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ABSTRACT

O-RAN is radically shifting how cellular networks are designed, de-
ployed and optimized through network programmability, disaggre-
gation, and virtualization. Specifically, RAN Intelligent Controllers
(RICs) can orchestrate and optimize the Radio Access Network
(RAN) operations, allowing fine-grained control over the network.
RICs provide new approaches and solutions for classical use cases
such as on-demand traffic steering, anomaly detection, and Quality
of Service (QoS) management, with an optimization that can target
single User Equipments (UEs), slices, cells, or entire base stations.
Such control can leverage data-driven approaches, which rely on
the O-RAN open interfaces to combine large-scale collection of
RAN Key Performance Measurements (KPMs) and state-of-the-art
Machine Learning (ML) routines executed in the RICs. While this
comes with the potential to enable intelligent, programmable RANS,
there are still significant challenges to be faced, primarily related to
data collection at scale, development and testing of custom control
logic for the RICs, and availability of Open RAN simulation and
experimental tools for the research and development communities.
To address this, we introduce ns-O-RAN, a software integration
between a real-world near-real-time RIC and an ns-3 simulated
RAN which provides a platform for researchers and telco operators
to build, test and integrate xApps. ns-O-RAN extends a popular
Open RAN experimental framework (OpenRAN Gym) with simu-
lation capabilities that enable the generation of realistic datasets
without the need for experimental infrastructure. We implement
it as a new open-source ns-3 module that uses the E2 interface to
connect different simulated 5G base stations with the RIC, enabling
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the exchange of E2 messages and RAN KPMs to be consumed by
standard xApps. Furthermore, we test ns-O-RAN with the O-RAN
Software Community (OSC) and OpenRAN Gym RICs, simplifying
the onboarding from a test environment to production with real
telecom hardware controlled without major reconfigurations re-
quired. ns-O-RAN is open source and publicly available, together
with quick-start tutorials and documentation.
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1 INTRODUCTION

Emerging wireless networking use cases (e.g., support for diverse
traffic, private networks, and ultra-dense networks) are increasing
the complexity of network deployments. Traditional and monolithic
Radio Access Networks (RANSs) architectures cannot support these
demands, due to their inflexible, hardware-based designs, the need
for on-site setup and labor, and the lack of support for customizable
algorithmic optimization [7]. The Open RAN paradigm is drastically
changing the approach to the management and optimization of
cellular networks, moving from static designs to more advanced and
flexible network architectures, such as cloud-native and virtualized
RANS that can better support the demands of 5th generation (5G)
network use cases and provide improved network performance.
Specifically, the O-RAN Alliance is implementing the Open RAN
vision through technical specifications that extend the capabilities
3rd Generation Partnership Project (3GPP) networks. O-RAN net-
works are based on disaggregation, with network functions split
across multiple software and white-box hardware components,
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virtualization, and programmability of the network. Algorithmic
control is enabled by the RAN Intelligent Controller (RIC), a central-
ized abstraction of the network that has access to all the analytics
collected by the RAN functions and can apply control actions. The
RIC extends classical Radio Resource Management (RRM) with
data-driven approaches based on live telemetry from the RAN pro-
cessed by Machine Learning (ML) and Artificial Intelligence (AI)
pipelines [4]. These models are on-boarded in the software contain-
ers called xApps, which operate on a time scale between 10 ms and
1 s on the near-real-time RIC, and rApps, for control loops above 1
s in the non-real-time RIC [9].

However, several challenges must be addressed to fully enable
intelligent control in O-RAN, primarily in the area of datasets—that
need to be representative and generalize well—and testing of the
proposed solutions—which should not impact production network
performance. Indeed, O-RAN control needs to be effective at a large
scale, and in generic scenarios, leveraging interactions and patterns
that emerge when hundreds of User Equipments (UEs) interact
with the network. Such patterns are hard to reproduce because they
require the use of expensive hardware, such as Software-defined Ra-
dios (SDRs) or commercial equipment, or large-scale production de-
ployments to make sure that the data acquired can help the Al model
generalize well. The SDR-based framework OpenRAN Gym [6] has
been designed to enable the end-to-end design of AI/ML pipelines
for O-RAN and has shown very promising results for a variety
of control use cases (e.g., slicing, neutral host applications), but
still require dedicated hardware and experimental platforms. This
practical limitation is usually addressed by the use of simulators,
however, their integration with the O-RAN framework requires
different development pipelines, meaning that moving a trained
policy from the simulated environment to its real deployment as
xApp requires additional efforts and thus costs [8].

To address such challenges, in this paper, we present ns-O-RAN,
the first open-source simulation platform that combines a functional
4G/5G protocol stack in ns-3 with an O-RAN-compliant E2 interface
to enable the communication between the simulated environment
and a near-real-time RIC. ns-O-RAN extends the OpenRAN Gym
framework with simulation capabilities in ns-3, enabling dataset
generation for large-scale scenarios with hundreds of UEs. ns-O-
RAN is open source and publicly available as part of the O-RAN
Software Community (OSC) projects, together with tutorials and
the additional Open RAN Gym components!.

