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Figure 1: uKnit is a scarf-like reconfgurable wearable which can recognize its current body location placement and perform a 
variety of gesture recognition and sensing tasks. 

ABSTRACT 
A scarf is inherently reconfgurable: wearers often use it as a neck 
wrap, a shawl, a headband, a wristband, and more. We developed 
uKnit, a scarf-like soft sensor with scarf-like reconfgurability, built 
with machine knitting and electrical impedance tomography sens-
ing. Soft wearable devices are comfortable and thus attractive for 
many human-computer interaction scenarios. While prior work 
has demonstrated various soft wearable capabilities, each capability 
is device- and location-specifc, being incapable of meeting users’ 
various needs with a single device. In contrast, uKnit explores the 
possibility of one-soft-wearable-for-all. We describe the fabrication 
and sensing principles behind uKnit, demonstrate several exam-
ple applications, and evaluate it with 10-participant user studies 
and a washability test. uKnit achieves 88.0%/78.2% accuracy for 5-
class worn-location detection and 80.4%/75.4% accuracy for 7-class 
gesture recognition with a per-user/universal model. Moreover, it 
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identifes respiratory rate with an error rate of 1.25 bpm and detects 
binary sitting postures with an average accuracy of 86.2%. 
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1 INTRODUCTION 
Our clothes are soft, comfortable, and familiar to us. Thus, textile-
based soft wearables also feel natural, seamless, and are widely 
popular (e.g., [56]). This familiarity and seamlessness aford con-
tinuous, always-on interactions and, over the years, researchers 
have proposed many diferent form factors (e.g., [23, 31, 35, 41, 76]). 
These devices can sense gestures, postures, and health outcomes, 
while remaining soft and comfortable. One challenge remains that 
most soft wearables are rigid in their form-factor and utility. A 
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Figure 2: The uKnit includes a machine-knitted sensor using resistive yarn, sensed via electrodes attached to the borders of the 
resistive patches (gray) using EIT, and signal conditioning and modeling which run on a laptop that interprets the EIT data to 
detect the sensor location, recognize gestures, and does passive sensing. 

glove (e.g., [70]) can only be efectively used when worn on hands. 
Similarly, a smart sock has limited utility when the user wears shoes. 
Given the wearables’ potential, there is a need for soft wearables 
that can deform and adapt to the user’s context and requirements. 
A user should be able to customize their wearables and reconfgure 
them to their exact use case. This idea of customizable wearables 
is not new. Jarusariboonchai and Häkkilä [21] studied the space 
of commercial wearables that aford some form of customizability. 
Similarly, Seyed et al. [59] and Khurana et al. [30] have explored 
the reconfgurability of smartwatches. However, a reconfgurable 
wearable that is soft, comfortable, and conforms to the user’s body 
can be signifcantly more customizable than a watch, particularly 
in terms of form factors, worn locations, and interaction modalities. 
Thus, it can ofer a wide range of capabilities. 

We draw inspiration from a reconfgurable accessory: gaiter 
scarves. Gaiter scarves are multi-functional tubular scarves that 
can be wrapped, folded, and scrunched to put on diferent places 
of human bodies. These scarves are popular for outdoor activities 
where it is inconvenient or infeasible to carry many accessories, 
such as a wristband, a headband, or a balaclava. Similar scenarios 
could occur with smart accessories. 

We present uKnit, a knitted wearable that can morph into difer-
ent functional forms and aford unique spatial awareness. uKnit is 
position-aware and adapts its sensing capabilities as users wear it on 
diferent parts of the body (Figure 1). It enables sensing active ges-
tures such as touch and deformations, as well as passive respiratory 
rate and body posture monitoring. The sensor is machine-knitted 
and thus can be manufactured at scale. Knitted fabric is also light-
weight, stretchable, and breathable and thus is comfortable to wear 
for a long time. 

To achieve such a device, we used electrical impedance tomog-
raphy (EIT) as the sensing approach to capture impedance changes 
of the knitted fabric to open up the possibilities of a rich set of 
gestures with a small number of rigid components. To design and 
build models for diverse sensing tasks, we collected data from 10 
participants for each study. Our machine-learning (ML) models 
achieved 88.0 % and 78.2 % accuracy for 5-class location detection 
for a per-user and universal model, respectively. For 7-class gesture 
recognition, our models achieved 80.4 % and 75.4 % accuracy for a 
per-user and universal model, respectively. Our signal conditioning 
and modeling algorithms can also identify the user’s respiratory 

rate with an error rate of 1.25 bpm and detect if the wearer is 
slouched or sitting straight in a chair with an average accuracy of 
86.2%. Furthermore, we performed a washability test to study the 
durability of uKnit: although remained mechanically intact after 12 
washes of increasing destructiveness, it lost its electrical functional-
ity after a single mild wash. Lastly, we showed example applications 
to demonstrate uKnit’s potential as a reconfgurable wearable. The 
main contributions of this paper are: 

• a process to prototype a novel reconfgurable machine-knitted 
soft wearable sensor with spatial awareness using of-the-
shelf yarns; 

• validation of using electrical impedance tomography (EIT) 
on anisotropic knitted resistive fabric; 

• machine-learning (ML) models that show the feasibility of (a) 
on-body localization, (b) gesture recognition, and (c) passive 
sensing; and, 

• example applications and demonstrations of uKnit’s utility 
in a wearer’s daily life. 

Though this paper focuses on using uKnit as a wearable device, 
its strengths stem from a fexible, deformation- and stretch-sensitive 
fabric. The fabric could be used to make other devices of diferent 
sizes and purposes, and the techniques can be generalized to those. 
For example, a smart swaddle for babies can track the baby’s move-
ments and breathing, as well as tell if their hands are out of the 
swaddle or if the baby has rolled over. Removable accessories for 
physical objects like smart water bottle sleeves or sofa covers can 
track daily water consumption or augment furniture. We believe 
our work paves the way for unlocking a wealth of such everyday 
applications. 

2 USER STORY AND DESIGN REQUIREMENTS 
We present an example user story here to convey how a reconfg-
urable soft wearable can be multi-functional and can augment a 
day in the user’s life. This example also highlights the design and 
technical requirements for the wearable. 

Kate wakes up on a winter morning with uKnit wrapped 
around her waist. While she was sleeping, uKnit mon-
itored her sleep quality by tracking her belly move-
ment and respiration rate. She gets out of bed, and 
uKnit detects her body posture, inferring Kate has 
started her day. Afterward, she goes for a run while 
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wearing uKnit as a headband. While running, she 
changes songs and volumes on her wireless earphones 
using presses and directional swipes on uKnit, with-
out taking out her smartphone. Later, as Kate prepares 
her breakfast, she puts uKnit on her elbow so that 
when her hands get dirty, she can press her elbow 
against her torso to scroll the recipe on her smart 
home hub. Then on her way to work, she wears it as 
a scarf that keeps her warm and functions as a music 
player. The input modalities could be switched to a 
hands-free control or remain the same as touch and 
swipes recognition. When she gets to work, she puts 
it on her waist, and uKnit helps her maintain a good 
sitting posture. After work, she goes to the gym, she 
puts uKnit on diferent body parts to log each exercise. 
Kate can also put uKnit around her waist to monitor 
the respiratory rate while taking a rest between ex-
ercises. At the end of the day, she puts it back on her 
waist before she goes to bed. 

