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ABSTRACT

Light-weight, thin, and robust electromagnetic shielding materials with high electrical
conductivity are needed for advanced modern electronics and telecommunication technologies to
protect circuits from electromagnetic interference. Carbon nanotubes (CNT) are ideal candidates
for electromagnetic shielding materials due to their excellent mechanical strength, high electrical
conductivity, and light weight. However, the relatively poor electrical conductivity of CNT films,
aresult of the many points of contact resistance between neighboring CNTs, is an obstacle towards
their utilization as a shielding material. Here, we propose a facile CNT film fabrication method
that enhances the conductivity of CNT films by collapsing the separation between neighboring
CNTs (i.e., densifying the material) in the CNT network. The dense CNT films resulting from this
facile method exhibit high electrical conductivity (~10° S m-1), and achieve excellent shielding of
99.999992% (71 dB) at frequencies between 8.2 GHz and 12.4 GHz with a thickness of 14.3 ym.
The remarkable absolute shielding effectiveness (3.50 x 105 dB cm? g!) is due to the material’s
low density (i.e.,~1.0 g/cm?), thinness (i.e., 1.3 to 14.3 ym), and metal-like conductivity. Also, the
produced CNT sheet is an ideal substrate for gold decoration that can dramatically enhance the
EMI shielding performance further (EMI SE increased from 43.90 dB in the loose film to 56.67
dB in the dense film, which further increased to 66.12 dB when the dense CNT film was coated
with a thin gold layer). The outstanding properties of gold-decorated dense CNT films make them
strong candidates to meet the electromagnetic shielding needs of modern cutting-edge, lightweight,
and compact electronic devices.

Keywords: carbon nanotube film, electrical conductivity enhancement, electromagnetic

interference shielding
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1. INTRODUCTION

There is a critical need to attenuate electromagnetic interference (EMI) in electronic components
and devices[1-3]. EMI is produced by electromagnetic fields that are generated by devices that use
or transmit electricity (e.g., phones, electric vehicles, and power strips)[4]. Therefore, materials
that act as a shield by reflecting and/or absorbing electromagnetic radiation producing high EMI
shielding effectiveness (EMI SE) are highly desired. Development of high EMI SE materials with
easy processability, light weight, minimum thickness, and has become important due to the EMI
shielding requirements of modern cutting-edge fields like aerospace materials, high-speed
telecommunication and ultra-microelectronics[1, 5].

Conventional metallic shielding materials, such as copper and silver, can achieve excellent EMI
SE due to their intrinsically high electrical conductivity. However, their high density (e.g.,8.94 g
cm? for Cu and 10.49 g cm™ for Ag) and susceptibility to corrosion limits their applications as
EMI shields, especially for advanced electronics[4, 6]. Lightweight polymer/conductive filler
composites, owing to the high conductivity of the flexible fillers, such as metal wires[7-9],
graphene/graphite[10-12], quasi-1D filters[13], and carbon nanotubes (CNT) have also been
proposed for EMI shielding[14]. However, most polymers are insulators, and lead to poor
connectivity between adjacent conductive fillers, which reduces the conductivity of the polymer
composite, a critical aspect of EMI shields[14-16]. Additionally, the low durability of polymeric
materials and their poor anti-bacterial properties further reduce their adoption as EMI shields in
electronics[9]. In addition to polymer/filler composites, nanostructured assemblies of conductive
materials like percolating networks of CNTs, reduced graphene oxide (rGO), and 2D metal

