

1    1 One-Step Method for the Fabrication of Pure and  
2    2 Metal-decorated Densified CNT Films for Effective  
3    3 Electromagnetic Interference Shielding

4    4 *Fan Yang<sup>a</sup>, Shengcun Ma<sup>a</sup>, Chia Miang Khor<sup>a</sup>, Yiming Su<sup>a</sup>, Zahra Barani<sup>b</sup>, Zhenpeng Xu<sup>a</sup>, Arthur  
5    5 Boyko<sup>c</sup>, Arpita Iddy<sup>a</sup>, Naama Segev-Mark<sup>c</sup>, Xiaoyu (Rayne) Zheng<sup>a, f</sup>, Fariborz Kargar<sup>b</sup>,  
6    6 Alexander A. Balandin<sup>b</sup>, Guy Ramon<sup>c</sup>, Igor De Rosa<sup>d,e</sup>, Eric Hoek<sup>a, f, h, i</sup> and David Jassby<sup>a, f, h, \*</sup>*  
7    7 <sup>a</sup>Department of Civil & Environmental Engineering, University of California, Los Angeles  
8    8 (UCLA), Los Angeles, 90095, USA  
9    9 <sup>b</sup>Department of Electrical and Computer Engineering, University of California, Riverside (UCR),  
10    10 Riverside, 92521, USA

11    11 <sup>c</sup>Department of Civil & Environmental Engineering, Technion – Israel Institute of Technology,  
12    12 Haifa, 32000, Israel

13    13 <sup>d</sup>Institute for Carbon Management, University of California, Los Angeles (UCLA), Los Angeles,  
14    14 90095, USA

15    15 <sup>e</sup>Materials Science and Engineering, University of California, Los Angeles (UCLA), Los  
16    16 Angeles, 90095, USA

17    17 <sup>f</sup>California NanoSystem Institute, UCLA, Los Angeles, 90095, USA

18    18 <sup>h</sup>Institute of the Environment & Sustainability, UCLA, Los Angeles, 90095, USA

19    19 <sup>i</sup>Energy Storage & Distributed Resources Division, Lawrence Berkeley National Lab, Berkeley,  
20    20 94720, USA

21    21 **Corresponding Author**

22    22 \***David Jassby**. Tel: (310) 825-1346. E-mail: [jassby@ucla.edu](mailto:jassby@ucla.edu)

23

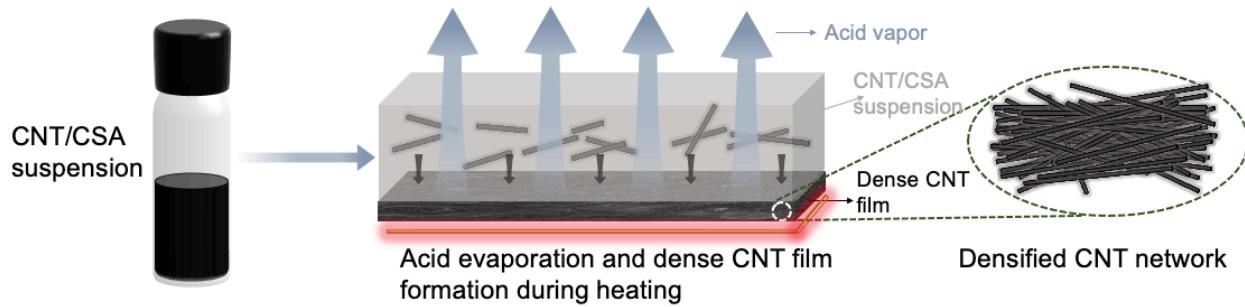
24

25 ABSTRACT

26 Light-weight, thin, and robust electromagnetic shielding materials with high electrical  
27 conductivity are needed for advanced modern electronics and telecommunication technologies to  
28 protect circuits from electromagnetic interference. Carbon nanotubes (CNT) are ideal candidates  
29 for electromagnetic shielding materials due to their excellent mechanical strength, high electrical  
30 conductivity, and light weight. However, the relatively poor electrical conductivity of CNT films,  
31 a result of the many points of contact resistance between neighboring CNTs, is an obstacle towards  
32 their utilization as a shielding material. Here, we propose a facile CNT film fabrication method  
33 that enhances the conductivity of CNT films by collapsing the separation between neighboring  
34 CNTs (i.e., densifying the material) in the CNT network. The dense CNT films resulting from this  
35 facile method exhibit high electrical conductivity ( $\sim 10^6$  S m<sup>-1</sup>), and achieve excellent shielding of  
36 99.999992% (71 dB) at frequencies between 8.2 GHz and 12.4 GHz with a thickness of 14.3  $\mu$ m.  
37 The remarkable absolute shielding effectiveness ( $3.50 \times 10^5$  dB cm<sup>-2</sup> g<sup>-1</sup>) is due to the material's  
38 low density (i.e.,  $\sim 1.0$  g/cm<sup>3</sup>), thinness (i.e., 1.3 to 14.3  $\mu$ m), and metal-like conductivity. Also, the  
39 produced CNT sheet is an ideal substrate for gold decoration that can dramatically enhance the  
40 EMI shielding performance further (EMI SE increased from 43.90 dB in the loose film to 56.67  
41 dB in the dense film, which further increased to 66.12 dB when the dense CNT film was coated  
42 with a thin gold layer). The outstanding properties of gold-decorated dense CNT films make them  
43 strong candidates to meet the electromagnetic shielding needs of modern cutting-edge, lightweight,  
44 and compact electronic devices.

45 Keywords: carbon nanotube film, electrical conductivity enhancement, electromagnetic  
46 interference shielding

47 1. INTRODUCTION


48 There is a critical need to attenuate electromagnetic interference (EMI) in electronic components  
49 and devices[1-3]. EMI is produced by electromagnetic fields that are generated by devices that use  
50 or transmit electricity (e.g., phones, electric vehicles, and power strips)[4]. Therefore, materials  
51 that act as a shield by reflecting and/or absorbing electromagnetic radiation producing high EMI  
52 shielding effectiveness (EMI SE) are highly desired. Development of high EMI SE materials with  
53 easy processability, light weight, minimum thickness, and has become important due to the EMI  
54 shielding requirements of modern cutting-edge fields like aerospace materials, high-speed  
55 telecommunication and ultra-microelectronics[1, 5].

56 Conventional metallic shielding materials, such as copper and silver, can achieve excellent EMI  
57 SE due to their intrinsically high electrical conductivity. However, their high density (e.g., 8.94 g  
58 cm<sup>-3</sup> for Cu and 10.49 g cm<sup>-3</sup> for Ag) and susceptibility to corrosion limits their applications as  
59 EMI shields, especially for advanced electronics[4, 6]. Lightweight polymer/conductive filler  
60 composites, owing to the high conductivity of the flexible fillers, such as metal wires[7-9],  
61 graphene/graphite[10-12], quasi-1D filters[13], and carbon nanotubes (CNT) have also been  
62 proposed for EMI shielding[14]. However, most polymers are insulators, and lead to poor  
63 connectivity between adjacent conductive fillers, which reduces the conductivity of the polymer  
64 composite, a critical aspect of EMI shields[14-16]. Additionally, the low durability of polymeric  
65 materials and their poor anti-bacterial properties further reduce their adoption as EMI shields in  
66 electronics[9]. In addition to polymer/filler composites, nanostructured assemblies of conductive  
67 materials like percolating networks of CNTs, reduced graphene oxide (rGO), and 2D metal  
68 carbonitrides (MXene) have also been explored as EMI shielding materials[1, 4, 17, 18].

