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Information leakage is usually defined as the logarithmic increment in the adversary’s probability of correctly
guessing the legitimate user’s private data or some arbitrary function of the private data when presented
with the legitimate user’s publicly disclosed information. However, this definition of information leakage
implicitly assumes that both the privacy mechanism and the prior probability of the original data are entirely
known to the attacker. In reality, the assumption of complete knowledge of the privacy mechanism for an
attacker is often impractical. The attacker can usually have access to only an approximate version of the
correct privacy mechanism, computed from a limited set of the disclosed data, for which they can access
the corresponding un-distorted data. In this scenario, the conventional definition of leakage no longer has
an operational meaning. To address this problem, in this article, we propose novel meaningful information-
theoretic metrics for information leakage when the attacker has incomplete information about the privacy
mechanism—we call them average subjective leakage, average confidence boost, and average objective leakage,
respectively. For the simplest, binary scenario, we demonstrate how to find an optimized privacy mechanism
that minimizes the worst-case value of either of these leakages.
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1 INTRODUCTION

Due to the recent surge in popularity of social media platforms, users all over the world are dis-
closing increasing amounts of personal information, in exchange for certain gratifications, like
those derived from social interactions [58], or directly measurable utilities, such as receiving more
accurate recommendations. Heretofore, Facebook has 2.80 billion monthly active users, and more
than half of those users log onto this networking site on a daily basis [40]. Even though there are
various levels of privacy protections in these social networking sites, it is nevertheless possible
for users’ information to extend beyond their intended privacy bounds, hence leaking information
about the users’ sensitive personal data. It is of utmost importance to design measures to minimize
such information leakage.

Much research work has been dedicated to measuring privacy and the development of privacy-
preserving solutions. The measurement of privacy spans a wide range of fields, from data science
to information theory. Differential privacy, introduced in Reference [18], emerged as a consensus
definition for publishing data in a privacy-preserving manner. This metric is formulated around
two databases that differ in a single entry. Later, Barthe and Kopf [6] extended this metric to deal
with binary random variables masked by the addition of noise. In a more recent work, Desfontaines
et al. [16] performed an in-depth analysis of the extensions and variations of differential privacy.

In the field of information theory, various privacy metrics have been proposed utilizing Shan-
non’s mutual information or Fisher information [23]. Shannon entropy and mutual information
based information-theoretic measures were proposed to define information leakage in References
[27, 36, 44, 49]. Divergence-based quantities, such as total variation distance between the prior
and posterior distribution, have also been adopted as a measure of leakage [43]. Issa et al. [30]
introduced one-shot measures such as maximal leakage, maximal realizable leakage, maximal cor-
relation, or local differential privacy [31] for quantifying information leakage.

Each of the metrics mentioned above only provides operational meaning if it is assumed that
the stochastic privacy mechanism is completely known to the adversary, and only the specific
realizations remain unknown. For example, if the mechanism relies on the addition of noise, then
the statistics of the noise are perfectly known, but the samples drawn according to these statistics
are not. However, this assumption is not compatible with practice. Consider a data aggregator
that discloses data through such a privacy mechanism. As the original data is not available to
the attacker, its statistics are not available either. So, even if the privacy mechanism is derived
from an optimization problem as a function of the original statistics, it remains beyond the reach
of the attacker. The attacker can collect few original data samples—perhaps from some friends—
and estimate the privacy mechanism by comparing them to the disclosed data. But it is unlikely
that the attacker’s group of friends is so vast to render this estimation error insignificant. Hence,
identifying metrics to precisely quantify privacy and privacy leakage in such scenarios is essential,
as the traditional metrics fail to measure this leakage appropriately.

In this article, we have dealt with precisely this problem and provided meaningful measures of
information leakage when the complete statistical information of either the privacy mechanism
or the original data or both are unknown. It is to be noted that the privacy measures, in this
scenario, rely on the attacker’s acquired understanding of the privacy mechanism. For example,
to represent how much confidence boost the attacker expects to get through the disclosure of
information, we have proposed the average subjective leakage (ASL). This metric will help the
attacker decide whether the cost incurred in the process of acquiring the information is worth the
effort. To capture the true confidence boost of the attacker, we have proposed the metric average
confidence boost (ACB). Finally, to represent the true probability that the attacker made a correct
guess after observing the disclosed information, we have defined average objective leakage (AOL).
This metric quantifies how much the disclosed information has really helped (or hurt!) the attacker.
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We would like to point out here that imposing such uncertainty assumptions on the attacker
is by no means tantamount to security through obscurity. This is because the attacker’s imperfect
statistical information does not in general constitute an advantage for the privacy-conscious data
owner. Rather, at times, such imperfect information can actually lead the attacker to take actions
that are more detrimental to the data owner than any actions taken in the presence of complete
information, as should become clear in Section 2 below.

In the most related work to our framework, Chatzikokolakis et al. [11] also considered a sce-
nario where the passive attacker lacks prior knowledge about the system. Eventually, the authors
estimated the channel capacity based on the transition matrix generated from the collection of
samples. Wang et al. [56] considered private data S and correlated data X and designed a privacy
mechanism so the disclosed information Y—a noisy version of X—optimizes the privacy-utility
tradeoff. The part related to our current article is their assumption that the joint probability dis-
tribution of (S, X) is not perfectly known, but rather approximated, by the adversary. Privacy is
quantified as the y? information between S and Y (i.e., y?(S, Y)) and utility as y? information be-
tween X and Y (i.e., y?(X,Y)). These definitions require the knowledge of the joint distribution
of (S,X), which means that the attacker achieves only an approximate version of y?(S,Y)—say,
7%(S,Y). Afterward, the authors provide a bound for the error y2(S,Y) — 7%(S,Y). Even though
the authors correctly point out that there is some difference between these two measurements,
they do not provide a measure that captures the leakage that the adversary can achieve from their
approximated mechanism. The proposed metrics, therefore, have a definite advantage over Refer-
ence [56], as these measures are explicitly related to the privacy mechanism that is approximated
by the adversary.

Now, to demonstrate the behavior of the proposed metrics, we have considered the simplest
possible scenario. In our analysis, we disclose a binary private variable through a binary privacy
mechanism and determine the optimal mechanism that minimizes the worst-case leakages under
the constraint of both the utility of the revealed data and the deviation of the approximated mech-
anism from the true distribution of the privacy mechanism.

The contributions of our work can be summarized as follows: (1) We introduce novel notions of
information-theoretic metrics when the complete statistical information of the privacy mechanism
is unknown—these are average subjective leakage, average confidence boost, and average objective
leakage. (2) We formulate several optimization problems, based on binary random variables and
privacy mechanisms, to illustrate the applicability of our privacy leakage metrics. In each of those
optimization problems, we analytically compute the parameters that minimize the worst-case re-
alization of each of the metrics. (3) We numerically compute the optimal probabilities that result
in the optimized privacy mechanism for each optimization problem and compare the obtained
leakages to the worst-case leakage of the same metric that will result from other optimization
problems.

We presented the preliminary results in Reference [47]. In this manuscript, we have renamed
the metrics that were introduced in Reference [47] to better reflect their operational meaning. This
current version further enhances Reference [47] in the following manner:

— We have discussed the motivation of the problem formulation for the binary privacy mech-
anism to demonstrate the applicability of the metrics in practical scenarios.

— We have introduced a new metric to compute the true confidence boost that an attacker will
achieve through the disclosure of information. We have termed the metric as average con-
fidence boost and formulated an optimization problem that minimizes the worst-case value
of the metric. In Reference [47], we formulated optimization problems for minimizing the
worst-case value of average subjective leakage (referred to as maximal subjective leakage in
Reference [47]).
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— We have also presented and proved several properties of the proposed metrics.

— We have also introduced the notion of an advanced utility provider and formulated optimiza-
tion problems for this type of utility provider. We have only dealt with a utility provider who
takes the output at face value (termed as a generic utility provider in this manuscript) in
Reference [47].

— We have numerically computed the worst-case leakage values for advanced utility provider
and compared the value with the value achieved by optimizing the min-entropy leakage.

— Finally, we have outlined the formulation of the optimization problem in the general scenario
and discussed the approach of finding a solution.

The rest of the article is organized as follows: The motivation of the article is discussed in
Section 2. In Section 3, we explain the system setup, define the proposed metrics, formulate the opti-
mization problems, and explain several properties of the proposed metrics. Section 4 evaluates the
feasibility of all possible combinations of probabilities of actual and approximated privacy mecha-
nisms under various input distribution probabilities. The details of the ACB optimization problem
are explained in Section 5. The simulation result is illustrated in Section 6. A brief overview of
the optimization problem for the general case and their solution is discussed in Section 7. Sev-
eral related works have been discussed in Section 8. Finally, Section 9 summarizes our article and
presents some directions for future works.

2 MOTIVATION

According to a study by Ohio State University psychologist Terri Fisher, students are likely to skew
information regarding their sexual behavior to match society’s cultural norms [24]. The study
was performed on 293 participants, consisting of general psychology students, who were asked to
complete a questionnaire asking how often they engage in “typical” gender behaviors. Almost half
of the participants were attached to a polygraph machine and were told that the machine would
detect the lies, whereas, in reality, the machine was not actually functioning. The study found
that the male participants, who were not attached to the polygraph machine, tended to report
having more sexual partners than other male participants who were connected to the machine.
Similarly, the reported number of female participants is lower for those who were not attached
to the machine than those who believed the machine would detect their lies. Such a discrepancy
was not found for questions related to non-sexual behaviors. Therefore, it is highly plausible that
people may not always provide an honest answer when presented with a sensitive question.

Such a conclusion, naturally, leads us to Warner’s randomized response model [59]. In the ran-
domized response model, a respondent answers “Yes” or “No” to either the sensitive question of
interest or the complementary question. The respondent uses a chance device to determine which
question to answer. Even though the interviewer may know a priori the distribution of the device,
the output of the device for each trial is unknown to the interviewer. Consequently, the interviewer
does not know the actual question to which each respondent answered.

Let us denote 0 as the probability that the chance device selects the sensitive question (Q1), 7
as the proportion of the sampled population that belongs to the sensitive group, and A as the prob-
ability that any randomly selected person will answer “Yes” Here, 7 is our parameter of interest,
as we want to determine the proportion of population having the sensitive attribute. A pictorial
depiction of the privacy mechanism of the randomized model is shown in Figure 1. The relation

among 0, , and A is given below (6 # 0.5) [59]:
A = P(Ans=Yes) = P(Ans=Yes | Q1)P(Q1) + P(Ans=Yes | Q7)P(Qy)
0+ (1-m)(1=0)= (20— 1)z +(1-0). o
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Generally, it is assumed that both the respon-
dent and the interviewer know 6, and A can be
computed from the survey data. Therefore, from
Equation (1), we can easily compute 7 as 7 =
'1;(6.1__19). Afterward, the interviewer can utilize
the values of 7 and A to compute the number of
people belonging to the group of people having
sensitive attributes.

