
Towards Resilient Analog In-Memory Deep Learning via Data
Layout Re-Organization

Muhammad Rashedul Haq Rashed∗, Amro Awad†, Sumit Kumar Jha‡, Rickard Ewetz∗
∗Department of ECE, University of Central Florida, Orlando, FL, USA

†Department of ECE, North Carolina State University, Raleigh, NC, USA
‡CS Department, University of Texas at San Antonio, San Antonio, TX, USA

rashed09@knights.ucf.edu,ajawad@ncsu.edu,sumit.jha@utsa.edu,rickard.ewetz@ucf.edu

ABSTRACT

Processing in-memory paves the way for neural network inference

engines. An arising challenge is to develop the software/hardware

interface to automatically compile deep learning models onto in-

memory computing platforms. In this paper, we observe that the

data layout organization of a deep neural network (DNN) model

directly impacts the model’s classification accuracy. This stems

from that the resistive parasitics within a crossbar introduces a de-

pendency between the matrix data and the precision of the analog

computation. To minimize the impact of the parasitics, we first per-

form a case study to understand the underlying matrix properties

that result in computation with low and high precision, respec-

tively. Next, we propose the XORG framework that performs data

layout organization for DNNs deployed on in-memory computing

platforms. The data layout organization improves precision by opti-

mizing the weight matrix to crossbar assignments at compile time.

The experimental results show that the XORG framework improves

precision with up to 3.2X and 31% on the average. When acceler-

ating DNNs using XORG, the write bit-accuracy requirements are

relaxed with 1-bit and the robustness to random telegraph noise

(RTN) is improved.

ACM Reference Format:

MuhammadRashedul Haq Rashed∗, AmroAwad†, Sumit Kumar Jha‡, Rickard

Ewetz∗. 2022. Towards Resilient Analog In-Memory Deep Learning via Data

Layout Re-Organization. In Proceedings of the 59th ACM/IEEE Design Au-

tomation Conference (DAC) (DAC ’22), July 10ś14, 2022, San Francisco, CA,

USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3489517.

3530532

1 INTRODUCTION

Deep neural network (DNN) models have surpassed human-level

capabilities for several cognitive tasks such as image classification

and object detection [10]. However, it is a daunting task to execute

DNNs on von-Neumann based computing systems. Mainly, due to

the power-hungry and bandwidth-limited data movement between

the computing and memory units [17]. In-memory computing is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’22, July 10ś14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530532

promising contender for conventional computing in that computa-

tions occur in memory, and thus minimizes data movements. Many

recent studies have shown that deep learning workloads can bene-

fit significantly from in-memory computing, and how in-memory

computing makes deep learning at edge devices more plausible [6].

While in-memory computing systems are promising, they face

several challenges that can limit their wide adoption. Perhaps one of

the most pressing challenges is the reliability and resilience against

analog errors [1, 5]. Due to non-linear device characteristics of

memristor cells, in addition to noise effects, in-memory computing

operations can suffer from unpredictable accuracy losses due to

voltage IR-drops across crossbar metal wires. To overcome this

issue for deep learning applications, several prior work explored

techniques to improve reliability by increasing the model size [13]

or injecting noise in the training process [3]. Recent work also

explored algorithms to convert matrices into appropriate memristor

conductance values while accounting for the resistive parasitics [4,

11, 15, 16]. Such techniques compensate for the voltage IR-drop

over the parasitics by tuning the memristors to be more conductive.

While the techniques for tuning conductance can significantly

improve reliability, we observe that the matrices’ values play a

major role in the accuracy of computations, even when such tech-

niques are applied. In particular, we observe that the precision for

different matrices could vary significantly (up to 5.9𝑋). Such accu-

racy difference stems from ignoring the dependency between the

matrix data and the precision of the analog computation. For in-

stance, we observe that a very poor precision consistently appears

when matrix elements with large magnitudes are mapped to the

top-right corner of a crossbar. One reason behinds this is that it

becomes impossible to tune the corresponding memristor devices

to be sufficiently conductive for compensating the voltage IR-drop

over the resistive paratisitcs. Therefore, in this paper, we investigate

the root causes for such errors, and propose novel matrix mapping

techniques that can improve accuracy.