69 Individual CNTs are known to be nearly perfect molecular wires with outstanding structural,  
70 electrical, and thermal abilities[19]. The electrical conductivity of an individual CNT has been  
71 determined to be as high as  $2 \times 10^7$  S m<sup>-1</sup>[20], with a tensile strength of up to 150 GPa[21, 22].  
72 However, poor nanoscale contacts and high junction resistance between neighboring CNTs in a  
73 percolating network undermine the electrical and mechanical properties, as well as the EMI  
74 shielding performance of CNT films. As a result, typical CNT films exhibit ~ 1% of their potential  
75 electrical conductivity and tensile strength compared to an individual CNT[23-25]. This poor  
76 electrical conductivity of CNT films has limited their use as a shielding material. Chlorosulfonic  
77 acid (CSA) is known as an excellent solvent and functionalization agent for the dispersal and  
78 sulfonation of CNTs[26, 27]. Taking advantage of these properties, researchers have been using  
79 CSA to densify CNT network using a rather complex sequence of steps: 1) the CNT network is  
80 thermally annealed (to remove amorphous carbon impurities), 2) the CNT network is soaked in  
81 sulfuric acid to further remove residual metallic catalysts, 3) the CNT network is then soaked in  
82 CSA, and allowed to dry, which produces the densified film[28]. Although these membranes  
83 display strong EMI shielding properties, the cost (i.e. the energy required for thermal annealing,  
84 additional sulfuric acid consumption), and complexity of the treatment processes (i.e. the need to  
85 first make a loose CNT network and multiple physical and chemical processing steps) limit its  
86 potential for larger scale applications. In this study, we use a facile one-step fabrication method  
87 based on the evaporation of CNT-acid suspensions to produce a metal-like conductive CNT film  
88 for EMI shielding. Furthermore, the densified CNT network serves as an excellent substrate for  
89 the facile decoration with gold particles (or other metals), leading to further enhancement of the  
90 film's conductivity and electromagnetic interference (EMI) shielding properties. The difference in  
91 Fermi levels between Au (III) and CNT facilitates the rapid and simultaneous reduction of Au (III)

92 to Au(0) on the densified CNT network, contributing to these improved properties[29]. While  
93 previous studies have demonstrated a multi-step process towards the same goals, here we  
94 demonstrate a highly simplified and scalable fabrication method that results in a material whose  
95 EMI shielding exceed materials fabricated using previously reported methods[26, 28]. Specifically,  
96 CNTs suspended in CSA are spread over a substrate and the CSA is evaporated, which results in  
97 a densified, highly conductive thin-film material with uniform properties and excellent EMI  
98 shielding properties (Fig.1). In contrast, previous methods used to produce densified CNT films  
99 relied on multi-step processes. Other methods include the pre-alignment of CNTs using a rotating  
100 drum followed by the spraying and evaporation of ethanol; the produced film had a strength of 9.6  
101 GPa with a thickness of 120 nm after further physical compression, but the authors did not describe  
102 the electrical properties of the material[21] Other methods based on CNT arrays (i.e. CNT forests  
103 grown on the substrate) by domino-pushing (i.e. physically pushing down a CNT forest followed  
104 by compression), shear pressing, and dry drawing have also been used to produce CNT films with  
105 good mechanical strength and reasonable electrical properties[30-32]. Aligned CNT films  
106 fabricated via domino pushing had an electrical conductivity of  $2.0 \times 10^4$  S m<sup>-1</sup> compared to that  
107 of  $1.5 \times 10^4$  S m<sup>-1</sup> for random oriented samples[30]; CNT films with a thickness of 40 um produced  
108 from shear pressing exhibited a conductivity of  $1.18 \times 10^4$  S m<sup>-1</sup> parallel to the CNT axis and 0.42  
109  $\times 10^4$  S m<sup>-1</sup> perpendicular to the CNT axis, and a tensile strength of 402 MPa[31]; thin densified  
110 CNT sheets with a thickness of 50 nm made by dry drawing showed a conductivity of  $2.86 \times 10^4$  S  
111 m<sup>-1</sup> along the aligned CNT direction, and a tensile strength ranging between 87.5 MPa and 232.5  
112 MPa, depending on the degree of alignment[32]. In general, all previous fabrication methods either  
113 involved a multi-step process or resulted in films with relatively poor electrical properties that  
114 would minimize their usefulness as EMI shields. The one-step CNT densification method in this

115 study has a greater potential for scale-up, is more sustainable in terms of energy and chemical  
116 consumption, and produces an ultra-conductive, strong, and highly EMI shielding material.



117

118 **Fig. 1.** schematic diagram of dense CNT film fabrication process.

119 **2. EXPERIMENTAL SECTION**

120 **2.1. Materials.** Carboxyl group functionalized single-walled CNT (SWNT-COOH) with a  
121 diameter of 1-4 nm was purchased from Cheap Tubes Inc. (USA). Concentrated sulfuric acid  
122 ( $\text{H}_2\text{SO}_4$ ), Sodium hydroxide (NaOH, 10N), sodium dodecylbenzene sulfonate (SDS), and  
123 Dimethylformamide (DMF) were purchased from Fisher-Scientific. CSA and lime soda were  
124 purchased from Sigma-Aldrich. Polysulfone UF membranes (PS35, molecular weight cut-off of  
125 20 kDa) were kindly provided by Solecta Membranes (USA). Tetrachloroauric(III) acid trihydrate  
126 ( $\text{HAuCl}_4 \cdot 3\text{H}_2\text{O}$ , 99.9%) was purchased from Sigma Aldrich.

127 **2.2. Fabrication of dense CNT film.** Dense CNT films with various thicknesses were prepared  
128 via a thermal-induced evaporation process by varying the amount of CNTs in a CNT/CSA  
129 suspension. A  $1 \text{ g L}^{-1}$  CNT/CSA solution was prepared by dispersing 10 mg of CNTs into 10 ml  
130 CSA in a glass vial. The CNTs/CSA dispersion was stirred mildly for 3 hours on a stir plate at  
131 room temperature, prior to being poured onto a glass petri dish on a heating plate. The glass petri  
132 dish with CNT/CSA solution was then covered with a funnel, which acted as a vapor guide. The  
133 emanating vapors were directed into a gas washing bottle, containing lime soda, via the funnel

134 using a vacuum. At the beginning of the thermal-assisted evaporation process, the temperature of  
135 the heating plate was controlled at 100 °C, which is below the boiling point of CSA (around 150  
136 °C). As the glass petri dish heated up, the acidic vapor emanating from the CNT/CSA suspension  
137 was absorbed and neutralized by lime soda in the gas washing bottle. The subsequent evaporation  
138 of CSA led to the formation of the CNT film; the temperature was then switched to 140 °C for 0.5  
139 hours to remove any residual acid present in the CNT film. Finally, the prepared CNT film was  
140 washed thoroughly by placing the petri dish with the dense CNT film into a water bath.

141 **2.3. Preparation of CNTs film by pressure-assisted filtration.** In order to fabricate CNT film  
142 on polymeric support, 1g CNT was suspended in 1L of deionized water together with 10 grams of  
143 SDS as surfactant. This CNT suspension was then sonicated with a probe ultrasonicator (120C,  
144 Branson, USA) in an ice water bath for 30 mins (1s on, 1s off) followed by centrifugation for 15  
145 min at 14,000 rpm three times to remove unsuspended particulates. 45 ml of this CNT stock  
146 solution was then pressure-deposited on a porous PS35 UF membrane at 40 psi. The prepared  
147 CNT-coated UF membrane was washed thoroughly with 1 L of deionized water to flush out the  
148 nonattached surfactant and dried at 80 °C for 30 mins.

149 **2.4. Fabrication of free-standing filter-deposited porous CNT film.** To obtain the free-  
150 standing porous CNT film from the PS35 support membrane, the CNT coated- UF membrane was  
151 first rinsed in a warm DMF bath until the PS35 support separated from the CNT film layer. The  
152 CNT film was then thoroughly washed in another DMF bath, followed by soaking in a water bath.  
153 Finally, the produced free-standing CNT film was dried at 80 °C for 30 min prior to  
154 characterization.

155 **2.5. Acid/alkali treatment of dense CNT film.** 1mol L<sup>-1</sup> H<sub>2</sub>SO<sub>4</sub> and 1mol L<sup>-1</sup> NaOH solution  
156 were prepared out of concentrated H<sub>2</sub>SO<sub>4</sub> and 10 N NaOH, respectively. The dense CNT films

157 were rinsed in the prepared 1 mol L<sup>-1</sup> acid bath or 1 mol L<sup>-1</sup> alkali solution bath for one hour. The  
158 treated dense CNT films were then thoroughly washed with DI water followed by drying at 80 °C  
159 for 30 min.

160 **2.6. Fabrication of dense CNT/Gold film.** A 20 mM gold ion solution was prepared by adding  
161 0.157 g Tetrachloroauric (III) acid trihydrate to 20 ml deionized water followed by sonication for  
162 2 min. The dense CNT film was soaked in the gold ion solution in a glass jar for 20 min to complete  
163 the reduction of Au<sup>3+</sup> to Au<sup>0</sup>:  $\text{AuCl}_4^- + 3\text{e}^- \leftrightarrow \text{Au} + 4\text{Cl}^-$ . The reduction of Au<sup>3+</sup> to Au<sup>0</sup> is enabled by  
164 the difference in the Fermi levels of the CNTs and Au(III) (+0.5 V compared to the standard  
165 hydrogen electrode (SHE) for CNTs, vs. +1.002V vs. SHE for AuCl<sub>4</sub>) [29] [33]. Subsequently, the  
166 SWCNT film was taken out from the solution and washed thoroughly with deionized water. The  
167 densified gold-coated SWCNT (CNT/gold) film was then dried in an oven at 80 °C overnight and  
168 smoothed using mechanical rolling, where the CNT/gold membrane was first wet with ethanol and  
169 then rolled several times between two rollers running in opposite directions with different gaps  
170 (from 10 um to 5 um).