Note that the underlying rationale of the ran-
domized response model is that even though OF
the respondents may feel uncomfortable for be-
ing perceived as having a sensitive attribute, as
long as the answer is not too revealing, the re- Fig. 1. Privacy mechanism in Warner’s randomized
spondents will follow the procedure. Nonethe- response model.
less, such an assumption does not match with the
survey results conducted by Fisher et al. [24], where the participants intentionally tweaked their
answers to conform to the typical gender norms. To accommodate the scenarios where the partic-
ipants may not always respond honestly, we need to extend the privacy mechanism of Warner’s
randomized response model. Such an extension results in the privacy mechanism of Figure 2. Here,
y1 indicates the probability with which the participant answers honestly when the true answer is
“Yes,” and y, indicates the probability with which the participant answers honestly when the true
answer is “No.”

Therefore, the sensitive question of interest
can be asking a student if they have ever con- Question Tiiic Aristiet
sumed an illegal substance. Similarly to the
previous discussion, a student may skew their

Question True Answer

Q: Yes

Reported Answer

Y

Yes Yes
answer, depending on their understanding of
the confidentiality preservation of the informa- o X 7
tion collection procedure. Moreover, the proba- ~ z
bility that a student replies honestly when the No No

true answer is “Yes” can be different from that Y2

of replying honestly when the true answer is
“No.” Observe that both y; and y, depend on
the confidence of the respondent in the infor-
mation collection procedure. Naturally, the re-
spondent will want to ensure their own well-being. Suppose the respondent is not confident
enough that their information will be kept confidential, and thus, it is unlikely that such a respon-
dent will answer truthfully to the sensitive question of interest, and therefore, y; will be small.
The students choose y; and y,, depending on their own confidence in the information collection
procedure and their desired privacy guarantees. In essence, they are concerned that a malicious
entity may try to infer private information about a specific user (i.e., whether that specific student
consumed any illegal substance or not). But the students should also be aware that a sophisticated
adversary can estimate y; and y,—call these estimates y;, y,. Interestingly, if y/, y, are far from the
original values y;, y», then such an adversary can reach the wrong conclusion about the targeted
student, potentially blaming an innocent participant. Therefore, it is not only the true leakage
of information that should concern each student, but also the potential mismatch leading to ad-
versaries that are wrong, but confident in their estimations. The following optimization problem

Fig. 2. Extension of privacy mechanism in Warner’s
randomized response model.
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captures these situations in the general case:
min max privacy leakage metric,
(ri-v2) (v]>v3)
such that (y{, y,) is within a certain distance of (y1, y2),
and a utility constraint is maintained.

The next important step is to define appropriate privacy leakage metrics. It is apparent from the
context that the metrics should capture both the confidence boost an individual gets upon observing
the disclosed information and how much actual information can be gained by collecting it. In
this article, we have proposed distinct metrics that properly compute these various aspects of
leakages. We have proposed several metrics that compute the confidence of the adversary after
the information disclosure (average confidence boost and average subjective leakage) and the true
leakage of the disclosed information (average objective leakage). Afterward, we have presented an
optimization problem that will ensure the minimization of information leakage even in the worst-
case scenario. Therefore, we believe the proposed extension of the privacy mechanism of Warner’s
response model has more usability in practice. The proposed metrics, along with the optimization
problem formulation, will enable the user to design the privacy mechanism effectively such that
the confidentiality of each user is preserved while maintaining the desired utility of the gathered
information. The aforementioned situation can arise in various real-life instances, such as ensuring
privacy during election audits, maintaining secure medical diagnoses, and protecting privacy in
targeted advertising, among other examples.

3 PRELIMINARIES
3.1 Problem Setup

Let X be our private random variable and Y be the disclosed information about X. Throughout our
article, we shall consider all the random variables are discrete with binary support sets.

We shall consider a three-party system for our model. The data owner, henceforth referred to
as Alice, will design a privacy mechanism, Py x, such that the randomized mechanism minimizes
the information leakage between X and Y, while achieving a desired utility. However, neither the
utility provider nor the adversary possesses the knowledge of the correct joint distribution, Pxy.
They, nonetheless, know the initial distribution of X, Px. Thus, their lack of knowledge of the joint
distribution arises from the incomplete knowledge of the privacy mechanism, Py |x. Hereafter, we
will refer to the utility provider as Bob and the adversary as Eve.

Therefore, our system setup is delineated as follows: Alice will disclose X through the privacy
mechanism Py|x. We have represented the disclosed information as Y. Both Eve and Bob will
collect several (X, Y) pairs and approximate the privacy mechanism as Qy|x and Q, X respectively.
Afterward, Eve will try to guess X based on Qy|x.

3.2 System Matrices

The correct privacy mechanism, Py |x, and both the approximated privacy mechanisms, Qy|x and
Q;,l > are given in Table 1.

The initial distribution of X, Px, the marginal distribution of Y, Py, and the conditional proba-

Pyx.P

bility Px |y are given in Tables 2-4, respectively. Note that Py = }’, Py|x.Px and Px|y = _Yix-2 X

The marginal distribution of Y, approximated by Eve, Qy, and the corresponding conditional
distribution, Qx |y, are given in Tables 5 and 7, respectively. Bob will perform a similar computation,
and the resultant marginal distribution Qf, and the conditional distribution QE(IY are given in
Tables 6 and 8, respectively.
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Table 1. Privacy Mechanisms

(a) Original privacy mecha- (b) Approximated privacy (c) Approximated privacy
nism, Py |x mechanism of Eve, Qy|x mechanism of Bob, ngx
Pyix | Y=0] Y=1 Oyix | Y=0]Y=1 Qx| Y=0]Y=1
X=0 P1 l—pl X=0 q1 1—q1 X=0 qi ]—qi
X=1|1-p;| p2 X=1|1-g2| @ X=1|1-¢;| ¢
Table 2. Initial Table 3. Marginal Distribution of
Distribution of Public Variable, Py
Private Variable,
Py Py value
Y =0 pipo+(1—=p2)(1—po)
Px_| value Y=1]po(1—p1) +p2(i—pu)
X=0 Po
X=1]1- Po

Table 4. Matrix for Conditional Distribution, Px |y

Pxy Y=0 Y=1

X0 P1po po(1—p1)
p1po + (1 —p2) (1 = po) | po(1 = p1) + pa(l — o)

X <1 (1 -p2)(1 ~po) P2(1 = po)
pipo+ (1= p2)(1=po) | po(1=p1) +pa(1 =)

Table 5. Approximated Marginal Table 6. Approximated Marginal
Distribution of Public Variable by Distribution of Public Variable by
Eve, Qy Bob, Q;,

Oy value Q5 value
Y=0] qipo+(1—g2)(1—po) Y=0|qipo+(1-q5)(1—po)
Y=1]po(1=4q1)+qa(1 = po) Y=1]po(1=g;)+g;(1=po)

Table 7. Matrix for Conditional Distribution, Qx |y

Oxy Y=0 Y=1

X0 q1Po po(1—q1)
q1po+ (1 =q2)(1 = po) | po(1 = q1) +q2(1 = po)

X1 (1-g2)(1=po) q2(1— po)
qipo+ (1 =g2) (1 = po) | po(1 —q1) +q2(1 = po)

Table 8. Matrix for Conditional Distribution, QS(|Y

iy Y=0 Y=1
q1Po Po(1—qy)
X=0 ’ 7 7’ /7
qpo+ (1=g5)(1=po) | po(1—q7)+q;(1=po)
K1 (1-45)(1 = po) q;(1 = po)

qpo + (1=g5)(1=po) | po(1=q7)+q;(1=po)
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3.3 System Definitions

In this article, we are interested in an adversary who is interested in guessing the correct value of
X in a single try (i.e., a one-try attack). Without any disclosed variable, Eve will analyze the initial
distribution of X (Px) to make a blind guess. The uncertainty of such a measure is represented
by Hw(X). Once Eve has access to Y, the uncertainty in guessing X is reduced, and the reduced
uncertainty is represented by Ho, (X|Y). Therefore, an appropriate leakage measure should capture
the difference between these two uncertainties, and min-entropy leakage metric correctly captures
such a leakage. Thus, we shall begin by analyzing the definition of the min-entropy leakage metric
and, afterward, modify the definition to represent the various measures of information leakage
that may arise due to the incomplete statistical information of the privacy mechanism.

The definition of min-entropy leakage (L), as given in Reference [3], is depicted by Equation
(2). Here, we denote the support of random variable X as X = {xo,....., X4—1}, support of Y as
Y ={yo,...... yn—1}, and x7 (y) = argmax Px|y(x,y). We should note here that for our case Y =

xeX
X =1{0,1}.
L(Py|x) = Io(X;Y) = Hoo(X) — Hoo(X]Y) = Hoo(X) + log, Z Py (y) r;lg\)fPXIY(x’ y)
yey

= Hoo(X) + log, Z Py (y)Px |y (x1 (y)|y).
yey

@

Now, we shall modify Equation (2) to represent the confidence boost the adversary expects
to achieve through the disclosure of the information. We have proposed the metric average
subjective leakage (ASL) to compute this expected boost. As ASL is related to the expecta-
tion of the attacker, the definition considers both Qy|x and Qy, as given by Equation (3). Here,

x;(y) = argmax Qx |y (x,y). The adversary knows she should choose the most likely x € X, given
xeX
her own understanding of the statistics. Such a choice is represented by x;(y), for each y € Y.

Afterward, she computes Qx |y (x;(y)|y), and this measure represents her belief that she has made
a correct guess regarding the value of X. Finally, she averages the gain with respect to her statis-
tics, and we have called the resultant measure as average subjective leakage. Note that we explicitly
include the dependence of ASL on the attacker’s perceived privacy mechanism Qyx:

ASL(Qy x) = Ho(X) +log, > Qv(y) max Qxy (x[y) = Heo(X) + log, D Or)Qx 1y (55 ()1y).
yey yey
®)

The Average confidence boost (ACB) measures the actual boost in confidence of the attacker
due to disclosure of information. Accordingly, this metric relates Qy|x to the correct marginal
distribution Py, and consequently, we have:

ACB(Py|x, Qvix) = Heo(X) + log, ) Py(y) max Oxy (xly)
yey

= Ho(X) +logy )" Py (y)Qxv (x5 (1) Iy).
yey

©

Similar to ASL, the adversary again chooses the most likely x € X from her own realization of
the privacy mechanism. However, for computing ACB, we average such a gain with respect to the
true statistics of the privacy mechanism. Therefore, ACB correctly measures the true confidence
boost of the adversary upon observing Y.
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Table 9. Summary of Notations

Symbol Meaning
Px Original distribution of X
Py Original distribution of Y
Pyx Original privacy mechanism
Qvy|x Approximated privacy mechanism for attacker
Qy Approximated distribution of Y for attacker
QY x Approximated privacy mechanism for utility provider
Qy Approximated distribution of Y for utility provider
x; (y) arg max Px|y
xeX
X3 (y) arg max Qx|y
xeX
x;(y) arg max Q;(‘Y
xeX
Umin | Minimum utility requirement of the privacy mechanism Py |x
1) Maximum distance between Py|x and Qy|x (or Q;‘ X)

Finally, we have proposed the average objective leakage (AOL) to indicate how much infor-
mation has actually been leaked by the system. As we are considering a three-party system, we
shall have AOL for both the attacker and the utility provider. This metric can be measured by
computing the leakage of the original privacy mechanism (i.e., Py|x) at the index in which the
attacker/utility provider believes the system leaks maximum information. We know from the pre-
vious discussion that for the attacker, this index is x; (y). Similarly, for utility provider, we can

denote x;(y) = arg max Q;(‘Y(x, y). Thus, the mathematical formulation of AOL is given by
xeX

AOL(Pyix. Qvix) = He(X) +log, ) Pr(y)Pxiy (x; ()Iy). )
Y

(For indicating the attacker, we shall use i = 2, while i = 3 will be used to indicate the utility
provider.)