In this paper, we propose XORG, a framework that performs

resilient data layout organization for DNN models deployed on

in-memory computing platforms. The data layout organization

aims to improve precision by modifying the matrix data to crossbar

assignments at compile time. Specifically, the data is organized to

map matrix elements with large (small) magnitude to the top-right

(bottom-left) crossbar corner. The experimental results demonstrate

that XORG improves the analog precision with up to 3.2𝑋 and with

31% on the average. When accelerating DNNs using XORG, the

device write-bit accuracy requirements are relaxed with 1-bit and

the robustness to RTN is improved. The improvements come at the

modest expense of 6% longer compile time.

859

Deep Learning

Model (M)

In-Memory

Platform (P)

Decomposition

and Resource

Allocation

Data

Layout

Organization

Platform

Recon guration

Execution

in

Hardware

Compilation time

Inputs

(Proposed)

Outputs

Classi cation

accuracy in

hardware

Initilization Evaluation

Matrix to

Conductance

Conversion

M M

P(M) and P(M)

Figure 1: Flow for compiling a DNN model𝑀 to an in-memory computing platform 𝑃 .

2 PRELIMINARIES

In this section, we first introduce the flow for compiling DNN mod-

els to in-memory computing platforms. Next, we providemotivation

and problem statement.

2.1 Flow for compiling DNN models to
in-memory computing platforms

The flow for compiling a DNN model to in-memory computing

platform for inference is shown in Figure 1. The input to the frame-

work is a deep learning model 𝑀 and an in-memory computing

platform 𝑃 . The output is the classification accuracy in hardware

𝑃 (𝑀).

The first step is decomposition and resource allocation [7]. This

involves decomposing the deep learning model 𝑀 into matrix-

vector multiplication operations [14, 20]. Next, the matrices are

further partitioned and assigned to specific crossbars within the

platform [8]. The assignment is performed to minimize data move-

ment between the crossbar accelerators while considering the plat-

form interconnect topology.

The second step is the proposed data layout organization. This

involves modifying the layout of the data within the deep learning

model𝑀 to obtain an model𝑀 that has exact same classification

accuracy in software. However, the data layout organization modi-

fies the assignment of the weight matrices to the crossbars within

the platform. This can for example be performed by swapping the

location of two neurons in the same layer of a neural network. The

details of the data layout organization are provided in Section 4.

The third step is to convert each matrix into memristor conduc-

tance values while accounting for non-ideal crossbar effects [4, 11,

15, 16]. This mainly involves specifying the conductance of the

memristors in the top-right corner of each crossbar to be more con-

ductive, which compensates for the voltage IR-drop over the array

parasitics. As conductance values cannot be negative, we use a dif-

ferential pair configuration to represent each matrix. Consequently,

each matrix is split into a positive and negative component.

The fourth step is to program the memristor devices in hard-

ware to the specified conductance values. Programming techniques

based on accurate closed-loop tuning have demonstrated a write

bit-accuracy of 5-6 bits within array structures [5].

The fifth step is to perform inference by streaming input data to

the configured in-memory computing platform. The classification

accuracy in hardware is evaluated as the percentage of inputs that

are correctly classified. The classification accuracy of a model 𝑀

compiled to the platform 𝑃 is denoted 𝑃 (𝑀). Similarly, the classifi-

cation accuracy of the model 𝑀 is denoted 𝑃 (𝑀). The difference

between the classification in software and hardware stem from

errors introduced by the analog computation within each crossbar

and the peripheral circuitry used to convert signals between the

analog and digital domain, i.e., digital-to-analog converters (DACs)

and analog-to-digital converters (ADCs).

2.2 Motivation and problem definition

Figure 2: Hardware classifica-

tion accuracy of aVGG style net-

work [12] deployed on a plat-

form 𝑃 with data layout orga-

nizations 𝑀1 and 𝑀2. The plat-

form is based on 256x256 cross-

bars and 5-bit memristors.

In this section, we pro-

vide the high-level moti-

vation for studying data

layout organization for

DNN models deployed

on in-memory platforms.

Given a neural network

model𝑀 , we apply data

layout organization to

obtain two models 𝑀1

and 𝑀2. The classifica-

tion accuracy in soft-

ware is 92.5% for both

the models 𝑀1 and 𝑀2.

We show the classifica-

tion accuracy in hard-

ware of the two models

𝑃 (𝑀1) and 𝑃 (𝑀2) in Fig-

ure 2. The figure shows

that model 𝑀1 achieves

an accuracy close to the

software level while the

model𝑀2 achieves a clas-

sification accuracy of only 60%. This highlights the importance of

data layout organization. The difference between𝑀1 and𝑀2 is only

how the data is organized within the models, which results in that

different matrices are mapped to the crossbars within 𝑃 . Therefore,

it can be concluded that precision of the analog computation greatly

depends on how the matrix data is assigned to the crossbars.