If Kate had one device for each application, she would need to carry 
several distinct devices throughout the day, even when they are 
not needed at the moment. In contrast, uKnit allows her to carry 
only a single wearable that can be used just as an accessory but 
functions as an alternative input and sensing channel on demand. 
To enable this vision, uKnit has the following design requirements: 

(1) maximize the resemblance to an ordinary accessory so 
that the wearable remains familiar and afords reconfgura-
bility; 

(2) ensure the wearable is optimally-sized, such that it is 
large enough to be worn comfortably around the waist, but 
not become bulky after multiple wraps on smaller body parts, 
e.g., knee or elbow; 

(3) minimize the number and sizes of hard components 
so that the device remains fexible and easily reconfgurable; 

(4) supports a wide range of sensing capabilities to enable 
diferent applications in diferent confgurations. 

To satisfy these requirements, we chose machine knitting as 
the fabrication technique. Knitting is a popular fabrication tech-
nique used in accessories, and thus meeting (1). Knitted fabrics are 
stretchable, and thus satisfying (2). Furthermore, knitted fabrics are 
breathable, and thus make the device comfortable while performing 
diferent activities over a long time. To meet (3) and (4), we chose 
electrical impedance tomography as the sensing technique to mini-
mize the number of wires and rigid components while enabling a 
large interaction area with multiple sensing capabilities. 

3 BACKGROUND AND RELATED WORK 
Metallic threads have been used for decorating garments for cen-
turies. In 1883, an illuminated hair accessory was part of a ballet 
costume [68]. Researchers started prototyping electronic textiles 
in the 1990s [17, 55]. Conductive materials and electronic com-
ponents can be integrated into fabrics during the manufacturing 
processes [1, 32, 38, 52, 56]. Industrial weaving [56] and knitting 
machines [14, 38, 46] make E-textiles fabrication scalable. Textile 
technologies opened up opportunities for soft robotics, autonomous 
garments, and wearable devices [57]. Thanks to recent research 

eforts, smart textile can now be augmented with many capabilities, 
including sensing, displaying [11, 13], mechanically actuating [2], 
self-cleaning [8], wireless communicating [22], and energy harvest-
ing [26]. 

We divide relevant prior work into: (1) sensing with smart tex-
tiles; (2) reconfgurable interfaces; (3) Electrical Impedance Tomog-
raphy (EIT), which we used as a sensing principle for uKnit; (4) 
knitted user interfaces; and (5) on-body localization. 

3.1 Sensing with Smart Textiles 
Researchers have experimented with various sensing techniques 
on textiles [23, 66, 76]. Project Tasca combines inductive sensing, 
capacitive sensing, resistive sensing, and NFC to create a smart 
pocket that can take user inputs and recognize objects [75]. Capac-
itive sensing on e-textiles allows for gesture recognition [56, 74], 
proximity sensing [50], nutrition monitoring [10], contact-based 
object recognition [77], motion tracking [6], etc. ThreadSense em-
ploys impedance sensing to localize 1D touch input on a thread [34]. 
In this work, we use impedance sensing to enable a diverse set of 
gestural interactions on the knit surface while also making the 
system automatically adapt to diferent on-body locations for re-
confgurability. 

3.2 Reconfgurable Interfaces 
Many everyday objects are reconfgurable and inspire reconfg-
urable user interfaces [31]. Many shape-confgurable interfaces 
are modular and involve disassembling: game controllers [49] , 
screens [16], haptic devices [69], smartwatches [30], soft wearable 
prototyping kits [25, 35], etc. SensorNets is a soft multimodal elec-
tronic skin composed of distributed sensor networks [72]. It can 
sense a multitude of gestures and can be easily customized to adapt 
to its curvatures; however, the system requires fabricating sensors 
for diferent applications. Another approach to implementing re-
confgurable wearables is through miniaturized locomotion robots 
that can move along users’ bodies on demand [12, 58]. Our work 
achieves shape reconfguration by deformation, an intrinsic prop-
erty of textiles. I/O braid is an interactive textile cord that can 
augment everyday objects, e.g., touch-sensitive headphones and 
interactive drawstrings in garments [50]. In contrast, uKnit pro-
vides larger interaction areas and afords frequent location changes. 
Somewhat similar to uKnit, the smart handkerchief [61] is a de-
formable user interface that can recognize its physical form and 
allow simple gestural interactions. It was designed to lay fat, folded 
along a certain axis and/or held in hands to sense touch and strain 
changes. With this regard, uKnit ofers a greater degree of freedom 
in deformation as it can be deformed into any irregular shape, just 
like an ordinal scarf. This property allows uKnit to be a fexible and 
pervasive wearable for diferent tubular body parts. 

3.3 Electrical Impedance Tomography 
Electrical impedance tomography (EIT), a non-invasive imaging 
technique to infer internal conductivity characteristics, was frst 
proposed for medical imaging [20] and geophysical imaging [54]. 
In recent years, EIT gained traction in the human-computer inter-
action (HCI) community for, e.g., hand gesture recognition [82], 
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paper-based interfaces [83], and touch localization on irregular ob-
jects [3, 84]. EIT is now an accessible and versatile sensing method 
for a conductive surface thanks to open-sourced toolkits [86] and 
projects [85], but applying EIT onto conductive textile remains 
underexplored. In soft robotics research, EIT is used to create artif-
cial skin that senses deformation and tactile distributions [29, 47]. 
MultiSoft uses a multi-layer soft and stretchable sensor with silicon 
substrate for real-time contact localization and deformation clas-
sifcations [78]. Though MultiSoft is a customizable soft sensing 
approach, diferent sensors still need to be fabricated for difer-
ent applications. In contrast, uKnit uses a single reconfgurable 
piece of fabric for all applications. In other words, it is the frst to 
enable reconfgurable touch and deformation sensing on knitted 
wearables that automatically adapt to diferent physical placements, 
thus enabling a plethora of applications with the same physical 
device. 

3.4 Knitted User Interfaces 
Knitted fabric is lightweight, breathable, fexible, stretchable, and 
conforming, making it a great ft for a reconfgurable soft wearable 
interface. Machine knitting design tools [24, 28, 48, 79] facilitate 
prototyping knitted interfaces, and we refer readers to McCann 
et al. for a thorough overview of machine knitting [45]. Knitted 
sensors have a variety of sensing approaches [51]. Earlier works 
explored the loop structures for strain/stress sensing [81] and en-
abled respiratory rate monitoring [7, 19]. More recently, Knitted 
Keyboard combines capacitive and piezoresistive sensing for a mul-
timodal interaction [73]. KnitUI employs resistive sensing to create 
customizable interfaces [39]. uKnit can duplicate many of the in-
teractions mentioned above with a single reconfgurable knitted 
sensor. Closer work was proposed by Alirezaei et al. who used 
EIT on knitted fabric that has conductive paint sprayed as a post-
proccess [4]. In contrast, we embed conductive yarn using intarsia, 
a knitting technique used to incorporate areas of colors, thereby 
making our approach more scalable, and the fnal wearable more 
comfortable than using conductive paint. 

