-
form. On the other hand, the cost is amortized across each execution
of the Boolean function. The execute phase is fast and efficient be-
cause it only involves charging/decharging the selector lines and
performing READ operations. The advantageous properties com-
pared with other in-memory paradigms comes from the novel use of
the access transistors. No previous paradigms have used the access
transistors to perform logic.

4 PROBLEM FORMULATION

Our overall objective is to synthesize a Boolean function ¢ into a
path-based computing system. We approach this larger problem by
solving two smaller problems, as follows:

e Problem I: Synthesize a Boolean function ¢ into a crossbar
design D. The objective is to minimize the dimensions of
the synthesized crossbar design.

e Problem II: Synthesize a Boolean function ¢ into a path-
based computing system consisting of multiple connected
crossbars with fixed dimensions. The objective is to minimize
a weighted sum of the number of crossbars and the number
of inter-crossbar connections.

We approach the first problem by converting ¢ into a BDD. Next,
we develop a one-to-one scheme of mapping a BDD into a crossbar
design . The limitation is that there are dimensional constraints
on 1T1M crossbars. To handle function ¢ that cannot fit into a single
crossbar, we solve the second problem by partitioning the BDD into
multiple parts such that each part can fit into a single crossbar. We
perform the partitioning while minimizing the number of crossbars
and the number of inter-crossbar connections.

5 THE PATH FRAMEWORK

In this section, we present the PATH framework that is capable
of automatically mapping Boolean functions to a path-based com-
puting platform with multiple connected crossbar designs D. The
framework consists of three main steps: graph pre-processing, cross-
bar partitioning, and crossbar synthesis. The flow of the framework
is shown in Figure 2. The framework is illustrated with examples
in Figure 3 and Figure 4.

Input: BDD for specification ¢

Section 5.1 Graph pre-processing
Section 5.3 Cr.os sbar LTI
into P partitions
for partition] C . ‘
rossbar mappin,
pe(l..P} / RS
Section 5.2 Crossbar synthesis | | Router assignment ‘

Output: crossbar design D

Figure 2: Flow of crossbar synthesis.

The input to the framework is a BDD of the function ¢ obtained
using CUDD [19]. In the graph pre-processing step, the BDD is
converted into an undirected graph G. The details are provided in
Section 5.1. In the crossbar partitioning step, the graph is partitioned

1131

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

into P subgraphs such that each subgraph can fit into a crossbar with
specified dimensions. The details of the partitioning are provided in
Section 5.3. In the crossbar synthesis step, each subgraph partition
is mapped into a crossbar design using a crossbar mapping and
routing assignment step. The details are provided in Section 5.2.

We explain the crossbar synthesis step before the partitioning
step because it provides us the guidelines for how the graph should
be partitioned.

5.1 Graph pre-processing

The input to the graph pre-processing step is a BDD of ¢. The
graph pre-processing involves removing the zero output node and
all the edges connected to the zero terminal node. The zero terminal
node can be removed because it corresponds to ¢. The one terminal
node will be connected to the input, which we label in. The root
node is labeled with out. The edges in the BDD are labeled with
their respective decision variables. The positive (negative) edge
connected to node with the decision variable x; will be labeled x;
(—x;). Finally, the edges are made unidirectional and the nodes are
labeled from 1 to M. The resulting graph of the BDD in Figure 3(a)
is shown in Figure 3(b).

5.2 Crossbar Synthesis

The crossbar synthesis step consists of a crossbar mapping step and
a router assignment step. The crossbar mapping is used to convert
the undirected graph G into a crossbar design D in Section 5.2.1.
The router assignment is used to connect the primary inputs to the
crossbar design using a 1D1M routing crossbar in Section 5.2.2.

The outlined mapping algorithm is based on an analogy be-
tween graphs of BDDs and 1T1M crossbars. The nodes and
edges correspond to wordlines and bitline-selector line pairs. Each
node in the graph G is assigned to a wordline. Each edge in G is
realized using a bitline-selector line pair. The path-based paradigm
is based on creating paths by turning on and off connections in the
crossbar design. The connections correspond with the edges, which
are realized using the bitline-selector line pairs.

5.2.1 Crossbar mapping. The crossbar mapping step maps the
graph G in Figure 3(b) into a crossbar design O shown in Fig-
ure 3(c). The crossbar mapping consists of a node assignment step
and an edge assignment step. The node assignment involves assign-
ing the nodes (in order) to the first M wordlines of the crossbar.
Next, edge assignment is performed by appropriately assigning a
state to the memristors and Boolean variables to the selector lines.
Consider an edge ¢; € E connecting nodes i and j with label x;
(or —xg). The edge e; will be realized using bitline [and selector
line I. The label x (or —xy) is assigned as the input to selector line
1. All memristors along bitline / are programmed to be off except
the memristors intersection with wordline i and j. The resulting
crossbar of the graph in Figure 3(b) is shown in Figure 3(c).