carbonitrides (MXene) have also been explored as EMI shielding materials[1, 4, 17, 18].
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Individual CNTs are known to be nearly perfect molecular wires with outstanding structural,
electrical, and thermal abilities[19]. The electrical conductivity of an individual CNT has been
determined to be as high as 2 x 107 S m''[20], with a tensile strength of up to 150 GPa[21, 22].
However, poor nanoscale contacts and high junction resistance between neighboring CNTs in a
percolating network undermine the electrical and mechanical properties, as well as the EMI
shielding performance of CNT films. As a result, typical CNT films exhibit ~ 1% of their potential
electrical conductivity and tensile strength compared to an individual CNT[23-25]. This poor
electrical conductivity of CNT films has limited their use as a shielding material. Chlorosulfonic
acid (CSA) is known as an excellent solvent and functionalization agent for the dispersal and
sulfonation of CNTs[26, 27]. Taking advantage of these properties, researchers have been using
CSA to densify CNT network using a rather complex sequence of steps: 1) the CNT network is
thermally annealed (to remove amorphous carbon impurities), 2) the CNT network is soaked in
sulfuric acid to further remove residual metallic catalysts, 3) the CNT network is then soaked in
CSA, and allowed to dry, which produces the densified film[28]. Although these membranes
display strong EMI shielding properties, the cost (i.e. the energy required for thermal annealing,
additional sulfuric acid consumption), and complexity of the treatment processes (i.e. the need to
first make a loose CNT network and multiple physical and chemical processing steps) limit its
potential for larger scale applications. In this study, we use a facile one-step fabrication method
based on the evaporation of CNT-acid suspensions to produce a metal-like conductive CNT film
for EMI shielding. Furthermore, the densified CNT network serves as an excellent substrate for
the facile decoration with gold particles (or other metals), leading to further enhancement of the
film's conductivity and electromagnetic interference (EMI) shielding properties. The difference in

Fermi levels between Au (III) and CNT facilitates the rapid and simultaneous reduction of Au (III)
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to Au(0) on the densified CNT network, contributing to these improved properties[29].While
previous studies have demonstrated a multi-step process towards the same goals, here we
demonstrate a highly simplified and scalable fabrication method that results in a material whose
EMI shielding exceed materials fabricated using previously reported methods[26, 28]. Specifically,
CNTs suspended in CSA are spread over a substrate and the CSA is evaporated, which results in
a densified, highly conductive thin-film material with uniform properties and excellent EMI
shielding properties (Fig.1). In contrast, previous methods used to produce densified CNT films
relied on multi-step processes. Other methods include the pre-alignment of CNTs using a rotating
drum followed by the spraying and evaporation of ethanol; the produced film had a strength of 9.6
GPa with a thickness of 120 nm after further physical compression, but the authors did not describe
the electrical properties of the material[21] Other methods based on CNT arrays (i.e. CNT forests
grown on the substrate) by domino-pushing (i.e. physically pushing down a CNT forest followed
by compression), shear pressing, and dry drawing have also been used to produce CNT films with
good mechanical strength and reasonable electrical properties[30-32]. Aligned CNT films
fabricated via domino pushing had an electrical conductivity of 2.0 x 10* S m'! compared to that
of 1.5 x 10* S m! for random oriented samples[30]; CNT films with a thickness of 40 um produced
from shear pressing exhibited a conductivity of 1.18 x 10* S m! parallel to the CNT axis and 0.42
x 10* S m! perpendicular to the CNT axis, and a tensile strength of 402 MPa[31]; thin densified
CNT sheets with a thickness of 50 nm made by dry drawing showed a conductivity of 2.86x 10* S
m!' along the aligned CNT direction, and a tensile strength ranging between 87.5 MPa and 232.5
MPa, depending on the degree of alignment[32]. In general, all previous fabrication methods either
involved a multi-step process or resulted in films with relatively poor electrical properties that

would minimize their usefulness as EMI shields. The one-step CNT densification method in this
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study has a greater potential for scale-up, is more sustainable in terms of energy and chemical

consumption, and produces an ultra-conductive, strong, and highly EMI shielding material.

CNT/CSA

suspension pi i -
. Acid evaporation and dense CNT film Densified CNT network

formation during heating

Fig. 1. schematic diagram of dense CNT film fabrication process.

2. EXPERIMENTAL SECTION

2.1. Materials. Carboxyl group functionalized single-walled CNT (SWNT-COOH) with a
diameter of 1-4 nm was purchased from Cheap Tubes Inc. (USA). Concentrated sulfuric acid
(H,SO,4), Sodium hydroxide (NaOH, 10N), sodium dodecylbenzene sulfonate (SDS), and
Dimethylformamide (DMF) were purchased from Fisher-Scientific. CSA and lime soda were
purchased from Sigma-Aldrich. Polysulfone UF membranes (PS35, molecular weight cut-off of
20 kDa) were kindly provided by Solecta Membranes (USA). Tetrachloroauric(IIl) acid trihydrate

(HAuCls-3H20, 99.9%) was purchased from Sigma Aldrich.