Finally, Table 9 presents the summary of the notations used throughout the article. Note that,
while defining each metric, we have considered the average case. Each of the definitions can easily
be extended to represent the worst-case value where we take the maximum over all realizations
of Y instead of summing over them. However, optimization becomes more challenging due to
the discontinuous character of the function. For ease of explanation, we have only presented our
analysis of the average case in this article.

3.4 Problem Statement

The primary objective of the privacy mechanism is to minimize the amount of information leakage
to potential adversaries when they gain access to the disclosed information. However, we need to
consider how much the disclosed information helps the utility provider as well. It is thus crucial to
strike a delicate balance between safeguarding user privacy and providing the necessary data for
the utility provider’s analysis, and therefore the design of the privacy mechanism should ensure
that the privatization of the sensitive data does not prevent the utility provider from achieving
their desired utility. Consequently, the purpose of the design of the privacy mechanism is twofold:
(i) maximize the utility of the disclosed data; and (ii) minimize the information leakage between X
and Y.
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To capture the information leakage minimization, we need to specify that Qy|x is an approx-
imate representation of Py|x, and accordingly, it is within a certain distance of Py|x. We have
characterized this constraint by ensuring the maximum total variation distance between Py|x and
Oy x is 6, i.e,, drv (Py|x, Qy|x) < ¢. This model corresponds to an attacker who successfully col-
lects a set of (X, Y) pairs (say, by enlisting all of her friends) and estimates the privacy mechanism
based on the collected set.

In our model, we have defined utility in two ways. A generic utility provider believes Y reflects
an undisturbed value of X. We have also considered an advanced utility provider who, instead of
taking Y at face value, performs statistical analysis to maximize the probability of having a correct
guess.

Let us define utility for the generic utility provider first. If X = 0, then Py_gx= = pi1, and the
probability that X = Y can be computed as p;p,. Similarly, when X = 1, the probability that
X = Y is (1 — pg)p2. To ensure that the utility is above a certain threshold, represented by i,
we impose the utility constraint U (p1, p2) = p1po + (1 — po)p2 = Umin- This is to be interpreted
from the perspective of a utility provider that takes the disclosed information at face value. Such
scenarios are currently the most common practice—for instance, with online social networks [2]
or with the current recommender systems [38].

An advanced utility provider makes an educated guess, denoted by x;(y) (see Table 9), based
on his approximated channel Q;m,. From the perspective of utility, the data owner needs to make
sure the objective leakage, computed at the index x} (y), is higher than a minimum threshold. It is
to be noted that for an advanced utility provider, we take the worst-utility case as the minimum
over Q’(Y|X) and ensure that this worst utility is higher than u,,;,. Thus, the utility constraint is
expressed as U (p1, p2) = ming (y|x) AOL(Q"(Y|X)) = tmin. As Q;\x is also an approximation of
Py|x, we have dTv(Py|X, Q;\X) <.

Now;, let us formulate the optimization problem. For any of the proposed metrics, Alice never
knows beforehand if the q; and ¢, values, chosen by Eve, are the ones that maximize that specific
metric. She always needs to consider the worst-case scenario—which is usually the maximum with
respect to q; and g;—and find the parameters p; and p, that minimize this worst-case value of the
metric. Thus, Alice needs to solve a minimax optimization problem.

For example, if Alice wants to devise a privacy mechanism that minimizes the worst-case value
of ACB, then she will have the following optimization problem:

miny, ,, Maxg, g, ACB(Py|x, Qv|x),
such that U (py, p2) = Umin,

and drv (Py|x, Qy|x) < 6.

3.5 Properties of the Proposed Metrics

Previously, we have introduced several metrics, defined each of them, and formulated the problem
statement. Now, we shall present several properties of our proposed metrics.

PROPERTY 1. maxg,,, AOL, where Qx|y belongs to a probability simplex that includes Px|y, is
always smaller than min-entropy leakage (L).

Proor. Recall that x| (y) indicates the value of x € X that maximizes Px|y and x; (y) represents
x € X that maximizes Qx|y. When § > 0, x7(y) and x; (y) will refer to different values of x € X.
As x7(y) always maximizes Px|y, Pxy(x](y)ly) is always higher than Pxy(x;(y)|y). Therefore,
by analyzing both Equations (2) and (5), we can say that maximum of average objective leakage
will be lower than the min-entropy leakage.
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Both Py x and Qy|x refer to the same distribution when § = 0. Consequently, both x7(y) and
x,(y) will represent the same value of x € X, and thus, average objective leakage will be same as
the min-entropy leakage. O

PROPERTY 2. Average objective leakage (AOL) can be negative.

Proor. We know, Ho (X) = —log, max, Px(x). Also, from Equation (5), we see that we need to
specify whether the average objective leakage is computed for the adversary or the utility provider.
The following proof shows the computation of the objective leakage for an adversary, and there-
fore, we use i = 2. Thus, we shall have the following:

AOL(Py|x, Qy|x) = —log, max Py (x) + log, D" Py (y)Px iy (55 (y)1y)
Y

Ly Pr@Pxiy (5®)ly) 2y Py (y)Pxy (x3 (y)ly)

= log, max, Px(x) log, maxy 3, Pxy(x,y)
Doe, ZvY@Pxy (@)Y - Xy Pr)Pxy (5 G)1Y)
SR T max Py (y) 5, PY )Py ()

Here, (*) holds as max, 3}, Pxy(x,y) < X, maxy Pxy(x,y). As xj(y) always maximizes Px|y,
2y Py (y)Pxy (x5 (y)1y)
2y Py (W) Px )y (x] ()

objective leakage is negative.
Note that the lower limit can be achieved when the inequality max, 3}, Pxy(x,y) < ¥, max,
Pxy (x,y) holds with equality. In this case, we get the following:

max ) Pxy(x.y) = ) maxPxy(x.y) & max ) Py(y)Pxyy(xly) = > Pr(y) max Pxy (xly).
Y Y Y Y
©)

the value of the ratio

isless than 1. Therefore, the lower limit of the average

Notice the left-hand side of Equation (6). The maximization can occur either at X = 0 or X = 1.
Let us assume that the maximization occurs at X = 0. In that case, the left-hand side of Equation
(6) would be Py(0) Px|y(x = Oly = 0) + Py(1) Pxjy(x = 0]y = 1). Thus, if we assume that
Px—o|y > Px=1)y forbothY = 0and Y = 1, then we see that Equation (6) holds. Similarly, Equation
(6) will also hold when Px—;|y > Px=¢|y for both Y = 0 and Y = 1. Thus, when the same value of
x € X maximizes both Px|y—y and Px|y=;, we achieve Equation (6), and consequently, the average
objective leakage becomes negative. O

PROPERTY 3. maxg,,, ACB, where Qx|y belongs to a probability simplex that includes Pxy, is
always larger than min-entropy leakage (L).

Proor. From the definitions of both average confidence boost (shown in Equation (4)) and min-

entropy leakage (shown in Equation (2)), we get the following:

2y Py () Ox 1y (3 (y)ly)
2y Py () Pxpy (x5 (m)1y) -

ACB(Py x,Qy|x) — L(Py|x) = log, ™)

When § > 0, the measure space of Qx |y is larger than the measure space of Px|y and also in-
cludes the measure space of Px|y. Moreover, x,(y) maximizes Qx|y and xj(y) maximizes Px|y.
As the measure space is larger, we have maxg,, Ox|y(x;(y)ly) > Pxy(x(y)ly). Thus, the
difference will be greater than zero. The difference between average confidence boost and min-
entropy leakage will be zero when both Py |x and Qy|x refer to the same distribution (§ = 0).
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We know that min-entropy leakage is always non-negative [20]. Thus, maxg,,, ACB is always
non-negative. |

PROPERTY 4. maxg,,, ASL, where Qx|y belongs to a probability simplex that includes Px|y, is
always larger than min-entropy leakage (L).

Proor. From the definitions of both average subjective leakage (shown in Equation (3)) and
min-entropy leakage (shown in Equation (2)), we get the following:
2y Qv () Oxy (x5 (y)1y) 2y maxycex Oxy (%, y)

e S PP C ) 8 S, mane P y) )

ASL(Qy|x) — L(Py|x) = lo

When § > 0, maxg,, max,cx Qxy(x,y) is higher than the value of max,cx Pxy(x,y), as the
measure space of Qxy is larger and includes the measure space of Pxy. Therefore, the difference
in Equation (8) is higher than zero. We shall have ASL = L when § = 0, as both Pxy(x,y) and
QOxy (x,y) will then indicate the same distribution.

As min-entropy leakage is non-negative [20], maxg,,, ASL is always non-negative. o

4 FEASIBLE REGION ANALYSIS
4.1 Feasible Region of Probability Tuples (p1, p2) and (¢1, ¢2)

We know that x](y) = argmax Px|y, and therefore, various combinations of (p1, p2) will result in

pas
different Px |y (distribution is shown in Table 4) and consequently lead to different values of x} (y).
Similarly, different combinations of (g1, q2) will result in different values of x; (y).

Let us assume py = 0.5. When we claim that the value of x} (y) at a specific index is 0, it means
that for a given value Y = y, Px—¢|y=y is higher than Px—;|y-,. Suppose for a specific combination
of (p1,p2), we have p; > (1 — pz). As py = 0.5, this inequality also means pipy > (1 — p2)(1 — po).
From Table 4, we see that the inequality p;py > (1 — p2)(1 — pp) means Px—g|y=o is higher than
Px_1)y=o. Similarly, p; > (1 — p;) also conveys po(1 — p1) < p2(1 — py) when py = 0.5, and as a
result, points out that Px_1|y= is higher than Px—¢|y=;. Thus, for Y = 0, Px_¢|y=o is higher than
Px-1y=0, and when Y = 1, Px_y|y=; is higher than Px—¢y=1. These two conditions on Px |y are
equivalent to xj(y) = [0 1]—henceforth, when writing x; (y) = [a b], we mean that x;(y = 0) = a
and x;(y = 1) = b, for any a,b € {0, 1}.