171 **2.7. Materials Characterization.** The electrical conductivity of films was calculated from their  
172 sheet resistance using a 4-point-probe conductivity meter (MCP-T610, Mitsubishi Chemical  
173 Analytech Co., Japan). The film morphology and the cross-sectional structure were studied using  
174 a scanning electron microscope (SEM) (Zeiss SUPRA 40-VP) and Nova 600 SEM/FIB system,  
175 respectively. Contact angle measurements were performed using a contact angle goniometer (250-  
176 U1, rame-hart instrument co., USA). The chemical composition of the CNT film's surface was  
177 determined using X-ray photon spectroscopy (XPS) (Kratos Axis Ultra DLD spectrometer  
178 equipped with a monochromatic Al K $\alpha$  X-ray source). XPS data was processed using CasaXPS  
179 software (version 2.3.18). The tensile strength of CNT films was tested using a ~5mm x 25mm

180 strip. Unidirectional tensile tests were performed using Instron 5944 with a 500N load cell to  
181 evaluate the corresponding stress-strain curves (Reference standard: ASTM – D882). A strain rate  
182 of  $10^{-3}$  s<sup>-1</sup> was applied on each sample until fracture. The effective stiffness was calculated by  
183 testing linearity via the least-squares regression technique. X-ray diffraction (XRD) measurements  
184 were performed on a Panalytical X’Pert Pro X-ray powder diffractometer (Malvern Panalytical,  
185 Netherlands) using Cu K $\alpha$ 1 radiation under double axis diffraction condition. The step size of the  
186 2 $\theta$ – $\omega$  scans was 0.02° and the scan speed time was 0.1 °/s.

187 **2.8. Electromagnetic Interference Shielding Measurement.** Evaluation of EMI shielding  
188 performance in X-band frequency range of CNT films was carried out using a vector network  
189 analyzer (VNA) (N5247A, Agilent, USA) via the coaxial method. The samples were cut into a 25  
190 mm x 12 mm strip to fit the waveguide window (22.86mm x 10.16 mm). Before data collection,  
191 two working ports of the VNA were calibrated using the standard SSLT method. For each  
192 experiment, scattering parameters (S<sub>11</sub>, S<sub>22</sub>, S<sub>12</sub>, and S<sub>21</sub>) were recorded for EMI SE calculation.

193 **2.9. Theoretical Calculations of EMI shielding effectiveness.** EMI SE (dB) displays the ability  
194 of a material to attenuate the incident EM waves. The total EMI SE (SE<sub>T</sub>) is composed of three  
195 components: reflection shielding (SE<sub>R</sub>), absorption shielding (SE<sub>A</sub>), and multiple reflections  
196 shielding (SE<sub>M</sub>). Generally, the SE<sub>M</sub> can be neglected when the SE<sub>T</sub> is larger than 15 dB[3].

197 
$$SE_T = SE_R + SE_A + SE_M \quad (2)$$

198 In order to calculate the SE<sub>T</sub>, SE<sub>R</sub>, and SE<sub>A</sub>, reflectivity (R) and transmission (T) values need to  
199 be obtained from their coefficients (r and t, respectively) in terms of scattering parameters.

200 
$$R = |r|^2 = |S_{11}|^2 \quad (3)$$

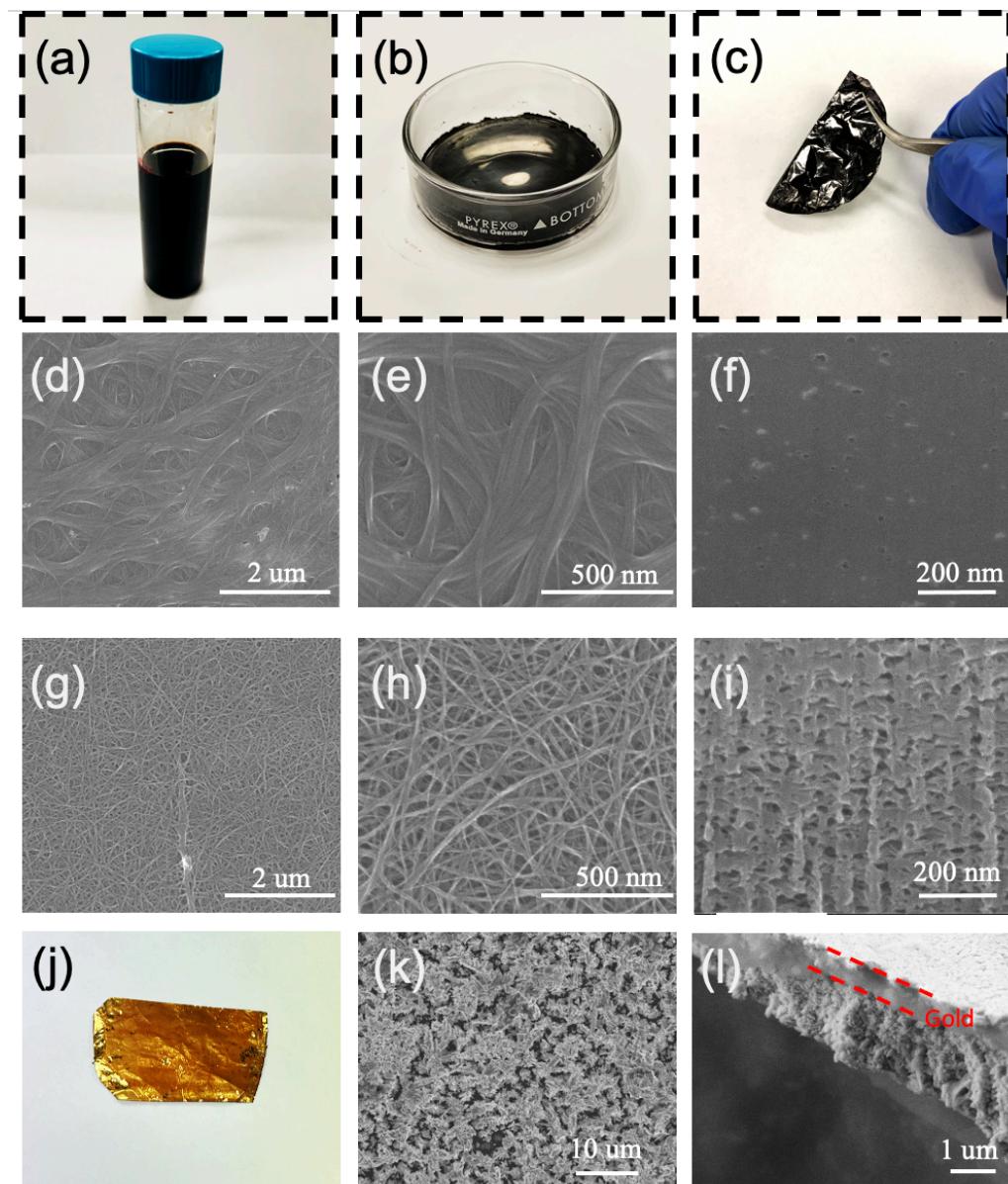
201 
$$T = |t|^2 = |S_{12}|^2 \quad (4)$$

202  $SE_T$ ,  $SE_R$ , and  $SE_A$  can further be calculated as follows

203 
$$SE_T = 10 \log\left(\frac{1}{T}\right) = 10 \log\left(\frac{1}{|t|^2}\right) \quad (5)$$

204 
$$SE_R = 10 \log\left(\frac{1}{1-R}\right) = 10 \log\left(\frac{1}{1-|r|^2}\right) \quad (6)$$

205 
$$SE_A = 10 \log\left(\frac{1-R}{T}\right) = 10 \log\left(\frac{1-|r|^2}{|t|^2}\right) \quad (7)$$


206 Calculation of Absolute Shielding Effectiveness: prior to calculating the absolute shielding  
207 effectiveness, specific shielding effectiveness (SSE) is required. SSE is defined by normalizing  
208 shielding effectiveness with the density (SE/density, dB cm<sup>3</sup> g<sup>-1</sup>). Absolute shielding effectiveness  
209 is then calculated by dividing SSE with the thickness (SSE/t), taking both density and thickness of  
210 materials into account:  $SSE/t = SE/(density \cdot t)$  (dB cm<sup>2</sup> g<sup>-1</sup>).