2.2. Fabrication of dense CNT film. Dense CNT films with various thicknesses were prepared
via a thermal-induced evaporation process by varying the amount of CNTs in a CNT/CSA
suspension. A 1 g L' CNT/CSA solution was prepared by dispersing 10 mg of CNTs into 10 ml
CSA in a glass vial. The CNTs/CSA dispersion was stirred mildly for 3 hours on a stir plate at
room temperature, prior to being poured onto a glass petri dish on a heating plate. The glass petri
dish with CNT/CSA solution was then covered with a funnel, which acted as a vapor guide. The

emanating vapors were directed into a gas washing bottle, containing lime soda, via the funnel



134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

using a vacuum. At the beginning of the thermal-assisted evaporation process, the temperature of
the heating plate was controlled at 100 °C, which is below the boiling point of CSA (around 150
°C). As the glass petri dish heated up, the acidic vapor emanating from the CNT/CSA suspension
was absorbed and neutralized by lime soda in the gas washing bottle. The subsequent evaporation
of CSA led to the formation of the CNT film; the temperature was then switched to 140 °C for 0.5
hours to remove any residual acid present in the CNT film. Finally, the prepared CNT film was
washed thoroughly by placing the petri dish with the dense CNT film into a water bath.

2.3. Preparation of CNTs film by pressure-assisted filtration. In order to fabricate CNT film
on polymeric support, 1g CNT was suspended in 1L of deionized water together with 10 grams of
SDS as surfactant. This CNT suspension was then sonicated with a probe ultrasonicator (120C,
Branson, USA) in an ice water bath for 30 mins (1s on, 1s off) followed by centrifugation for 15
min at 14,000 rpm three times to remove unsuspended particulates. 45 ml of this CNT stock
solution was then pressure-deposited on a porous PS35 UF membrane at 40 psi. The prepared
CNT-coated UF membrane was washed thoroughly with 1 L of deionized water to flush out the
nonattached surfactant and dried at 80 °C for 30 mins.

2.4. Fabrication of free-standing filter-deposited porous CNT film. To obtain the free-
standing porous CNT film from the PS35 support membrane, the CNT coated- UF membrane was
first rinsed in a warm DMF bath until the PS35 support separated from the CNT film layer. The
CNT film was then thoroughly washed in another DMF bath, followed by soaking in a water bath.
Finally, the produced free-standing CNT film was dried at 80 °C for 30 min prior to
characterization.

2.5. Acid/alkali treatment of dense CNT film. 1mol L' H,SO, and 1mol L' NaOH solution

were prepared out of concentrated H,SO, and 10 N NaOH, respectively. The dense CNT films
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were rinsed in the prepared 1mol L' acid bath or 1 mol L' alkali solution bath for one hour. The
treated dense CNT films were then thoroughly washed with DI water followed by drying at 80 °C
for 30 min.

2.6. Fabrication of dense CNT/Gold film. A 20 mM gold ion solution was prepared by adding
0.157 g Tetrachloroauric (III) acid trihydrate to 20 ml deionized water followed by sonication for
2 min. The dense CNT film was soaked in the gold ion solution in a glass jar for 20 min to complete
the reduction of Au**to Au® AuCl, + 3e- & Au+ 4Cl". The reduction of Au ** to Au® is enabled by
the difference in the Fermi levels of the CNTs and Au(IIl) (+0.5 V compared to the standard
hydrogen electrode (SHE) for CNTs, vs. +1.002V vs. SHE for AuCly) [29] [33]. Subsequently, the
SWCNT film was taken out from the solution and washed thoroughly with deionized water. The
densified gold-coated SWCNT (CNT/gold) film was then dried in an oven at 80 °C overnight and
smoothed using mechanical rolling, where the CN'T/gold membrane was first wet with ethanol and
then rolled several times between two rollers running in opposite directions with different gaps
(from 10 um to 5 um).

2.7. Materials Characterization. The electrical conductivity of films was calculated from their
sheet resistance using a 4-point-probe conductivity meter (MCP-T610, Mitsubishi Chemical
Analytech Co., Japan). The film morphology and the cross-sectional structure were studied using
a scanning electron microscope (SEM) (Zeiss SUPRA 40-VP) and Nova 600 SEM/FIB system,
respectively. Contact angle measurements were performed using a contact angle goniometer (250-
U1, rame-hart instrument co., USA). The chemical composition of the CNT film’s surface was
determined using X-ray photon spectroscopy (XPS) (Kratos Axis Ultra DLD spectrometer
equipped with a monochromatic Al Ko X-ray source). XPS data was processed using CasaXPS

software (version 2.3.18). The tensile strength of CNT films was tested using a ~Smm x 25mm
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strip. Unidirectional tensile tests were performed using Instron 5944 with a S00N load cell to
evaluate the corresponding stress-strain curves (Reference standard: ASTM — D882). A strain rate
of 1073 s! was applied on each sample until fracture. The effective stiffness was calculated by
testing linearity via the least-squares regression technique. X-ray diffraction (XRD) measurements
were performed on a Panalytical X’Pert Pro X-ray powder diffractometer (Malvern Panalytical,
Netherlands) using Cu Kal radiation under double axis diffraction condition. The step size of the