Through ns-O-RAN, we provide the capability to define simu-
lated closed-loop control routines, where ns-O-RAN provides the
cell Key Performance Measurements (KPMs) to the near-real-time
RIC, and xApps in this platform define control actions which are
sent back to the simulated environment. The latter then applies
the control actions to the RAN model, adapting the behavior of
the simulation according to the strategy defined by the O-RAN
infrastructure. This enables the study of use cases that usually are
related to large deployments such as Traffic Steering (TS) (e.g., to
load balance users across cells), Quality of Service (QoS) (e.g., to
control bearer parameters), and more. Specifically, we integrated
ns-O-RAN with the base station implementation of the 5G module
for ns-3 introduced in [13].
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ns-O-RAN also increases the versatility of the OpenRAN Gym
approach, where the development of a xApp and Al-based control
policies can be first done on simulation, leveraging its capability of
generating large-scale 3GPP-compliant datasets, and then transi-
tioned to experimental platforms such as Colosseum for emulation
with hardware in the loop [5], and to over-the-air testbeds for fur-
ther testing [6]. This can be done by exploiting a key characteristic
of the ns-O-RAN design: we connect the emulated environment to
any O-RAN-compliant near-real-time RIC with real xApps, which
do not need to be re-implemented from scratch to work in the
simulated and/or in the experimental environments. This is a de-
liberate design choice that simplifies the development life-cycle of
end-to-end, intelligent control solutions for Open RAN.

ns-O-RAN has been used in [11] to demonstrate intelligent con-
trol of handovers in large-scale 5G scenarios. This paper provides a
technical overview of how ns-O-RAN has been implemented, to-
gether with a tutorial on how it can be deployed with the OpenRAN
Gym RIC and a profiling of the performance of the E2 interface.
The remainder of this paper is organized as follows. In Section 2,
we present the O-RAN architecture and its main principles, de-
scribing what is the current state of the art for experimenting with
this architecture. In Section 3, we introduce ns-O-RAN, discussing
its open source components and the technical choices adopted to
enable the end-to-end communication with the near-RT RIC. In
Sections 4 and 5, we present a practical example of an ns-O-RAN
use case with a simple ns-3 scenario that is able to communicate
with the near-real-time RIC, discussing also its preliminary results
and showing the flow of the KPMs from the simulated environment
to the OpenRAN Gym near-real-time RIC [17]. We conclude the
paper and discuss what are the next steps in further extending
ns-O-RAN in Section 6.

2 TOWARD OPEN RAN NETWORKS

The O-RAN architecture is a new approach to building mobile net-
works with greater innovation, competition, and interoperability in
the telecommunications industry. The O-RAN architecture disrupts
the classical approach by adopting the principles of disaggregation,
openness, virtualization, and programmability, making it possible to
expose data and analytics and enabling data-driven optimization,
closed-loop control, and automation. In this section, we provide a
brief introduction to the O-RAN architecture and then review the
state of the art on tools for the design and development of O-RAN
solutions.

2.1 O-RAN: A Primer

The RAN disaggregation splits base stations into different func-
tional units: the Radio Unit (RU), the Distributed Unit (DU) and
the Centralized Unit (CU). The RU manages Radio Frequency (RF)
components and part of the physical layer, the DU provides support
for the higher part of the physical layer, Medium Access Control
(MAC), and Radio Link Control (RLC) layers, and the CU features
the higher layers of the protocol stack such as Service Data Adap-
tation Protocol (SDAP), Packet Data Convergence Protocol (PDCP)
and Radio Resource Control (RRC). This separation allows for the
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CU, DU and RU to be developed, procured and operated indepen-
dently, enabling a more flexible and cost-effective network deploy-
ment [18]. The interfaces between the different nodes are open and
standardized, to expose RAN telemetry and control to the external
world, to achieve multi-vendor interoperability and the integration
of different vendors’ equipment and solutions into the network.

An additional core innovation is the RIC, a new architectural
component that provides a centralized abstraction of the network,
allowing operators to implement and deploy custom control plane
functions for the integration of new technologies, such as 5G and
Al into the network. O-RAN envisions different loops operating at
timescales that perform management and control of the network at
near-real-time from 10 ms to 1 s, through third-party applications
called xApps, and non-real-time, i.e., for more than 1 s through
applications called rApps.