Problem statement: The objective of this paper is to determine

the data layout transformation 𝐿 that converts a DNNmodel𝑀 into

a DNN model𝑀 = 𝐿(𝑀) with the maximum classification accuracy

in hardware 𝑃 (𝑀).

We approach this problem by first performing a case study in

Section 3 to understandwhat matrix properties that result in compu-

tation with low and high precision, respectively. Next, we propose

a principled framework called XORG, which optimizes the matrix

data to crossbar assignments using data layout organization in

Section 4.

860

3 CASE STUDY: ANALOG ERRORS

In this section, we perform a case study to analyze the dependency

between the matrix data stored in a crossbar and the precision of

the analog computation. The goal is to understand the underlying

matrix properties that result in computation with low and high

precision, respectively.

Py PyAPx Px x= y }

A

Ax = y

A

-1 -1

Py

Px Ax

y

x

y

crossbarcrossbar

(a) (b)

Figure 3: (a) Matrix-vector multiplication 𝐴𝑥 = 𝑦. (b) Matrix-

vector multiplication with rows and columns permuted us-

ing 𝑃𝑥 and 𝑃𝑦 , respectively.

The case study is performed by constructing a matrix 𝐴 by sam-

pling elements from a Gaussian distribution. Next, we observe that

performing the matrix-vector multiplication 𝐴𝑥 = 𝑦 in software

is equivalent to 𝑃𝑦𝐴𝑃𝑥𝑥 = 𝑦, where 𝐴 = 𝑃−1𝑦 𝐴𝑃−1𝑥 and 𝑃𝑥 and 𝑃𝑦
are permutation matrices. However, the reformulation results in

different computational accuracy in hardware because different

matrices 𝐴 and 𝐴 are mapped to the crossbars, which is shown

in Figure 3. To analyze the impact of the data to hardware assign-

ment, we generate 100 different permutation matrices 𝑃𝑥 and 𝑃𝑦

and map the 100 different matrices 𝐴 to a crossbar using the algo-

rithms in [4, 11, 15, 16]. This involves converting the matrices into

a set of memristor conductance values 𝑔 within the programmable

conductance range [𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥]. The conversion is performed by

linearly mapping 𝐴 (or 𝐴) into the conductance range and tuning

the memristors more conductive to compensate for the voltage IR-

drop over the resistive parasitics. We show the normalized output

errors for the different matrices with respect to the utilization of

the programmable memristor conductance range in Figure 4(a). A

two-dimensional histogram of the locations where memristors have

been programmed to 𝑔𝑚𝑎𝑥 is illustrated in Figure 4(b).

Source of Analog Errors: We observe that normalized max-

imum output error varies from 1X to 1.5X when only a portion

of the programmable conductance range [𝑔𝑚𝑖𝑛, 𝑔𝑚𝑎𝑥] is used. In

contrast, the normalized maximum output errors vary from 1.0X to

5.9Xwhen the full conductance range is used. This is a result of that

large errors are introduced when the conductance of a memristor

is attempted to be tuned above 𝑔𝑚𝑎𝑥 . As expected, the memristors

that are attempted to be tuned larger than 𝑔𝑚𝑎𝑥 are located in the

top-right crossbar corner, where the voltage IR-drop is more severe.

Proposed Guideline for Data Layout Organization: Based

on these observations, we propose the following guide line for data

layout organization.

Matrix elements in 𝐴 of large magnitude should be placed close to

the bottom-left corner within a crossbar. Similarly, matrix elements

of small magnitude should be placed close to the top-right corner.

(a) (b)

Figure 4: (a) Normalized maximum output error and norm.

conductance range utilization for 100 different permutation

matrices 𝑃𝑥 and 𝑃𝑦 . (b) A two-dimensional histogram of lo-

cations where the memristor conductance is set to 𝑔𝑚𝑎𝑥 for

the same 100 permutation matrices.

The placement of large elements in the bottom-left corner serves

two purposes. First, it is less likely that the correspondingmemristor

will be attempted to be tuned above 𝑔𝑚𝑎𝑥 , which we observed

was the main source of errors in Figure 4(a). Second, the overall

voltage IR-drop in the crossbar will be reduced because smaller

currents are flowing long distances along the wordlines and bitlines.