5.2.2 Router assignment. The input to the router configuration
step is the crossbar design 9. In this step, a 1D1M crossbar config-
ured for routing is connected to the crossbar design D. The key
observation is that many input variables (or complemented input
variables) are required to be provided to multiple selector lines.
The routing crossbar takes one instance of the primary inputs and

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

1T1M crossbar for
path-based logic

W1

Bitline-selector line
connections

1D1IM crossbar
for routing

(d) Crossbar design D with router

Figure 3: (a) BDD of ¢. (c) Graph obtained from graph pre-
processing. (d) Crossbar design from crossbar synthesis. (d)
1T1M crossbar design with 1D1M crossbar for routing,.

routes the signals to the appropriate selector lines of the cross-
bar design D. In particular, each primary input x; is provided to
a buffer and an inverter to generate the inputs x; and —x;. The
literals are connected to two separate wordlines. The bitlines of
the 1D1M crossbar are connected to the selector lines of the 1T1IM
crossbar. The memristors in the 1D1M crossbar are programmed ap-
propriately to route the primary inputs to the appropriate selector
lines.

5.3 Crossbar partitioning

In this section, we propose a crossbar partitioning method to handle
constraints on the maximum crossbar dimension. We illustrate the
partitioning using an example below. In Section 5.3.1, we formulate
the partitioning problem. We provide a MIP based solution to the
problem in Section 5.3.2.

We illustrate the crossbar partitioning with an example in Fig-
ure 4. The crossbar dimensions are set to 4x4. The graph in fig-
ure 4(a) has 7 nodes and 8 edges, which would require a crossbar
with dimension of 7x8. In Figure 4(b), we label all the nodes with a
partition number (letter for clarity). Some nodes are labeled with
two partitioning numbers because they are required to be placed
in two crossbars. This stems from the fact that edges correspond
to connections that can only be realized within a graph. The three
crossbars and the inter-crossbar connections are shown in Fig-
ure 4(c). We show the nodes for each crossbar in the middle and
the replicated nodes on the edges between the crossbars.

1132

Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz

[
@ @ a
(o) e 2,3|XBAR B|®
AC) [CB] {235}
0 9 —_— 0 9 =P (XBAR A XBAR C
[AB] [A,B] {1,2,3,4} {4,5,6,7}
@ ® @ @ 4

° [A]

Figure 4: Example of a graph partitioning. (a) Graph G.
(b) Assignment of partition letters A, B, and C to each node.
(c) Three crossbar designs A, B, and C for each partition.

5.3.1 The Crossbar Partitioning Problem. The crossbar partition-
ing problem is a problem of assigning the nodes and edges in the
graph G to one or more crossbars (or partitions). The problem is
formulated as follows:

e Each node in G is required to be assigned to one or multiple
crossbars.
Each edge in G is required to be assigned to one crossbar.
The adjacent nodes are required to be assigned to the same
crossbar.
A crossbar can fit at most D nodes and D edges, where DxD
are the crossbar dimensions.
The objective of the partitioning is to minimize the total num-
ber of crossbars and the number or nodes that are assigned
to multiple partitions (inter-crossbar connections).

5.3.2 Partitioning using MIP formulation. In this section, we for-
mulate and solve a MIP to perform the crossbar partitioning. Let the
graph G have vertices V and edges E. Let K be an overestimate on
the number of required crossbars with dimension (D)x(D). Let Uf.‘
be a binary variable indicating if the corresponding node is assigned
to crossbar k. Let x; be a binary variable indicating if crossbar k is
utilized. Using the introduced notation, the crossbar partitioning
problem is formulated as follows:

min aN + (1 - a)l (1)
s.t. Z xp =N (2)
kekK
ok < x, VkeKVieV (3)
Z K —vi=1 (4)
keK, veV
Zele, VieV (5)
keK
2-¢f <o +op, ei=(p.g) €E (6)
EE VkeK (7)
ieV
Ze{FsD, VkeK (8)
i€E
Xg = Xgt1 Vke{1,....K-1} (9)

where « is a user-specified parameter for balancing the total number
of crossbars N and the number of inter-crossbar connections I. The
first constraint (on line 2) sets N to the number of crossbars being
utilized. The constraint on line 3 requires each crossbar k to be
used if a node is assigned to it. Line 4 defines the number of inter-
crossbar connections. Line 5 and line 6 ensure that each edge is

PATH: Evaluation of Boolean Logic using Path-based
In-Memory Computing

placed in one partition and that the nodes adjacent to the edge are
placed in the same partition. The next two constraints on line 7 and
line 8 ensure that the crossbar dimension constraints are respected.
The last constraint ensures that crossbar (k + 1) is not used before
crossbar k. This eliminates a substantial amount of degenerate
solutions, which results in speed-ups.