The near-RT RIC is the core of the control and optimization
of the RAN and its main components are the xApps. A xApp is a
plug-and-play element that implements custom logic, for example
for RAN data analysis and RAN control. xApps can receive data
and telemetry from the RAN and send back control using the E2
interface. The E2 interface is an open interface between two end-
points, i.e., the near-RT RIC and the so-called E2 nodes, i.e., DUs,
CUs, and O-RAN-compliant LTE eNBs. The E2 interface has been
logically structured into two distinct protocols: the E2 Application
Protocol (E2AP) and E2 Service Model (E2SM). The E2AP is a fun-
damental procedural protocol that facilitates coordination between
the near-RT RIC and the E2 nodes, dictating how they communi-
cate with one another and providing a basic set of services. E2AP
messages can embed different E2SMs, which implement specific
functionalities (i.e., the reporting of RAN metrics or the control of
RAN parameters).

2.2 Experiments and Simulations for O-RAN

O-RAN development is still in its early stage, thus there is a limited
number of solutions for developing and testing on the O-RAN
architecture.

Two frameworks were recently developed to overcome several
problems related to dataset availability, developing, designing, pro-
totyping, and testing O-RAN-ready solutions. OpenRAN Gym [6],
an open-source toolbox to develop AI/ML O-RAN-compliant in-
ference and control algorithms, to deploy them as xApps on the
near-RT RIC, and to test them on a large-scale softwarized RAN con-
trolled by the RIC. OpenRAN Gym is platform-independent, and it
allows users to perform data collection campaigns to build datasets,
develop, design, prototype, and test O-RAN-ready solutions at scale.
This framework provides a lightweight implementation of the OSC
near-RT RIC which has been adapted to run on the Colosseum
system as a set of standalone Docker containers—as well as auto-
mated pipelines for the deployment of the various services of the
RIC. OpenRAN Gym leverages stsSRAN and OpenAirInterface to
implement the RAN through software-defined radios. The Open Al
Cellular (OAIC) initiative has introduced an O-RAN framework to
manage cellular networks—based on srsSRAN—through Al-enabled
controllers, and to interact with systems that locate implementation,
system-level, and security flaws in the network itself [19].
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Figure 1: ns-O-RAN Architecture

In this paper, we extend the OpenRAN Gym with an ns-3 integra-
tion, to provide an environment that does not require experimental
infrastructure and software-defined radios. Network Simulator 3
(ns-3) is a discrete-event network simulator which is highly flexible
and customizable: users can configure various simulation parame-
ters, such as network topology, node mobility, and traffic patterns,
to match the specifics of their network scenario. Specifically, we
leverage the availability of very accurate 3GPP stochastic mod-
els [21] and the ns-3 5G module from [13]. This extends the ns-3
LTE module with additional features such as 5G-compliant physical
and MAC layers, antenna patterns, beamforming algorithms, and
mobility procedures for multi-connected devices.

The ns-3 simulator is also an ideal platform for enhancing Al so-
lutions for networks. In recent years, various studies have extended
the standard capabilities of ns-3 by integrating its potential with
popular machine learning development software. This has allowed
for the creation of more advanced Al solutions for networks. In [10],
authors propose ns-3-gym, a framework that integrates OpenAl
Gym and ns-3, two popular tools in the fields of reinforcement learn-
ing and network simulation, respectively. ns3-gym enables the use
of reinforcement learning techniques for network optimization and
management problems, by combining the simulation capabilities of
ns-3 with the reinforcement learning algorithms of OpenAI Gym.
ns-3-ai [20] provides a high-efficiency solution for data interaction
between ns-3 and other python-based Al frameworks, following
the principles of ns-3-gym. However, neither ns-3-gym nor ns-3-ai
can be used as a framework for developing O-RAN xApps that are
suitable for immediate use in a production environment, unlike the
proposed ns-O-RAN framework in this paper, which we describe
in details next.

3 NS-O-RAN

ns-O-RAN extends the OpenRAN Gym framework, embedding the
first open-source simulation platform that combines a functional
4G/5G protocol stack in ns-3 and an O-RAN-compliant E2 inter-
face for simulated base stations. Such a platform was designed to
enhance data collection and xApp testing capabilities, a critical
step toward enabling efficient and generic Al and ML solutions for
Open RAN and the next generation of cellular network systems.
To this end, ns-O-RAN enables the integration of O-RAN software
such as the OpenRAN Gym and OSC near-RT RICs with large-scale
5G simulations using 3GPP channel models and detailed modeling
of the full 3GPP RAN protocol stack. This allows data collection
of RAN KPMs at scale, in different simulated scenarios, and with
different applications (e.g., multimedia streaming, web browsing,
wireless virtual reality, etc).
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ns-O-RAN supports an O-RAN-compliant E2 interface and imple-
ments two different E2SMs, i.e., E2SM KPM, for reporting, and E2SM
RAN Control (RC), to push control actions to the RAN (for example,
of traffic steering and mobility management). At its core, ns-O-
RAN is an ns-3 external module that provides an Stream Control
Transmission Protocol (SCTP) connection between the simulator
and the near-RT RIC for the support of the E2AP and E2SM. The
E2 termination of the RIC can connect to a set of E2 terminations
running in the ns-3 simulation, responsible for handling all the E2
messages from and to the simulated environment. This connection
was developed by extending the OSC E2 simulator (i.e., e2sim) and
wrapping it into an ad hoc module for ns-3.