Consequently, other memristors are likely to require less tuning.

The purpose of placing matrix elements of small magnitude in

the top-right crossbar corner is that those elements are linearly

mapped into small conductance values. Consequently, there will be

a significant amount of conductance margin available for voltage

IR-drop compensation.

It is important to note that matrix to conductance conversion

algorithms already attempt to counter the issue of tuning memris-

tors above 𝑔𝑚𝑎𝑥 by mapping 𝐴 in to a less conductive conductance

matrix𝐺 = 𝛼𝐴 [4, 11, 15, 16], by specifying a smaller scaling factor

𝛼 . The scaling factor 𝛼 is realized by the peripheral circuitry. 𝐺 is

the conductance matrix that relates the input voltages (𝑣𝑖𝑛) to the

output currents 𝑖𝑜𝑢𝑡 = 𝐺𝑣𝑖𝑛 . However, using a too small 𝛼 also in-

troduces errors because fewer conductance states are utilized in the

bottom-left crossbar corner. The recent mapping algorithms do al-

ready optimize 𝛼 to balance these two types of errors [4, 11, 15, 16].

We view the proposed data layout organization to be orthogonal

to the mapping techniques, which can be used in synergy. In the

next sections, we present the XORG framework that provides a

principled approach to data layout organization for DNN models

deployed to in-memory computing platforms.

4 THE XORG FRAMEWORK

A cost metric that measures the quality of a data layout assignment

is presented in Section 4.1. A family of data layout transformations

L are presented in Section 4.2. The flow of the XORG framework

is explained in Section 4.3.

4.1 Quality metric for data layout organization

In this section, we present the qualitymetric thatmeasures howwell

the data layout organization of a DNN model follows the proposed

guideline. The metric is based on multiplying the absolute value

861

of every weight in a neural network with a crossbar dependent

location cost C, as follows:

𝑐𝑜𝑠𝑡 (𝑀) =
∑

𝑙 = 1 to (𝐿 − 1)

∑

(𝑖, 𝑗) ∈𝑊𝑙

𝐶 (𝑖, 𝑗) · |𝑊 (𝑖, 𝑗)𝑙 |, (1)

where𝑊𝑙 is the weight matrix of layer 𝑙 . 𝐶 is a cost matrix of the

same dimensions. 𝐶 (𝑖, 𝑗) and𝑊 (𝑖, 𝑗)𝑙 are the elements on row 𝑖

and column 𝑗 of 𝐶 and𝑊𝑙 , respectively. |.| is the absolute value

operator.

 4 8 12 16

 3 6 9 12

 2 4 6 8

 1 2 3 4

Figure 5: Loca-

tion based cost

for a 4x4 matrix.

The absolute value operator is used

because each weight matrix𝑊𝑙 is decom-

posed into a positive and negative com-

ponent𝑊 +
𝑙
and𝑊 −

𝑙
, which are mapped

to two separate crossbars arranged in

a differential pair configuration. Small

scores correspond to high quality data

layout organizations and high scores cor-

respond to low quality data layout orga-

nizations.

The costs in 𝐶 are set to be high in

the top-right corner of the crossbar and

small in the bottom-left corner. The cost matrix𝐶 for a 4x4 crossbar

is shown in Figure 5. We note that many weight matrices within

a neural network are larger than the crossbar size. Therefore, we

define the cost for an element 𝐶𝑖 𝑗 , as follows:

𝐶𝑖 𝑗 = (𝑚𝑜𝑑 (𝑖, 𝑀) + 1) · (𝑚𝑜𝑑 (𝑗, 𝑁) + 1), (2)

where 𝑖 and 𝑗 refer to the row and columns, respectively.𝑀 and 𝑁

refer to the crossbar dimensions, respectively.

4.2 Data layout transformations L

The concept of modifying the data to hardware assignment within

an in-memory computing platform has been explored to handle

defective devices [18, 19]. In this paper, we instead optimize the

data to hardware assignment with the objective of minimizing the

impact of the resistive parasitics.

Wl
Wl+1

layer l layer lWl
Wl+1

(a) (b)

Figure 6: Data layout transformations in the form of (a) neu-

ron and (b) channel transformation.

