L) . . :
e Estimating Yarn Length for Machine-Knitted Structures
Gabrielle Ohlson

Angelica M. Bonilla Fominaya Kavya Puthuveetil*

abonilla@andrew.cmu.edu

gohlson@andrew.cmu.edu
Carnegie Mellon University Robotics
Institute
Pittsburgh, PA, USA

Emily Amspoker
eamspoke@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

rrrrrrrr"-'""rr”rrr;
——

|r—w'ﬁ -

Fitting

1
1
1
1
1
1

Knitting program \

AN

Fabricate swatches

3 1L (diagonal,) —— >
(diagonal,)

Application

Use operation mass data
from fitting & parse
knitting program for

operation counts to
predict the mass of a
yet-to-be-made swatch

Ax = b
-——>

[2112112]x

System of linear equations

Carnegie Mellon University
Pittsburgh, PA, USA

Jenny Wang"
kavyap@andrew.cmu.edu
jennyw2@andrew.cmu.edu
Carnegie Mellon University, Robotics
Institute
Pittsburgh, PA, USA

James McCann
jmccann@cs.cmu.edu
Carnegie Mellon University, Robotics
Institute
Pittsburgh, PA, USA

Solve for operation masses

Weigh swatches

il oty

Calculate linear density to

Predict swatch masses convert from mass to length

Figure 1: Workflow for estimating yarn length using our method

ABSTRACT

We show that a linear model is sufficient to accurately estimate the
quantity of yarn that goes into a knitted item produced on an auto-
mated knitting machine. Knitted fabrics are complex structures, yet
their diverse properties arise from the arrangement of a small num-
ber of discrete, additive operations. One can estimate the masses of
each of these basic yarn additions using linear regression and, in
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turn, use these masses to estimate the overall quantity (and local
distribution) of yarn within any knitted fabric. Our proposed linear
model achieves low error on a range of fabrics and generalizes to
different yarns and stitch sizes. This paves the way for applications
where having a known yarn distribution is important for accuracy
(e.g., simulation) or cost estimation (e.g., design).
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1 INTRODUCTION

Knitted fabrics are intricate metamaterials with structural proper-
ties that differ greatly from the bulk material in their unprocessed
yarn form. Knitting can transform yarns with varying degrees of
elasticity into complex, anisotropic structures with distinct material
properties, determined by the fabric’s “stitch pattern” — a strategic
configuration of low-level yarn structures [Sanchez et al. 2023]. One
can further customize knitted fabrics by altering parameters such
as gauge, stitch size, and the yarn’s fiber composition. All knitted
fabrics are composed of a small number of basic operations, but
using different combinations and arrangements of these structures
can result in an infinite number of diverse fabrics.

Our model treats these complex structures by breaking them
into a small number of discrete features (“basic operations”) with
consistent masses. These operations include the conventional yarn
operations in machine knitting with a few additional versions to
account for local effects between adjacent operations. The basic
operation counts used by our model can be easily derived from the
low-level knitout [McCann 2017] knitting-machine programming
language. Generalization across varying linear densities and stitch
sizes is achieved through normalization and curve fitting.

In this work, we contribute the following:

(1) A set of basic operations (tuck, miss, knit, edge-knit, x-knit,
and diagonal varieties) which are sufficient to describe the
distribution of yarn in any machine-knit object (subsec-
tion 4.1).

(2) A method for estimating the masses of these basic operations
for a given knitting machine and yarn using linear regression
on a small, carefully-chosen, set of knitted samples, which
we refer to as the “basic set” (subsection 4.2, code on GitHub).

(3) An experimental validation showing that these basic oper-
ations for estimation work well to predict the yarn used
in a larger set of knits, referred to as the “validation set”
(section 5).

(4) Extensions to our method for efficient transfer of basic op-
eration masses to different yarn types and stitch settings,
requiring only to measure the yarn’s linear density or man-
ufacture one additional sample, respectively (section 6).

2 RELATED WORK

The complicated properties of knitted fabrics have motivated many
researchers to study the physical behavior of knit objects. Knitting
machines apply external forces to yarn during fabrication; accord-
ingly, a study of machine knitting operations must consider the
mechanical properties of yarn, such as bending modulus, during the
formation of knit operations. Our work proposes a linear system to
model these operations; however, prior research has demonstrated
that there are nonlinearities to consider when deforming yarn into
knitted structures.
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2.1 Mechanics of Knitted Fabrics

Knitted materials deform nonlinearly under high stress. In order to
model them, one needs an understanding of their material proper-
ties [Liu et al. 2017; Luo and Verpoest 2002; Mahadevan et al. 2022;
Park et al. 2023; Sanchez et al. 2023; Yeoman et al. 2010]. However,
under low stress, knitted fabrics exhibit linear stress-strain rela-
tionships that can be understood through their topology and stitch
composition [Cachine et al. 2023; Kageyama et al. 1988; Yamada
et al. 2003]. While knitted fabrics may behave non-linearly, we
hypothesize that the yarn distribution of fabrics can be modeled
linearly, since machine knitting is repeatable and involves only a
handful of repeated, discrete operations.