This framework can generate realistic datasets based on stochas-
tic 3GPP-defined wireless channel, that can be fed straight into the
O-RAN RIC with no need for infrastructure. Moreover, ns-O-RAN
inherits the ease of customization from ns-3, i.e., it can be easily
configured to support countless possible scenarios and use cases
that can be studied over the same platform. Such scenarios can then
be the foundation to build O-RAN-compliant xApps that can be
tested and tuned on ns-3 and then deployed on a real RAN with no
software changes.

As shown in Figure 1, ns-O-RAN features three different soft-
ware applications: (i) the e2sim [14] software, which was originally
developed by the OSC community and extended as part of this ef-
fort to process E2SM RC handover management actions and handle
multiple E2 terminations; (ii) the ns3-mmWave module [13]; and
(iii) the ns-O-RAN module, introduced in [11], which is an ns-3
external module that uses the e2sim to create a SCTP connection
with the RIC and provides E2 terminations to the simulated base
stations.

3.1 e2sim

The E2 simulator, namely e2sim [14], is an OSC software designed
to simulate the RAN E2 termination to allow the development of
the hosts on near-RT RIC and xApps. It is an SCTP client that
implements the E2AP basic specifications, allowing for end-to-end
E2 flow testing by creating a connection to the E2 Termination
in a near-RT RIC platform. It is capable of decoding incoming
messages from the RIC and providing feedback, as well as streaming
RAN telemetry to the RIC. The system also behaves as an external
interface library, exposing a main class called E2Sim that provides
basic APIs for managing connection and message reception. By
referencing this class in their codebase, external applications can
establish a direct connection with the RIC.

More precisely, at startup, the e2sim generates one E2 Setup
Request for each RAN node, including the RAN function definition
and identifiers (IDs) that specify the RAN node capabilities (e.g.,
control actions that it can ingest, performance metrics it can report).
The RIC replies with an E2 Setup Response for each request, to
acknowledge the presence of the nodes within the network. e2sim
uses an event-driven system made of callbacks to forward the mes-
sages from the RIC to the external calling applications.

When a new message from the RIC is received, e2sim decodes it
and identifies the RAN Function ID to trigger an event to all the
registered callbacks sharing the incoming message. If no callback is
registered, no action is taken. The calling application can subscribe
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to new callbacks using the E2SM RAN Function ID in e2sim to
notify its capability to support a specific feature. The xApp can
register to the E2SMs by sending a RIC Subscription Request indi-
cating which RAN function is going to use during its working. It
will be then the responsibility of the calling application to generate
and send the appropriate responses to the xApp and this can be
done by using the E2Sim SendMessage function.

Extension of the e2sim library — The original e2sim project
was designed to simulate the E2 RAN Termination of a single Next
Generation Node Base (gNB) that is connected to the near-RT RIC.
Therefore its software base relies on this design choice and uses
global variables that are meant to describe the features of the Base
Station (BS), such as the gNB identifier, the SCTP socket file de-
scriptor, and the client port that determine the connection in the
Linux system. On the contrary, in ns-3 all the BSs are managed by a
single process that simulates the interactions in form of time-based
scheduled events. For this reason, we extended the e2sim libmry2
to support multiple gNBs simultaneously over the same machine.
To do so, we removed the global variables and integrated them as
configurable parameters of the E2Sim class. Moreover, compared
to a standard RAN deployment, where the BSs are expected to
have different IP addresses that distinguish the connections to the
RIC, ns-3 runs on a single process/host, making it more difficult to
expose different IPs. To address this issue and improve the perfor-
mance of the simulation, we developed a novel approach that uses
multiple threads in ns-3 to establish independent SCTP connections
for each E2 link. Specifically, we created new parameters to support
the inclusion of a local port number and extended ns-3 to create
separate threads guaranteeing the independence of each E2 data
flow.

By doing so, we can successfully establish connectivity between
multiple RAN nodes and the near-RT RIC even if a single IP is
associated with the simulation process.

Finally, in the original e2sim codebase the only RAN function
ID supported was the number 200, which identifies the possibility
for the BS to collect KPM reports and send them to the RIC through
E2 Indication Messages. In our version, we extended the E2SM
capabilities including the RC service model, which allows the xApp
to send to the RAN control actions. To support these extensions,
we have integrated the callback system in our application to handle
the RC messages from the xApp, thus enabling the RAN control.