3.5 On-body Localization 
Since we are creating a wearable device that can be put on diferent 
body parts, two key factors to consider are placement and form 
language [15, 80]. Such a reconfgurable wearable device needs to be 
contextually aware of the physical confguration information [71] 
and body placement locations [65]. In our case, the placement 
decides the form because wrapping the same scarf around the 
waist and the wrist results in a diferent number of wraps. From 
the localization perspective, the form can predict the placement. 
Prior work on on-body localization used IMU sensors [33, 67] or 
vision sensors [5] to recognize the position passively. Our location 
detection algorithms use the fact that the wrapped sensor responds 
to the same gesture diferently when it is located on diferent body 
parts. 

4 FABRICATION 
Our reconfgurable sensing wearable prototype (shown in Figure 2) 
consists of a machine-knitted structure connected to an EIT-based 
data acquisition circuit. This section provides more detail on the knit 

Figure 3: A: a small (0.2x) version of the knitting program 
for our scarf, visualized with [79]. Each color represents yarn 
from a single carrier, showing the intarsia technique used 
to knit the conductive-yarn patches. B: The beginning of 
the machine knitting program once converted for use in 
KnitPaint [60]. C: The resistive yarn (grey), non-conductive 
acrylic yarn (green), and decorative rayon yarn (blue) used 
in producing the wearable. D: The low-level knit structure 
of our sensor- conductive yarn patches (a) are connected to 
non-conductive patches (c) by columns of plated stitches (b); 
and plating is also used in the border (d) for decorative efects. 
The entire scarf is a 2x2 rib for stretchiness. 

structure, the connection methodology, and the data acquisition 
circuit. 

4.1 Machine-knitted Structure 
The structure of our sensing textile was knitted on an industrial 
v-bed knitting machine (Shima Seiki SWG091N2, 15 gauge). We 
chose machine knitting because it allowed for the repeatable fabri-
cation of large fabric structures under programmatic control. For 
an introduction to v-bed knitting machines, we refer the interested 
reader to [45]. The overall knitting program and the yarns used are 
shown in Figure 3. We measured 17 cm and 14 cm in the course 
and wale direction of each patch in an unstretched state. Resistance 
measurements between opposite electrodes in the course and wale 
direction of each patch are around 2.3M Ω and 50K Ω respectively. 
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Figure 4: The layout of the connections between the EIT sensing board and the fabric electrode. 

Table 1: Estimated duration of uKnit’s fabrication steps. 

Figure 5: Attaching a wire to our sensor, left-to-right: a 
washer from a ring terminal, wrapped with enameled wire, 
soldered, and conductive-epoxied to the fabric. 

For our conductive yarn, we used Baekert BK 90361291, a Bekinox-
polyester blend in 50/2 Nm with a specifed resistance of 20 Ω/cm. 
For non-conductive yarn, we used Tamm Petit 2/30 in Lime (T4285), 
a basic acrylic yarn. For decoration, we used a thin, blue rayon yarn 
from Winning. 

The scarf was knitted in courses along its long axis, using the 
intarsia technique – a knitting technique used to incorporate areas 
of colors by assigning one carrier to each block of same-type yarn, 
for a total of nine carriers, fve threaded with insulating yarn, and 
four with conductive yarn – to fabricate the electrode patches. 
Plating (running two yarn carriers over the same stitch) was used 
for decoration in the border and to connect the conductive and 
non-conductive patches together at course-wise edges. The overall 
scarf structure is 2×2 rib – an alternating pattern of two front-
and two back-bed knit wales – for stretchability while keeping the 
loops tight enough to reduce hysteresis in sensing. These structures 
and techniques are shown in an up-close synthetic rendering in 
Figure 3(D). 

The knitting program uses two diferent stitch size settings2 for 
the majority of the scarf: 35 (with leading 25) for non-conductive 

1Though this is an old catalog number, with BK 9028098 being the substantially similar 
current replacement.
2Numbers in machine-specifc units that correspond to loop sizing on the machine, 
with large numbers resulting in larger loops. 

Fabrication Step Time (hours) 
automatic knitting machine operation 
electrode ↔ wire connections 
fabric ↔ electrode connections 
fabric ↔ electrode curing 
wire routing 
wire ↔ sensing board connections 
wire ↔ sensing board curing 
magnet attachment 
magnet attachment curing 

4 
0.5 
0.5 
6 
6 
0.5 
0.5 
0.5 
0.5 

total 19 

knits and 25 (with leading 20) for conductive knits. The stitch set-
tings are diferent because the yarn diameters are diferent, leading 
to diferent overall loop sizes with the same stitch size setting. The 
complete pattern is generated in the knitout language [44] by a 
JavaScript program, which is included in the supplemental material. 

4.2 Connectors 
One of the challenges in working with any soft electronics project 
is making hard-soft connections [64]. For our sensor, we settled on 
the following strategy, as shown in Figure 4: 

• Electrode ↔ Wire connections: We frst soldered thin enam-
eled wires (Remington PN155 28AWG) to conductive wash-
ers harvested from ring terminals (Wirefy Heat Shrink Ring 
Terminals #6), 

• Fabric ↔ Electrode connections: We then glued these elec-
trodes to the edges of the conductive fabric patches with 
conductive epoxy (MG Chemicals 8331D) for a strong and 
consistent connection. We placed eight electrodes on each 
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Figure 6: Our conjecture as to why diferent gestures change the impedance. A: touches compress stitch-stitch contacts, lowering 
contact impedance for a few stitches. B: in-plane stretching lowers contact impedance and also drags yarn between courses/wales, 
modifying along-the-yarn impedances. C: grabs apply pressure to many stitch-stitch contacts, lowering contact impedance 
over many stitches; D:pinch-and-pull stretches yarn along both courses and wales, modifying contact and along-the-yarn 
impedances over a large area. Note that the relative changes to stitch-stitch contact impedance are much larger than along-the-
yarn impedance because contact impedance is initially much higher. 

resistive patch, four on the corners and four in the midpoints 
of the edges.3 

• Wire Routing: We then routed the thin enameled wires 
from the electrodes to the EIT sensing board connectors by 
hand-stitching in serpentine traces. 

• Wire ↔ Sensing Board connections: Finally, to minimize 
the noise introduced by changes in capacitance in the wires 
between the EIT sensing board and the scarf, we used short 
connection wires, held in place with silicone (GE Supreme 
Silicone) for insulation and strain relief. 

In addition, we used silicone to glue sewable hidden magnets 
onto the prototype to allow the scarf to connect to itself mechani-
cally in various confgurations when worn. The entire fabrication 
of uKnit takes roughly 19 hours, and Table 1 details the estimated 
time of each fabrication step. We further discuss the limitations in 
Section 11. 