2.2 Yarn Measurement and Modeling

Numerous geometric models have been proposed to predict the
loop length of weft-knitted structures with parameters such as loop
width, loop height, yarn thickness, and fabric thickness. However,
many do not consider a loop’s interactions with its neighbors [Mo-
rooka et al. 1998; Pavko-Cuden et al. 2013,?; Peirce 1947; Vékassy
1960] or are limited to a set of stitch patterns [Arbataitis et al. 2021;
Ciukas and Sadauskas 2004]. It has been shown that fabric can be
explicitly modeled as a tiling of optimized splines for Finite Ele-
ment Analysis (FEA) simulations, but this method has not been
applied to yarn measurement [Wadekar et al. 2020]. In a review of
future directions for constitutive models of knitted fabrics, Gonza-
lez et al. highlight the importance of experimentally measuring the
bending modulus, compression modulus, and length of yarn per
stitch when determining how yarn elasticity and manufacturing
processes individually affect fabric behavior [Gonzalez et al. 2022].

3 KNITTING BACKGROUND

Before we describe how to P e N G, )
determine the distribution of : ¥ 1 y & ;
yarn in a knit object, we re- )
view the basics of machine g Z
knitting.

Knitted fabrics have a vari-
ety of structures with distinct
material properties. The way a
given fabric appears, behaves,
and responds to both internal
and external stimuli is deter-
mined by the fabric’s local ge-
ometry, which is in turn deter-
mined by the local topology of
the “ribbon knots” that form the fabric [Markande and Matsumoto
2020].

Knit stitches are self-intersecting loops of yarn, created by pulling
anew strand of yarn through a pre-existing loop (see Figure 2). The
formation of a stitch is dependent on a loop of yarn existing below
it (along the y-axis), and also the stable loops of yarn existing on
either of its sides (along the x-axis). These columns of loops along
the y-axis are referred to as “wales,” and the rows of loops along
the x-axis are known as “courses.”

Without neighboring loops, a given length of yarn is not stable.
The configuration of each knit stitch in relation to its neighbors also

.
yarn

‘} J (;p stitch

Figure 2: Knit Topology
[Narayanan et al. 2019].
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impacts the amount of yarn that goes into the overall fabric. For
example, a loop that is deformed into a curved bell-shape requires
more yarn to knit than a loop that is stretched horizontally into a
nearly straight line. Similarly, the more a loop is stretched vertically,
the more yarn it will require.

Knitting can be automated using either flat or circular machines
(so-called because of how their needles are arranged). Our model
targets industrial, flat, v-bed weft knitting machines (see subsec-
tion A.1). These are flexible machines used to manufacture knit
garments, accessories, and fabrics.

4 METHOD

The core idea of our method is to model the distribution of yarn in
a knitted object as a combination of seven basic operations, each of
which has a consistent mass throughout the object. To obtain the
total mass! of yarn in any knitted object, we sum the basic operation
counts, multiplied by the amount of yarn in each operation type:

cT

object X W = Wobject (1)

Where Copject € R7 is a column vector of operation counts, W € R’
is a column vector of basic operation masses, and wopject is the final
measured mass of the knit.

In this section, we first describe the basic operations used in our
model, and then the set of example knits we used to estimate the
masses with linear regression.

4.1 Basic Operations

We chose the basic operations used in our model to cover all the
ways a knitting machine can add yarn to a knitted object, with-
out any overlapping operations and without any operations that
always co-occur. We started with the conventional knitting oper-
ations (knit, tuck, and miss). We then considered additional yarn
formations that occur as a consequence of the locations of sub-
sequent operations. For example, yarn can connect consecutive
rows or cross between the needle beds, producing different lengths
depending on the bed location and direction of the adjacent stitches.
We attempted several categorizations of these formations to find
a small set of comprehensive “basic operations” that achieves low
error; for example, we explored distinguishing front knits from
back knits, treating connecting lengths of yarn as separate from
the surrounding stitches, and labeling operations based on their
location in the fabric. Our proposed set contains the following basic
operations (visualized in Figure 3):

(1) Knit: a new loop is pulled through an existing loop, creating
a stitch. We typically think of a front knit when looking at
a fabric, though we can also create the inverse, a back knit
(also known as a purl), by moving a loop to the other bed on
the machine so that the new loop is pulled in from behind.