3.2 The ns-O-RAN Module

The integration between ns-3 and e2sim has been implemented
through a dedicated module?. It uses e2sim as a library and im-
plement its callbacks, besides providing streamlined support for
multiple E2 termination instances configuration. These operations
are handled by the E2termination class, which wraps all the major
e2sim functionalities exposing them to ns-3. Figure 2 shows the
simplified Unified Modeling Language (UML) diagram, illustrat-
ing how the ns-O-RAN classes interact with each other and how
they work in connection with the ns-3 mmWave module. To enable
the exchange of the RAN functions and capabilities through E2AP,
we create the O-RAN RAN Function descriptors in the simulation

Zhttps://github.com/wineslab/ns-o-ran-e2-sim
3https://github.com/o-ran-sc/sim-ns3-o-ran-e2
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Figure 2: Simplified UML Diagram of ns-O-RAN and its Main Connections with the ns-3 mmWave Module

with the auxiliary class FunctionDescription and its extensions

RicControlFunctionDescriptionandKpmFunctionDescription.

The ns-O-RAN module implements the creation and encoding of
periodic reports from the RAN using the RIC Indication Messages ac-
cording to the O-RAN KPM specification [15]. This is implemented
in the KpmIndicationHeader and in the KpmIndicationMessage
classes that are created and encoded using the IndicationMessage-
Helper. Moreover, we developed the RC capability for the O-RAN
TS use-case [16] through the Handover Management message, so
that the xApp can send a RC Control Message with RAN Function
ID equal to 300. In this message, the xApp specifies the identity of an
UE and the target cell to which the handover should be performed.
The procedure is initiated by a source gNB, which transfers the UE’s
context to the target cell. The RIC Control Messages are decoded in
the ns-O-RAN module using the class RicControlMessage. Finally,
the asnlc-types files contain wrapper classes for the Abstract
Syntax Notation One (ASN.1) C structures that have re-designed
to improve their allocation and deallocation and thus the general
memory management of the module.

The ns-O-RAN module follows the classical installation steps
of an external contribution module of ns-3 and requires the e2sim
library to be installed to build the whole ns-3 project.

3.3 Integration with the 5G Cellular Model

The modules described in the previous sections are responsible
for the setup of the connection between the simulated RAN and
the RIC through the E2 interface. Such modules are designed to

be agnostic with respect to the ns-3 module in use and they can
be integrated with any cellular network implementation done for
ns-3. For this work, we extended the ns-3 mmWave module? for the
simulation of 5G cellular networks, providing its simulated base
stations the E2 Termination support.

The ns-3 mmWave module [13] is designed to perform end-to-
end simulations of 3GPP-style cellular networks. Built upon the
ns-3 Long Term Evolution (LTE) module (LENA) [3], this 5G module
enables the support of a wide range of channel models for frequen-
cies between 0.5 and 100 GHz, thus including 3GPP NR Frequency
Range 1 (FR1) and Frequency Range 2 (FR2). The Physical (PHY)
and MAC classes in this system have been specifically designed to
support the 3GPP NR frame structure and numerologies, ensuring
compatibility with the latest cellular technologies. At the MAC
layer, it supports carrier aggregation [22] and multiple scheduling
policies, to provide additional capacity. Finally, the module also
enables dual connectivity with the LTE base stations, featuring fast
secondary cell handover and channel tracking. For a full list of the
features implemented in this module, we refer the reader to the
original repository of the project®.

The goal of this integration is to enable an end-to-end RAN
simulation for the O-RAN RICs. This requires the RAN side to
enable E2SM exchanges with the RIC, i.e., the delivery of the KPM
reports and the digestion of the control actions. The architecture

*https://github.com/wineslab/ns-o-ran-ns3-mmwave
Shttps://github.com/nyuwireless-unipd/ns3-mmwave
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of the ns-3 mmWave module along with the structural changes we
performed to integrate ns-O-RAN with it are shown in Figure 3.

In the original module, the RAN functions are mainly managed
by two central NetDevice classes called LteEnbNetDevice and
MmWaveEnbNetDevice, which are responsible to generate and trig-
ger the functions for the management of the full radio protocol
stack and of the RLC, RRC and PDCP data flows in the simulation.
The first major design modification was to adapt these classes to
support the data collection according to the O-RAN specifications.
We created three new functions also shown in the simplified UML
of Figure 2, which are responsible for the generation of the KPMs
from the simulation and their dispatch through the E2 Termina-
tion. Each function manages the data relative to one of the O-RAN
specified disaggregated units, namely Centralized Unit - Control
Plane (CU-CP), Centralized Unit - User Plane (CU-UP), and DU.
Each disaggregated unit has its own statistics calculator that is
able to generate and send to the RIC a different Indication Message.
At the current moment, we do not support the LTE DU reports.
Both the NetDevices are registered to the E2 updates through the
callback system described in the previous sections for the KPM
RAN Function description.

With respect to the control, the mmWave module implements
a Non Stand Alone (NSA) architecture having a Primary LTE cell,
also called evolved Node Base (eNB), that is responsible for the
PDCP operations of the RAN and set of secondary gNB 5G cells.
This led us to implement the processing of the control actions only
in the LteEnbNetDevice class.