We define a family of transformations L consisting of a neuron

transformation and a channel transformation. The two transforma-

tions are illustrated with an example in Figure 6. A CNN consists of

𝐿 layers of neurons. The layers are in the form of convolutional lay-

ers or fully-connected layers. The neuron transformation is applied

to neurons between fully-connected layers. The channel transfor-

mation is applied to feature maps between convolutional layers.

The neuron transformation involves reordering the neurons within

a layer 𝑙 . The reordering of the neurons naturally modifies the or-

dering of the rows in the weight matrix𝑊𝑙 connecting layer (𝑙 − 1)

to 𝑙 and the ordering of the columns in the weight matrix𝑊𝑙+1 con-

necting layer 𝑙 to layer (𝑙 + 1), which is shown in Figure 6(a). The

channel transformation involves reordering the channels within

the feature map of layer 𝑙 . The reordering modifies the groups of

rows in the weight matrix𝑊𝑙 connecting layer (𝑙 − 1) to layer 𝑙 and

the ordering of columns in the weight matrix𝑊𝑙+1 that connects

𝑙 to 𝑙 + 1, which is shown in Figure 6(b). The group size is 9 · 𝐶𝑙 ,

where 𝐶𝑙 is the number of channels in layer 𝑙 .

4.3 Flow of XORG framework

In this section, we describe the flow of the XORG framework. The

framework is applied to perform data layout organization after the

decomposition and resource allocation step and before the platform

reconfiguration step in Figure 1. The input to the XORG framework

is a DNN model𝑀 and the in-memory computing platform 𝑃 . The

output is a more resilient deep learning model𝑀 that has a smaller

cost defined by the metric in Eq (1). The model 𝑀 is compiled

into the resilient model𝑀 by applying data layout transformations

𝐿 ∈ L using Algorithm 1. Consequently, the classification accuracy

in hardware 𝑃 (𝑀) is expected to be higher than 𝑃 (𝑀). Note that

both 𝑀 and 𝑀 have the exact same accuracy when evaluated in

software.

Algorithm 1: XORG: Data Layout Organization.

Input: DNN model𝑀 with 𝐿 layers.

Output: Resilient DNN model𝑀 .

for 𝑙 = 2 to (L-1) do
// Apply transformation to layer 𝑙

Compute cost matrix

Solve assignment problem

Reorganize data within𝑊𝑙 and𝑊𝑙+1

end

return𝑀 ;

The XORG framework casts the data layout organization prob-

lem as an optimization problem focused on minimizing the metric

in Eq (1). The metric is minimized by iterating over the internal

layers of a the deep learning model 𝑀 and applying the neuron

transformation or the channel transformation to each layer. The

feature maps in the first layer and the neurons in the last layer

are not transformed to ensure that the optimization is seamless

within the flow in Figure 1. The neuron or channel transformation

for a layer can be viewed as assigning a neuron/channel to a lo-

cation, which can be cast as the well known assignment problem.

The assignment problem can be solved both optimally using the

Hungarian algorithm [2, 19]. Next, the model 𝑀 is updated with

the new neuron order in layer 𝑙 based on the assignment solution.

5 EXPERIMENTAL EVALUATION

5.1 Simulation setup

The experimental results are obtained using a quad core 3.4 GHz

Linux machine with 32GB of memory. The XORG framework is

862

implemented using a cross-layer framework involving, C++, Ten-

sorflow, MATLAB, and HSPICE. The crossbar parameters used in

the evaluation are provided in Table 1. The default crossbar size

is set to 256x256. The sensitivity to the crossbar dimensions and

noise is evaluated at the end of the experimental results section. We

first evaluate XORG on the crossbar level in Section 5.2. Next, we

evaluate XORG using neural network applications in Section 5.3.

Table 1: Crossbar parameters in evaluation.
Property Value

Array block resistance 1 Ω

Input resistance 100 Ω

Output resistance 100 Ω

Programmable resistance range [2𝑘, 300𝑘] Ω

Max input voltage 0.25𝑉

Memristor bit-accuracy 6 bits

DAC/ADC bit-accuracy 8 bits

Transistor model JETMOS v1

5.2 Crossbar level evaluation

To demonstrate that the XORG framework is capable of improv-

ing the precision of analog matrix-vector multiplication, we repeat

the experiment in the case study and compare the baseline (ran-

dom organization) with XORG+ and XORGś. XORG+ is the XORG

framework proposed in Section 4. XORGś is the XORG framework

while maximizing the cost in Eq (1), which makes the data layout

organization worse instead of better. We evaluate the three tech-

niques in terms of cost in Eq (1) and the normalized output errors

in Figure 7. The analog computation is performed using circuit

simulation with SPICE level accuracy.