(2) Edge-knit: knit operations along the edge of a row, includ-
ing the loop. We consider edge-knits as a separate operation
from knits because the carrier? turns around after these knits,
which might add or remove a different amount of yarn than
other knits.

'We adopt the textiles industry convention of using mass to talk about amounts of
yarn since mass is easy to measure with a scale and can be converted to length by
dividing by linear density.
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Figure 3: Basic operations sufficient to describe the yarn dis-
tribution in machine-knit objects.

(3) X-knit: knits along the edge of rows when changing beds in
a tubular knit. As with edge-knits, the carrier turns around,
but there might also be additional mass from yarn connecting
across the two beds.

(4) Tuck: a new loop stacked onto an existing loop or empty
needle. Unlike a knit stitch, creating a tuck is not dependent
on a loop existing below, since yarn is not pulled through.
Instead, the needle actuates to grab onto yarn and pulls down
to deform the strand into a bell-shape.

(5) Miss: the yarn carrier moves past an unactuated needle,
causing the yarn to lay straight without forming a loop.

(6) Diagonal;: yarn connects two consecutive needles on oppo-

sitebeds. Diagonal; occurs in patterns like rib. This operation

is necessary to account for variations in the amount of yarn
that goes into a set of neighboring loops, depending on their
respective bed locations.

Diagonal,: diagonals that skip over a needle when cross-

ing the bed, thus adding more yarn than a plain diagonal.

Diagonaly occurs in patterns like half-gauge rib. Additional

variations on diagonal are necessary for some larger-gauge

patterns, which we do not consider in this work.

—~
~
~

Note that knitting machines also perform operations that do not
add any yarn (e.g., transfers, racking, a-misses). We do not model
these operations, because they do not directly contribute to the
amount of yarn in a knit object.

4.2 Model Fitting

Here, we describe the computational method we use to estimate
yarn quantity with linear regression. Given a set of knit fabric
swatches and their masses, one can estimate the mass of each basic

2See A.1 for definitions of concepts related to automated v-bed knitting machines.
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1x1 rib (159x60)
--> diagonal,

Figure 4: Photographs of the seven training swatches used
in fitting our model, labeled with the operations they empha-
size.

operation by solving a least-squares (i.e., linear regression) problem:

W = argmin (Ax — b)? )
X

Where A € R™7 is a matrix with rows containing the basic op-
eration counts for each of n samples; W is the column vector of
per-operation masses (as per Equation 1); and b € R" is a column
vector of the measured masses of the knit swatches.

Given that there are seven basic operations, it is sufficient to
knit and weigh seven training fabric swatches. We designed seven
linearly independent swatches that resemble a diagonal matrix to
the extent that is possible based on knitability (i.e., all swatches must
contain knits and edge-knits), and so that each swatch highlights a
distinct basic operation.

We arrived at a set (Figure 4) consisting of a 159 X 60 swatch?
of 1x1 rib (alternating front and back knits to create diagonaly
operations); a 159 X 60 swatch of half-gauge 1x1 rib (alternating
front and back knits, skipping even needles to create diagonaly
operations); an 18 X 530 swatch of jersey (all front knits; narrow to
emphasize edge-knit); a 159 X 60 swatch of jersey (all front knits;
more rectangular to emphasize knit); a 159x60 swatch of half-gauge
jersey (all front knits, skipping even needles; emphasizes miss); a
159 X 60 swatch of tuck-stitch (a checkerboard of tucks and knits,
with knits in the first and last wale for stability; emphasizes tuck);
and a 9 X 1060 jersey tube (alternating rows of front and back knits
forming a tube; narrow width to emphasize x-knit).

d; ds edge-knit knit miss tuck  x-knit
9480 0 118 9422 0 0 0 (a)
0 4740 118 4682 0 0 (b)
0 0 1058 8482 0 0 0 (c)
A=10 0 118 9422 0 0 0 | @
0 0 118 4682 4740 0 0 (e)
0 0 118 4712 0 4710 0 o
0 0 0 14842 0 0 21191 (g)

Matrix of operation counts for basic swatch set:
(a) 1x1rib (159%60), (b) half-gauge 1x1 rib (159X 60), (c) jersey

3Swatch dimensions are given in needles by rows. Thus, a 159-needle-wide half-gauge
swatch will only contain 80 columns of stitches, because half-guage skips alternate
needles.
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(18 X 530), (d) jersey (159 X 60), (e) half-gauge jersey (159 X 60),
(f) tuck-stitch (159 x 60), (g) jersey tube (9 x 1060)

5 RESULTS

We tested our method by producing the basic sample set described
above and a large collection of validation swatches.