6 EXPERIMENTAL EVALUATION

The experiments are conducted on a machine with 20 Intel Core i9-
9900X and 128GB RAM. The framework is implemented in Python
3.8 and the source code is publicly available on GitHub'. CPLEX [1]
is used as ILP solver for the graph partitioning and a timeout of 1h is
set. After that we simply query the best feasible solution (it is easy to
find a feasible solution due to the structure of the problem). Within
the ILP formulation, we have set « = 0.5 and K = 1.5 X w
as the overestimate for the number of crossbars. In Table 2, an
overview is provided of 10 benchmarks of the RevLib benchmark
suite [25].

Table 2: Overview of 10 input circuits from RevLib [25].

Benchmark | Inputs Outputs
in0 15 11
apex2 39 3
spla 16 46
pdc 16 40
misex3 14 14
tial 14 8
apex4 9 19
cps 24 109
apex5 117 88
seq 41 35

We evaluate the path-based computing systems by building a
complete architectural model with crossbars, peripheral circuitry,
and buses for inter-crossbar connections. Most properties of each
circuit component in terms of power, area, and latency are obtained
from [17, 22]. The power consumption for the bus, crossbar, buffers,
and inverters are 13mW, 0.3mW, 0.109uW, and 0.218uW. The area
for the respective components are 0.2ym?, 15.7mm?, 6mm?, and
12mm?. The latency for the respective components are 15ns, 100ns,
3.29ps, and 1.6425ps. The power and area are obtained from the
architecture level model. The latency for PATH is proportional to
the length of the critical path among the crossbar inter-connections.

We compare PATH with the state-of-the-art paradigms for FLOW
and MAGIC paradigms, i.e., COMPACT [22] and CONTRA [4]. The
results for the paradigms are obtained using the same circuit level
parameters using the models in [4, 22]. We have obtained both
tools from GitHub. For COMPACT and CONTRA, we use 0.39n]
and 50.88ns for the write energy and latency, respectively [20].

In Section 6.1, we evaluate the proposed path-based in-memory
computing paradigm and the effectiveness of the PATH framework.
In Section 6.2, we compare the PATH framework with state-of-the-
art in-memory computing paradigms.

6.1 Evaluation of the PATH framework

In this section, we evaluate the path-based paradigm and the effec-
tiveness of the PATH framework.

!https://github.com/sventhijssen/path

1133

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Table 3: BDD, graph, and crossbar design properties without
dimensional constraints.

BDD Graph Crossbar design
Benchmark | Nodes Edges | Nodes Edges | Rows Columns

(hum) (num) | (num) (num) | (num) (num)
in0 385 766 384 680 384 680
apex2 567 1130 566 1042 566 1042
spla 594 1184 593 864 593 864
pdc 621 1238 620 887 620 887
misex3 674 1344 673 1094 673 1094
tial 897 1790 896 1717 896 1717
apex4 990 1976 989 1874 990 1874
cps 1080 2156 1079 1633 1080 1633
apex5 1259 2514 1258 2387 1259 2387
seq 1302 2600 1301 2041 1301 2041
Norm. 1.00 1.00 1.00 0.85 1.00 0.85

First, we evaluate mapping Boolean functions ¢ to crossbar de-
signs without constraints on the dimensions. In Table 3, the columns
are labeled with the number of nodes and edges in the BDD, the
number of nodes and edges in the pre-processed graph G, and
the number of rows and columns in the resulting crossbars. The
synthesis time is less than 3 seconds for all the circuits. It can be
observed that the graph has one less node and fewer edges than
the BDD. This is the result of removing the zero terminal node and
the adjacent edges. There is a one-to-one correlation between the
number of nodes and edges in the graph and the dimensions of
the crossbar design. A graph with |V| edges and |E| nodes results
in a crossbar with dimensions of |V |x|E|. This allows the crossbar
partitioning to easily handle the crossbar dimension constraints.
The crossbar partitioning is necessary as it is not expected that we
will be able to fabricate crossbars of dimension 1258x2387.

Table 4: Evaluation of PATH using crossbars with dimension
of DxD = 128x128.