211 3. RESULTS AND DISCUSSION

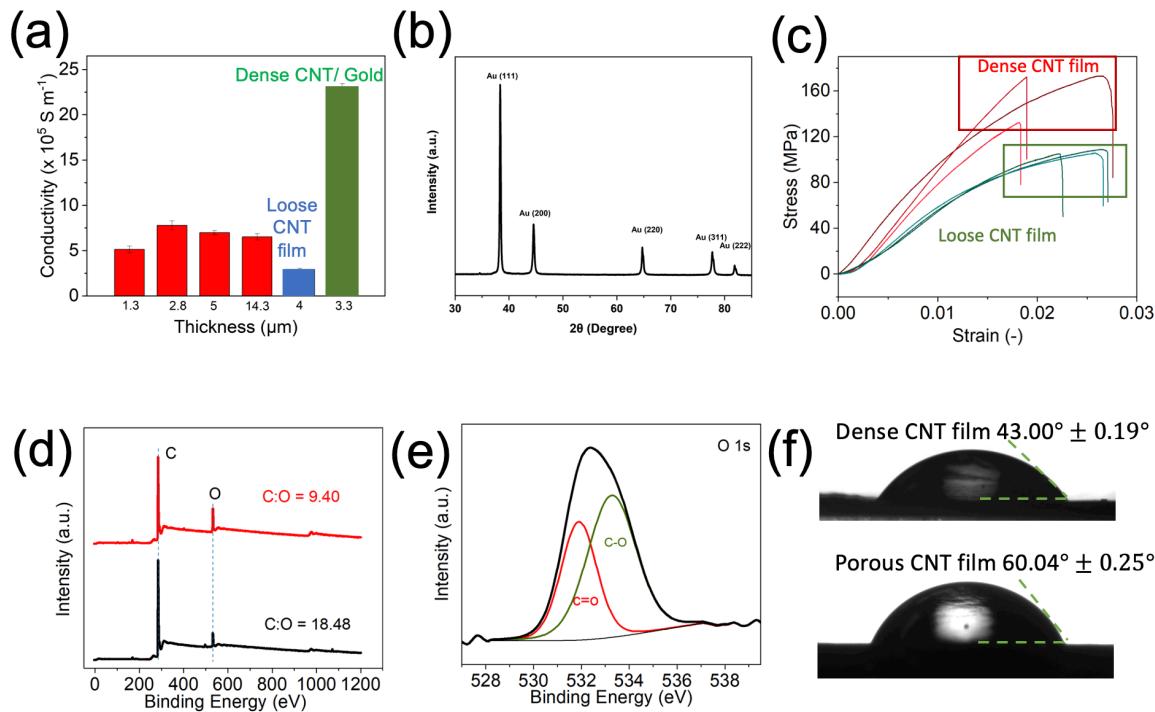
212 Reducing the contact resistance by decreasing the distance between individual CNTs can  
213 significantly improve the conductive performance of CNT networks since the intrinsic resistance  
214 of CNTs is negligible compared to contact resistance between neighboring CNTs in a network  
215 (i.e., resistance caused by electron tunneling) [34, 35]. The facile fabrication process of the metal-  
216 like CNT film is illustrated in Fig.1. CSA, an excellent solvent for CNTs, was used to disperse  
217 single-walled CNTs (Fig. 2a). Low concentration CNT dispersions in CSA exhibit an isotropic  
218 phase with random orientation[27] . However, as the concentration increases, the CNTs transition  
219 into a liquid-crystalline (LC) phase, where the CNTs become densely packed and aligned due to  
220 excluded volume effects[26]. Between these extreme conditions (i.e., medium concentrations), a  
221 biphasic phase of CNTs is formed [26]. CSA, a true solvent of CNTs, exhibits the highest

222 solubility of individual CNTs, where CNTs are well dispersed (i.e. in an isotropic phase) when  
223 their concentrations are below 0.61 vol%[26]. The highly polar CSA is capable of polarizing  
224 individual CNTs, enhancing the attractive forces between adjacent polarized CNTs[28]. As a  
225 result, when the CSA evaporates, the CNT network collapses and forms a dense film (Fig.2b). The  
226 dense CNT film has a metallic, reflective appearance, reflecting light off of the surface (Fig. 2b  
227 and Fig. 2c). The dense CNT film shows enhanced electrical conductivity ( $0.78 \times 10^6 \pm 4.85 \times$   
228  $10^4 \text{ S m}^{-1}$ ), which is two orders of magnitude higher than traditional CNT-based films (i.e.,  $\sim 10^4 \text{ S}$   
229  $\text{m}^{-1}$ ) [36], and comparable to conductive metals (e.g.,  $\sim 1 \times 10^6 \text{ S m}^{-1}$  for stainless steel) [37]. A  
230 pressure-deposited porous CNT film was used as a comparison with the dense CNT film in terms  
231 of conductivity and morphology. The surface of dense CNT films was imaged using scanning  
232 electron microscopy (SEM), and shows individual CNT and CNT bundles tightly packed with no  
233 observable gaps between them (Fig. 2d and 2e). Cross-sectional images of the dense CNT film  
234 show the dense structure of CNT network and the close packing of CNTs (Fig. 2f). In contrast,  
235 porous CNT films fabricated by pressure-depositing a CNT/surfactant suspension show a very  
236 loose CNT network with large pores between neighboring CNTs (Figs. 2g – 2i). The porous  
237 structure of the film was also observable in a cross-sectional image of the material (Fig. 2i). When  
238 the dense CNT membrane was coated with gold and mechanically rolled, a shiny metallic golden  
239 is obtained (Fig. 2j). Initially, the CNTs, acting as electron donors, reduce Au (III) ions in the  
240 solution to metal Au, resulting in the formation of gold clusters on the surface of the CNT film and  
241 within the porous film. As these gold clusters grow larger and form a continuous layer, they  
242 interlock with the CNT network at the interface. The interlocking mechanism involves the  
243 interplay of van der Waals forces, which contribute to the interfacial interactions and subsequently  
244 influence the mechanical properties of the film. After the mechanical compaction process, the

245 separation distance between the two layers at the interface and between the gold particles  
246 decreases. This closer proximity enhances the van der Waals forces, both between the layers and  
247 among the gold particles. These strengthened van der Waals forces contribute to improved  
248 interfacial adhesion and cohesion. SEM image analysis reveals a crystal-like gold layer on the  
249 surface of the densified CNT network. (Figs. 2k-l).



250  
251 **Fig. 2.** (a) CNT/ CSA suspension in glass vial. (b), (c) Light - reflecting dense CNT films with  
252 patches of light reflecting off: (b) Photo of dense CNT film in glass petri dish after evaporation of


253 CSA, (c) photo of free-standing dense CNT film peeled from petri dish. (d), (e) Low-magnification  
254 (d) and high-magnification (e) SEM images of surface morphology of dense CNT film. (f) SEM  
255 image of dense CNT film from cross-sectional view. (g), (h) Low-magnification (g) and high-  
256 magnification (h) SEM images of surface morphology of a pressure-deposited porous CNT film.  
257 (i) SEM image of a pressure-deposited porous CNT film from cross-sectional view. (j) photo of  
258 dense CNT coated with gold. (k) SEM image of the surface of dense CNT film coated with gold.  
259 (l) Cross-sectional view of dense CNT film with gold coating.

260 The electrical conductivity of the dense CNT film was a function of its thickness, with the  
261 highest conductivity ( $0.78 \times 10^6 \pm 4.85 \times 10^4 \text{ S m}^{-1}$ ) measured at a film thickness of  $2.8 \mu\text{m}$  (Fig.  
262 3a); this value is  $\sim 2.7$  times higher than that of a non-densified, porous CNT film ( $2.92 \times 10^5 \pm$   
263  $1.11 \times 10^4 \text{ S m}^{-1}$ ) (Fig. 3a, and Table S1). The conductivity of the CNT/gold membrane with a  
264 total thickness of  $3.3 \mu\text{m}$  increased to  $2.31 \times 10^6 \pm 3.60 \times 10^4 \text{ S m}^{-1}$ , a nearly 8-fold increase  
265 compared to the non-densified CNT film. At a low thickness of  $1.3 \mu\text{m}$ , a small amount of CNTs  
266 within a certain volume may not form a tightly packed film. Consequently, the uneven distribution  
267 of CNTs can result in regions with fewer CNTs compared to other regions. These low-density  
268 regions, characterized by large gaps between CNT individuals/bundles, can introduce additional  
269 resistance when the thickness is small[38]. However, as the thickness increases, the number of  
270 these low density regions declines and the conductivity of the CNT network stops increasing with  
271 thickness, stabilizing at  $0.78 \times 10^6 \text{ S m}^{-1}$  at  $2.8 \mu\text{m}$ . XRD spectrum analysis demonstrates the  
272 successful growth of Au on the dense CNT network (Fig. 3b); the diffraction peaks at  $38.4^\circ$ ,  $44.6^\circ$ ,  
273  $64.7^\circ$ ,  $77.71^\circ$ , and  $81.85^\circ$  can be assigned to (111), (200), (220), (311), and (222) crystalline  
274 diffraction planes of Au. Au diffraction peaks correspond to the typical face-centered cubic crystal  
275 structure and does not indicate the presence of any intermetallic gold compounds. Furthermore,

276 the Au (111) peak exhibits strong intensity compared to those of Au (200), Au (220), and Au (311)  
277 planes. The relative intensity of Au (200)/Au (111) is 0.27, lower than the bulk gold value (0.52  
278 from JCPDS #04-0784), indicating the synthesized Au film were highly (111) oriented [39].