The code for each swatch was written in knitout [McCann 2017],
which we generated in Python with some helper functions and
the knitout-frontend-py [Narayanan and McCann 2019] library.
Operation counts were computed with a helper program. We used
a Shima Seiki SWG-091N2 15 gauge industrial knitting machine
to knit the swatches. Unless otherwise mentioned, samples were
knit in Tamm Petite Medium Camel (T4221) 2/30 nm acrylic yarn;
and with the machine-default stitch value* of 30 and leading value
of 25. Yarn was supplied via one of the machine’s i-DSCS+DTC
automatic yarn feeders set to “medium” tension control (7g of
tension). We weighed our swatches using a shielded lab scale (Four
E’s Scientific), with a maximum mass rating of 500g and claimed an
error of less than 0.001g. We knitted swatches in batches, separated
by waste yarn and draw threads. This was both more convenient
when knitting many samples (since the machine did not need to be
re-started for every swatch) and avoided any measurement errors
from cast-on or bind-off patterns.

Table 1: Basic operation masses as fit from 21 swatches —
three instances each of the seven basic swatches described in
subsection 4.2. Note that the mass used for each swatch was
the average of three weighings.

Operation  d; dy  edge-knit knit miss tuck x-knit

Mass (mg) 0.10 0.17 0.49 039 0.14 041 0.84

5.1 Operation Masses

To reduce variance in our training owing to potential variability
in yarn density, machine operation, and scale behavior, we chose
to knit each training swatch three times and used the average of
three weighings as the mass of each swatch.

Performing a linear regression resulted in the estimated basic
operation masses reported in Table 1. These masses seem intuitively
reasonable — knit (0.39mg) and tuck (0.41mg) use about the same
amount of yarn; edge-knit (0.49mg) and x-knit (0.84mg) add more
yarn because they cross between rows and between beds, respec-
tively; and the diagonals and miss (0.10mg, 0.17mg, and 0.14mg)
use less yarn because they don’t form loops. Of course, the true test
of these masses is in their predictive power, which we explore next.

5.2 Validation

We produced a validation set of 55 swatches that vary in dimensions,
gauge, and pattern (subsection A.2, subsection A.3). This swatch set
includes samples ranging in size from 150 X 20 to 400 X 520 needles
by rows, knitted in jersey, garter, rib, tuck, and seed patterns, as
4Stitch and leading values are in opaque, machine-dependent units that influence the
shape of the needle path when making stitches. The stitch value controls how much

yarn is pulled into the stitch, while the leading value controls how the already-held
loop is deformed when making the stitch, and is chosen to promote stable knitting.
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Validation Error

% MAE

half-gauge jersey (40x240)

single-gauge jer:

single-g

half-ga
single-gau

1x1 garter with
21

swatch

Figure 5: Difference between the predicted and measured
masses of swatches in the validation set, as a percentage of
measured mass.

well as some combinations of multiple patterns. We produced both
single-bed and tubular versions of these samples where possible.

We used the operation masses computed from our training
swatches to predict the masses of these swatches (Figure 5). The
model achieves 5% or less error in all but four swatches (which have
approximately 10% error).

As an additional check, we trained our model on just the valida-
tion set as well as the validation set along with our basic swatch
set. The results for these sets were similar to the training swatches,
with the largest deviation being about 20% difference in x-knit.
(The validation set gives — in the same order as Table 1 - 0.10mg,
0.18mg, 0.14mg, 0.39mg, 0.14mg, 0.38mg, and 1.10mg for the oper-
ation masses; while training on both sets together gives 0.10mg,
0.18mg; 0.25mg; 0.39mg; 0.14mg; 0.38mg, and 0.86mg.)

6 EXTENSIONS

We were interested in understanding how our model generalized
to different stitch values and yarn types and how we might expect
it to perform on different machines. This section explores these
extensions.

6.1 Curve Fitting for Varied Stitch Sizes

All swatches in our initial training and validation sets were knit
with a stitch size of 30 (opaque machine units®). However, many
different stitch sizes can be used within a single knit item, so it
would be useful to be able to predict yarn usage for different stitch
values.

Intuitively, the tuck, knit, edge-knit, and x-knit operations are all
created by pulling yarn with a needle through a distance dictated by
stitch size, so they should vary linearly with stitch size (at least with
an ideal yarn); while the remaining operations — miss, diagonalj,
and diagonaly, relate to the space between needles, so should not
change.