If we consider x;(y) = [0 0], then we shall have conditions (9) and (10).

P1po > (1= p2)(1 = po), %)

po(1=p1) > pa(1 = po). (10)
When we use the value of py = 0.5, condition (9) results in p; + p, > 1 and condition (10)
corresponds to p; + po < 1. Therefore, when py = 0.5, x] (y) = [0 0] is not feasible.
Setting x7(y) = [0 1] corresponds to the two inequalities shown in conditions (11) and (12).

p1po > (1= p2)(1 = po), (11)

p2(1=po) > po(1=p1). (12)
When we put py = 0.5, both conditions (11) and (12) result in p; + p; > 1. Thus, x{(y) = [0 1] is
feasible for this value of py. Using an identical reasoning, it is possible to show that x](y) = [1 0]
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Table 10. Difference between Py |x
and QY|X
PY\X'QYlX Y=0 Y=1

X=0 P1—q | 1 — P
X=1 Q2 — D2 | P2 — Q2

is also feasible, whereas x{(y) = [1 1] is not. Similar analysis can be performed to show that
xj(y) = [1 1] is not feasible when p, > 0.5, and x] (y) = [0 0] is not feasible when py < 0.5.

Similarly, when py = 0.5 and x;(y) = [0 0], we get the following two conditions (based on
Table 7):

qipo > (1= g2)(1 = po), (13)

Po(1=q1) > q2(1 = po). (14)

As py = 0.5, condition (13) results in q; +q2 > 1, and condition (14) leads to q; +q2 < 1. Therefore,

po = 0.5 and x;(y) = [0 0] is not feasible. Doing further analysis shows that feasible regions for

various possible values of (g1, q2) and p are identical to those feasible regions for various possible
values of (p1, p2) and py.

4.2 Feasible Region for Combinations of (py,p;) and (q1, q2)

With feasible regions for both (p1, p2) and (g1, q2) already explained, it is now time to analyze the
feasible regions for the combination of (p;, p2) and (g1, q2). Let us presume that a specific value of
(p1,p2) results in x7(y) = [1 0], and a particular (q;,g2) leads to x;(y) = [0 1]. Now, we want to
find for which values of py both x}(y) = [1 0] and x;(y) = [0 1] hold simultaneously.

Here, § will play a significant role. As drv (Py|x, Qy|x) < J, we get ||Py|x —Qy|xIl1 < 26.Based
on the privacy mechanisms of Table 1, we get the difference in Table 10.

We know that for any given matrix A, the ¢; norm can be calculated as [|All; =
maxi<j<n ),y laij| [42]. If we use this formula to compute the ¢; norm of Pyx — Qy|x, then
we get both (p1 —q1) — (p2 — q2) < 26 and (pz — q2) — (p1 — ¢1) < 26. These two inequalities result
in the following bounds for both ¢; and g:

p1—6<q1 <p1+6,
p2—90 < qy < py+9.

Similarly, we get (1 —p1) =6 <1—-q1 < (1—p1)+dand (1 —p2) =6 <1—gp < (1—pg) + 6.

Now, let us assume a certain combination of (py,ps) results in xj(y) = [1 0] when py, = 0.5,
represented by the Green region in Figure 3, and the (g1, q2) tuple can lie anywhere within the
& ball of this value of (py, p2) tuple. If (p1, p2) lies far away from the Green-Cyan boundary and
the value of § is small, then (q;, g2) will also be in the Green region. Thus, x(y) = [1 0] will also
convey x;(y) = [10]. However, if (py, p2) lies close to the boundary, then it is possible for (g1, g2)
to fall into the Cyan region as, in this particular case, the § ball will cover the Cyan region as well.
Thus, it would be possible to have x;(y) = [0 1] even though x| (y) = [1 0]. Therefore, we need
to divide the Green region into two sub-regions. The first sub-region (Green) will indicate when
x(y) = [10] and x;(y) = [1 0]. The second sub-region (Magenta) will indicate x](y) = [1 0], and
x;,(y) can either be [1 0] or [0 1]. Figure 4 shows the possible sub-regions for various combinations
of (p1,p2) and (g1, q2) under possible values of py. The meaning of each sub-region is given in
Table 11. Note that we achieve several sub-regions by analyzing several inequalities, such as p1po >
(1—=p2)(1—=po), along with others. Whenever we replace the inequalities with an equal constraint, for
example, pipo = (1 — p2)(1 — po), we get the boundary between two different sub-regions.
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Regions for (p;, p;) when pg = 0.5

1.0- e X(=[10]
o x=M01
0.8 -
0.6 -
1
o~
Q
0.4 -
0.2 -
0.0 -
| 1 | 1 1 |
0.0 0.2 0.4 0.6 0.8 1.0
p1—

Fig. 3. Possible regions of (p1, p2) when pg = 0.5.

Table 11. Possible Sub-regions for Combinations of (p1,p2) and (g1, q2)

Sub- po=0.5 po > 0.5 po <0.5

region

Green x/(y) =[10], x,(y) = [10] x{(y) =[10], x;(y) = [10] x(y) =[10, x;(y)=[10

Magenta x(y) =[10],x,(y) =[10]or [01] [ x/(y) =[10],x,(y) =[10]or[00] | x/(y) =[10],x,(y) =[10]or[11]

Black Not Feasible x{(y) =[00],x,(y) =[10]Jor [00] | x/(y) =[11],x;(y) =[10]or[11]

Blue Not Feasible x{(y) =[00], x;(y) =[00 x(y) =01, x@y) =01

Yellow Not Feasible x{(y) =[00], x;(y) =[01]or [00] | x/(y) =[11],x;(y) =[01]or [11]

Red x (y) =[01],x;(y) =[10]Jor [01] | x;(y) =[01],x;(y) =[00]or[01] [ x;(y) =[01], x;(y) =[01]or [11]

Cyan x;(y) = [01] and x; (y) = [0 1] xj(y) =[01]and x;(y) = [0 1 x;(y) =[01]and x;(y) = [0 1
Regions for (p1, p2) and (g1, g2) when po = 0.5 Regions for (p1, p2) and (g1, g2) when po > 0.5 Regions for (p1, p2) and (g1, g2) when pp < 0.5

00 02 04 06 08 10 0o 02 04 06 08 10 0o 02 04 06 08 10
P1,G1 P1,G1— P1,G1—>
(@) po =05 (b) po > 0.5(po = 0.6) (c) po < 0.5(po = 0.4)

Fig. 4. Possible sub-regions for various combinations of (p1, p2) and (g1, q2) under possible py.

5 ACB OPTIMIZATION

We have discussed the optimization of ASL in Reference [47], albeit referring to the measure as
maximal subjective leakage (MSL). In this article, we shall review the optimization of ACB,
which is formulated as follows:

min,, ,, maxg, g, ACB(Py|x, Qy|x)
such that U (p1, p2) = Umin,
and drv (Py|x, Qy|x) < 6.
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We can define the utility measure in two ways. If Bob (the utility provider) wants to take the
output at the face value, then the utility constraint will be expressed as U (p1, p2) = pipo + (1 —
Do)p2 = Umin. Alternatively, Bob can also perform some statistical analysis to make an educated
guess, and in that scenario, the utility constraint will be U (p, p;) = ming(y|x)y AOL(Q’(Y1X)) >
Umin. The details can be found in Section 3.4.

Straightaway, this optimization problem can be divided into two components: (i) finding q;
and g, that maximize ACB (a maximization problem) and (ii) finding p; and p, that minimize this
maximized value of ACB (a minimization problem).

5.1 The Maximization Problem

In this subsection, we shall determine ¢; and gz, in terms of p; and p,, that maximize the ACB.
Thus, we shall review the following problem:

mathqz ACB(PY|XaQY|X)s
such that U (p1, p2) = Umin,
and dry (Py|x, Qyx) < 9.

Let us consider the Cyan sub-region of Figure 4(a) first, i.e., we have x](y) = [0 1], x;(y) = [0 1],
and py = 0.5. The value of ACB, for this value of x;(y), is given by Equation (15). Here, ¢; =
pipo+ (1—p2)(1—po) and cz = po(1—p1) +p2(1—po). Note that the following analysis is applicable
for the cyan sub-region of both Figures 4(b) and 4(c) as well:

_ c1q1p c2q2(1=po)
ACB(Py|x, Qy1x) = Hoo(X) + log, (q1P0+(1—¢112;)(1—P0) + Po(1—2q1)+qz(01—110)) : (15)

— 19190 c2q2(1-po) . I .
Let us denote f = I e ey Sl o yvon v B Now, differentiating f, with respect to both

q1 and g,, we get Equations (16) and (17), respectively.

Of _ _cpo(1-g2)(1—po) c2p0q2(1=po) (16)
Iq, (q1p0+(1=q2)(1=p0))* * (po(1=q1)+q2(1=po))?

of _ c1g1po(1-po) c2(1=po)po(1-q1) (17)
992~ (qipo+(1=g2)(1=p0))*  (po(1-q1)+qa2(1—pp))?

Moreover, we know p; =8 < g1 < p1+dandp, — 5 < qo < pp+ 9. Itis clear that both the partial
derivatives are positive for all values of ¢; and ¢, in these intervals. Thus, ACB is an increasing
function of both ¢; and g,, and the maximization will occur when q; = p; + §, and g, = p; + J.

From Table 11, we can see that if xJ(y) = [0 1], then either the Red or the Cyan sub-region
is feasible. Let us analyze Figure 4 and consider any random (py, p2) tuple in the Red sub-region.
Depending on the value of §, the resultant tuple, that maximize ACB (q; = p1 + 6,92 = p2 + 9),
can either be in the Red or the Cyan sub-region. Gradual increase in the value of § will push the
(91, q2) tuple from the Red to the Cyan sub-region. Similarly, if the initial (p;,p;) tuple is in the
Cyan sub-region, then the resultant (g1, g2) tuple will be further in the Cyan sub-region. Thus, for
all possible values of 8, (g1, q2) tuple, which maximizes ACB, will either occupy the Red or the
Cyan sub-region for which we have x;(y) = [0 1].

Afterward, let us analyze the Green sub-region of Figure 4. For this sub-region, we have x; (y) =

[10] and Equation (18) depicts the value of ACB for this value of x; (y). If we denote the term inside
al-g)(—py) , _ cpo(l-q)

q1p0+(1=q2)(1=po) ~ po(1=q1)+q2(1—po)

respect to q; and gz, then we get Equations (19) and (20), respectively.