Following the O-RAN specifications, we adapted the code of the
base station NetDevices to include an object of type E2Termination
as the m_e2term private attribute to provides E2 connectivity through
ns-O-RAN and e2sim. In this way, when the ns-3 simulation starts,
every LteEnbNetDevice and every MmWaveEnbNetDevice instanti-
ated creates its own instance of an E2Termination C++ object to
represent different RAN-side E2 terminations that implement the
message exchange described in Section 3.1. This operation is done
by the MmWaveHelper class, which is also responsible for instanti-
ating the objects used to trace and compute the PDCP, RLC and
the MAC and physical layer measurement that the E2 terminations
will send to the near-RT RIC. This process is transparent to the
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Figure 3: Integration Between the near-RT RIC and the ns-3
mmWave Models Through ns-O-RAN
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E2 interface, as depicted in Figure 1, and has its own socket pair
address.

One of the challenges of integrating simulating systems with
software running in the real world is time synchronization among
the different hosts. While the real-world near-RT RIC is expected to
work with control loops between 10 ms and 1 s, ns-3 is a discrete-
event framework that can execute faster or slower than the wall
clock time, thus generating a possible time gap between the two
systems. To synchronize the two systems, at the beginning of the
simulation ns-3 stores the current Unix time in milliseconds and
uses it as the baseline timestamp. Whenever an E2 message is sent to
the RIC, ns-3 will sum the simulation time elapsed and the baseline
timestamp. In this way, the RIC is always able to correctly reorder
the messages preventing any inconsistency and invalidation of
the received data. The xApps onboarded on the RIC shall use the
timestamp provided by these messages to follow the simulation
and eventually generate control actions based on it.

We refer to the interactions between the 5G module and the near-
RT RIC described in this section as online mode of ns-O-RAN, since
the absence of an SCTP connection with the RIC would prevent the
correct behavior and collection of the simulation data. Nevertheless,
the ns-O-RAN and ns-3 mmWave modules can also work in a stand-
alone or offline mode, where at the beginning of the simulation no
connection is established and the KPMs collected by the three main
functions are stored as traces on files in the local machine. This
mode is especially useful for large data collection campaigns (e.g.,
orchestrated with the Simulation Execution Manager [12]), where
the main goal is not to control the simulation flow, but to collect
data to later study the RAN behavior.

4 END-TO-END DEPLOYMENT WITH
OPENRAN GYM RIC

In this section, we show how to set up ns-O-RAN on a virtualized
environment to create a connection between the RIC and ns-3
and to allow the exchange of the E2 messages, thus creating a
simulated closed control loops between ns-3 and a near-RT RIC.
For this tutorial, we use the near-RT RIC® from the OpenRAN Gym
framework [17], which can be installed on a local workstation or
loaded into experimental platforms such as Colosseum [5]. In this
latter case, we already provide a publicly available Colosseum LXC
image.

From the RAN side to the RIC, we can collect the implemented
KPMs from the simulation, wrap them up into RIC Indication Mes-
sages and send them through the E2 interface. The RIC is then able
to receive such messages, read the KPMs and Key Performance In-
dicators (KPIs) to define a data-driven policy (or to simply apply an
adaptive policy), create a Control Action and then send the action
inside a RIC Control Message to implement the policy. Finally, the
RAN receives the Control Message and applies the changes request
by the RIC. We define these exchanges as a simulated control loops
since the control actions sent to the RIC can tune the simulation
and change its action in a controlled and reproducible environment.

®https://github.com/wineslab/colosseum-near-rt-ric/tree/ns-o-ran
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4.1 Local Setup of the near-RT RIC

A near-RT RIC (e.g., the OpenRAN Gym RIC) is required to work
with ns-O-RAN in its online mode. First, the RIC repository shall
be cloned and set up by configuring and executing the main com-
ponents that are going to interact with the ns-3 environment:

o the near-RT RIC, which includes multiple Docker containers
for the E2 termination, an internal message routing manager,
a database, and a manager for the E2 connections; and

o the sample xApp that will receive and process the indication
messages from ns-O-RAN.

These entities can be instantiated by running the commands pro-
vided in Listing 1.

1 #!/bin/bash

2 git clone -b ns-o-ran
https://github.com/wineslab/colosseum-near-rt-ric

3 cd colosseum-near-rt-ric/setup-scripts

4 ./import-wines-images.sh # import and tag base images
from Docker hub

s ./setup-ric-bronze.sh # setup and launch

Listing 1: Commands to Start the near-RT RIC

Once this is done the RIC components should be up and run-
ning in different Docker containers (which can be listed using the
docker ps command). As a next step, we advise opening a terminal
window for logging the values of the E2 Termination and check the
E2AP messages exchange, with the command shown in Listings 2.
This helps understanding if E2AP and E2SM messages are received
correctly.