279 The high conductivity of the dense CNT film is a result of the dense CNT network that reduced  
280 the resistance to electron transport between neighboring CNTs, which is highly sensitive to the  
281 separation distance between conducting strands in a network[30, 40, 41]. In contrast, for the  
282 pressure-deposited CNT film, the large gaps between neighboring CNTs (Fig. 2h) increased the  
283 electron hopping distance and reduced the membrane conductivity.

284 The mechanical strength of the CNT films, evaluated from the tensile stress-strain curves,  
285 showed that the dense CNT films had enhanced mechanical properties (Fig. 3c). Specifically, the  
286 ultimate strength of the dense CNT film, calculated by dividing the applied force by the cross-  
287 sectional area of the film, was  $161.5 \pm 25.6$  MPa at  $2.16 \pm 0.52$  % deformation. In contrast, the  
288 ultimate strength and maximum deformation of the porous CNT film were  $106.6 \pm 2.0$  MPa and  
289  $2.54 \pm 0.25$  %, respectively. The ultimate strength of the dense CNT film (161.5 MPa) is 1.52  
290 times higher than that of a porous CNT film because the CSA-induced densification shortens the  
291 separation distance. As a result, the attractive van der Waals force between adjacent CNTs is  
292 enhanced[42], and the dense CNT network shows stronger mechanical properties. Based on the  
293 stress and strain values at failure, the Young's modulus of dense and porous films was calculated  
294 to be  $10.85 \pm 0.67$  GPa and  $6.99 \pm 0.25$  GPa, respectively (details in Table S2). The ultimate  
295 strength of a dense CNT film was found to be higher than that of aluminum ( $\sim 110$  MPa). However,  
296 its stiffness is much lower than that of aluminum ( $\sim 69$  GPa), suggesting that this light-weight film  
297 has superior mechanical strength and excellent flexibility. Additionally, the film can be folded and  
298 twisted without any damage, as shown in Supporting Information.

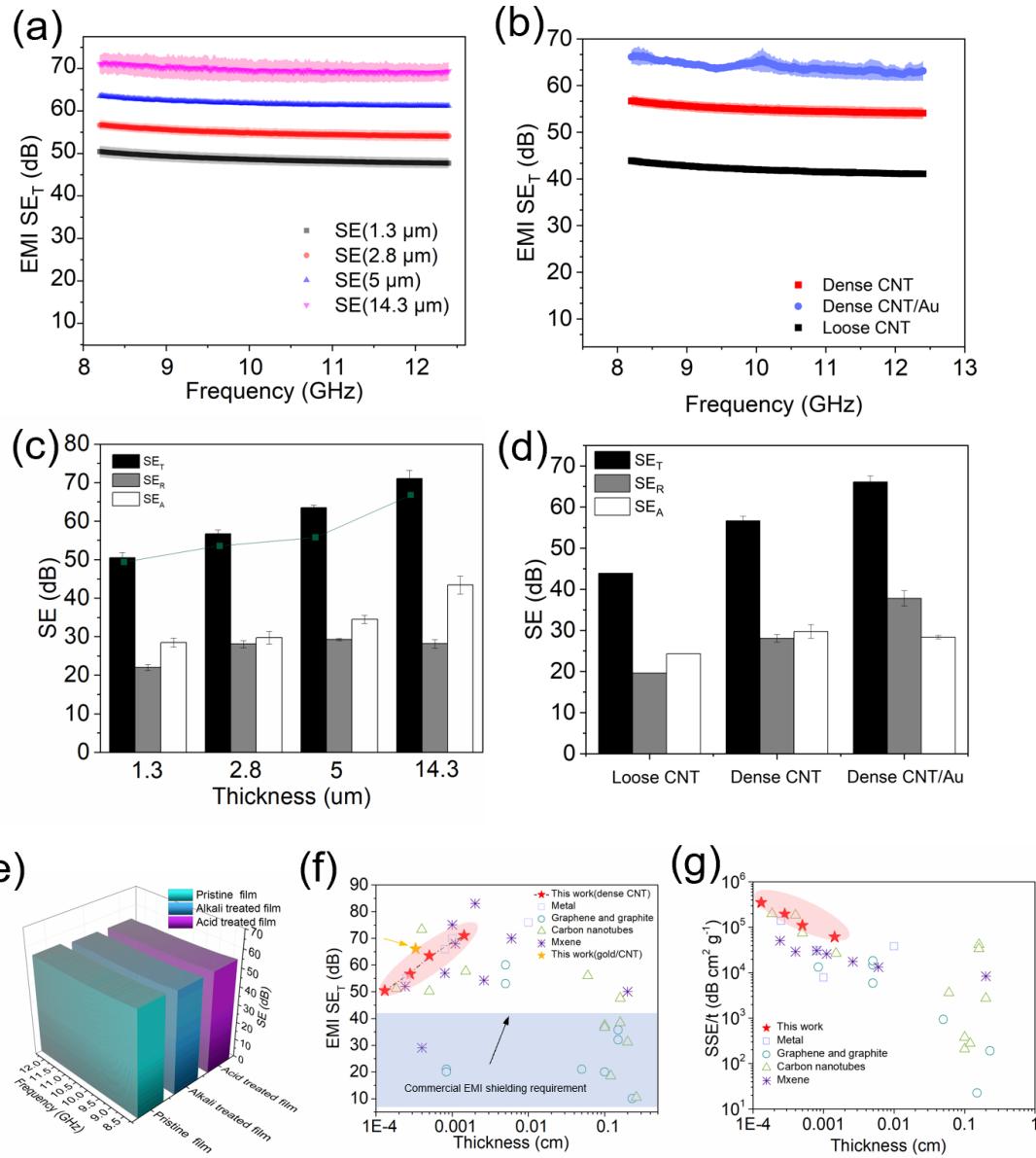


299

300 **Fig. 3.** (a) Changes in electrical conductivity of dense CNT films as a function of thickness (red),  
 301 compared with porous CNT films (blue). (b) XRD spectrum of dense CNT/Au film. (c) Stress –  
 302 strain curve of dense CNT films (red) and porous CNT films (blue) with a thickness of  $2.8 \mu\text{m}$ . (d)  
 303 XPS survey spectra of a dense CNT film (red line) and porous CNT film (black line). (e) High  
 304 resolution spectra of O 1s of a dense CNT film. (f) Water contact angle measurements of a dense  
 305 and porous CNT film.

306 X-ray photoelectron spectroscopy (XPS) survey spectra of a dense and porous CNT film  
 307 exhibited sharp peaks associated with C and O, originating from the carbonous CNT backbone and  
 308 surface functional groups (Fig. 3d). After CSA evaporation, the C/O ratio of dense CNT film was  
 309 9.40, lower than the 18.48 ratio found on porous films, which can be attributed to the partial  
 310 oxidation of CNTs by the strong acid CSA. A high-resolution XPS scan of O1s shows that the  
 311 ratio of C = O/C – O for the dense CNT film is 0.61, while the C = O/ C – O ratio is only 0.35 for

312 a porous CNT film (Fig. 3e and Fig. S2). The larger number of C = O groups in the dense CNT  
313 film further supports the observation that the immersion of the CNTs in CSA led to the oxidation  
314 of surface carbon groups. The oxidation of dense CNT film is also evident through the contact  
315 angle measurements of the porous and dense films (Fig. 3f). The contact angle of a porous film  
316 ( $60.0 \pm 0.3^\circ$ ) was determined to be higher than that of a dense CNT film ( $43.0 \pm 0.2^\circ$ ). The lower  
317 contact angle of the dense CNT film suggests the presence of more polar surface groups, which  
318 can be attributed to the oxidation of carbon groups (e.g., carboxyl and carbonyl groups). It is indeed  
319 worth noting that the conductivities of dense CNT films exhibit an increase, even when the  
320 individual CNTs within them are oxidized (as shown in Fig. 3a). Generally, CNTs without any  
321 defects tend to possess higher conductivity compared to CNTs with functional groups [43].  
322 However, in the case of the dense CNT film, the overall conductivity increase can be attributed to  
323 the decrease in contact resistance, which arises from the densification of the CNT network, which  
324 more than offsets the decrease in conductivity resulting from the CNT oxidation.