_ c1(1=g2)(1=po) capo(1-q1)
ACB(PYIX’ QY|X) = Hoo(X) + 10g2 <Q11710+(1—2‘Z2)(1—0P0) + Po(l—z%o)""h(ll—l’o)) (18)

the logarithm as g (i.e., g = ) and compute partial derivatives with

09 _ __apol=g2)(d=po) _ c2p0q2(1=po) (19)
oq (qipo+(1-g2)(1=p0))*  (po(1-q1)+q2(1-py))?
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99 _ cipo(1-po)qu c2po(1-q1) (1=po) (20)

8q: —  (qpo+(1-q2)(1=p0))2 ~ (po(1—q1)+q2(1=po))>?

As both the partial derivatives are negative for all possible values of ¢; and g,, the maximization
will occur when q; = p; — 6 and q2 = p, — . Further examination of the feasible region shows
that sub-regions Green and Magenta result in x;,(y) = [1 0]. For any value of tuple (p1, p2), which
resides in either the Green or the Magenta sub-region, choice of (q; = p1 — J,q2 = p, — §) tuple
will always result in x;(y) = [1 0]. Therefore, ¢; = p; — 6, and g = p, — § maximize ACB when
x3(y) = [10]

5.2 The Minimization Problem

Previously, we have found the values of ¢; and g, that maximize ACB. Now, we want to compute
p1 and p, that minimize this maximization of ACB. As a demonstration, we will explain the opti-
mization problem formulation when py = 0.5. The details of the optimization problems, for each
possible sub-region, can be found in Table 12.

The case of py = 0.5. We have seen from Figure 4 that there are four possible sub-regions when
po = 0.5. Straightaway, we will formulate the constraints that need to hold for each of the sub-
regions.

Let us consider the Green sub-region first. For this sub-region, we have x] (y) = [1 0] and x; (y) =
[1 0]. The inequalities, corresponding to x](y) = [1 0], are given by Equations (21) and (22).

pipo < (1 =p2)(1 = po) (21)

p2(1 = po) < po(1-p1) (22)
We have seen previously that ¢; = p; — § and g, = p; — 6 maximize ACB when x;(y) = [1 0].
Using these values of g; and g2, we get Equations (23) and (24) for x; (y) = [1 0].
qipo < (1= q2)(1 = po)
= po(p1=98) < (1 =po)(1=-pz+9) (23)
= pop1 < (1=p2)(1—po) +6

q2(1 = po) < po(1—q1)
= (p2—8)(1 —po) <po(l—p1+9) (24)

= p2(1=po) <po(l—p1) +6
It is clear that if Equation (21) is maintained, then Equation (23) will also hold. Similarly, fulfilling
Equation (22) will imply Equation (24) is also met. As a result, to obtain x} (y) = [1 0] and x; (y) =

[1 0], we need to ensure that Equations (21) and (22) hold simultaneously.

Note that for the Green sub-region, we need to make sure that no (p;, p2) tuple results in x; (y) =
[0 1]. We know that g; = p; + & and q; = p, + 6 maximize ACB when x;(y) = [0 1]. Using these
values of q; and g3, we get Equations (25) and (26) for x;(y) = [0 1].
Pog1 > (1= g2)(1 = po)
= po(pr +6) > (1 —p2—)(1 - po)
= pop1 > (1= p2)(1 —po) =6
q2(1 = po) > po(1 —q1)
= (p2+)(1—po) > po(1—p1—9) (26)

= p2(1=po) > po(1=p1) =6

(25)
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Table 12. Optimization Problems of Worst-case ACB Minimization
Sub-region po=0.5 po > 0.5 Po <0.5
- c1(1=po) (I=p2+3) ; c1(1=po) (A=p2+95) ; c1(1=po) (A=p2+95)
Green mitp,, p, Po(p1=06)+(1=po)(1=p2+0) + | miny,,p, Po(p1=06)+(1=po)(1-p2+3) + | ming, p, Po(p1=0)+(1=po)(1=p2+93) +
capo(1-p1+6) c2po(1-p1+6) c2po(1-p1+9)
Po(1=p1+8)+(1=po) (p2—5) Po(1=p1+8)+(1=po)(p2—9) Po(1=p1+8)+(1=po)(p2—9)
such that U (p1, p2) = tumin such that U (p1, p2) = Umin such that U (p1, p2) = Umin
pop1 < (1= p2)(1 = po) = pop1 < (L=p2)(1—po) =6 pop1 < (1= p2)(1 = po) =
p2(1=po) <po(1—p1) =6 P2(1=po) <po(1—p1) =6 P2(1=po) <po(1—p1) =6
B (1-po)(1-g2) : (1-po)(1-q2) : (1-po)(1-g2)
Magenta | minp, p, maXg,. g, (pgy i=poyign | M2 M8%1.0: (Ggrtimpo g + | Miprpe M3 00 (g wipur (i
c2po(1-q1) c1poqu c2po(1-q1) c1q1p0 c2po(1-q1) c1(1-g2)(1=po)
Po(1=q1)+(1=po) g2 poqi+(1-po)(1-qz) Po(1=q1)+(1=po)q2” qipo+(1-q2)(1=po) Po(1=q1)+(1=po)q2> qipo+(1=q2)(1-po)
c2(1-po) g2 ) capo(l-q1) ) c2q2(1-po) )
Po(1-q1)+(1-po)q2 Po(1=q1)+q2(1=po) Po(1=q1)+q2(1=po)
such that U (p1, p2) > Umin such that U (p1, p2) > Umin such that U (p1, p2) = Umin
pivo < (1= p2)(1 = po) p1po < (1= p2)(1 = po) pipo < (1=p2)(1 = po)
p2(1=po) < po(1—p1) pop1 > (1= p2)(1—po) =6 P2(1=po) < po(1—p1)
popr > (1= p2)(1—po) — p2(1=po) <po(l—p1) =96 P2(1=po) > po(1—p1) — 9
P2(1=po) > po(1—p1) =8
- T=po)(1-43) : c1(1=po)(1-q2)
Black Not Feasible min,, ,, maxg,, qz(m min,, ,, maqum(m
c2po(1-q1) c1q1p0 + c2po(1-q1) c1(1=g2)(1=po)
po(1-q)+(1 Pa)qz q1po+(1-¢2) (1-po) Ppo(1-q)+(1 Po)qz q1po+(1-2)(1-po)
c2po(1-q1) ) c2q2(1=po) )
Po(1=q1)+q2(1=po) Po(1-q1)+q2(1=po)
such that U (p1, p2) > tumin such that U (p1, p2) > umin
pipo > (1= p2)(1 = po) (1=p2)(1=po) > p1po
pop1 < (1 =p2)(1=po) +6 p2(1=po) > po(1—p1)
p2(1—=po) <po(1—p1) =6 p2(1—po) <po(1—p1)+6
; : Poq : Poq
Blue Not feasible M, p, MaXqy, g, (Pn%*'(ll—;n)l(l qz) MiNp,, p, MaXgq,, g, (Puql'*'(ll—;u)l(l qz)
cpo(l-q1) ) c2po(l-q1) )
Po(1=q1)+(1-po)q2 Po(1=q1)+(1-po)q2
such that U (p1, p2) = tumin such that U (p1, p2) = tmin
pipo > (L= p2)(1—po) +6 pipo < (1= p2)(1 = po) =
po(l=p1) > pa(1 = po) +6 p2(1=po) > po(1 = p1) +6
. . TP p TP
Yellow Not Feasible miny, ,, Mmaxg, q,( pow(ll——;mq)‘(l—qz)*' miny, ,, Maxg, g, (;Wﬂll_—g)'(l_qz)+
c2(1=po)g2 c1q1p0 + c2(1=po)gq2 c1(1-g2)(1-po)
Po(1=q1)+(1=po) gz’ qipo+(1=q2)(1=po) Po(l=q1)+(1 Po)qz q1po+(1-q2)(1=po)
c2po(1-q1) ) c2q2(1=po) )
Po(1=q1)+q2(1=po) Po(1=q1)+q2(1-po)
such that U (p1, p2) > Umin such that U (p1, p2) = Umin
Po(1=p1) > pa(1 = po) (1= p2)(1=po) > pipo
po(1=p1) < pa(1—po) +6 p2(1=po) > po(1 = p1)
pop1 > (1= p2)(1 = po) pop1 > (1=p2)(1=po) =&
; a1 (1—po)(1-q2) ; c1pog ; c1pog
Red MM, p2 maxq"qz(Foqlﬁr(lfpo)(quz) MiNpy, p, maxq"qz<Poq1+(1‘*;70)l(1*qz) * | My, p, maqu‘qz(Poqﬁr(ll ;70)1(1 qz)
c2po(1-q1) c1poqu c2(1-po)g2 c1q1p0 c2(1=po)g2 c1(1-g2)(1=po)
Po(1=q1)+(1=po) g2 pogqi+(1=po)(1-q2) Po(1=q1)+(1-, pn)qz q1po+(1-q2) (1-po) Po(1=q1)+(1=po)q2” q1po+(1-q2) (1—po)
c2(1-p0)q> ) capo(l-q1) ) c2q2(1-po) )
Po(1-q1)+(1-po)q2 Po(1-q1)+q2(1-po) Po(1-q1)+q2(1-po)
such that U (p1, p2) = tumin such that U (p1, p2) = Uumin such that U (p1, p2) = tmin
(1= p2)(1 = po) < p1po pop1 > (1= p2)(1 = po) +6 pipo > (1= p2)(1 = po)
po(1=p1) < p2(1 = po) P2(1 = po) > po(1 = p1) p2(1=po) > po(1—p1) +6
popr < (1=p2)(1=po) +6 p2(1=po) <po(1=p1) +6 pipo < (1=p2)(1=po) +6
P2(1—po) <po(1—p1) +3
: c1po(p1+3) : c1po(pi1+9) : c1po(p1+3)
Cyan M0 G+ (1—p)pe=8) 1 | Ppup gy +(-p)(pe) | W o)) T
c2(1=po) (p2+3) c2(1=po) (p2+6) c2(1=po) (p2+6)
Po(1=p1=6)+(1=po)(p2+9) Po(1=p1=6)+(1=po) (p2+5) Po(1=p1=6)+(1—po) (p2+5)
such that U (p1, p2) = tumin such that U (p1, p2) = tumin such that U (p1, p2) = tmin
popr > (1=p2)(1=po) +8 pop1 > (1=p2)(1 = po) + 8 popr > (1=p2)(1 = po) + 8
p2(1=po) > po(1=p1) +6 P2(1=po) > po(1—p1) +6 P2(1=po) > po(1—p1) +6
Here, c1 = p1po + (1 — p2)(1 = po), and c2 = po(1 — p1) + p2(1 — po).

Observe that Equation (25) reveals if pop; > (1 — p2)(1 — po) — & holds, then there is a possibility
that x; (y) can be [0 1]. Similarly, the inequality p, (1—po) > po(1—p;)—3& may result in x; (y) = [01].
Therefore, for the Green sub-region, for which we have x;(y) = [1 0], we need to make sure that
both inequalities pop1 < (1 —p2)(1 — po) —  and p2(1 — po) < po(1 — p1) — 6 hold simultaneously.
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Now, we will explain the method of finding optimum p; and p, for the minimization problem.
When x;(y) = [1 0], ACB is given by Equation (18). Recall that ¢; = pipy + (1 — p2)(1 = po),
and ¢; = po(1 — p1) + p2(1 — po). Using q; = p; — 6 and g, = p, — § in Equation (18), we get
Equation (27).