1 #!/bin/bash
2 docker logs e2term -f --since=1s 2>&1 | grep gnb:

Listing 2: Commands to Show RIC E2 Termination Logs. The Last
grep Command Will Filter the Output to Show only when a Base
Station is Interacting

4.2 Installation and Connection with
ns-O-RAN

Several options are available to install ns-3 and the ns-O-RAN
extension, including the use of a Dockerfile provided in the root of
the ns-o-ran branch of the OpenRAN Gym near-RT RIC repository
discussed above. The three components required by ns-O-RAN need
to be installed in sequence to properly configure the system, as
shown in Listing 3.

At first, the enhanced version of the e2sim should be cloned, built
and installed with all the due prerequisites. In this step, it is possible
to set the verbosity of the e2sim by changing the relative argument
passed to the build script. This software is a strict dependency for
the ns3-mmWave version adapted for O-RAN, and thus it should
be set up before installing the main toolchain. After this step, it is
possible to set up the ns-3 mmWave main project and ns-O-RAN
module, which is basically an external module that can be plugged
in ns-3 and uses the e2sim to create a SCTP connection with the
RIC. Finally, we can clone the ns-O-RAN module and add it in the
ns3-mmWave project in the contrib directory and we can build
ns-3.
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1 #!/bin/bash

2 cd oran-e2sim/e2sim/

3 mkdir build

4 ./build_e2sim.sh <verbosity> # verbosity = [0,3]

s cd ../../

6 # clone mmwave project in a folder called
ns-3-mmwave-oran

7 git clone
https://github.com/wineslab/ns-o-ran-ns3-mmwave
ns-3-mmwave-oran

s cd ns-3-mmwave-oran/contrib

9 # clone ns-0-RAN from the 0OSC repository in a folder
called oran-interface

10 git clone -b master
https://github.com/o-ran-sc/sim-ns3-o-ran-e2
oran-interface

n cd .. # go back to the ns-3-mmwave-oran folder
12

13 ./waf configure --enable-examples --enable-tests
14 ./waf build

Listing 3: Commands to Setup ns-O-RAN Components and Build
the ns-3 Toolchain
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Figure 4: Scenario Zero Implemented to Test the Simulated Control
Loop on ns-O-RAN

4.3 Simulating the RAN — Sample Scenario

To instantiate the RAN and test connectivity to the RIC, we provide
a sample ns-3 scenario in the file scenario-zero.cc. As shown in
Figure 4, this scenario features a NSA 5G setup with one LTE eNB
in the center of the scenario, one gNB co-located with the LTE base
station and three gNBs around it with an inter-site distance of 1000
meters with the center of the scenario.

By default, this scenario is deployed on the FR1 frequency range,
using as center frequency 3.5 GHz with a bandwidth of 20 MHz.
One antenna is assigned to each UE and BS. This scenario is a
simplification of the Dense Urban Scenario described in the 3GPP
Technical Release 38.913 [1]. The channel model is the 3GPP UMi-
Street Canyon from [2].

The number of UEs in this scenario is 12 and they are allocated
in their initial positions uniformly, i.e., with constant density, ran-
domly within a disc having as center the co-located eNB-gNB sta-
tions and a radius equal to the inter-site distance. The mobility
model of the UEs is a random bi-dimensional walk. Each UE moves
with a uniform speed between 2 m/s and 4 m/s. The source traffic
model simulates Enhanced Mobile Broadband (eMBB) UEs with a
full buffer constant transmission of 20.48 Mbps.



WNS3 2023, June 28-29, 2023, Arlington, VA, USA

The simulation time of this scenario is 2 seconds and the pe-
riodicity of the generation and delivery to the RIC of the E2SM
messages is 100 ms.

We can run the scenario by using the commands in Listing 4.
ns-O-RAN is designed to be compliant with a generic O-RAN-
compliant RIC, thus the simulation scenario only needs the RIC
E2 termination IP address, which can be configured using the
e2Termlp attribute.

1 #!/bin/bash
2 ./waf --run scratch/scenario-zero.cc
--e2TermIp="10.0.2.10"

Listing 4: Commands to Run the Scenario Zero

4.4 xApp Instantiation

After the RAN is connected to the RIC, it is possible to start the
xApp and log its container to verify that it receives E2 messages.
The procedure to start the sample xApp we provide as a Docker
container is shown in Listing 5.

1 #!/bin/bash
2 cd colosseum-near-rt-ric/setup-scripts
3 ./start-xapp-ns-o-ran.sh

4 # In Docker

s cd /home/sample-xapp

6 ./run_xapp.sh

Listing 5: Commands to Create the xApp Container and Run the
xApp Logic

5 EXAMPLE RESULTS

XApp

Figure 5: RIC Indication Message Read on ns-O-RAN, the E2 Termi-
nation and the xApp

By running the sample scenario, it is possible to observe the
message exchange between the simulated RAN and the real-world
RIC:

o E2 Setup Request (from ns-O-RAN to E2 Termination on the
RIC);

e E2 Setup Response (from the E2 Termination on the RIC to
ns-O-RAN);

o E2 Subscription Request (from the xApp to ns-O-RAN through
the E2 Termination on RIC, after the xApp is instantiated);

e E2 Subscription Response (from ns-O-RAN to the xApp
through the E2 Termination on RIC);

e E2SM RIC Indication Message (from ns-O-RAN to the xApp
through the E2 Termination on RIC).