SCorresponding to the amount a stepper motor modifies a cam path on the carriage;
and, thus, to how far a needle pulls the loop down when making a stitch.
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To test this idea, we knitted three instances of each of the seven
training swatches at stitch sizes (25, 30, 33, 34, 35, 40) and fit opera-
tion masses independently for each stitch size (Figure 6).

There are likely boundary points and nonlinearities to consider
in stitch size fitting functions - the size of a loop is limited by the
needle dimensions, so some stitch sizes are “un-knitable,” and the
curve might behave increasingly nonlinearly as it approaches these
limits. And, of course, our test yarns are not ideal, zero-bending-
resistance, inextensible, zero-radius yarns. But within the regime
of stitch sizes that knit without errors, it appears that response to
stitch size changes is close to linear.

Table 2: Percent MAE when Generalizing to Stitch Size with
Linear Fit Functions

Stitch Size  All dependent features Only knit Jersey (159 X 60) sample

25 3.758 + 3.434% 4.377 £ 3.124% 3.963 + 2.595%
33 3.154 + 1.642% 2.561 = 1.693% 2.058 £ 1.051%
34 6.576 + 4.560% 6.312 +4.192% 5.420 + 3.273%
35 5.088 + 3.703% 4.262 + 3.842% 3.895 + 3.058%
40 5.809 + 5.985% 5.566 + 5.548% 5.837 + 6.486%

6.1.1 Results. In Table 2, we compare the results when the model
is trained using the full data set for a given stitch size, when the
model is trained on the data for our main stitch size (30) as we
interpolate the coefficients of the stitch-size-dependent features
based on their respective fitting function, and when we instead
curve fit to a single sample to interpolate these varying features.
The curve fits are visualized in Figure 6.

We find that the estimated functions fit the knit and tuck data
best, with an R? value of 0.928 for the linear function fitted to knit
data and 0.816 for tuck. The polynomials were nearly linear and had
only marginally improved R? values of 0.962 and 0.834, respectively.
The estimations for edge-knit and x-knit contain more outliers that
did not increase with stitch size, but we are able to find fitting
functions for these features when including only inliers.

The linear fit function is formulated as follows: f(x,s) = x(a -
s + b) where x is the feature mass for the main stitch size, and s is
the step size from the main stitch size.

Curve Fits for Stitch-Size-Dependent Feature Data
steps from main stitch size
o 06 08

= feature weight for stitch size 30, + := step from stitch size 30
ames data

___ Jersey (159x60): /
L

ERNEES a0
stitch size

Figure 6: Stitch size fit function for jersey sample knitted in
each stitch size, as well as knit, tuck, edge-knit (excluding
outliers), and x-knit (excluding outliers) operations when
training the model on the basic swatch set in each stitch size.
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For knit, we find that @ = 0.122 and b = 0.989, with fairly
similar coefficient values in the linear fit functions for the other
features. This finding led us to suspect that the linear fit function
for knit could accurately represent the change in the other stitch-
size dependent features as well, with benefits provided from the
model’s tendency to fit knit better than the other features and the
need for only a couple training samples when fitting one feature.
Accordingly, we find that the errors are comparable when fitting
only to knit as with all dependent features (with reduced error for
all stitch sizes except 25), as demonstrated in Table 2.

Furthermore, we achieved even lower errors for all stitch sizes
except 40 by fitting to a single sample: jersey (159 X 60). As this
sample contains mostly knits (along with some edge-knits), it pri-
marily represents the knit feature and can emulate the trend in knit
operation mass with increasing stitch size. Thus, we can achieve
satisfactory results when generalizing to new stitch sizes by knit-
ting only one sample per stitch size, in addition to the batch of
seven swatches in the main stitch size.

Figure 7: One instance of the half-gauge rib swatch from the
Tamm Petit acrylic, Winning rayon, and Yeoman Elastomeric
yarn training sets. The rayon swatch appears looser because
of the lower bending stiffness of the thin rayon yarn. The
elastomeric sample is smaller because the yarn stretches
under the tension of knitting and contracts once released
from the needles.

6.2 Generalizing to Different Yarns

Our model predicts the overall mass of a knit object by adding
together the masses of the basic operations. We wanted to test if it
could be transferred to different yarns by scaling the basic operation
masses by the ratio of the linear densities of the yarns. (In effect,
translating from masses of the yarn the model was fit on, to lengths,
and back to masses of the new yarn.) We weigh a yarn strand
of known length to calculate the linear density of a given yarn
(taking the average of multiple measurements to reduce the impact
of noise). Using this approach, we can represent yarn quantity at
the swatch and operation levels as a mass directly correlated to the
linear density of the yarn.