(a) (b)

Figure 7: (a) Norm. cost in Eq (1). (b) Norm.max output error

for 100 matrices with different data layout organizations.

The cost in Eq (1) is evaluated in Figure 7(a). The figure shows

that the XORG framework is capable of reducing and increasing the

cost in Eq (1) with 6% and 7%, respectively. This translates into that

XORG+ reduces the maximum output errors with 31% and XORGś

increases the normalized output errors with 28%, which is shown

in Figure 7(b). The strong correlation between the cost in Eq (1)

and the normalized output errors confirms our conclusions drawn

in the case study. The 1.8X difference in output errors highlights

the need for resilient data layout organization and the effectiveness

of the XORG framework.

5.3 DNN level evaluation

In this section, we evaluate the effectiveness of XORG on the appli-

cation level using the flow in Figure 1. The input to the flow is a set

Table 2: Evaluated neural networks.
Name Dataset Software #Conv. #FC #Max #Norm #Train.

accuracy layers layers pooling layers params

(%) layers (M)

VGG-7 CIFAR-10 82.8 4 2 2 6 2.2

VGG-10 CIFAR-10 88.8 7 2 3 9 1.5

VGG-13 CIFAR-10 92.5 10 2 5 12 9.7

VGG-16 CIFAR-10 94.0 13 2 5 14 14.9

of DNN models𝑀 and an in-memory computing platform 𝑃 . For

the DNN models, four convolutional neural networks (CNNs) are

trained on the CIFAR-10 dataset [9] using TensorFlow on a NVIDIA

Tesla K80 GPU. The details of the neural networks are provided

in Table 2. We use a platform 𝑃 with crossbars of dimension up

to 256x256. Consequently, weight matrices that are larger than

256x256 will be partitioned to multiple crossbars. Weight matrices

smaller than 256x256 are mapped to smaller crossbars if power can

be saved. Within the flow in Figure 1, we use the XORG framework

described in Section 4 to perform the data layout organization step.

Again, we let XORG+ and XORGś denote the case when XORG is

used to improve or degrade precision and classification accuracy,

respectively. Here, baseline is the DNNmodel obtained from Tensor

Flow.

(a) (b)

Figure 8: (a) Cost in Eq (1). (b) Compile time overhead.

The cost in Eq (1) and the overhead in compile time is evaluated

in Figure 8. Compared with the baseline, XORG+ reduces the cost

with 11% and XORGś increases the cost with 11%, respectively. The

improvements come at the expense of a modest 6% overhead in

terms of compile time. The data layout organization takes between

2 and 26 min depending on the network size, which is significantly

smaller than the run-time of 0.8 to 5.4 hours for the voltage IR-drop

compensation in [4, 11, 15, 16].

VGG-13 VGG-16

Figure 9: Evaluation of mapping cost and classification accu-

racy with respect to memristor bit-accuracy.

863

Now we turn our attention to evaluating the capability of the

XORG framework at reducing the memristor write bit-accuracy

requirements in Figure 9. We show the classification accuracy for

VGG-13 and VGG-16 in (a) and (b) of Figure 9. While only using a

write bit-accuracy of 5 bits, it can be observed that the Baseline and

XORG+ is capable of achieving an classification accuracy close to

the software level. In contrast, XORGś requires a write bit-accuracy

of 6-bits to achieve similar classification accuracy. While the initial

data layout organization happens to result in high accuracy, XORG+

ensures that a poor data layout organization is not selected.

Next, we evaluate the sensitivity of the classification accuracy

to the crossbar dimensions in Figure 10. The classification accuracy

of VGG-7 and VGG-10 with respect to the crossbar dimensions is

shown in (a) and (b) of Figure 10. The memristor bit-accuracy is

set to 6-bits. While all methods have similar classification accuracy

for smaller crossbars, it is clear that XORG+ achieves the highest

classification accuracy when the crossbar dimensions are scaled to

512x512. The explanation is that it is naturally more important to

mitigate the impact of parasitics when larger crossbars are used.

The figure shows that Baseline is significantly worse than XORGś

gor VGG-7. Given the results on the crossbar level, we speculate

that this stems from application level properties.

VGG-7 VGG-10

Figure 10: Classification accuracyw.r.t. crossbar dimensions.