Crossbars Inter- Critical Power Latency Area

Benchmarks connections path
(num) (num) (num) (mW) (us) (mm?)
in0 7 426 5 35.0 1.03 34.52
apex2 9 763 9 37.6 1.82 39.90
spla 9 732 9 37.6 1.82 39.90
pdc 9 728 9 37.6 1.82 39.90
misex3 10 785 10 38.9 2.02 42.58
tial 17 1335 15 47.9 3.02 61.40
apex4 18 1628 18 49.2 3.62 64.09
cps 16 1508 16 46.7 3.22 58.71
apex5 23 1805 22 55.7 4.42 77.53
seq 20 1884 20 51.8 4.02 69.47

Next, we evaluate the effectiveness of the PATH framework to
map the input Boolean functions ¢ to crossbars with dimensions of
128x128. In Table 4, we show the number of crossbars, the number
of inter-crossbar connections, the number of crossbars connected
in series. We also show the performance in terms of power, latency
and area. We observe that PATH is able to successfully meet the
hardware constraints for all of the designs. This demonstrates the
high fidelity of the PATH framework. The synthesis time is one
hour for all the circuits. The runtime is dominated by solving the
ILP formulation. Remember we query the best feasible solution
after one hour. The structure of the ILP formulation ensures that
a feasible solution of reasonable good quality always exists (less
than 10% duality gap).

DAC ’22, July 10-14, 2022, San Francisco, CA, USA

Now we evaluate the sensitivity of the crossbar dimensions on
the circuit seq in Figure 5. We observe that the total number of
crossbars and the number of inter-crossbar connections are reduced
when the crossbar dimensions are scaled up in (a) and (b) of Figure 5.
We evaluate the performance in terms of power consumption and
latency. As expected, the power and latency have improved due to
the fewer crossbars and fewer interconnections. For D = 1024, the
power consumption slightly increases due to underutilization.

25 ~ 2000
20 2
) 2, % S 1500
g E1s 5 &
2 3 2 & 1000
g 210 g =
3 o s 8
Z 8 g Z g 50
2
k|
0 0
128 256 512 1024 128 256 512 1024
Crossbar dimension D Crossbar dimension D
(a) Crossbars (b) Interconnections
60.00 5.00
~50.00 \‘*__A .00
40.00 =
g 3.00
= >
~, 30.00 [9)
5] g 2.00
& 20.00 z
A 10.00 — 1.00
0.00 0.00
128 266 512 1024 128 256 512 1024

Crossbar dimension D

(d) Latency

Crossbar dimension D
(c) Power consumption

Figure 5: Number of crossbars, interconnections, power con-
sumption, and latency for increasing dimension D.

6.2 Comparison with state-of-the-art
in-memory computing paradigms

In this section, we compare PATH with CONTRA [4], the state-of-

the-art framework for MAGIC-based in-memory computing, and

with COMPACT [22], the state-of-the-art framework for FLOW-

based in-memory computing. No comparison has been made with

IMPLY [11], considering MAGIC outperforms IMPLY [21].

In Figure 6, the normalized energy consumption and latency are
given for PATH, COMPACT, and CONTRA. Compared with PATH,
COMPACT results in 4.7X higher energy and 8.5X longer latency.
The advantageous performance mainly stems from that COMPACT
is a flow-based computing framework where the devices are contin-
uously switched for each evaluation, resulting in many expensive
(in terms of energy and latency) WRITE operations. Compared with
PATH, we observe that CONTRA consumes 18.12X higher energy
and is 85.69X slower. Similarly to previous argument, CONTRA
is much less energy-efficient and slower than PATH due to the
large number of write operations. The path-based paradigm only
utilizes WRITE operations in the compile phase. The cost of these
operations is amortized across multiple evaluations.

7 SUMMARY AND FUTURE WORK

We have introduced a new READ-based in-memory computing
paradigm, called path-based computing by leveraging access tran-
sistors to perform logic. We have introduced the PATH framework
to automatically synthesize Boolean circuits into multiple crossbar
partitions for path-based computing. Finally, we have demonstrated

1134

Sven Thijssen, Sumit Kumar Jha, and Rickard Ewetz

that the paradigm is orders of magnitude faster and more energy-
efficient than state-of-the-art in-memory computing paradigms.

B PATH % COMPACT [22] B CONTRA [4]

100
o)
S
= 10
£
= 1
o
z 0

Energy

Latency

Figure 6: Comparison of the energy consumption and la-
tency for PATH, COMPACT, and CONTRA.