— c1(1=po)(1=p2+6) capo(1=p1+9)
ACB(Py|x. Qr1x) = Hoo(X) + 108, (55Tt ptipsy * mipdtopm ) @7

Thus, for the Green sub-region, the minimization problem will be as follows:
c1(1=po)(1-p2+6) c2po(1-p1+9)
P2 po(p1=6)+(1—po)(1=p2+5) * po(1—p1+8)+(1=po)(p2=5)’
such that (Ll(Pl, Pz) > Umin,
pop1 < (1= p2)(1—po) — 6,
and pz(1 = po) < po(1 —p1) — 6.

Let us discuss the formulation of constraints for the Magenta sub-region. For this sub-region,
x;,(y) can be either [1 0] or [0 1], and x} (y) should be [1 0]. We know that Equations (21) and (22)
correspond to both x7(y) = [1 0] and x; (y) = [1 0]. However, as x, (y) can be [0 1] for the Magenta
sub-region, we need to make sure Equations (25) and (26) hold as well. Therefore, for the Magenta
sub-region, Equations (21), (22), (25), and (26) need to hold simultaneously to ensure x; (y) can take
the value of either of [1 0] or [0 1] when x7 (y) = [1 0].

To derive the optimization problem, we need to identify that x;(y) has two possible values
(i.e., [0 1] and [1 0]) for the Magenta sub-region. The formulas for ACB, when x;(y) = [0 1] and
x,(y) = [1 0], are given by Equations (15) and (18), respectively. Note that ACB will be maximized

if the term inside the logarithm is maximized. Thus, at first, we need to maximize each of the terms
( c1(1-po)(1-q2) c2po(1-41) ) and ( cpod 4 0-p)g
Poqi+(1=po)(1-g2) ~ po(1=q1)+(1=po) g2 Poqi+(1-po)(1-q2) ~ po(1-q1)+(1-po)q2 T
Then, we will consider the maximum between these two terms and compute p;, p, that minimize
this maximum value. Thus, the optimization problem for the Magenta sub-region would be the

following:

l’Illl’lp1 N

) with respect to ¢; and gs.

My, p, MaXgy, g, <Pof111(i(£1)7$(1q—2‘)zz) * po<1i2;°>(+l<1q—})>n>qz’ a s Ta T pouizc;ll)f(ol)—qu)qz )

such that U (py, p2) = Umin,
pipo < (1= p2)(1 = po),
P2(1 = po) < po(l = p1),

pop1 > (1= p2)(1 = po) — 6,

and pa(1 = po) > po(1 —p1) = 6.
For the Red sub-region, we have xj(y) = [0 1] and x;(y) can either be [0 1] or [1 0]. The
conditions for x{(y) = [0 1] are given by Equations (28) and (29), respectively.

(1=p2)(1=po) < pipo (28)

po(1—p1) < p2(1 = po) (29)
Using the analysis shown before, we can conclude that Equations (23), (24), (28), and (29) need
to hold together for the Red sub-region. As x;(y) has two possible values here as well, the cost
function will be similar to that of the Magenta sub-region.
Finally, for the Cyan sub-region, x;(y) is always [0 1]. Therefore, both the inequalities pop; >
(1=p2)(1 = po) + & and p2(1 — py) > po(1 — p1) + S need to hold together. Putting the value of ¢;
and ¢,, which maximizes ACB in Equation (15), we get Equation (30).

_ cupo(pr+5) es(1=po) (p2+6)
ACB(Py(x, Qix) = Huo(X) +log, (5o i) + mimsrtiomrs) (30
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Thus, for the Cyan sub-region, optimum p; and p, can be computed from the following opti-
mization problem:
Ti0ps,p2 po(pﬁéc)ﬁol(f}:ﬁ)l—pra) * P0(1*1C721(*15)p+02§1121:t—>)6()172+5)’
such that U (p1, p2) = tmin,
popr > (1= p2)(1=po) +9,
and po(1 — po) > po(1 —p1) + 6.

The case of py # 0.5. Here, we will briefly explain the formulation of the cost function of op-
timization problems when p, # 0.5. Figures 4(b) and 4(c) show the possible sub-regions when
po > 0.5 and py < 0.5, respectively. The details of the constraints, for each sub-region, can be
found in Table 12.

To illustrate, let us consider the Magenta sub-region where x;(y) can be both [1 0] and [0 0]
when py > 0.5, and [1 0] and [1 1] when py < 0.5. If x;(y) = [0 0], then ACB is given by
Equation (31).

ACB(Pyx, Q1x) = Heo(X) + log, (qlp()"'(cllg‘l]f;(l_PO) + po(lizcio)(:qzq(ll)—po)) (31)

c1(1-g2) (1-py)
q1po+(1-q2)(1=po)
1#%). Thus, the optimization problem of the Magenta sub-region, when p, > 0.5 is
given below:

Now, we know the term inside the logarithm, when x;(y) = [1 0], is (

) c1(1-q2) (1=py) capo(1-q1) c1gipo capo(1=91)
miny,, p, MaXgq,, g, ((Q1P0+(1*(I2)(1*P0) Po(1*q1)+q2(1*l’0)) > qipot+(1=q2)(1=po) ~ po(1—q1)+q2(1-po) )’
such that U (p1, p2) > tmin,

p1po < (1= p2)(1 = po),
pop1 > (1= p2)(1 = po) =6,
and po(1 — po) < po(1 —p1) — 6.

Similarly, Equation (32) represents ACB when x; (y) = [1 1].

_ c1(1-g2)(1—po) c2q2(1=po)
ACB(Ple’ QY|X) = Hoo(X) + log, (Q1I;o+(1—2qz)(1fpo) + Po(l—quz)"'(Iz(ol—Po)) (32)

Thus, the optimization problem of the Magenta sub-region, when py < 0.5, is shown below:

miny, ,, MaXg, g, ( pof;l(i(ff ;,E;(qu;z) + po(lfzfl")(i(lq,l;o)qz, qlcp;o(i(quzt)zil)(l’flf)lo) + po(liztglz)(iqﬁgl)*po))’
such that U (p1, p2) = Umin,
p1po < (1= p2)(1 = po),
p2(1 = po) < po(1 —p1),
and p,(1 — po) > po(1 —p1) = 6.

The cost function for the rest of the sub-regions are computed using the same technique.

6 SIMULATION RESULTS

Formerly, we have formulated various optimization problems and discussed how to solve ACB
optimization problem. The details of ASL optimization problem can be found in Reference [47].
The codes, associated with these simulation results, can be found in Reference [50].

Once the data owner solves any of the optimization problems, she will have p; and p, that mini-
mize the worst-case maximization of that metric. For example, the solution of the ACB optimization
problem will result in p; and p; that will minimize the worst-case ACB whereas ASL optimization
problem will result in the parameters that will minimize the worst-case ASL.

Depending on the system requirements, the data owner may wish to solve different optimiza-
tion problems. For example, she may be interested in designing a system that minimizes the true
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Fig. 5. Variation of worst-case ASL for different optimization problems when varying umin, for different
values of py when & = 0.05 (generic utility provider).

10 ACB Values with varying umin when pg = 0.5 10 ACB Values with varying umin when po = 0.6 10 ACB Values with varying umin when po = 0.4
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(@) po = 0.5 (b) po > 0.5 (po = 0.6) (c) po < 0.5 (po =0.4)

Fig. 6. Variation of worst-case ACB for different optimization problems when varying upmin, for different
values of py when & = 0.05 (generic utility provider).

confidence boost of the attacker (i.e., ACB). Now, the data owner knows that minimizing the worst-
case ACB does not necessarily indicate that worst-case ASL is also minimized. Nevertheless, she
may be interested in finding out what is the worst-case ASL that may result from the designed sys-
tem and how this value of ASL compares to the minimization of worst-case ASL. A comparative
plot between these worst-case ASL values will enable her to have such information.

Thus, in this section, we shall compare the worst-case ASL, which results from ACB optimization,
to the minimized worst-case ASL values for different u,,;,. Moreover, for completeness, we have
also calculated p; and p,, which optimize min-entropy leakage L, and compared the resultant worst-
case ASL with the previously specified worst-case ASL values. We have obtained a similar plot for
ACB as well. And finally, we have also plotted the AOL values corresponding to the pi, p2, 1, q2
values that constitute the solution of each of the optimization problems.

6.1 Generic Utility Provider

For a generic utility provider, the utility constraint is U (p1, p2) = pipo + (1 —po)p2 = Umin. For our
simulation, we have kept § fixed to a small value (§ = 0.05).

Figure 5 shows the variation of worst-case ASL, with varying u,;,, for different optimization
problems and different possible values of py. Similarly, Figures 6 and 7 show the variation of worst-
case ACB and corresponding AOL, respectively, with varying u,,;,, for different optimization prob-
lems and different possible values of p,.

We shall explain these graphs when py = 0.5. Similar explanations hold when py # 0.5. Moreover,
for ease of the explanation, we shall consider three different values of u,,;, to reflect the three
separate zones of utility. For indicating lower utility region, we have used up,;, = 0.2, whereas
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Fig. 7. Variation of corresponding AOL for different optimization problems when varying uin, for different
values of py when & = 0.05 (generic utility provider).

Table 13. Optimized (p1, p2) Tuple for Various Optimization
Problems (py = 0.5)

Optimization | u;,in = 0.2 | Umin = 0.5 | Umin = 0.8
ASL P11 = 1 P11 = 0.93 P11 = 1
P2 = 0 P2 = 0.025 P2 = 0.6
ACB P11 = 0 P11 = 0.05 p1 = 0.6
P, =0.99 | p, =005 | p, =099
L P11 = 1 p1 = 1 p1 = 1
P2 = 0.1 P2 = 0.1 P2 = 0.6

Umin = 0.5 and Uy, = 0.8 indicate moderate and higher utility region, respectively. Table 13
shows the optimized (py, p2) tuple for each value of u,,;, and each of the optimization problems.

Let us explain Figure 5(a) first. From Table 13, we see that p; asp = 1 and ps asp = 0 for upmi, =
0.2. From Figure 4(a), we can see that these values of p; and p, correspond to the Red sub-region.
For the Red sub-region, x;(y) can either be [1 0] or [0 1] (see Table 11). If x; (y) = [1 0], then we
shall have g1, a5, = 0.95 and g2 as1. = 0, which results in ASL = —log,(0.5)+log,(1-(0.5%0.95)) =
logz(%) = 0.07. Otherwise, when x (y) = [0 1], we shall have g1 45 = 1and gz osy = 0.05, and
ASL = —log,(0.5) + log, (0.5 + 0.05 — (0.5 X 0.05)) = log,(%32%) = 0.07.