To see if this method of transferring the model would work, we
knit a complete basic swatch set in Winning brand rayon yarn (2/30
ne: two plies of 30 yarn count filament, in 840 yds/Ib units) and in
Yeoman’s elastomeric yarn (19% Lycra, 81% nylon, yarn count not
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given). A side-by-side comparison of equivalent samples is shown
in Figure 7.

We measured the linear density of the Tamm Petit acrylic yarn
used in our initial sample set as 7.2 x 10~ g/cm.°

Re-scaling the operation masses from our main model using
the linear density of the rayon yarn (measured value: 4.1 x 1074
g/cm; 57% of the acrylic’s linear density) results in good agreement
with a direct fit to the rayon sample set (Table 3), with differences
around 5%. The low error we achieved on the rayon set suggests
that the model could transfer well to other mechanically-similar
yarns (even of different radii and material), though more data is
needed to validate this hypothesis.

Table 3: Rayon operation masses. Operation masses for rayon
yarn estimated by re-scaling the masses from acrylic yarn is
in good agreement with fitting directly to a set of knit rayon
samples.

Training method dy dy  edge-knit knit miss tuck x-knit

Re-scaled from acrylic (mg) 0.05 0.09 0.27 0.21 0.08 0.22 046
Fit to rayon samples (mg)  0.05 0.10 0.29 0.23  0.08 0.22 048

On the other hand, re-scaling using the linear density of the
elastomeric yarn in its relaxed state (measured: 6.3x10™* g/cm, 87%
of the acrylic’s linear density) deviates quite a bit from the model fit
to the elastomeric sample set. This high error is unsurprising. The
yarn is under tension when knitting on the machine, so the linear
density we measured was likely much too large for the (stretched)
yarn in the sample. These findings support the assumption that the
crucial length we want to consider when estimating the quantity
of yarn in a knitted structure is that of the yarn under tension.

Table 4: Elastomeric operation masses. Operation masses for
elastomeric yarn estimated by re-scaling masses from acrylic
yarn do not agree with those fitting directly to a set of knit
elastomeric samples. Accounting for stretch improves the
agreement.

Training method d;  dy edge-knit knit miss tuck x-knit

Re-scaled from acrylic (mg) 0.08 0.15 0.41 033 0.12 035 0.70
Re-scaled from acrylic with 36% LD (mg) 0.03 0.05 0.15 0.12 004 012 0.25
Fit to elastomeric samples (mg) 0.03  0.06 0.03 0.12  0.05 0.12 030

One interesting thing we can do, however, is to use the discrep-
ancy between the scaled model and the model fit to the knit samples
of elastomeric to approximate the axial strain in the yarn under
the force of the machine when knitting. To do so, we iteratively
increment the percentage of the elastomeric yarn’s relaxed linear
density to use for re-scaling and take the value that achieves the
best agreement with the directly-fit model as our estimate for the
yarn’s linear density under tension. In this case, we found that 36%
of the relaxed density (i.e., a 2.8x elongation of the yarn) resulted
in the best fit, with an estimated linear density under tension of
2.3 10~* g/cm. This is in rough agreement with an ad-hoc stretch
estimate made by measuring the yarn between the yarn feeder and

®This differs slightly from the density implied by the “2/30 nm” yarn count - 6.7 X 10~4
g/cm - a pattern we saw repeated for all of our yarns.
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the yarn carrier on the machine, then cutting the yarn off of the
machine and allowing it to relax’. This suggests that some basic
tensile testing might allow the transfer of model parameters even
to elastic yarns.

Error of Simulated Knitting Experiments

4000 1 d1

d2

3000 4 —— edge-knit
— knit
—— miss
2000 4 — tuck
x-knit

1000 q

: e

-40 -20 0 20 40
Relative Operation Error (%)
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Figure 8: Histogram of the relative error in operation masses
in simulated experiments following our fitting procedure.
Generally, we would expect our procedure to fit the basic
operation masses within 10% of the true value.

6.3 Simulated Data and Evaluating Noise

We wished to understand if our method is reproducible, or if, per-
haps, we had simply been lucky in our particular measurements.
To answer this question, we performed simulated experiments with
machine and measurement noise levels matching those we observed
and basic operations with masses within 10% of our mean measure-
ments. We then ran 10000 iterations of this simulation. In each
run, the true masses of the seven basic operations were selected
independently and uniformly at random within +10% of the masses
reported in Table 1. Each simulated experiment followed our train-
ing procedure: knit each training swatch three times, weigh these
27 swatches three times each, and fit the operation masses to this
data.