Now we focus on evaluating the effectiveness of XORG at im-

proving the robustness to RTN using 256x256 crossbars. We intro-

duced RTN, which we model using a uniform distribution with

[−𝑥%, +𝑥%]. It can be observed that XORG+ produces data layout

organizations that are more resilient to the RTN than both the Base-

line and XORGś. The higher resilience to errors stems from that

XORG+ results in mapping solutions with larger 𝛼 and the errors in

the analog domain are scaled with 1/𝛼 . To the best of the authors

knowledge, this observation provides a new pathway to improving

the resilience to RTN.

6 SUMMARY AND FUTURE WORK

In this paper, we proposed the XORG framework that performs

resilient data layout organization for DNN models deployed on

in-memory computing platforms. The framework is based on the

observation that the resistive parasitics within a crossbar introduces

a dependency between the matrix data and the precision of the

analog computation. This opens the door to reorganizing the data

within a DNN model to improve classification accuracy by optimiz-

ing the matrix to crossbar assignments. The experimental results

show that the XORG framework relaxes the hardware requirements

VGG-7 VGG-10

Figure 11: Evaluation of resilience to RTN.

and improves the robustness to noise. We believe that this paper

will establish data layout organization as a standard design step

within compilers for in-memory computing platforms.

ACKNOWLEDGMENTS

This work was in part supported by NSF awards #1755825, #1908471,

#2008339, #2113307, DARPA cooperative agreement #HR00112020002,

ONR grant #N000142112332, and DOE/NNSA.

REFERENCES
[1] S. Choi, Y. Yang, and W. Lu. Random telegraph noise and resistance switching

analysis of oxide based resistive memory. Nanoscale, 6, 11 2013.
[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2001.
[3] Z. He et al. Noise injection adaption: End-to-end ReRAM crossbar non-ideal

effect adaption for neural network mapping. DAC’19, pages 57:1ś57:6, 2019.
[4] M. Hu et al. Dot-product engine for neuromorphic computing: Programming

1T1M crossbar to accelerate matrix-vector multiplication. DAC’16, pages 1ś6,
2016.

[5] M. Hu et al. Memristor-based analog computation and neural network classifica-
tion with a DPE. Adv. Materials, 30, 2018.

[6] A. James, O. Krestinskaya, and L. Chua. Neuromemristive circuits for edge
computing: A review. IEEE Transactions on Neural Networks and Learning Systems,
PP, 02 2019.

[7] Y. Ji et al. Bridge the gap between neural networks and neuromorphic hardware
with a neural network compiler. ASPLOS ’18, page 448ś460, 2018.

[8] K. Kourtis et al. Compiling Neural Networks for a Computational Memory
Accelerator. arXiv e-prints, page arXiv:2003.04293, 2020.

[9] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[10] Y. LeCun et al. Deep learning. In Nature, pages 436ś444, 2015.
[11] B. Liu et al. Reduction and IR-drop compensations techniques for reliable neuro-

morphic computing. ICCAD’14, pages 63ś70, 2014.
[12] S. Liu and W. Deng. Very deep convolutional neural network based image

classification using small training sample size. In 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), pages 730ś734, Nov 2015.

[13] C. Münch, R. Bishnoi, and M. B. Tahoori. Reliable in-memory neuromorphic
computing using spintronics. ASPDAC ’19, page 230ś236, 2019.

[14] L. Song et al. Pipelayer: A pipelined reram-based accelerator for deep learning.
HPCA’17, pages 541ś552, 2017.

[15] N. Uysal et al. Dp-map: Towards resistive dot-product engines with improved
precision. In ICCAD’20, pages 1ś9. IEEE, 2020.

[16] N. Uysal et al. Xmap: Programming memristor crossbars for analog matrix-
vector multiplication: Towards high precision using representable matrices. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021.

[17] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20ś24, 1995.

[18] L. Xia et al. Fault-tolerant training with on-line fault detection for rram-based
neural computing systems. DAC’17, pages 1ś6, 2017.

[19] B. Zhang et al. Handling stuck-at-fault defects using matrix transformation for
robust inference of dnns. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 1(56):1ś14, 2019.

[20] Z. Zhu et al. Mixed size crossbar based RRAM CNN accelerator with overlapped
mapping. ICCAD’18, pages 69:1ś69:8, 2018.

864

	Go to Previous View
	Search
	Print