Now, we shall compare this value of ASL with the worst-case ASL, which will result from other
optimization problems. When u,,;, = 0.2, we know that p; s4cp = 0 and p; acg = 0.99. This value
of the (p1, p2) tuple indicates that the solution lies in the Red sub-region, more specifically, close to
the Magenta-Red boundary. We already know that the optimization problem results in a solution
that lies in the Red sub-region. Therefore, the worst-case (g1, ¢2) tuple will switch to the Magenta
sub-region. As a result, we shall have g1, AcB.worst = 0 and gz, AcB,worst = 0.94. This value of (¢1, q2)
tuple will result in x; (y) = [10], and consequently ASL = —log,(0.5)+log,(1-0.94+(0.5x0.94)) =
log,(0.53/0.5) = 0.084.

For min-entropy leakage (L), we need to identify that there are only Green and Cyan sub-regions.
Recall that both the Magenta and the Red sub-regions are related to x; (y), and ergo, Qx|y. However,
for min-entropy leakage (L), we do not have the notion of Qx|y. Thus, we shall only have two
possible sub-regions, namely, Green and Cyan. When u,,;, = 0.2, the L optimization results in
p1.L = 1and po 1 = 0.1. This value of (py, p2) tuple lies in the Cyan sub-region. And we already
know that for the Cyan sub-region, we have x(y) = [0 1], and thus, we shall have g1 1, worss = 1
and gz, 1, worst = 0.15. Using this value of (g1, g2) tuple, we get ASL = —log,(0.5) +log,(0.5+0.15—
(0.5x%0.15)) = log,(0.575/0.5) = 0.20. Thus, as expected, ASL optimization results in the minimum
value of the worst-case ASL. Similar observations hold when u,,;, = 0.5. When u,,;, = 0.8, each
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Table 14. Worst-case ASL Values for Different Optimization
Problems (pg = 0.5)

Optimization | umi, = 0.2 Umin = 0.5 Umin = 0.8
ASL P11 = 1 P11 = 0.93 P11 = 1
P2 = 0 P2 = 0.025 P2 = 0.6
ASL =0.07 | ASL =0.077 | ASL =0.72
ACB q1 = 0 q1 = 0 q1 = 0.65
q2 = 0.94 q2 = 0.9 q2 = 1
ASL =0.084 | ASL =0.1375 | ASL =0.72
L q1 = 1 q1 = 1 q1 = 1
2=015 | q2=0.15 | g2 =0.65
ASL =0.20 ASL =0.20 | ASL =0.72

S. K. Sakib et al.

optimization problem results in such (p;, p,) tuple that lies in the Cyan sub-region so the possible
region of (q;, q2) tuple only encompasses the Cyan sub-region. Therefore, for this value of u,,;p,
we have the same worst-case ASL for each optimization problem. These results are summarized in
Table 14.

Furthermore, Table 15 shows the ACB values for different values of u,;, and different opti-
mization problems. When p, # 0.5, solving ACB optimization results in zero ACB for lower iy,
implying that the disclosed information did not enhance the attacker’s confidence at all. For higher
utility region, both optimized (p;, p,) and the possible region of (q1, g2) lie in the Cyan sub-region
(as explained before), and consequently, have the same worst-case ACB.

Finally, Table 16 shows the corresponding AOL values that result from the optimization prob-
lems. A lower value of AOL indicates that the disclosed information does not leak much informa-
tion about the private variable. From Figure 7(a) and Table 16, we see that L optimization results in
higher objective leakage, compared to ASL and ACB optimization, for low and moderate values of
Umin- Moreover, note that when p, # 0.5, ASL optimization (and in some cases, ACB optimization)
resultsin (py, p2) tuple for which the corresponding AOL is negative. Recall that it is possible for the
average objective leakage to be negative when either Px—o|y > Px=1]y or Px=1]y > Px=o|y holds
for both Y = 0 and Y = 1 (see property 2). When p, > 0.5, we see that Px—g|y=0 > Px=1|y=o and
Px=o|y=1 > Px=1)y=1 result in x] (y) = [0 0]. Note from Table 11 that x}(y) = [0 0] is only possible
for Blue and Yellow sub-regions when py > 0.5. Our analysis shows that when the corresponding
objective leakage gets negative, we have x](y) = [0 0] and x;(y) = [0 1], and therefore, the solu-
tion lies in the Yellow sub-region. Similarly, when p, < 0.5, the solution corresponds to a (p1, p2)
tuple that results in xj(y) = [1 1], and the corresponding (g1, g2) tuple results in x;(y) = [0 1].
Therefore, the solution, again, lies in the Yellow sub-region. Accordingly, we can conclude that
when the solution of the optimization problem lies in the Yellow sub-region, we get the negative
average objective leakage, and this negative AOL indicates that it is possible to design a system
that can hurt the attacker even in the worst-case scenario instead of helping.

6.2 Advanced Utility Provider

The advanced utility provider performs statistical analysis, based on his collection of (X, Y) pairs,
and afterward, makes an educated guess. For such a user, the utility can be computed by consid-
ering the worst-case average objective leakage of the disclosed information and making sure that
this worst-case average objective leakage is higher than some minimum utility. We have already de-
noted the approximated privacy mechanism of the utility provider as Q;l « (shown in Table 1), and
x;(y) = argmaxyc XQS(IY' If based on the collection of (X, Y) pairs, the worst-utility is achieved at
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Table 15. Worst-case ACB Values for Different Optimization
Problems (py = 0.5)

Optimization | umi, = 0.2 Umin = 0.5 Umin = 0.8
ASL q1 = 1 q1 = 0.88 q1 = 1
qz2 = 0.05 q2 = 0 q2 = 0.65
ACB=0.07 | ACB=0.148 | ACB=0.72
ACB p1=0 p1 =0.05 p1=0.6
p2 =0.99 p2 =0.95 p2 =0.99
ACB=0.05 | ACB=0.1375 | ACB =0.72
L q1 = 1 q1 = 1 q1 = 1
q2 = 0.15 q2 = 0.15 q2 = 0.65
ACB=0.173 | ACB=0.173 | ACB=0.72

Table 16. Corresponding AOL Values for Different Optimization
Problems (py = 0.5)

Optimization Umin = 0.2 Umin = 0.5 Umin = 0.8
ASL P11 = 1 P11 = 0.93 P11 = 1
P2 = 0 P2 = 0.025 P2 = 0.6
AOL =0 AOL =0.063 | AOL = 0.68
ACB P11 = 0 P11 = 0.05 P11 = 0.6
P2 =0.99 p2=095 | p, =099
AOL =0.014 AOL =0 AOL = 0.67
L P11 = 1 p1 = 1 P11 = 1
P2 = 0.1 P2 = 0.1 P2 = 0.6
AOL =0.1375 | AOL =0.1375 | AOL = 0.68

x;(y) = [01], then the utility constraint would be U (p1, p2) = Heo (X) +log, (pop1+p2—popz) = Umin-
Otherwise when worst-utility occurs at x;(y) = [1 0], the utility constraint becomes U (p1, p2) =
Hoo(X) +log, (1 = p2 + popz — pop1) = Umin-

Now, we shall explain how to compute the index x;(y) that corresponds to the index of worst
utility. For explanation, let us consider the Magenta sub-region when py = 0.5. Therefore, we have
xj(y) = [1 0], and x}(y) can be either [1 0] or [0 1] (as dTv (Py x> Q;\x) < 6). If a specific choice
of (¢, q3) results in x5 (y) = [1 0], then we shall have AOL = Hy(X) + log,(1 — p2 + pop2 — pop1)-
Consequently, we have the following optimization problem:

ming, p, 1 = pa + popa — Pop1,
such that pipy < (1= p2)(1 = po),
p2(1=po) < po(1—=p1),
pop1 > (1= p2)(1=po) =6,
and p2(1 — po) > po(1 — p1) — 6.

Otherwise, if the choice of (g7, q;) corresponds to x;(y) = [0 1], then we get AOL = H(X) +
log, (pop1 + p2 — popz)- Accordingly, we get the following optimization problem:

minyg, 5, Pop1 + P2 — Pope.
such that pipy < (1= p2)(1 = po),
p2(1=po) < po(1—p1),
pop1 > (1= p2)(1 = po) — 6,
and pa(1 = po) > po(1 —p1) — 9.
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Fig. 8. Variation of worst-case ASL for different optimization problems when varying um,in, for different
values of py (advanced utility provider).
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Fig. 9. Variation of worst-case ACB for different optimization problems when varying u,,in, for different
values of py (advanced utility provider).

Eventually, we shall choose that value of x; (y) for which we get the lowest AOL. As it turns out
for the Magenta sub-region, the worst-case AOL is achieved for x; (y) = [0 1] when py = 0.5. Thus,
we shall have the utility constraint as U (p1, p2) = Heo(X) + log, (Pop1 + p2 — popz) = Umin-

Similar to the generic utility provider, we have varied u,,;, and plotted the variation of each
of the proposed metrics for the advanced utility provider as well. Figure 8 shows the variation
of worst-case ASL, with varying u,,;,, for different optimization problems and different possible
values of py. It is interesting to note that when u,,;, gets slightly higher (> 0.1) and py = 0.5,
both ASL and ACB optimization problems result in the same value of worst-case ASL. The reason
being the optimized (p;, p2) tuple for ASL optimization problem lies in the Cyan sub-region. Even
though the optimized (p1, p2) tuple for ACB optimization problem lies in the Red sub-region, the
worst-case (q1, g2) tuple falls in the Cyan sub-region. As a result, the resultant worst-case values
are the same. Finally, Figures 9 and 10 show the variation of worst-case ACB and corresponding
AOL, respectively, with varying u,,;,, for different optimization problems and different possible
values of py.

7 OPTIMAL PRIVACY MECHANISM FOR A GENERAL FRAMEWORK

In this section, we will provide a concise overview of the optimization problem for the general
case and propose an approach to get the solution. For the general extension, the optimization can
be represented as follows:

minmax £(X,Y),

Py|x Qvix

such that U(X,Y) > umin, (33)
drv(Py|x, Qyix) < 6.
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Fig. 10. Variation of corresponding AOL for different optimization problems when varying u,,ip, for different
values of py (advanced utility provider).

Here, £(X,Y) can indicate any of the proposed metrics of interest. Let us consider L(X,Y) =
ACB(Py|x, Qy|x). Since in the general case the optimization problem may not be convex, we can-
not find an exact solution as we did for the binary privacy mechanism. However, we can still obtain
an approximate solution by employing a greedy approach, the details of which are given below:

— The algorithm iteratively finds the optimum Py x while a specific threshold condition is
maintained. The details are shown in Algorithm 1.
We initialize our step size, y, to a random positive value (Line 3). Next, we utilize the function
OPT_P to find the optimum Py |x at distance y from the initial Py |x (Line 9), and accordingly,
we update our privacy mechanism to the new Py|x. At the same time, we keep track of the
optimized worst-case leakage value. Afterward, we reduce the value of y by half (z = %
(Line 11) and check if the reduced value of y has further optimized the worst-case leakage.
Such a check is done by computing the difference between the worst-case leakage values that
we achieved for both y and % We keep repeating the process while the difference between
these two leakages is higher than 0 (Lines 6-12).