4.3 Data Acquisition 
We used an existing EIT sensing board design originally developed 
by Zhang et al. for interactive paper interfaces [84]. This sensing 
board uses a Voltage Controlled Current Source (VCCS) and Di-
rect Digital Synthesis (DDS) IC which produces 200 kHz sinusoidal 
waves. These signals are injected into VCCS to produce a constant 
AC current that can drive up to 6 Vpp while outputting 3.3V AVDD 
with 1.65V bias between a pair of electrodes selected by two multi-
plexers. Then it measures the voltage diferences between another 
pair of electrodes selected by another two multiplexers. We set 
up the sensing board to use a four-pole EIT measurement scheme 
(Figure 7), injecting current into each pair of neighboring electrodes 
(8 per patch) and measuring the impedance to all non-adjacent pairs 
(5 per patch), for a total of 160 measurements (4 patches × 8 sources 
× 5 measurements) per frame. We confgured the device to wait for 
80 microseconds for each reading to stabilize and to use 500 sam-
ples for its root-mean-square measurements; resulting in a 16 Hz 
measurement frame rate. The board sends these measurements via 
serial-over-USB to a host computer for further analysis. 

Figure 7: Our sensor uses the four-pole EIT sensing scheme. 
The EIT sensor board injects alternating current into every 
adjacent pair of electrodes and measures the voltage difer-
ences on the fve other pairs of adjacent electrodes in the 
patch; this results in 160 pair-pair impedance measurements. 

5 SENSING 
In this section, we explain the uKnit’s theory of operation, interac-
tion space, and signal conditioning and modeling. 

5.1 Theory of Operation 
Though we do not model uKnit’s yarn-level circuit, we include an 
overview of impedance and conjecture why impedance measure-
ment works on uKnit. Impedance, � , is a complex number that 
relates the current in a circuit to the applied AC voltage at a given 
frequency, � , and phase � : 

|� |� � (�� +�� ) = � |� |� � (��+�� ) (1) 
√

, where � = −1 denotes the complex unit and � and � are voltage 
and current phasors, respectively. The impedance of a passive RLC 
circuit with resistance �, capacitance � , and inductance � is the 
sum of the resistance, capacitive reactance, and inductive reactance: 

1 
� = � + + ��� (2)

��� 
Our system works by measuring changes in impedance. As shown 
in Figure 6, we conjecture that these changes are primarily due to 
changing resistance in yarn-yarn contacts [81], which have lower 3While conventional wisdom for EIT suggests avoiding corners [18], our prototype 

seems to work well in its current confguration. resistance when force is applied. Preliminary observations with an 
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Figure 8: Relative impedance change experiment with an oscilloscope. The top plots show the changes in the amplitude of 
the AC signal for the “rest” gesture and other example gestures. The bottom plots are zoom-in views that show the phase 
change comparisons. The peak moments shifts indicate phase shifts. The faded-colored vertical lines are references to the peak 
moments of the “rest” gesture. Gestures induce signifcant amplitude changes and small phase changes. Note that the time axis 
is in femtoseconds (1e-15 seconds). 

Figure 9: A circuit model of the fabric in our sensor. 
Impedance along yarns (��, �� ) is generally much lower than 
between yarns (�� ), leading to lower impedance in the course 
(horizontal) direction than in the wale (vertical) direction. 
In use, local impedance changes are dominated by contact 
forces (which lower �� ), and deformation (which change the 
length of yarn between contact points, altering ��, �� ). 

oscilloscope (SIGLENT SDS 1202X-E) using a single pair of injection 
electrodes and two measurement electrodes (Figure 8) show visible 
phase shift and suggest some capacitive4 efects. However, gestures 

4Both capacitors and inductors cause a phase shift as per (2); but the direction of the 
shift we observed suggested that capacitance was the dominant efect. 

induce signifcant amplitude changes and small phase shifts. As 
explained in Section 4.3, uKnit measures the root-mean-square of 
500 samples, so the changing amplitude is the major factor and the 
biggest contributor to signal change that our algorithms model. The 
small capacitive changes present in the signals make uKnit more 
sensitive to light touches, with little deformation, compared with a 
purely resistive tomography approach. 

However, knit fabric is not a simple, uniform, resistive sheet. 
Rather, it is an anisotropic resistor network (Figure 9), having rea-
sonably conductive paths along yarns in the course direction and 
much higher resistance paths via yarn-yarn contacts in the wale 
direction. Furthermore, the hysteresis efect in resistance caused 
by friction and structural changes in the knitted fabric [62] makes 
it difcult to study the absolute impedance values. Therefore, in-
stead of using the traditional inverse tomography algorithms that 
attempt to reconstruct a distribution of impedance values, we use 
ML algorithms with the measured voltage diferences directly. 

5.2 Interaction Space 
The EIT signals measured by our system depend on where, how 
much, and for how long the sensor is deformed. Accordingly, we 
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Figure 10: The efects of spatial distribution, magnitude, 
and duration on EIT signals (only 5 of the 40 signals with 
the same injecting electrodes from one patch are shown for 
clarity). (A) Spatial Distribution: events in diferent area im-
pacts signal diferently. (B) Magnitude: larger strain creates 
larger signals. (C) Duration: longer touches/gestures allow 
the signals to settle. Combining the identifed axis ofers 
more capabilities like directional awareness, shown in (D). 
uKnit is more sensitive to changes in the wale direction ow-
ing to the higher starting resistance. Example applications 
are mapped to the space spanned by the identifed three axes. 

look at interaction events from three axes: spatial distribution, 
magnitude, and duration, which is illustrated in Figure 10. 

Defnition 5.1. Spatial Distribution. The location and size of the 
area being impacted by the event. A pin-point press has a small 
spatial distribution since only a tiny part of the scarf is impacted; 
respiratory rate monitoring has a large spatial distribution because 
the entire scarf is stretched. Localizing two pin-point presses far 
away from each other is easier than localizing two larger presses 
near each other. 

Defnition 5.2. Magnitude. How much deformation is induced by 
the event. A slice of angel food cake resting on the sensor is a low-
magnitude event – the cake is airy and doesn’t press the sensor very 
hard; a slab of cheesecake resting on the sensor is a high-magnitude 
event – it applies a much greater deformation owing to its greater 
load. 

Defnition 5.3. Duration. How long the event lasts. A quick tap 
is a low duration; a dwell touch is a higher duration. 

Generally, events that are further along one or more of these 
axes are easier for uKnit to detect, and vice versa. For example, 

continuous touch location tracking is unlikely to work accurately 
as the movement has a short duration, low magnitude, and small 
spatial extent while requiring high spatial precision. Like this, the 
introduced three axes provide a good framework for designing 
interactions with uKnit. 

5.3 Signal Conditioning and Modeling 
Given that the captured impedance changes depend on the spatial 
distribution, magnitude, and duration of the sensor deformation, 
we perform signal conditioning and modeling for recognition and 
monitoring purposes. 