20— scans was 0.02° and the scan speed time was 0.1 °/s.

2.8. Electromagnetic Interference Shielding Measurement. Evaluation of EMI shielding
performance in X-band frequency range of CNT films was carried out using a vector network
analyzer (VNA) (N5247A, Agilent, USA) via the coaxial method. The samples were cut into a 25
mm x 12 mm strip to fit the waveguide window (22.86mm x 10.16 mm). Before data collection,
two working ports of the VNA were calibrated using the standard SSLT method. For each
experiment, scattering parameters (S11,S22,S12, and S21) were recorded for EMI SE calculation.

2.9. Theoretical Calculations of EMI shielding effectiveness. EMI SE (dB) displays the ability
of a material to attenuate the incident EM waves. The total EMI SE (SEr) is composed of three
components: reflection shielding (SEg), absorption shielding (SE,), and multiple reflections
shielding (SEw). Generally, the SEy can be neglected when the SEr is larger than 15 dB[3].

SE, =SE,+SE , +SE,, (2)

In order to calculate the SEr, SEg, and SE,4, reflectivity (R) and transmission (T) values need to

be obtained from their coefficients (r and t, respectively) in terms of scattering parameters.
2 2
R=|r| =[S, (3)

T =|if =I5, )
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SEr, SEg, and SE, can further be calculated as follows

1 1
SE, =10log(—) =10log(—) (5)
d 4
1 1
SE, =10log(——)=10lo 6
R g g(1_|r|2 (6)
I-R Sl
SE, =10log(——) =10log(—5—)
T U o

Calculation of Absolute Shielding Effectiveness: prior to calculating the absolute shielding
effectiveness, specific shielding effectiveness (SSE) is required. SSE is defined by normalizing
shielding effectiveness with the density (SE/density, dB cm?® g!). Absolute shielding effectiveness
is then calculated by dividing SSE with the thickness (SSE/t), taking both density and thickness of
materials into account: SSE/¢ = SE/(density-t) (dB cm? g').
3.RESULTS AND DISCUSSION

Reducing the contact resistance by decreasing the distance between individual CNTs can
significantly improve the conductive performance of CNT networks since the intrinsic resistance
of CNTs is negligible compared to contact resistance between neighboring CNTs in a network
(i.e., resistance caused by electron tunneling) [34, 35]. The facile fabrication process of the metal-
like CNT film is illustrated in Fig.1. CSA, an excellent solvent for CNTs, was used to disperse
single-walled CNTs (Fig. 2a). Low concentration CNT dispersions in CSA exhibit an isotropic
phase with random orientation[27] . However, as the concentration increases, the CNTs transition
into a liquid-crystalline (LC) phase, where the CNTs become densely packed and aligned due to
excluded volume effects[26]. Between these extreme conditions (i.e., medium concentrations), a

biphasic phase of CNTs is formed [26]. CSA, a true solvent of CNTs, exhibits the highest
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solubility of individual CNTs, where CNTs are well dispersed (i.e. in an isotropic phase) when
their concentrations are below 0.61 vol%[26]. The highly polar CSA is capable of polarizing
individual CNTs, enhancing the attractive forces between adjacent polarized CNTs[28]. As a
result, when the CSA evaporates, the CNT network collapses and forms a dense film (Fig.2b). The
dense CNT film has a metallic, reflective appearance, reflecting light off of the surface (Fig. 2b
and Fig. 2c¢). The dense CNT film shows enhanced electrical conductivity (0.78 X 10° + 4.85 X
10* S m!), which is two orders of magnitude higher than traditional CNT-based films (i.e., ~10* S
m!) [36], and comparable to conductive metals (e.g., ~1 X 10° S m! for stainless steel) [37]. A