325 Due to their dense structure, intrinsically high electrical conductivity and multiple functional  
326 groups, dense CNT films show exceptionally high EMI SE values. Fig. 4a shows the total EMI  
327 shielding effectiveness ( $SE_T$ ) of a dense CNT film with different thicknesses ( $1.3 \mu\text{m}$ ,  $2.8 \mu\text{m}$ ,  
328  $5\mu\text{m}$ , and  $14.3 \mu\text{m}$ ) over the X-band frequency range (8.2 GHz – 12.4 GHz). It is noted that  $SE_T$   
329 increased with an increase in film thickness. Yet, even the thinnest dense film ( $1.3 \mu\text{m}$ ) has a  $SE_T$   
330 of  $50.5 \pm 1.3 \text{ dB}$ , and demonstrates  $\sim 99.999\%$  blockage of incident EM waves, which is higher  
331 than the commercial EMI shielding requirement (40 dB) [44]. The  $SE_T$  reaches as high as  $71 \pm 2.1$   
332 dB with a film thickness of  $14.3 \mu\text{m}$ , suggesting that 99.999992% of EM waves are attenuated by  
333 the dense CNT film. Compared with the loose CNT film, the dense CNT film's  $SE_T$  was 12.77 dB  
334 higher at same thickness (i.e.  $2.8 \mu\text{m}$ ) (Fig. 4b). The dense CNT/Au films shows a further

335 enhancement of EMI SE compared to the uncoated dense film; the EMI SE over the whole X band  
336 was lifted by 22.22 dB after the Au coating, reaching a value of 66.12 dB for a dense CNT/Au film  
337 (the total thickness of new CNT/gold film is  $3.3 \mu\text{m}$ ) (Fig. 4b). To deconvolute the  $\text{SE}_T$  value in  
338 terms of the EMI shield's properties, we used Simon's formula[45]:

339 
$$\text{SE}_T = 50 + 10 \log(\sigma / f) + 1.7t(\sigma f)^{0.5} \quad (1)$$

340 where  $\sigma$ ,  $f$ , and  $t$  represent electrical conductivity ( $\text{S cm}^{-1}$ ), frequency (MHz), and thickness  
341 of the EMI shield (cm), respectively. The first two terms of the equation represent shielding due  
342 to reflection, while the third term accounts for shielding from absorption; multireflection is  
343 neglected in this equation. From Simon's formula, the overall shielding performance of a CNT  
344 film can be enhanced by either increasing the electrical conductivity or thickness. As shown in  
345 Fig. 4c, the calculated  $\text{SE}_T$  values from Simon's formula follow the same trend as the measured

346 SE<sub>T</sub> values, which increase with an increase in thicknesses.



347

348 **Fig. 4.** (a) Variances of total SE<sub>T</sub> over X band for dense CNT films with different thicknesses (1.3  
349  $\mu\text{m}$ ,  $2.8 \mu\text{m}$ ,  $5 \mu\text{m}$ , and  $14.3 \mu\text{m}$ ). (b) SE<sub>T</sub> over X band for loose CNT film, dense CNT film, and  
350 dense CNT/Au film. (c) Measured SE<sub>T</sub>, calculated SE<sub>T</sub> from Simon's formula, and measured  
351 absorption (SE<sub>A</sub>) and reflection (SE<sub>R</sub>) in dense CNT films at 8.2 GHz. (d) Measured SE<sub>T</sub>, SE<sub>A</sub>, and  
352 SE<sub>R</sub> for loose CNT film, dense CNT film, and dense CNT/Au film. (e) SE<sub>T</sub> of pristine dense CNT

353 film, acid treated CNT film, and alkali treated CNT film over X band. (f) Comparison of EMI  $SE_T$   
354 with the previously published data of metals, graphene and graphite, Carbon nanotube, and  
355 MXenes. (g) Comparison of absolute SE with the previously published data of metals, graphene  
356 and graphite, Carbon nanotube, and MXenes.

357 To identify the mechanism responsible for the observed EMI shielding in the dense CNT film,  
358 the contributions from absorption ( $SE_A$ ), reflection ( $SE_R$ ), and multi-reflection ( $SE_M$ , which is  
359 generally negligible when the  $SE_T$  is larger than 15 dB) [3] are determined and compared (Fig. 4c).  
360 As mentioned earlier, it has been observed that the  $SE_T$  tends to increase with an increase in  
361 thickness. In the case of the films under investigation  $SE_A$  values consistently surpass  $SE_R$  values  
362 across all thicknesses. This finding suggests that absorption plays a more prominent role in  
363 determining the EMI shielding capability of dense CNT films within the range of 1.3 – 14.3  $\mu\text{m}$ .  
364 Interestingly,  $SE_R$  increases from 22 dB (at 1.3  $\mu\text{m}$ ) to 28 dB (at 2.8  $\mu\text{m}$ ), but does not continue to  
365 increase beyond this thickness. In contrast,  $SE_A$  continuously increases with thickness. This can be  
366 attributed to the differences between the reflection and absorption processes. Specifically, the  
367 incident EM waves first hit the conductive surface of the shielding material where over 99% (20  
368 dB) of the EM waves are instantly reflected due to the impedance mismatch[11, 46]. The residual  
369 energy (<1%) of the EM waves can penetrate the material, but is attenuated throughout the depth  
370 of the film. These penetrated waves are either directly absorbed by ohmic losses[5], due to the  
371 occurrence of EM field-induced current that produces thermal energy[47] [48], or reflected at first  
372 and then absorbed by adjacent CNTs. In other words, the reflection of EM waves is mainly  
373 impacted by a film's electrical conductivity, while EM wave absorption happens throughout the  
374 material leading to an increase in absorption with an increase of thickness. A material's electrical  
375 conductivity has a large impact on  $SE_R$  and  $SE_A$  values, albeit to a different degree, as implied

376 from Simon's formulism, Eq. (1), which partially explains why  $SE_A$  grows more than  $SE_R$ .  $SE_R$  is  
377 proportional to the logarithm of the material's electrical conductivity, while  $SE_A$  is proportional to  
378 the square root of the conductivity. Therefore, changes in conductivity have bigger impacts on  $SE_A$   
379 than on  $SE_R$ . In addition to the excellent conductivity, polar functional groups, such as C-O and  
380 C=O, the presence of which was verified using XPS analysis (Fig. 3d), can also contribute to the  
381 high  $SE_R$  through polarization losses[17]. In Figure 4d, we conducted a comparison of the SE in  
382 terms of  $SE_T$ ,  $SE_R$ ,  $SE_A$  among the loose CNT film, dense CNT film, and dense CNT/Au film. The  
383 loose CNT film exhibited inferior performance in both  $SE_A$  and  $SE_R$  compared to the dense CNT  
384 film and dense CNT/Au film. This can be attributed to its relatively lower conductivity, resulting  
385 in a smaller  $SE_T$  value. On the other hand, the dense CNT/Au film demonstrated the highest  $SE_T$   
386 and  $SE_R$  among the three films, while  $SE_A$  was comparable to that of the dense CNT film.  
387 Specifically, the  $SE_T$  and  $SE_R$  increased by 9.5 dB and 9.7 dB, respectively, while  $SE_A$  stabilized  
388 at around 29 dB. This suggests that the increase in  $SE_T$  was primarily driven by the increase in  
389 reflection provided by the gold coating, as gold is well-known for its excellent reflective  
390 properties[49]. In our two-layer nanostructured composite, the thin top layer (the Au(0)) with high  
391 conductivity primarily serves as a means to reflect EM waves upon initial contact. This layer  
392 efficiently redirects the waves away from the material. On the other hand, the thicker secondary  
393 nanostructured layer (the CNTs) is designed to absorb and disperse the residual waves that  
394 penetrate the top layer. The secondary layer acts as a prolonged pathway for the waves, allowing  
395 for multiple reflections and ensuring further attenuation of the EMI. By combining the reflective  
396 properties of the thin top layer with the absorbing and multi-reflective capabilities of the thicker  
397 secondary layer, the composite provides an effective solution for EMI shielding[50]. As a result,

398 the majority of EM waves (37.8 dB) were reflected by highly conductive dense CNT/gold top  
399 surface, the remaining attenuated wave was absorbed and dissipated within the CNT layer.