We simulated knitting and yarn density variation by summing
true masses and scaling by a factor distributed normally with mean
1 and standard deviation 0.02; we simulated weighing by scaling
by a factor distributed normally with mean 1 and standard devi-
ation 0.001. (These proportional variations were estimated from
the Tamm Petit sample set we knit and measured, and - owing
to both the relatively small sample size and the estimate of the
machine deviation not accounting for scale variation — may be a
slight over-estimate, which we prefer to being overly confident.)

The histogram of relative deviations of the experimentally deter-
mined operation masses from the true masses is shown in Figure 8.
We observe that in these hypothetical runs of our experiment, most
of the basic operation masses are estimated within +10% of their
true values, with the only operation outside of that range being
edge-knit. We suspect this much higher variance for edge knit is
due to its relatively low representation in our chosen sample set.
(By mass, the whole sample set contains 0.81g of edge knits, while
it contains 22g of knit [27X more!] — the best-estimated overall.)
"We measured a 78 cm length of yarn under tension, which relaxed to a length of 36 cm.
The strand of yarn weighed 0.015 g, corresponding to a linear density under tension
of 1.9 X 107 g/cm and a stretch of 46%. Since we could only measure a small length of
yarn when threaded on the machine, we suspect that this ad-hoc measurement is much
noisier than the other linear densities we calculated - for which we took multiple

measurements of long strands of yarn to reduce noise. Future work may improve
measurement accuracy using a simple tension meter or tensile testing machines.
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This simulation gives us some confidence that others applying
our procedure, at least on knitting machines with similar repeata-
bility, will likely succeed in estimating the operation masses.

Table 5: Noise from swatch repeatability as percent deviation
for basic set in main stitch size, 30, sorted in descending
order.

Swatch name (needles X rows) Percent deviation

jersey (18 x 530) 3.394%
jersey (159 x 60) 2.021%
half-gauge jersey (159 X 60) 1.94%

tuck-stitch (159 X 60) 1.606%

1% 1 1ib (159 X 60) 1.521%
jersey tube (9 X 1060) 1.257%
half-gauge 1 X 1 rib (159 X 60) 0.436%

7 DISCUSSION

In our work, we demonstrate that linear regression can model addi-
tive yarn operations in knitted swatches. Though our proposed set
of basic swatches use conventional stitch patterns®, our basic oper-
ations can represent the infinite number of patterns that knitting
machine programmers may come up with. Our method is simple
and effective, but we think some interesting further explorations
remain.

Basic operations and swatches. We chose our basic operations
as a simple and intuitive set, but we did not exhaustively consider
alternatives. Notably, we found that some of our initial attempts at
a set of basic operations led to very poor model performance (often
when certain operations weighed less than 0.1 mg or were nearly
linearly-dependent). A potential avenue for future work would be
to stochastically or exhaustively explore possible choices of basic
operations and training swatches. A series of virtual experiments,
along the lines of what we explored in the extensions, might form
a good basis for such an exploration.

Since the process of shaping fabrics primarily involves non-
additive operations, such as loop transfers, we hypothesize that
our method will transfer to non-rectangular fabrics. However, we
neglected some additive yarn operations that can occur in shaped
fabrics, like the ‘split’ operation, knitting through stacks of loops,
and tuck-and-turns at the end of short row knitting. It would be in-
teresting to discover if they require adding new basic operations or
if they are close enough to some (combination of) basic operations
to not require more training examples.

Sources of error. One possible source of systematic error in our
results is variations in yarn density between different cones of the
same yarn — such that basic operations that use the same length of
the yarn would vary in mass. Throughout our swatch knitting, we
pulled lengths of yarn (1 to 3m) from the cones we were using and
computed their linear density, observing it to generally be relatively

8Beyond the favorable matrix properties that we get from our basic set of swatches
(as demonstrated in Figure ??), using well-known stitch patterns further enables our
method’s repeatability and ease of comprehension.
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uniform®. However, this may not be the case for all yarns. It would
be worthwhile to investigate if measuring the linear density of a
small piece of yarn before every knit job and using it to correct for
any variation would improve our model’s predictions.

Future work may consider using higher-precision scales or more
uniform yarn to help isolate other potential sources of error to
further improve the modeling.

Alternative approaches. It is natural to ask whether a more so-
phisticated fitting procedure would yield better results. We explored
two such directions: non-negative linear regression — which helped
regularize the masses of some initial basic operations, but ended up
unnecessary for the swatch set we arrived at; and convex optimiza-
tion with constraints based on needle geometry and the triangle
inequality — which provided very little improvement (reducing the
error by less than 1%) for the complexity they added.

In Figure 9, we evaluate the three models’ comparative perfor-
mances on randomly selected training sets. Adding non-negativity
constraints appears to improve performance with small training
sets, and constrained convex optimization may help reduce the
impact of outliers and overfitting. The advantages to adding con-
straints become less significant as the size of the training set in-
creases, demonstrating that simply using a substantial amount of
training data can achieve high performance, even with swatches
that are not strategically selected.