pressure-deposited porous CNT film was used as a comparison with the dense CNT film in terms
of conductivity and morphology. The surface of dense CNT films was imaged using scanning
electron microscopy (SEM), and shows individual CNT and CNT bundles tightly packed with no
observable gaps between them (Fig. 2d and 2e). Cross-sectional images of the dense CNT film
show the dense structure of CNT network and the close packing of CNTs (Fig. 2f). In contrast,
porous CNT films fabricated by pressure-depositing a CNT/surfactant suspension show a very
loose CNT network with large pores between neighboring CNTs (Figs. 2g — 2i). The porous
structure of the film was also observable in a cross-sectional image of the material (Fig. 2i). When
the dense CN'T membrane was coated with gold and mechanically rolled, a shiny metallic golden
is obtained (Fig. 2j). Initially, the CNTs, acting as electron donors, reduce Au (III) ions in the
solution to metal Au, resulting in the formation of gold clusters on the surface of the CNT film and
within the porous film. As these gold clusters grow larger and form a continuous layer, they
interlock with the CNT network at the interface. The interlocking mechanism involves the
interplay of van der Waals forces, which contribute to the interfacial interactions and subsequently

influence the mechanical properties of the film. After the mechanical compaction process, the

11



245  separation distance between the two layers at the interface and between the gold particles
246  decreases. This closer proximity enhances the van der Waals forces, both between the layers and
247  among the gold particles. These strengthened van der Waals forces contribute to improved
248  interfacial adhesion and cohesion. SEM image analysis reveals a crystal-like gold layer on the

249  surface of the densified CNT network. (Figs. 2k-1).

250

251  Fig. 2. (a) CNT/ CSA suspension in glass vial. (b), (c) Light - reflecting dense CNT films with

252 patches of light reflecting off: (b) Photo of dense CNT film in glass petri dish after evaporation of
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CSA, (c) photo of free-standing dense CNT film peeled from petri dish. (d), (¢) Low-magnification
(d) and high-magnification (e) SEM images of surface morphology of dense CNT film. (f) SEM
image of dense CNT film from cross-sectional view. (g), (h) Low-magnification (g) and high-
magnification (h) SEM images of surface morphology of a pressure-deposited porous CNT film.
(1) SEM image of a pressure-deposited porous CNT film from cross-sectional view. (j) photo of
dense CNT coated with gold. (k) SEM image of the surface of dense CNT film coated with gold.

(1) Cross-sectional view of dense CNT film with gold coating.

The electrical conductivity of the dense CNT film was a function of its thickness, with the

highest conductivity (0.78 X 10°+4.85 X 10*S m™') measured at a film thickness of 2.8 ym (Fig.
3a); this value is ~ 2.7 times higher than that of a non-densified, porous CNT film (2.92 X 10° +
1.11 X 10* S m') (Fig. 3a, and Table S1). The conductivity of the CNT/gold membrane with a

total thickness of 3.3 ym increased to 2.31 X 10° + 3.60 X 10* S m !, a nearly 8-fold increase

compared to the non-densified CNT film. At a low thickness of 1.3 ym, a small amount of CNTs
within a certain volume may not form a tightly packed film. Consequently, the uneven distribution
of CNTs can result in regions with fewer CNTs compared to other regions. These low-density
regions, characterized by large gaps between CNT individuals/bundles, can introduce additional
resistance when the thickness is small[38]. However, as the thickness increases, the number of
these low density regions declines and the conductivity of the CNT network stops increasing with
thickness, stabilizing at 0.78 x 10° S m'! at 2.8 ym. XRD spectrum analysis demonstrates the
successful growth of Au on the dense CNT network (Fig. 3b): the diffraction peaks at 38.4°, 44.6°,
64.7°, 77.71°, and 81.85° can be assigned to (111), (200), (220), (311), and (222) crystalline
diffraction planes of Au. Au diffraction peaks correspond to the typical face-centered cubic crystal

structure and does not indicate the presence of any intermetallic gold compounds. Furthermore,
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the Au (111) peak exhibits strong intensity compared to those of Au (200), Au (220), and Au (311)
planes. The relative intensity of Au (200)/Au (111) is 0.27, lower than the bulk gold value (0.52

from JCPDS #04-0784), indicating the synthesized Au film were highly (111) oriented [39].