REFERENCES

[1] [n.d.]. CPLEX optimizer. https://www.ibm.com/analytics/cplex-optimizer

[2] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive random access memory
(ReRAM) based on metal oxides. Proc. IEEE 98, 12 (2010), 2237-2251.

[3] John Backus. 1978. Can programming be liberated from the von Neumann style?

CACM 21, 8 (1978), 613-641.

Debjyoti Bhattacharjee et al. 2020. CONTRA: area-constrained technology map-

ping framework for memristive memory processing unit. In ICCAD’20. 1-9.

Alexandros Bousdekis et al. 2021. A Review of Data-Driven Decision-Making

Methods for Industry 4.0 Maintenance Applications. Electronics 10, 7 (2021), 828.

Karl S Brace, Richard L Rudell, and Randal E Bryant. 1990. Efficient implementa-

tion of a BDD package. In DAC’90. IEEE, 40-45.

Geoffrey W Burr et al. 2010. Phase change memory technology. JVST B 28, 2

(2010), 223-262.

Miao Hu et al. 2018. Memristor-based analog computation and neural network

classification with a dot product engine. Advanced Materials 30, 9 (2018), 1705914.

Yiming Huai et al. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges

and prospects. AAPPS bulletin 18, 6 (2008), 33-40.

Shahar Kvatinsky et al. 2014. MAGIC—Memristor-aided logic. IEEE TCAS-II 61,

11 (2014), 895-899.

Eero Lehtonen, Jussi Poikonen, and Mika Laiho. 2012. Implication logic synthesis

methods for memristors. In ISCAS’12. IEEE, 2441-2444.

Shin-ichi Minato et al. 1990. Shared binary decision diagram with attributed

edges for efficient Boolean function manipulation. In DAC’90. IEEE, 52-57.

Mehdi Mohammadi et al. 2018. Deep learning for IoT big data and streaming

analytics: A survey. COMST 20, 4 (2018), 2923-2960.

Giacomo Pedretti et al. 2020. A spiking recurrent neural network with phase-

change memory neurons and synapses for the accelerated solution of constraint

satisfaction problems. JXCDC 6, 1 (2020), 89-97.

Alexander Pisarev et al. 2021. Fabrication technology and electrophysical prop-

erties of a composite memristor-diode crossbar used as a basis for hardware

implementation of a biomorphic neuroprocessor. Microelectronic Engineering 236

(2021), 111471.

David Reinsel-John Gantz-John Rydning. 2018. The digitization of the world

from edge to core. Framingham: International Data Corporation (2018), 16.

Ali Shafiee et al. 2016. ISAAC: A convolutional neural network accelerator with

in-situ analog arithmetic in crossbars. ACM SIGARCH 44, 3 (2016), 14-26.

Saeideh Shirinzadeh, Mathias Soeken, and Rolf Drechsler. 2016. Multi-objective

BDD optimization for RRAM circuit design. In IEEE DDECS 2016. 1-6.

Fabio Somenzi. 2012. CUDD: CU decision diagram package-release 2.4. 0. Uni-

versity of Colorado at Boulder (2012).

Linghao Song et al. 2017. Pipelayer: A pipelined reram-based accelerator for

deep learning. In HPCA. IEEE, 541-552.

Phrangboklang Lyngton Thangkhiew, Rahul Gharpinde, and Kamalika Datta.

2018. Efficient mapping of Boolean functions to memristor crossbar using MAGIC

NOR gates. TCAS-I 65, 8 (2018), 2466—2476.

Sven Thijssen et al. 2021. COMPACT: Flow-Based Computing on Nanoscale

Crossbars with Minimal Semiperimeter. In DATE. IEEE, 232-237.

Alvaro Velasquez and Sumit Jha. 2015. Automated synthesis of crossbars for

nanoscale computing using formal methods. In NANOARCH 15. IEEE, 130-136.

Miao Wang et al. 2015. A selector device based on graphene—-oxide heterostruc-

tures for memristor crossbar applications. Appl. Phys. A 120, 2 (2015), 403-407.

Robert Wille et al. 2008. RevLib: An online resource for reversible functions and

reversible circuits. In ISMVL’08. IEEE, 220-225.

Cong Xu et al. 2015. Overcoming the challenges of crossbar resistive memory

architectures. In HPCA’15. IEEE, 476-488.

Linlin Zhao et al. 2020. Advancing computer-aided drug discovery (CADD) by big

data and data-driven machine learning modeling. Drug discovery today (2020).

[4]
[5]
[6]
[7]
(8]
[9]
(10]
(11]
(12]
(13]

(14]

(15]

[16

(17

[18

(19]

IS
=

[21

[22]

(23]

	Go to Previous View
	Search
	Print