5.3.1 Worn Location and Gesture Recognition. To distinguish dif-
ferent classes of the measured signals (i.e., location and gesture), 
we trained ML models. The location model and the gesture model 
have the same architecture (Figure 11). We provide data in 3-second 
windows of the continuously sampled 160 channels of signals trans-
formed into a matrix of size (the number of channels) × (the num-
ber of samples). For each row (i.e., time-series data per channel), 
we calculate the following nine statistical features: mean, median, 
standard deviation, skewness, kurtosis, max, min, argmax, and 
argmin. Then all 160 × 9 = 1440 features are aggregated and input 
into the respective Random Forest Classifer5 for training/predicting. 
For real-time predictions to enable the demonstrated applications, 
we use the latest 3s of data as the input window to the model. 
We do not perform any post-processing on the output of these 
window-level results. 

5.3.2 Passive Sensing. For sensing the wearer’s respiratory rate 
and body posture, we condition and process the received signals 
more than for gesture or location recognition (Figure 12). Addi-
tional signal conditioning helps us identify useful channels without 
much training data. For example, respiratory rate sensing involves 
no ML. We initially flter out the low- and high-frequency compo-
nents with detrending, demeaning using a Butterworth low-pass 
flter (cut-of = 0.2 Hz, order = 2) and a median flter of size 11. 
Given all 160 channels of uKnit would not react uniformly to the 
expansion and contraction of the wearer’s torso, we then identify 
the most sensitive signals. Here, we only use signals with a lower 
than the 20th percentile number of zero crossings and higher than 
the 80th percentile of the overall variance. This approach helps us 
fnd signals that are not noisy (noisy signals will have higher zero 
crossings due to noise and lower amplitude and, thereby, variance). 
The selected signals are again median fltered (size = 25). We per-
form this additional and more aggressive fltering after identifying 
signals of interest because otherwise the zero crossing estimates 
became inaccurate. The signal conditioning process remains the 
same for posture detection. The signals in Figure 12 show three 
examples of original and conditioned signals. 

For estimating respiratory rate, we identify peaks in all condi-
tioned and selected signals using SciPy’ fndpeaks function6 and 
calculate the median estimate. For recognizing posture, we calculate 
fve features on a window of size 155 samples (9s of data, 50% over-
lap): (1) 5th percentile of the window, (2) sign of the mean value, 
(3) slope, and (4) intercept of a line ftted to the window values, and 

5Default scikit-learn (v1.1.2) parameters: 1000 trees, 30 max depth 
6ScipPy.Signal v1.9.1. Default parameters. 
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Figure 11: ML models pipeline for worn-location and gesture recognition. The two models share the same architecture. 

Figure 12: Signal conditioning and modeling pipeline for passive sensing. The signals show examples of original signals and 
conditioned signals. 

(5) median of the values in the middle of the window (sub-window 
of size 60 samples). These features aim to capture the amplitude, 
direction of change, and any big signal shifts due to a change in 
posture. We then use the frst straight and slouched posture of each 
trial as a training gesture for a kNN classifer with k = 1. Finally, 
we do a majority vote on outputs among all selected signals. 

6 STUDY 1: LOCATION DETECTION 
First, we conducted a study to verify the reconfgurability of our 
system, that is, whether the system can identify where on the 
body it is attached. We collected data while the user wore uKnit 
on diferent body parts and performed gestures with the device. 
We plan to use these gestures as a calibration step where users 
perform a quick action (e.g., a touch) to let the system know the 
attached location on the body. We evaluated reconfgurability on 
fve diferent body parts: head, neck, waist, leg, and arm. The arm 
label is an aggregation of the wrist, elbow, and upper arm. The leg 
label is an aggregation of the knee and thigh. The set of locations 

we chose is informed by the form factor of our scarf device as well 
as prior work about on-body localization [37, 80]. 

6.1 Procedure 
The experiment used an Apple MacBook Pro 15” (2019), and data 
was transmitted from the sensor board using a USB serial connec-
tion. We recruited ten participants (fve male and fve female) via 
online communication and word-of-mouth. They were all in their 
20’s and right-handed. For each of the fve body parts, there are 
three sessions. Before each session, an experimenter helped the 
participant put uKnit on because wiring makes it slightly unwieldy. 
Between the sessions, the participant rewore the device to add natu-
ral variability. For each session, there are three trials for performing 
diferent gestures. We chose a set of four gestures (Figure 13): touch, 
swipe, grab, and pinch. 

For each body part, we frst showed a brief demonstration of each 
gesture to the participants. We then generated a randomized order 
of the gestures and the participants performed them in order. After 
we repeated this process three times for one location, we asked 
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Figure 13: Top: Bar chart shows the accuracy of the within-
/across-user models for the location detection by the four 
diferent calibration gestures. Error bars indicate standard er-
ror. Bottom: Confusion matrices of location detection using 
“touch” as the calibration gesture. Within-user cross valida-
tion (left) achieves 88.0 % and across-user cross validation 
(right) achieves 78.2 %. 

the participants to take of and attach the device to the next body 
part. While performing gestures, the participants heard instructions 
from the computer regarding when to start and end the gesture. 
We recorded 3 seconds for each gesture and the instruction began 
and ended at the 0.5- and 2.5-seconds points within the range. 
Most of the data were collected while the participants were seated 
except for some participants who felt easier to perform the gestures 
standing when uKnit placed on their waists. All participants were 
free to move between gesture trials. It took roughly 2 hours to 
complete the three sessions. The participants were paid $15 for 
their participation. 

6.2 Results 
For each calibration gesture, we trained and evaluated two mod-
els: within-user model and across-user model. For the within-user 
model, we used a leave-one-session-out cross validation to simulate 
a situation where users who have already completed the calibration 
step put on the device to a body location later. For the across-user 
model, we used a leave-one-participant-out cross validation to sim-
ulate a situation where new users who have not done the calibration 
put on the device. Figure 13 presents the results. All four gestures 
had similar performances. Since “touch” is the simplest gesture with 
the potential to seamlessly integrate into the process of putting 
on uKnit, we conclude that “touch” is the best calibration gesture. 
“touch” has location detection accuracy of 88.0 % for the within-user 
model and 78.2 % for the across-user model. The confusion matrices 
can also be found in Figure 13. 

6.3 Discussion 
When generating the across-user model for the location detection, 
there is a consistent around 10% accuracy decrease. We suspect 
the major reason is diferent body sizes. Shown in the confusion 
matrix in Figure 13: within user, neck is never confused with head, 
and head is confused 5.6% of the time with neck; but across users, 
neck is confused with head 14.4% of the time, and head is confused 
with neck 8.9% of the time. Similar results showed between legs 
and arms as the body sizes vary across users. Another possible 
contributing factor is diferent human body impedance [42], but 
the high contact impedance makes this unlikely. Participants wore 
a mix of long and short sleeve tops of diferent materials. There 
was one participant who wore shorts, uKnit lying on the skin when 
placed on the leg, and all others wore trousers. We found there 
are no signifcant diferences with respect to participants’ clothing. 
Furthermore, given our universal model adapts well across users, 
we believe the calibration gesture is the dominant factor for signal 
diferences. 