— Now, we shall describe how OPT_P results in the optimum Py x for a fixed p. The details are
shown in Algorithm 2.
We take Py|x as input and generate a list of py| x that are y away from Py|x (Line 8). Then,
we use the function OPT_Q to find the optimum ﬁy‘ x for the next iteration (Line 9). We
update our Py |x to this value of Py| x and keep repeating the process while the difference
between the previous leakage value and the current leakage value is higher than 0 (Lines
5-10).

— Finally, we shall discuss how OPT_Q finds the py| x for the next iteration. The details of this
step are shown in Algorithm 3.
Recall that we need to consider all Qy|x that are at least § away from Py x. Therefore, for
each Py| x in [ ist_ﬁy| x, we generate a list of Qy|x that maintains our distance constraints
(Line 3). Afterward, we compute the leakage value only for those Qy|x that maintain our
utility constraint and choose that Qy|x that maximizes the leakage value (Lines 5-13). Once
we have all the worst-case leakage values for each Py\ x in! ist_ﬁy| x, we choose the one that

minimizes such maximization of the leakage value as our optimum Py| x (Lines 15-17).

8 RELATED WORK

The notion of information leakage encompasses a broad range of literature, from informa-
tion theory to computer security. Shannon entropy and mutual information-based definitions
have previously been employed to represent information leakage in References [27, 36, 44, 49].
Information-theoretic approaches to define privacy, based on such definitions of information

ACM Transactions on Privacy and Security, Vol. 26, No. 4, Article 47. Publication date: November 2023.



47:26 S. K. Sakib et al.

ALGORITHM 1: Algorithm for solving the optimization problem
Input: 6, umin
Output: Optimum leakage value, optimum privacy mechanism

1: Initialize Py|x to a transition probability matrix
2: new_P <« Py|x

3: [ < a positive value

4: new_leak < a large positive value

5. leak_diff « a positive value

6: while leak_diff > 0 do

7: current_leak <« new leak

8: Py|x < new_P

9: (new_leak, new_P) < OPT P(u, 8, Umin, Py|x)
10: leak_diff « current_leak — new_leak

11: oo /2

12: end while

Ju
w

. return current_leak, Py|x

ALGORITHM 2: Algorithm for function OPT_P
Input: 1, 8, Upmin, Py|x
Output: Optimum leakage value, optimum Py |x (for a specific )

. function (¢, 6, umin, Py|x)

new_leak « a large positive value

leak_diff < a positive value

new_P < Py |x

while leak_diff > 0 do
current_leak <« new_leak
Py|x < new P
Generate list_f’yp( that are i away from Py |x
(new_leak, new_P) < OPT_Q (list_ﬁyp(, S, Umin)
leak_diff « current_leak — new_leak

end while

12: return current_leak, Py |x

13: end function

h A A U T

_
—_ O

leakage, have been explored in References [14, 57]. An information leakage games-based frame-
work [4] has also been proposed to reduce the leakage. Issa et al. [30] provided an operational def-
inition of leakage where an adversary tries to guess a randomized function of X, upon observing
Y, either in a single or k guesses. The authors further introduced the concept of maximal realiz-
able leakage in Reference [31] that represents the gain of an adversary in the worst-case scenario.
The authors in References [3, 8, 51] utilized another measure of leakage, known as min-entropy
leakage. This definition adopts Rényi entropy [45] and considers the difference between the initial
uncertainty of guessing X (i.e., H(X)) and the remaining uncertainty of guessing, after some obser-
vations (i.e., H(X|Y)) and defines the leakage as the difference between these two measures (i.e.,
H(X) — H(X]Y)). A tunable measure for information leakage was introduced in Reference [37] to
capture the various actions of an adversary based on her belief.
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ALGORITHM 3: Algorithm for function OPT_Q

Input: list_ﬁyp(, O, Umin
Output: Optimum leakage value, optimum Py| X

1: function (list_13Y|X, O, Umin)

2 for each PY|X in the liSt_Py‘X do
3 Generate list_Qy |x that are within § distance of pyp{
4: leak_list P« []

5: for each Qy|x in list_Qy|x do
6 leak_list Q « []

7 if Utility constraint is maintained then
8 leak_Q « L(Pyx,0Qyx)

9: Append leak_Q to leak_list_Q

10: end if

11: end for

12: leak_max < max(leak_list_Q)

13: Append leak_max to leak_list_P

14: end for

15: leak_min < min(leak_list_P)

16: min_index « leak_list P.index(leak_min)
17: min_P « list_f’y|x[min_index]

18: return leak_min, min_P

19: end function

The authors of Reference [41] introduced g-leakage, a generalization of min-entropy leakage. The
definition of g-leakage utilizes a gain function, g, to represent how much benefit the adversary has
achieved by guessing the password either partially or completely. However, this definition of g-
leakage utilizes the prior knowledge of the channel, which is equivalent to the privacy mechanism
in our setup. Afterward, the authors provided several axioms for information leakage in Reference
[5]. Cherubin et al. [12] estimated information leakage via machine learning in a black-box setup.
In Reference [46], the authors estimated the g-leakage also via machine learning approaches and
evaluated the performance of their approach through various experiments using k-nearest neigh-
bors and neural network.

Another line of research for quantifying the notion of leakage is differential privacy [18, 19]. The
authors in Reference [6] derived the bound of min-entropy leakage of an € differentially private
mechanism and showed the absence of domain-sized independent bounds for such a mechanism.
Moreover, optimizing the tradeoff between utility and privacy, for any differential private mecha-
nism, has been studied extensively [9, 25, 28, 32, 35, 60]. In Reference [55], the authors analyzed
f-information as a measure of privacy for a database containing public and private entries, while
the y?-information was adopted as a measure of privacy and utility in Reference [56] for a similar
database. Note that both f-information and y?-information assume the correct joint distribution is
known. The authors identified that the privacy metric would be different under exact and approxi-
mated distributions and provided the bound on the difference between the exact and approximated
privacy measures.

Searchable Encryption is a cryptographic technique that allows users to search over encrypted
data without revealing the significant contents of the data to the server or any other third party
[52]. This cryptographic scheme ensures the leaking of only harmless information that is termed
as leakage profile [15]. Significant developments were made in this direction of research, such as
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the introduction of dynamic searchable encryption [10] and dynamic local searchable symmetric
encryption [39]. Numerous leakage-abuse attacks have also been explored (7, 21, 33], where the ad-
versary is interested in reconstructing the underlying plaintext database once they have access to
the query leakages. Consequently, several works study the quantification of privacy in searchable
encryption [34] and the security of the data from a system-wide viewpoint [26].

While the concept of searchable encryption may initially appear relevant, there exists a signifi-
cant distinction between it and the setup proposed in our article. Encryption, in general, involves
the conversion of plaintext into ciphertext using a key that can only be deciphered by those with
knowledge of the corresponding decryption key. Its primary purpose is to prevent unauthorized
access to data, with only authorized parties possessing information about the sensitive data. This
setup differs from what is presented in our article. In our work, we employ a privacy mechanism
to privatize the data before its disclosure. Subsequently, the disclosed information becomes acces-
sible to an adversary who attempts to infer the private data, similar to the actions of an adversary
in the encryption process. However, the crucial difference lies in the role of the utility provider. In
encryption, the utility provider possesses the corresponding decryption key and uses it to access
the private information. In our setup, the utility provider does not hold any information that would
enable them to “decrypt” the disclosed information. Instead, the design of the privacy mechanism
ensures that the utility provider achieves their desired utility while performing analysis using the
disclosed information. This paradigm comes in handy, especially in the overwhelming number of
situations in which the attacker and the utility provider are one and the same physical entity.

The authors of References [22, 23] considered the Fisher information as a measure of information
leakage and derived the optimal privacy-preserving policy. In Reference [17], the authors utilized
the minimax techniques for local privacy and derived bounds on both mutual information quan-
tities and KL-divergence under such a privacy model. Acharya et al. [1] performed identity and
closeness testing of discrete distributions in the differential privacy settings. The authors in Refer-
ence [53] derived an estimator of an unknown discrete distribution, based on entropy, number of
distinct elements, and distance metrics, and later modified the method in Reference [54] to obtain
the optimal estimator. Clarkson et al. [13] discussed how an attacker’s beliefs change by observ-
ing the execution of a program. The authors introduced a metric to capture an adversary who
observes the execution of a program and updates her belief accordingly. Authors in Reference [29]
unified the notion of belief and leakage for an adversary. They introduced metrics to represent
the belief of the attacker when they had different (and potentially wrong) initial beliefs regarding
the distribution of the secret and presented several properties to measure the accuracy and belief
of the adversary. Finally, the leakage metrics for incomplete statistics were introduced in Refer-
ence [47], and later the authors extended these metrics to a more general Bayesian framework in
Reference [48].

9 CONCLUSION AND FUTURE WORK

Usually an adversary lacks complete knowledge of the privacy mechanism and tries to approxi-
mate the privacy mechanism by analyzing several input-output pairs. This article identified the
lack of traditional information leakage measures to adequately capture the leakage in such sce-
narios and introduced diverse novel leakage metrics: average subjective leakage, average confidence
boost, and average objective leakage. We formalized the definitions of these metrics and developed
a minimax optimization problem, the solution of which results in the optimum binary privacy
mechanism. Additionally, we formulated the optimization problems analytically and numerically
computed the probabilities that achieve the optimium privacy mechanism. Interestingly, we found
out that the AOL, computed using the optimal privacy mechanism, can be negative, meaning that
the disclosed information would hurt the attacker rather than help her. We have observed that
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optimizing for min-entropy leakage (L) leads to increased values of ASL, ACB, and the correspond-
ing AOL, in comparison to optimizing for either ASL or ACB alone. A higher value of correspond-
ing AOL indicates a higher amount of information leakage in the system. Furthermore, higher
values of ASL and ACB suggest that the adversary will have greater confidence in their ability to
infer information, potentially leading to severe consequences if they act based on this confidence.
Therefore, it is essential to minimize the worst-case values of the leakage metrics, which can arise
due to incomplete statistics, when designing privacy mechanisms. This ensures that even in the
worst-case scenarios, the actual information leakage of the system is minimized.

One important direction for future research is to extend the proposed measures to non-Bayesian
frameworks, allowing for their applicability to large datasets. By doing so, we can ensure that the
metrics become effective in a broader range of scenarios. Additionally, an interesting direction to
explore would be to investigate how to design an optimal privacy mechanism specifically tailored
to these metrics when applied in a non-Bayesian framework. This research can provide valuable
insights into the development of privacy-preserving techniques that are effective and efficient in
handling large-scale datasets outside of the Bayesian context.
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