RIC E2 Termination

A. Lacava et al.

There are several ways to analyze and study these messages. If
the verbosity parameter has been set to 3 during the e2sim in-
stallation, ns-3 will show the encoded E2AP messages that are
generated and sent to the RIC. The same Indication messages are
also logged in the E2 Termination of the RIC and in the xApp, which
decodes them, extracts the KPMs, and digest them according to
xApp program logic. Figure 5 shows the logs of three different com-
ponents involved in the communication. In each of these logs, it
is possible to inspect the Indication Messages, thus confirming the
correct behavior of the end-to-end RAN-to-xApp communication.
We show in red the gNB ID and in green the initial header of the
message. The gNB ID format for ns-O-RAN on the near-RT RIC is
gnb:131-133-3<gnbld><padding>

Moreover, it is possible to observe and capture the traffic on
the host’s interfaces with common packet dissectors such as Wire-
shark and tcpdump. This displays all the interactions between the
near-RT RIC and the simulated nodes, which can be identified on
Wireshark by their IP address and port pair and by their gNB-ID
in the E2AP protocol. An example of this is shown in Figure 6,
whose left part shows the Indication Message sent by ns-3 and
whose right part reports the same packet captured and dissected in
Wireshark. By further exploiting the packet dissector, at the end
of the simulation, we can compute the statistics of the overall E2
traffic between the hosts to provide some metrics that can be useful
to better understand the bandwidth usage of the E2AP exchanges.
Table 1 summarizes the E2AP packets collected during the execu-
tion of Scenario Zero and gives some general statistics about its
consumption from a network usage point of view. It is important
to specify that the time span is the real time duration of the simula-
tion since we are analyzing real exchanged packets with Wireshark
but instantiated by ns-3. From the number of bytes exchanged we
notice that the traffic, which includes bytes exchanged, average
data rate expressed in Bytes per second (Bps) and bit per second
(bps), generated by the eNB is small if compared to the gNB. This
is mostly because the 5G BS also provides the E2 DU Indication
reports.

Figure 6: Dissected Packets from the Sample Scenario

Example use case. We have used ns-O-RAN and the E2SM
implemented to study the O-RAN TS use case [16] in our work [11],
where we leverage ns-O-RAN and the Mavenir near-RT RIC to
deploy an Al-driven solution based on Deep Q-Network (DQN) for
the control of handover in an NSA 5G simulated RAN with seven
NR gNBs and one LTE base station. This is an example of how ns-
O-RAN can be used to study the O-RAN architecture and to enable
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Table 1: E2AP Traffic Exchange Between ns-O-RAN and the xApp During the Execution of a Simulation with the Sample ns-O-RAN Scenario.

No Control Message Was Sent by the RIC During this Experiment

Measurement All Single eNB Single gNB

Wireshark Filter e2ap e2ap and sctp.port == 38471 e2ap and sctp.port == 38472
Number of Packets 157 40 40

Time span (s) 439.220 429.324 439.211

Average pps 0.4 0.1 0.1

Average. size (B) 396 259 661

Bytes exchanged 62148 10352 26456

Average Data Rate (Bps) 141 24 60

Average Data Rate (bps) 1.131 192 481

the development of practical and effective Al solutions on open
cellular networks. In the same work, we prove how ns-O-RAN can
scale in complex scenarios with eight cellular BS and more than one
hundred UEs connected and generating data which is subsequently
reported to the near-RT RIC.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we presented ns-O-RAN, a framework for the integra-
tion of 5G simulations in ns-3 and near-real-time RICs. It enables
the development of xApps on real-world platforms and the testing
of their capabilities on a simulated RAN, as well as extensive data
collection campaigns to generate datasets for the training of AI/ML
components in the xApps themselves. We discussed the main com-
ponents of ns-O-RAN, and reviewed the instructions on how it
can be configured and instantiated. We also introduced sample re-
sults on E2 traffic and described different methods to interact with
message exchanges in the E2 termination.

As part of our future work, we will continue to improve and
extend ns-O-RAN, which is a project part of the O-RAN Alliance
OSC group. Currently, ns-O-RAN only ingests handover control
messages. We plan to extend the E2SM RC implementation support
to more control actions related, for example, to PDCP split control
and slicing. In addition, we will upgrade the ns-3 module to the latest
release, which supports the new Cmake-based build system, and
merge the extension of the 4G and 5G NetDevices in the upstream
ns-3 mmWave module. Finally, we will keep updating the ASN.1
definitions of the E2AP and E2SM to the latest O-RAN Alliance
specifications, and consider introducing a research-oriented E2SM
implemented through JSON schemas or protobufs to simplify the
development of new use cases without the need to extend ASN.1
definitions.
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