The high conductivity of the dense CNT film is a result of the dense CNT network that reduced
the resistance to electron transport between neighboring CNTs, which is highly sensitive to the
separation distance between conducting strands in a network[30, 40, 41]. In contrast, for the
pressure-deposited CNT film, the large gaps between neighboring CNTs (Fig. 2h) increased the
electron hopping distance and reduced the membrane conductivity.

The mechanical strength of the CNT films, evaluated from the tensile stress-strain curves,
showed that the dense CNT films had enhanced mechanical properties (Fig. 3c). Specifically, the
ultimate strength of the dense CNT film, calculated by dividing the applied force by the cross-
sectional area of the film, was 161.5 + 25.6 MPa at 2.16 + 0.52 % deformation. In contrast, the
ultimate strength and maximum deformation of the porous CNT film were 106.6 + 2.0 MPa and
2.54 + 0.25 %, respectively. The ultimate strength of the dense CNT film (161.5 MPa) is 1.52
times higher than that of a porous CNT film because the CSA-induced densification shortens the
separation distance. As a result, the attractive van der Waals force between adjacent CNTs is
enhanced[42], and the dense CNT network shows stronger mechanical properties. Based on the
stress and strain values at failure, the Young’s modulus of dense and porous films was calculated
to be 10.85 + 0.67 GPa and 6.99 + 0.25 GPa, respectively (details in Table S2). The ultimate
strength of a dense CNT film was found to be higher than that of aluminum (~110 MPa). However,
its stiffness is much lower than that of aluminum (~69 GPa), suggesting that this light-weight film
has superior mechanical strength and excellent flexibility. Additionally, the film can be folded and

twisted without any damage, as shown in Supporting Information.
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Fig. 3. (a) Changes in electrical conductivity of dense CNT films as a function of thickness (red),
compared with porous CNT films (blue). (b) XRD spectrum of dense CNT/Au film. (c) Stress —
strain curve of dense CNT films (red) and porous CNT films (blue) with a thickness of 2.8 ym. (d)
XPS survey spectra of a dense CNT film (red line) and porous CNT film (black line). (e) High
resolution spectra of O 1s of a dense CNT film. (f) Water contact angle measurements of a dense

and porous CNT film.

X-ray photoelectron spectroscopy (XPS) survey spectra of a dense and porous CNT film
exhibited sharp peaks associated with C and O, originating from the carbonous CNT backbone and
surface functional groups (Fig. 3d). After CSA evaporation, the C/O ratio of dense CNT film was
9.40, lower than the 18.48 ratio found on porous films, which can be attributed to the partial
oxidation of CNTs by the strong acid CSA. A high-resolution XPS scan of Ols shows that the

ratio of C = O/C — O for the dense CNT film is 0.61, while the C = O/ C — O ratio is only 0.35 for
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a porous CNT film (Fig. 3e and Fig. S2). The larger number of C = O groups in the dense CNT
film further supports the observation that the immersion of the CNTs in CSA led to the oxidation
of surface carbon groups. The oxidation of dense CNT film is also evident through the contact
angle measurements of the porous and dense films (Fig. 3f). The contact angle of a porous film
(60.0 + 0.3°) was determined to be higher than that of a dense CNT film (43.0 £ 0.2°). The lower
contact angle of the dense CNT film suggests the presence of more polar surface groups, which
can be attributed to the oxidation of carbon groups (e.g., carboxyl and carbonyl groups). It is indeed
worth noting that the conductivities of dense CNT films exhibit an increase, even when the
individual CNTs within them are oxidized (as shown in Fig. 3a). Generally, CNTs without any
defects tend to possess higher conductivity compared to CNTs with functional groups [43].
However, in the case of the dense CNT film, the overall conductivity increase can be attributed to
the decrease in contact resistance, which arises from the densification of the CNT network, which
more than offsets the decrease in conductivity resulting from the CNT oxidation.

Due to their dense structure, intrinsically high electrical conductivity and multiple functional
groups, dense CNT films show exceptionally high EMI SE values. Fig. 4a shows the total EMI
shielding effectiveness (SEr) of a dense CNT film with different thicknesses (1.3 ym, 2.8 ym,
Sum, and 14.3 um) over the X-band frequency range (8.2 GHz — 12.4 GHz). It is noted that SE;
increased with an increase in film thickness. Yet, even the thinnest dense film (1.3 #m) has a SEr
of 50.5 £ 1.3 dB, and demonstrates ~99.999% blockage of incident EM waves, which is higher
than the commercial EMI shielding requirement (40 dB) [44]. The SEr reaches as high as 71 £2.1
dB with a film thickness of 14.3 ym, suggesting that 99.999992% of EM waves are attenuated by
the dense CNT film. Compared with the loose CNT film, the dense CNT film’s SEr was 12.77 dB