400 The dense CNT film exhibited robust stability under harsh conditions. The  $SE_T$  of dense CNT  
401 film remained constant after a 1-hour immersion in acid (1 M  $H_2SO_4$  solution) or base (1 M NaOH  
402 solution) over the X-band frequency range (Fig. 4e). The high stability of these dense CNT films  
403 makes them superior to traditional metallic or polymeric shielding materials that are vulnerable to  
404 harsh conditions[51].

405 The EMI  $SE_T$  values of our dense CNT film and dense CNT/gold film were compared to values  
406 reported for other materials (Fig. 4f and Table S3). In general, carbon-based materials, such as  
407 CNTs, graphene, and graphite, are generally found in the right lower corner of Fig. 4e, indicating  
408 that they can only achieve a sufficient  $SE_T$  at fairly large thicknesses (500  $\mu m$  to 1000  $\mu m$ ), due to  
409 their low electrical conductivity. Although metal materials show similar EMI shielding properties  
410 compared to our dense CNT films, the high density and poor processibility of metals (i.e.,  
411 fabricating them into super thin films) limit their application as EM shields for advanced electrical  
412 devices. In contrast, the dense 14.3  $\mu m$  thick CNT film in this work displays an extraordinary EMI  
413  $SE_T$  of 71 dB, and is not inferior to MXenes with a similar thickness in terms of EMI shielding[4]  
414 . The gold/CNT film shows an excellent EMI  $SE_T$  of 66.12 dB with 3.3  $\mu m$  thickness, which  
415 outperforms almost all of the materials we have been studied at such a low thickness.

416 The absolute shielding effectiveness ( $SSE/t$ , dB  $cm^2 g^{-1}$ ) of the dense CNT films is compared to  
417 that of other materials, with the  $SSE/t$  value being calculated by dividing  $SE_T$  by the product of the  
418 material density and thickness (Fig. 4g) [45]. A higher  $SSE/t$  value suggests that a given material  
419 could achieve a specific SE with a lighter weight and a lower thickness. The dense CNT film shows  
420 an impressive  $SSE/t$  value that outperforms those exhibited by highly electrically conducting

421 metals and MXenes. The highest value of SSE/t of  $3.6 \times 10^5$  dB cm<sup>2</sup> g<sup>-1</sup> was achieved at a thickness  
422 of 1.3  $\mu$ m, where the SE is 50.5 dB, which is higher than that required for commercial devices (40  
423 dB) [1]. The ability to achieve high SE at low thicknesses and light weight makes dense CNT  
424 films an excellent candidate as an EMI shielding material for modern advanced electronics and  
425 telecommunication devices.

426 **4. CONCLUSIONS**

427 In conclusion, we have reported a CNT film fabrication method that produces metal-like  
428 CNT films with robust mechanical strength (161.5 MPa), chemical stability, and high electrical  
429 conductivity (779,500 S m<sup>-1</sup>) for carbon-based materials. In addition to its impressive electrical  
430 conductivity, the rich functional groups on the dense CNT film contribute to high EMI SE with a  
431 very low thickness (i.e., 71 dB at 14.3  $\mu$ m). With the addition of the gold coating, the dense  
432 CNT/gold membrane exhibits an extremely high conductivity ( $2.31 \times 10^6$  S m<sup>-1</sup>) and EMI SE of  
433 66.12 dB at a total thickness of 3.3  $\mu$ m. Furthermore, the dense CNT films are highly stable under  
434 harsh conditions and maintain excellent shielding performance after acid/alkali treatment,  
435 suggesting their promising potential use in advanced electrical and telecommunication devices.

436

437 **Supporting Information.**

438 The following files are available free of charge.

439 Electrical conductivity measurement setup, mechanical testing system, XPS spectra, sheet  
440 resistance and conductivity of dense CNT films, Mechanical properties, and a  
441 comparison table of EMI Shielding effectiveness with that of literature data. (DOC)  
442 Dense CNT film resilience. (MOV)

443 **Conflicts of interest**

444 The authors declare no competing financial interest.

445 **ACKNOWLEDGMENT**

446 The authors acknowledge financial support from the National Science Foundation (1926360).

447 In addition, the authors would like to thank the Center for High Frequency Electronics (CHFE)

448 and Minji Zhu for assistance with the vector network analyzer instrument. Additional support for

449 EMVH was provided by the *UCLA Sustainable LA Grand Challenge*. A.A.B acknowledges the

450 support of the Vannevar Bush Faculty Fellowship (VBFF), under contract ONR-N00014-21-1-

451 2947.

452 **REFERENCES**

453 [1] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon, J. Hong, H. Kim, D. Kim, Y. Gogotsi, C.M. Koo, Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene), *Science* 369(6502) (2020) 446-450.

454 [2] M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori, C.M. Koo, G. Friedman, Y. Gogotsi, Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding, *ACS Nano* 14(4) (2020) 5008-5016.

455 [3] P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.K. Kim, S.M. Hong, M. Han, Y. Gogotsi, C.M. Koo, Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding, *ACS Appl Mater Interfaces* 11(41) (2019) 38046-38054.

456 [4] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), *Science* 353(6304) (2016) 1137-1140.

457 [5] Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, C. Lu, Ultrathin MXene/Calcium Alginate Aerogel Film for High - Performance Electromagnetic Interference Shielding, *Advanced Materials Interfaces* 6(6) (2019).

458 [6] S.H. Lee, S. Yu, F. Shahzad, W.N. Kim, C. Park, S.M. Hong, C.M. Koo, Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation, *Nanoscale* 9(36) (2017) 13432-13440.

459 [7] S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai, D. Zu, J. Song, D. Wang, Z. Liu, Z. Li, Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding, *npj Flexible Electronics* 3(1) (2019) 1-8.

475 [8] G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, Highly electrically conductive and high  
476 performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and  
477 precipitation, *Journal of Materials Chemistry* 21(3) (2011) 829-836.

478 [9] Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin, S. Zhao, Y.B. Zhao, Z. Pan, C. Li, G. Nystrom, J.  
479 Wang, Flexible and Ultrathin Waterproof Cellular Membranes Based on High-Conjunction  
480 Metal-Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding, *Adv Mater*  
481 32(19) (2020) e1908496.

482 [10] D.Q. Zhang, T.T. Liu, J.C. Shu, S. Liang, X.X. Wang, J.Y. Cheng, H. Wang, M.S. Cao,  
483 Self-Assembly Construction of WS<sub>2</sub>-rGO Architecture with Green EMI Shielding, *ACS Appl*  
484 *Mater Interfaces* 11(30) (2019) 26807-26816.

485 [11] Y. Lin, J. Dong, H. Zong, B. Wen, H. Yang, Synthesis, Characterization, and  
486 Electromagnetic Wave Absorption Properties of Composites of Reduced Graphene Oxide with  
487 Porous LiFe<sub>5</sub>O<sub>8</sub> Microspheres, *ACS Sustainable Chemistry & Engineering* 6(8) (2018) 10011-  
488 10020.

489 [12] Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam  
490 sheets with ultrahigh thermostability for electromagnetic interference shielding, *RSC Advances*  
491 5(31) (2015) 24342-24351.

492 [13] Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski, S. Baraghani, Y.  
493 Yashchyshyn, G. Cywinski, S. Rumyantsev, T.T. Salguero, A.A. Balandin, Electrically  
494 Insulating Flexible Films with Quasi-1D van der Waals Fillers as Efficient Electromagnetic  
495 Shields in the GHz and Sub-THz Frequency Bands, *Adv Mater* 33(11) (2021) e2007286.

496 [14] I.W. Nam, H.K. Lee, J.H. Jang, Electromagnetic interference shielding/absorbing  
497 characteristics of CNT-embedded epoxy composites, *Composites Part A: Applied Science and*  
498 *Manufacturing* 42(9) (2011) 1110-1118.

499 [15] M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of  
500 CNT/polymer composites, *Carbon* 47(7) (2009) 1738-1746.

501 [16] Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube– polystyrene  
502 foam composites for electromagnetic interference shielding, *Nano letters* 5(11) (2005) 2131-  
503 2134.

504 [17] B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J.  
505 Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference  
506 shielding at elevated temperatures, *Adv Mater* 26(21) (2014) 3484-9.