7 STUDY 2: GESTURE RECOGNITION 
Next, we conducted a study to examine the system’s ability to 
recognize gestures. Here, we attached our device to the participants’ 
wrists and collected data while they performed diferent gestures. 
We tested gesture recognition on the wrist because this is a common 
location for varied on-body interactions. We included six gestures: 
top touch, middle touch, bottom touch, swipe, pinch, and grab; as 
well as a no-gesture case, which we call “rest.” Top, middle, and 
bottom touches are along the mid-line of the sensor, with the top 
closest to the hand and the bottom furthest from the hand; grab and 
pinch happen at the center of the sensing patch; and swipe runs 
from the top touch area to the bottom touch area. These gestures 
are shown in Figure 14. 

7.1 Procedure 
We recruited ten participants (fve male and fve female) in the 
same manner as in Study 1. Two of them had also participated in 
Study 1. They were all in their 20’s and right-handed. There were 
three sessions in the data collection and each session consisted of 
ten trials. We showed a brief demonstration of each gesture to the 
participants before the frst session started. Note that there were 
no explicit visual indications on the device for the gesture locations 
(e.g., dots) and the participants performed each gesture as they 
thought matched the given instructions. 

We used the same apparatus as we used in Study 1. Before start-
ing each session, the participants attached or re-attached the device 
to their left wrist. Within a session, they performed randomly-
presented gestures in order until we obtained ten trials for each of 
the seven gestures. In the same manner as Study 1, we recorded 3 
seconds for each gesture and the participants were instructed to 
begin and end a gesture at the 0.5- and 2.5-seconds points within 
the range. Throughout the data collection, we let the participants 
rest their left forearm on a fat plane. The study took roughly 30 
minutes and the participants were paid $15 for their participation. 
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Figure 14: Confusion matrices of 7-gesture recognition. 
Within-user cross validation (left) achieves 80.4 % and across-
user cross validation (right) achieves 75.4 %. Gesture recogni-
tion becomes more accurate when calibration gestures are 
added. For example, adding three calibration gestures results 
in a 5% accuracy increase. Note that the Y-axis starts from 
70%. Error bars indicate standard error. 

7.2 Results 
Similar to Study 1, we trained a within-user model and an across-
user model, and evaluated with leave-one-session-out and leave-
one-user-out cross validation, respectively. When training the model, 
we used 40 channels instead of 160 channels to calculate features. 
The sensor placement made all 4 patches overlap since one patch is 
wide enough to wrap our wrists. The used 40 channels correspond 
to a single patch. The accuracy of the two models was 80.4 % and 
75.4 %, respectively. Confusion matrices are shown in Figure 14. 

Additionally, the within-user within-session model was intro-
duced to see how much accuracy could be gained in a scenario 
where a user is willing to provide calibration data after reconfg-
uring the sensor. We trained this model by using a few samples 
from one session of the participant and all data outside of that 
session, including the other participants’ data. Figure 14 presents 
how the accuracy increases as we increase the number of trials for 
the calibration. 

7.3 Discussion 
This study demonstrated gesture recognition feasibility at the wrist 
location. Collecting data at all locations would have made data col-
lection uncomfortably long, so we decided to only test one location. 
In our pilots, the signal changed predictably for each gesture at each 

location and there was no reason to believe that the recognition 
would not work at any of the tested locations. In the confusion 
matrices (Figure 14), we observe that “top touch” was often con-
fused with “rest”, but the symmetric “bottom touch” did not exhibit 
similar behavior. We conjecture that the fabrication variation and 
proximity to electrodes could be contributing factors. Figure 14 
shows that within-session calibration samples efectively increase 
the recognition accuracy as the sensor orientation highly afects 
sensor readings. 

8 STUDY 3: PASSIVE MONITORING 
We conducted a study to validate the system’s capability for passive 
sensing. While many useful applications could already be built on 
the gestures from the studies, we also fnd it useful to think beyond 
these tested gestures. The two tasks we investigated are respira-
tory rate monitoring and posture detection. uKnit is placed on the 
waist for both tasks and the participants are seated. For respiratory 
rate monitoring, participants performed guided breathing at two 
diferent rates: 10 and 15 breaths per minute (bpm), given normal 
adult resting number of respiration is between 12 and 20 bpm [43]. 
For posture detection, participants were instructed to sit straight 
and slouched while using their phones to simulate a real-world 
scenario. 

8.1 Procedure 
We recruited ten participants (fve male and fve female) in the same 
manner as Study 1 & 2. Two of them had also participated in Study 
1, and another participant participated in Study 2. They were all 
in their 20’s. There were three sessions in the data collection, and 
each session consisted of three trials for each task. Again, before 
starting each session, the experimenter helped the participants to 
attach or re-attach the device to their waist. 

We used the same apparatus as used in the frst two studies. 
Within a session, the users performed randomly-presented tasks 
until we obtained three trials each for two respiratory rate tasks 
(10 bpm and 15 bpm) and the posture task. For respiratory rate 
tasks, participants were instructed to breathe with their normal 
patterns but listen to the audio cue for inhale/exhale. For 10 bpm, 
participants breathed in/out for 3s each and repeated it fve times. 
For 15 bpm, participants breathed in/out for 2s each and repeated 
it fve times. For the sitting posture detection task, we instructed 
participants to sit straight/slouched for 10s based on audio cues. 
The study took roughly 30 minutes and the participants were paid 
$15 for their participation. 

8.2 Results 
For detecting respiratory rate, uKnit does not use any ML model 
and directly counts peaks on conditioned signals (Section 5.3.2). 
uKnit’s algorithms recognized respiratory rate with an average 
error of 1.25 bpm (�� = 0.75). There was no signifcant diference 
in performance between the two breathing rates. uKnit detected 
a user’s body posture while sitting (straight vs. slouched) with an 
accuracy of 86.2%. Figure 15 shows the example signal of breathing 
and changing postures. 
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Figure 15: When worn on the waist, uKnit’s outputs (zoomed in on 40 channels on one patch) refect respiration rate (left) and 
correlates with posture (right). 

8.3 Discussion 
The study provides a preliminary feasibility of using uKnit for 
measuring respiratory rate and sitting posture. We believe that 
the sitting posture detection accuracy could have improved if the 
data labels were more accurate. During our data collection process, 
participants were instructed to react to audio cues to change their 
posture or breathe in or out. The labels are aligned with the start 
of the cues. We observed that many participants had inconsistent 
reaction times and thus the data and labels had inconsistent ofsets. 
Though minor, we observed that the errors clustered around the 
timestamps where the labeled posture changes. For the respiratory 
rate data collection, we asked the participants to breathe at a fxed 
rate for a short period of time, but for uKnit to further demonstrate 
its ability as a passive sensor, we need to deploy it in everyday 
settings for longer periods. Such studies will allow the evaluation 
of uKnit against factors critical to practical uses: rain, dust, heat, 
mud, stain, sweat, etc. It will be insightful to see how the signals 
change when the wearer’s breathing is natural/irregular at very 
diferent rates (e.g., when the user is on the move or exercising), 
and how the signals shift over time. This remains an important 
future work. 