higher at same thickness (i.e. 2.8 um) (Fig. 4b). The dense CNT/Au films shows a further
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enhancement of EMI SE compared to the uncoated dense film; the EMI SE over the whole X band
was lifted by 22.22 dB after the Au coating, reaching a value of 66.12 dB for a dense CN'T/Au film
(the total thickness of new CNT/gold film is 3.3 um) (Fig. 4b). To deconvolute the SEr value in

terms of the EMI shield’s properties, we used Simon’s formula[45]:

SE, =50+10log(c/ f)+1.7t(c )*° (D)

where o, [, and  represent electrical conductivity (S cm™'), frequency (MHz), and thickness
of the EMI shield (cm), respectively. The first two terms of the equation represent shielding due
to reflection, while the third term accounts for shielding from absorption; multireflection is
neglected in this equation. From Simon’s formula, the overall shielding performance of a CNT
film can be enhanced by either increasing the electrical conductivity or thickness. As shown in

Fig. 4c, the calculated SEr values from Simon’s formula follow the same trend as the measured
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Fig. 4. (a) Variances of total SE; over X band for dense CNT films with different thicknesses (1.3
um, 2.8 ym, 5 ym, and 14.3 um). (b) SEr over X band for loose CNT film, dense CNT film, and
dense CNT/Au film. (c)Measured SEr, calculated SE; from Simon’s formula, and measured
absorption (SE,) and reflection (SER) in dense CNT films at 8.2 GHz. (d) Measured SEr, SE,, and

SEg for loose CNT film, dense CNT film, and dense CNT/Au film. (e) SEr of pristine dense CNT
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film, acid treated CNT film, and alkali treated CNT film over X band. (f) Comparison of EMI SE
with the previously published data of metals, graphene and graphite, Carbon nanotube, and
MXenes. (g) Comparison of absolute SE with the previously published data of metals, graphene

and graphite, Carbon nanotube, and MXenes.

To identify the mechanism responsible for the observed EMI shielding in the dense CNT film,
the contributions from absorption (SE,), reflection (SEg), and multi-reflection (SEy, which is
generally negligible when the SEr is larger than 15 dB) [3] are determined and compared (Fig. 4¢).
As mentioned earlier, it has been observed that the SE: tends to increase with an increase in
thickness. In the case of the films under investigation SE, values consistently surpass SEg values
across all thicknesses. This finding suggests that absorption plays a more prominent role in
determining the EMI shielding capability of dense CNT films within the range of 1.3 — 14.3 um.
Interestingly, SER increases from 22 dB (at 1.3 ym) to 28 dB (at 2.8 xm), but does not continue to
increase beyond this thickness. In contrast, SE continuously increases with thickness. This can be
attributed to the differences between the reflection and absorption processes. Specifically, the
incident EM waves first hit the conductive surface of the shielding material where over 99% (20
dB) of the EM waves are instantly reflected due to the impedance mismatch[11,46]. The residual
energy (<1%) of the EM waves can penetrate the material, but is attenuated throughout the depth
of the film. These penetrated waves are either directly absorbed by ohmic losses[5], due to the
occurrence of EM field-induced current that produces thermal energy[47] [48], or reflected at first
and then absorbed by adjacent CNTs. In other words, the reflection of EM waves is mainly
impacted by a film’s electrical conductivity, while EM wave absorption happens throughout the
material leading to an increase in absorption with an increase of thickness. A material’s electrical