507 [18] B. Shen, W. Zhai, W. Zheng, Ultrathin Flexible Graphene Film: An Excellent Thermal  
508 Conducting Material with Efficient EMI Shielding, *Advanced Functional Materials* 24(28)  
509 (2014) 4542-4548.

510 [19] M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials,  
511 *Environmental science & technology* 42(16) (2008) 5843-5859.

512 [20] T. Ebbesen, H. Lezec, H. Hiura, J. Bennett, H. Ghaemi, T. Thio, Electrical conductivity of  
513 individual carbon nanotubes, *Nature* 382(6586) (1996) 54-56.

514 [21] W. Xu, Y. Chen, H. Zhan, J.N. Wang, High-Strength Carbon Nanotube Film from  
515 Improving Alignment and Densification, *Nano Lett* 16(2) (2016) 946-52.

516 [22] M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking  
517 mechanism of multiwalled carbon nanotubes under tensile load, *Science* 287(5453) (2000) 637-  
518 640.

519 [23] W.A. Deheer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphreybaker, L. Forro, D. Ugarte,  
520 ALIGNED CARBON NANOTUBE FILMS - PRODUCTION AND OPTICAL AND  
521 ELECTRONIC-PROPERTIES, *Science* 268(5212) (1995) 845-847.

522 [24] E. Bekyarova, M.E. Itkis, N. Cabrera, B. Zhao, A.P. Yu, J.B. Gao, R.C. Haddon, Electronic  
523 properties of single-walled carbon nanotube networks, *Journal of the American Chemical  
524 Society* 127(16) (2005) 5990-5995.

525 [25] J. Stallard, W. Tan, F. Smail, T. Gspann, A. Boies, N. Fleck, The mechanical and electrical  
526 properties of direct-spun carbon nanotube mats, *Extreme Mechanics Letters* 21 (2018) 65-75.

527 [26] V.A. Davis, A.N. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker,  
528 J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W. Adams, R.H. Hauge, J.E. Fischer, Y. Cohen,  
529 Y. Talmon, R.E. Smalley, M. Pasquali, True solutions of single-walled carbon nanotubes for  
530 assembly into macroscopic materials, *Nat Nanotechnol* 4(12) (2009) 830-4.

531 [27] O. Kleinerman, L. Liberman, N. Behabtu, M. Pasquali, Y. Cohen, Y. Talmon, Direct  
532 Imaging of Carbon Nanotube Liquid-Crystalline Phase Development in True Solutions,  
533 *Langmuir* 33(16) (2017) 4011-4018.

534 [28] Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin, Y.G. Hu, T. Zhao, X.L. Zeng, C.H. Li,  
535 S.H. Yu, P.L. Zhu, R. Sun, C.P. Wong, Ultrathin Densified Carbon Nanotube Film with "Metal-  
536 like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference  
537 Shielding Effectiveness, *ACS Nano* (2020).

538 [29] H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai, Spontaneous reduction of metal ions on the  
539 sidewalls of carbon nanotubes, *Journal of the American Chemical Society* 124(31) (2002) 9058-  
540 9059.

541 [30] D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Highly oriented carbon nanotube papers made of  
542 aligned carbon nanotubes, *Nanotechnology* 19(7) (2008) 075609.

543 [31] P.D. Bradford, X. Wang, H. Zhao, J.-P. Maria, Q. Jia, Y. Zhu, A novel approach to fabricate  
544 high volume fraction nanocomposites with long aligned carbon nanotubes, *Composites Science  
545 and Technology* 70(13) (2010) 1980-1985.

546 [32] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson,  
547 R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets, *science* 309(5738)  
548 (2005) 1215-1219.

549 [33] A.E. Goldt, O.T. Zaremba, M.O. Bulavskiy, F.S. Fedorov, K.V. Larionov, A.P. Tsapenko,  
550 Z.I. Popov, P. Sorokin, A.S. Anisimov, H. Inani, J. Kotakoski, K. Mustonen, A.G. Nasibulin,  
551 Highly efficient bilateral doping of single-walled carbon nanotubes, *Journal of Materials  
552 Chemistry C* 9(13) (2021) 4514-4521.

553 [34] C. Li, E.T. Thostenson, T.-W. Chou, Dominant role of tunneling resistance in the electrical  
554 conductivity of carbon nanotube-based composites, *Applied Physics Letters* 91(22) (2007).

555 [35] K.Y. Yan, Q.Z. Xue, Q.B. Zheng, L.Z. Hao, The interface effect of the effective electrical  
556 conductivity of carbon nanotube composites, *Nanotechnology* 18(25) (2007).

557 [36] G. Chen, D.N. Futaba, S. Sakurai, M. Yumura, K. Hata, Interplay of wall number and  
558 diameter on the electrical conductivity of carbon nanotube thin films, *Carbon* 67 (2014) 318-325.

559 [37] K.A. Ibrahim, B. Wu, N.P. Brandon, Electrical conductivity and porosity in stainless steel  
560 316L scaffolds for electrochemical devices fabricated using selective laser sintering, *Materials &  
561 Design* 106 (2016) 51-59.

562 [38] M.L. Erickson, S.M. Elliott, C.J. Brown, P.E. Stackelberg, K.M. Ransom, J.E. Reddy, C.A.  
563 Cravotta, 3rd, *Machine-Learning Predictions of High Arsenic and High Manganese at Drinking*

564 Water Depths of the Glacial Aquifer System, Northern Continental United States, Environ Sci  
565 Technol (2021).

566 [39] W. Xin, J.-M. Yang, C. Li, M.S. Goorsky, L. Carlson, I.M. De Rosa, Novel strategy for one-  
567 pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS  
568 substrate, ACS Applied Materials & Interfaces 9(7) (2017) 6246-6254.

569 [40] B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned  
570 Multiwalled Carbon Nanotube Membranes, Science 303(5654) (2004) 62-65.

571 [41] bruce, Aligned multiwalled carbon nanotube membranes, science.

572 [42] P. Goh, A. Ismail, B. Ng, Directional alignment of carbon nanotubes in polymer matrices:  
573 contemporary approaches and future advances, Composites Part A: Applied Science and  
574 Manufacturing 56 (2014) 103-126.

575 [43] A. Nish, R.J. Nicholas, Temperature induced restoration of fluorescence from oxidised  
576 single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution, Physical Chemistry  
577 Chemical Physics 8(30) (2006) 3547-3551.

578 [44] L.-C. Jia, D.-X. Yan, Y. Yang, D. Zhou, C.-H. Cui, E. Bianco, J. Lou, R. Vajtai, B. Li, P.M.  
579 Ajayan, Z.-M. Li, High Strain Tolerant EMI Shielding Using Carbon Nanotube Network  
580 Stabilized Rubber Composite, Advanced Materials Technologies 2(7) (2017).

581 [45] T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M.K. Kim, S.J. Kim, D. Kim, Y. Gogotsi,  
582 S.O. Kim, C.M. Koo, Electromagnetic Shielding of Monolayer MXene Assemblies, Adv Mater  
583 32(9) (2020) e1906769.

584 [46] H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon Hollow  
585 Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave  
586 Absorption, ACS Appl Mater Interfaces 9(7) (2017) 6332-6341.

587 [47] Y. Wan, P. Xiong, J. Liu, F. Feng, X. Xun, F.M. Gama, Q. Zhang, F. Yao, Z. Yang, H. Luo,  
588 Y. Xu, Ultrathin, Strong, and Highly Flexible Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/Bacterial Cellulose Composite  
589 Films for High-Performance Electromagnetic Interference Shielding, ACS Nano (2021).

590 [48] Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L.  
591 Zhang, B. Wei, Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams  
592 for Ultrahigh-Performance Electromagnetic-Interference Shielding, Adv Mater 29(31) (2017).

593 [49] J. Li, H. Liu, J. Guo, Z. Hu, Z. Wang, B. Wang, L. Liu, Y. Huang, Z. Guo, Flexible,  
594 conductive, porous, fibrillar polymer-gold nanocomposites with enhanced electromagnetic  
595 interference shielding and mechanical properties, journal of materials chemistry C 5(5) (2017)  
596 1095-1105.

597 [50] B. Zhou, G. Han, Z. Zhang, Z. Li, Y. Feng, J. Ma, C. Liu, C. Shen, Aramid nanofiber-  
598 derived carbon aerogel film with skin-core structure for high electromagnetic interference  
599 shielding and solar-thermal conversion, Carbon 184 (2021) 562-570.

600 [51] Y. Wang, X. Jing, Intrinsically conducting polymers for electromagnetic interference  
601 shielding, Polymers for Advanced Technologies 16(4) (2005) 344-351.

602