9 DURABILITY OF UKNIT 
Textile sensors need to be durable if they are to be worn every 
day. While a complete durability test would require longitudinal 
deployment, we tested uKnit’s washability. Washability is integral 
for daily uses and prolonged device lifetimes. Although it was not 
a key design consideration for uKnit, we conducted a washing test 
to observe the behaviors of the machine-knitted sensing textile and 
connection mechanisms after washes. 

9.1 Procedure 
We used a newly fabricated machine-knitted sensing textile and 
attached 8 connectors to a single patch as described in Section 4. 
The only component that was left out of the washing test was the 
detachable sensor board. uKnit was washed 12 times in the order 
of 3 hand washes in clear water, 3 hand washes in soapy water7, 
3 machine8 washes (delicate mode, 45 minutes) with clear water, 
and 3 machine washes with detergent9. After each wash, uKnit was 
frst press-dried with paper towels and then left to air-dry. Before 
and after each wash, we measured (a) the resistance in the course 
(horizontal) and wale (vertical) directions; and (b) the number of 
intact connectors. These two measurements evaluated the sensing 
capability of the textile and the connectors, respectively. 

9.2 Results 
The resistance measurements are plotted in Figure 16. We observed 
similar trends between vertical and horizontal measurements. Dur-
ing the initial hand-wash cycles, regardless of whether the soap 
was used, the resistance was not heavily afected. After machine-
washing with clear water, the resistance increased drastically, and it 
stabilized after one wash. When we added detergent to the machine-
washes, the resistance slowly decreased. Note the vertical resistance 
became so large that it was out of the measurement range for 
the digital multimeter used after machine-washes with clear wa-
ter, so we were not able to observe the exact behavior. After two 
machine-washes with detergent, the resistance decreased enough 
to be back in the range. We are unsure of the source of this resis-
tance increase-then-decrease behavior; it certainly requires further 
study if wearable textile sensors are to be widely deployed. Regard-
ing the connectors, they all remained mechanically intact after 12 
7Nécessaire The Body Bar 
8a standard home washing machine, Samsung SuperSpeed Stream VRT 
9Tide Pods 
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Figure 16: Resistance measurements from the washing test: 
vertical resistance (green) and horizontal resistance (blue). 
Washing methods include (A) hand-washes with clear water, 
(B) hand washes with soapy water, (C) machine-washes with 
clear water and (D) machine washes with detergent. 

washes. However, the conductive epoxy lost its conductivity at the 
Fabric ↔ Electrode connections. To further evaluate the sensing 
performance, we applied additional conductive epoxy to reconnect 
the connectors with the fabric electrically, collected preliminary 
data for a single user, and trained a within-user gesture recognition 
model as described in Section 5.3. The leave-one-session-out cross 
validation was not comparable with the results in the user study. 

9.3 Discussion 
We selected a set of washing methods and conducted them in the or-
der of increasing destructiveness because knitted goods are typically 
delicate and have a range of washing limitations for commercial 
products. However, uKnit lost its functionality after the mildest 
wash. The obvious shortcoming was the conductive epoxy’s loss 
of conductivity, even though the product we used is supposed to 
be water-resistant10. The other issue lies in the resistance changes 
in the sensing textile. The brochure11 of the conductive yarn used 
in uKnit states that the performance maintains after 200 industrial 
washes, but because the yarn is originally designed for anti-static 
textile fabrication, the performance metrics vary. This highlights 
the need for continuing work on robust materials and connectors 
for sensing textiles. 

10 EXAMPLE APPLICATIONS 
We implemented real-time predictors using the ML model discussed 
in Section 5.3 to demonstrate uKnit’s potential as a reconfgurable 
wearable (Figure 17). The live predictor inputs the latest 3-second 
of data to the ML model which takes a matrix of size 48 (the number 
of samples in 3s)× 160 (the number of data channels) and continu-
ously predicts the gesture. Some of the demonstrated gestures (e.g., 
head-tilt, shoulder shrug) were not evaluated formally in the above 
studies, which suggests extended use cases of uKnit. Gestures are 
then mapped for controlling and logging. Since the mappings can be 
conveniently modifed, future work could develop a uKnit platform 
with user-defned customizable scenarios and functionalities. 
10https://www.mgchemicals.com/products/adhesives/electrically-conductive-
adhesives/silver-conductive-epoxy
11https://www.bekaert.com/-/media/Files/Download-Files/Basic-
Materials/Textile/Bekaert-anti-static-textiles-brochure.pdf 

Headband Music Player. uKnit can be wrapped around the head 
as a headband. When running, it can be a music player to control 
wireless headphones. The gestures we used are: right press → 
play/pause, right back-to-front swipe → increase volume, right 
front-to-back swipe → decrease volume, back right press → next 
song, and back left press → previous song. Including the rest state, 
the 6-class classifer classifes gestures that control the music player. 

Neck-scarf Music Player. On a cold winter morning, uKnit can 
be worn as a neck-scarf that not only keeps the user warm but also 
function as a hands-free music player so that the user can keep 
their hands warm. The gestures we used are: shoulder shrug → 
play/pause, back head-tilt → increase volume, front head-tilt → 
decrease volume, left head-tilt → next song, and right head-tilt 
→ previous song. As in the headband music player, the 6-class 
classifer classifes gestures that control the music player. 

Knee-band Squat Counter. When uKnit is placed at joints, it can 
be used to log exercises. We demonstrate a knee-band squat counter. 
The two gestures used here are rest and squat. When the user 
returns to the rest condition after a squat, the logger increments 
the counter. 

Elbow-band Recipe Scroll Controller. uKnit can be placed at difer-
ent body parts when the hands are unavailable. The user’s hands get 
wet and dirty from cutting vegetables. We demonstrate an elbow-
band recipe scroll controller, but modifying the mapping can easily 
make the same setup and calibration suitable for other applications 
(e.g., picking up a phone call). The two gestures used here are rest 
and pressing the elbow against the body. When the user returns to 
the rest condition after a press, the recipe is scrolled. 

11 LIMITATIONS AND FUTURE WORK 
The three formal studies and anecdotally-tested example applica-
tions highlight the broad sensing potential of uKnit. In the rest of 
the section, we will discuss the limitations of the current implemen-
tation. 

Knitted resistive sensor. We noticed that when the knitted fabric 
is slightly stretched, the signals are the cleanest and most respon-
sive. By design choice, we wanted the fabric to be stretchable so that 
a single scarf can ft on body parts of diferent sizes without being 
too bulky. Shyr et al. discovered that a mock rib with less horizontal 
stretch minimizes hysteresis in knitted sensors [62]. Thus, a system-
atic evaluation of diferent types of resistive yarn, knitted patterns, 
and stitch sizes can potentially improve the system’s performance. 