conductivity has a large impact on SEg and SE, values, albeit to a different degree, as implied
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from Simon’s formulism, Eq. (1), which partially explains why SE, grows more than SEg. SEy is
proportional to the logarithm of the material’s electrical conductivity, while SE, is proportional to
the square root of the conductivity. Therefore, changes in conductivity have bigger impacts on SE,
than on SEg. In addition to the excellent conductivity, polar functional groups, such as C-O and
C=0, the presence of which was verified using XPS analysis (Fig. 3d), can also contribute to the
high SER through polarization losses[17]. In Figure 4d, we conducted a comparison of the SE in
terms of SEr, SEgr, SEx among the loose CNT film, dense CNT film, and dense CNT/Au film. The
loose CNT film exhibited inferior performance in both SE, and SE; compared to the dense CNT
film and dense CN'T/Au film. This can be attributed to its relatively lower conductivity, resulting
in a smaller SE; value. On the other hand, the dense CNT/Au film demonstrated the highest SE;
and SEi among the three films, while SE, was comparable to that of the dense CNT film.
Specifically, the SEr and SEy increased by 9.5 dB and 9.7 dB, respectively, while SE, stabilized
at around 29 dB. This suggests that the increase in SE was primarily driven by the increase in
reflection provided by the gold coating, as gold is well-known for its excellent reflective
properties[49]. In our two-layer nanostructured composite, the thin top layer (the Au(0)) with high
conductivity primarily serves as a means to reflect EM waves upon initial contact. This layer
efficiently redirects the waves away from the material. On the other hand, the thicker secondary
nanostructured layer (the CNTs) is designed to absorb and disperse the residual waves that
penetrate the top layer. The secondary layer acts as a prolonged pathway for the waves, allowing
for multiple reflections and ensuring further attenuation of the EMI. By combining the reflective
properties of the thin top layer with the absorbing and multi-reflective capabilities of the thicker

secondary layer, the composite provides an effective solution for EMI shielding[50]. As a result,
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the majority of EM waves (37.8 dB) were reflected by highly conductive dense CNT/gold top
surface, the remaining attenuated wave was absorbed and dissipated within the CNT layer.

The dense CNT film exhibited robust stability under harsh conditions. The SEr of dense CNT
film remained constant after a 1-hour immersion in acid (1 M H,SO, solution) or base (1 M NaOH
solution) over the X-band frequency range (Fig. 4e). The high stability of these dense CNT films
makes them superior to traditional metallic or polymeric shielding materials that are vulnerable to
harsh conditions[51].

The EMI SEr values of our dense CNT film and dense CNT/gold film were compared to values
reported for other materials (Fig. 4f and Table S3). In general, carbon-based materials, such as
CNTs, graphene, and graphite, are generally found in the right lower corner of Fig. 4e, indicating
that they can only achieve a sufficient SEr at fairly large thicknesses (500 gm to 1000 ym), due to
their low electrical conductivity. Although metal materials show similar EMI shielding properties
compared to our dense CNT films, the high density and poor processibility of metals (i.e.,
fabricating them into super thin films) limit their application as EM shields for advanced electrical
devices. In contrast, the dense 14.3 ym thick CNT film in this work displays an extraordinary EMI
SEr of 71 dB, and is not inferior to MXenes with a similar thickness in terms of EMI shielding[4]
. The gold/CNT film shows an excellent EMI SEr of 66.12 dB with 3.3 ym thickness, which
outperforms almost all of the materials we have been studied at such a low thickness.

The absolute shielding effectiveness (SSE/t, dB cm? g'!) of the dense CNT films is compared to
that of other materials, with the SSE/t value being calculated by dividing SEr by the product of the
material density and thickness (Fig. 4g) [45]. A higher SSE/t value suggests that a given material
could achieve a specific SE with a lighter weight and a lower thickness. The dense CNT film shows

an impressive SSE/t value that outperforms those exhibited by highly electrically conducting
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metals and MXenes. The highest value of SSE/t of 3.6 X 105 dB cm? g'! was achieved at a thickness
of 1.3 ym, where the SE is 50.5 dB, which is higher than that required for commercial devices (40
dB) [1]. The ability to achieve high SE at low thicknesses and light weight makes dense CNT
films an excellent candidate as an EMI shielding material for modern advanced electronics and
telecommunication devices.
4. CONCLUSIONS

In conclusion, we have reported a CNT film fabrication method that produces metal-like
CNT films with robust mechanical strength (161.5 MPa), chemical stability, and high electrical
conductivity (779,500 S m!') for carbon-based materials. In addition to its impressive electrical
conductivity, the rich functional groups on the dense CNT film contribute to high EMI SE with a
very low thickness (i.e., 71 dB at 14.3 ym). With the addition of the gold coating, the dense
CNT/gold membrane exhibits an extremely high conductivity (2.31x10% S m!) and EMI SE of
66.12 dB at a total thickness of 3.3 ym. Furthermore, the dense CNT films are highly stable under
harsh conditions and maintain excellent shielding performance after acid/alkali treatment,

suggesting their promising potential use in advanced electrical and telecommunication devices.
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