Yarn varieties. Future work may incorporate additional yarn va-
rieties, possibly with extensions to our model that consider the
given fiber’s material properties beyond linear density. In partic-
ular, interesting insights could be gained about the behavior of
elastomeric yarn and a comparison of synthetic, plant-based, and
animal-based fibers.

Application integrations. Given that one of our motivations for
this work was to obtain better length measurements for yarn simu-
lations (e.g., [Kaldor et al. 2008; Pizana et al. 2020; Sperl et al. 2022]),
a particularly promising avenue for future work would be to use
our model to initialize such simulations.

Similarly, adding yarn quantity estimation to a commercial knit
design package and/or the open-source knitout toolchain would be
useful.

8 CONCLUSION

In this work, we propose a simple method that can predict the
amount of yarn necessary to produce an arbitrary knitted pattern
with less than 5% mean absolute error. The method generalizes
across arrangements of yarn operations, dimensions, swatches,
stitch sizes, and yarns of various linear densities. In addition, we
present a small calibration set that practitioners can use to re-fit our
model for other settings. We believe that our estimates of the distri-
bution of yarn within a knit item, when used to initialize yarn-level
fabric simulation, can enable efficient computational fabrication of
complex, customized structures and further the understanding of
the mechanical properties embodied by these fascinating metama-
terials.

For our main yarn, Tamm Petite Medium Camel (T4221) 2/30 nm, linear density
ranged from approximately 7.0 X 107% to 7.6 X 10~* g/cm when using strands of yarn
taken from different cones and at different points throughout the cone’s use.

Ohlson et al.
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A APPENDIX
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Figure 9: Comparing % MSE over 100 randomly selected train-
ing sets of size n using different modeling approaches.

A.1 Machine Knitting

To operate, automated v-bed knitting machines move a mechanism
called a carriage across two perpendicular, flat beds of needles. The
carriage contains cams that actuate a needle based on the operation
that the machine is programmed to perform at a given time. The
needles are composed of a shaft that stores loops and a hook that
grabs onto new yarn. Depending on the machine model, either a
sliding mechanism or a latch might be used to intersect new yarn
with existing loops. During knitting, feeders spool yarn off of a cone,
and carriers transport the yarn across the bed to the needle as it is
actuated, laying the strand of yarn over the needle’s hook.

A.2 Stitch Patterns

A stitch pattern is a set of knitting operations that repeats through-
out a given fabric. Since a stitch pattern is defined by the combina-
tion of yarn operations used in a fabric until the pattern repeats,
the set of knit-able stitch patterns is theoretically infinite in size.

In this work, we chose to focus on some of the most common
stitch patterns:

(1) Jersey: Also known as plain knit or stockinette, jersey is
fabricated using only the knit and edge-knit operations. It
therefore consists of either all front knits or all back knits,
the only difference being the perspective of view.

(2) Garter: Defined by the alternation between rows of front
and back knits. Garter tends to be stretchier in the vertical
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Figure 10: Jersey Figure 11: Garter Figure 12: Rib

Figure 14: Tuck  Figure 15: Tube

Figure 13: Seed

Knitout Visualizations

wale-direction, since the alternation between front and back
knits occurs by row.

(3) Rib: To fabricate rib, the alternation between front and back
knits occurs from needle-to-needle in a given row. Thus, rib
tends to be stretchier in the horizontal course-direction.

(4) Seed: Production of this pattern involves alternating front

and back knit both within and between rows, resulting in

raised, seed-like bumps.

Tuck-stitch: The tuck-stitch pattern is created by alternat-

ing between knits and tucks on every other needle, switching

which operation is performed on odd versus even needles
between rows.

(6) Tube: Any of the above patterns can be knitted into a tubular
structure by knitting between beds on a knitting machine,
as opposed to a single-bed approach.

5

=

A.3 Variations in Fabrics

A.3.1  Gauge. Though a knitting machine’s gauge is typically fixed,
we can multiply the gauge by an integer factor by leaving some
needles empty throughout the piece. We knitted some samples in
“half-gauge,” meaning only every other needle is in use—doubling
the gauge. We can also think of half-gauging as alternating between
knits and misses, so this method adds more degrees of freedom to
our system of equations.

A.3.2  Stitch Pattern Varieties. Within a single category of stitch
patterns, there often exist numerous variations. For example, one
might vary the ratio of rows composed of front (f) and back (b)
knits, to make f X b garter (e.g., one row of front knits for every
two rows of back knits would be 1 X 2 garter).
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