Knitted fabric with EIT. Silvera-Tawil et al. identifed that EIT 
is not suitable for high temporal frequencies and millimetric spa-
tial resolution, which are limitations for our system as well [63]. 
However, our system has lower temporal resolution and spatial 
resolution compared with other EIT-based systems for a few rea-
sons. First, knitted sensors have a hysteresis efect, which could 
be mitigated with elastic yarns for higher sensitivity [9]. Secondly, 
knitted fabric is an anisotropic material so equal physical distance 
does not correlate to equal impedance distribution; and our elec-
trode placement could be redesigned to address this anisotropic 
structure. Another potential solution is to try anisotropic EIT [36]. 
We also plan to investigate the possibility of reducing the number 

https://11https://www.bekaert.com/-/media/Files/Download-Files/Basic
https://10https://www.mgchemicals.com/products/adhesives/electrically-conductive
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Figure 17: Example applications: neck-scarf and headband music players (the mapping between gestures and the instructions 
can be conveniently customized), elbow-band hands-free recipe scroll controller, and a knee-band squat counter. 

of wires by reducing the number of electrodes while maintaining 
high accuracy [40]. 

EIT drive pattern. uKnit’s read-back scheme only measures EIT 
within electrodes on the same patch. However, when the scarf is 
wrapped or folded over, multiple patches can come into contact 
(indeed, the resultant decrease in impedance likely enables uKnitto 
detect sensor location so efectively). It might be interesting, in 
these scenarios, to switch to a mode that measures between-patch 
impedances (giving, potentially more useful signals for gesture 
recognition). 

Form factor. We only took advantage of wrapping and folding 
in our test gestures but it is also natural to scrunch and twist the 
scarf-like accessory. A study of further afordances might turn 
up even more interesting use cases. As the shape confgurations 
diversify, a comparison among sensing performances of diferent 
shape confgurations will further inform future implementation 
choices. 

Beyond a wearable, uKnit can also be a removable accessory for 
physical objects, like water bottles, table tops, etc. Future works can 
expand uKnit’s context-awareness using diferent object impedance 
and parasitic capacitance. 

Connectors. Connecting soft materials with electronics remains 
a difcult mechanical problem owing to the required stifness gra-
dients and the propensity of metals to fatigue. We did encounter 
wire fatigue and breakage in testing our prototype, especially at 
the electrode↔wire connections with early prototypes using very 
fne conductive wires that are compatible with sewing machines. 
After we changed to thicker durable wires, the prototype fabricated 

using the method detailed in Section 4 had all 32 connectors intact 
after around 30 hours of testing, pilot studies, and user studies. Our 
washing test further demonstrates the mechanical robustness of the 
current connectors mechanisms. Future revisions will need to seek 
out more durable and water-resistant connection designs [56, 64]. 

Sensing patches & electrodes. The number of resistive patches is 
currently limited by the number of carriers on the knitting machine. 
Increasing the number of patches can potentially improve uKnit’s 
sensing performance. In this initial prototype, we chose four rectan-
gular patches with eight electrodes each. Using four instead of one 
rectangular patch provides an initial coarse interaction localization 
to improve sensing accuracy. Eight is conventionally the small-
est number of electrodes used in EIT systems, and smaller than 
that relies on optimal driving patterns. With thirty-two electrodes, 
EIT still is the most efective solution to minimize the number of 
wires. With an efective resistive/capacitive matrix approach that 
fully covers the interactive wearable, given uKnit’s size, ∼ 952 
cm2, and the number of electrodes, 32, the fnest sensing unit area 
is 952 ÷ 16 ÷ 16 =∼ 4 cm2, too large for gestures like pinch and 
short swipes. For reference, the resistive matrix-based sleeve for 
gesture recognition by Parzer et al. has a sensing unit area of ∼ 0.81 
cm2 [53]. The dimension of our prototype was informed by average 
adult body size measurements and roughly estimated in our design. 
The evaluated prototype was able to ft all recruited participants. 
Future works on customizing patch shapes, sizes, and the number of 
electrodes within a patch need to consider the trade-of between the 
sensing capability and wearability; an increasing number of elec-
trodes to the optimal electrode-number-to-area ratio could increase 
accuracy but also increase the number of hard components. 
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Adding actuators. One could add actuators to uKnit at (1) the 
surface level: using uKnit as a substrate to attach actuators (e.g., 
LEDs, vibration motors, and EMS electrodes) similar to the mag-
nets on uKnit; and (2) fber/yarn level: integrating other functional 
fber/yarn into (e.g., optical fbers, shape-changing fbers, and textile 
EMS electrodes) similar to the conductive yarn in uKnit. Additional 
sensing components such as temperature sensors and IMUs could 
be integrated in a similar fashion. This would make uKnit a more 
full-featured input/output system. 

Manufacturability. One beneft of using machine knitting is that 
it is an established manufacturing technique – so producing the knit-
ted portion of our design could readily be done at scale. However, 
the connector fabrication remains manual. The overall estimated 
fabrication time of a uKnit prototype is 19 hours (Table 1): 4 hours of 
automatic machine knitting, 14 hours of connector fabrication (in-
cluding 6.5 hours of curing time), and 1 hour of magnets attachment 
(including 0.5 hours of curing time). 

The bottleneck of the fabrication efort is at the wire routing step 
where we manually hand-sew enameled wires because machine-
sewing (e.g., [53]) or machine-embroidery of wires requires a denser 
fabric to avoid tension problems. Wash-away stabilizer [27] might 
be one solution to the problem. Furthermore, the couching embroi-
dery technique grants more freedom in routing pattern design and 
wire choices compared with machine sewing: fastening wires us-
ing small stitches of normal embroidery threads instead of directly 
machine-sewing with conductive yarn allows customizable zigzag 
patterns and durable thick wire usages. 

Aesthetic customizability. On-demand machine knitting enables 
customizable patterns. We already demonstrated that uKnit’s aes-
thetics can be customized by using extra plating carriers in the 
non-conductive area, but plating can also be used in the conductive 
area to visually hide the gray conductive patches. In fact, Bozali et 
al. demonstrated that plating conductive yarn with elastic yarn 
reduces the hysteresis in knitted sensors [62]. This customization 
could also be extended to the electrode layout, specializing a given 
scarf for a given use-case (while still providing a general-purpose 
sensing device). 

Recycling and reuse. One of the exciting features of knitted items 
is that they can be unraveled and re-knitted into diferent items 
– allowing yarn-level reuse. This might allow uKnit to be re-knit 
as fashion trends or personal preferences shift; though testing is 
needed to see if the wear this process induces on the yarn would be 
detrimental to uKnit’s sensing performance. At a higher level, the 
form-factor of uKnit means that it retains utility as a comfy scarf 
even if its electrical sensing properties are no longer working or 
necessary. 

12 CONCLUSION 
We built uKnit, a reconfgurable soft wearable sensor with unique 
spatial awareness, using a machine-knitted structure and electri-
cal impedance tomography sensing. The scarf-like prototype is a 
proof of concept for a universal soft wearable: one wearable which 
afords and enables various capabilities. Our series of user studies 
confrmed uKnit’s ability to detect on-body location, recognize ges-
tures, monitor respiratory rates, and detect sitting postures. Our 

proposed fabrication and sensing techniques will pave the way for 
smart garments that can be manufactured at scale and accepted for 
everyday use. 
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