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Abstract—5G and beyond mobile networks will support heterogeneous
use cases at an unprecedented scale, thus demanding automated
control and optimization of network functionalities customized to the
needs of individual users. Such fine-grained control of the Radio Access
Network (RAN) is not possible with the current cellular architecture. To
fill this gap, the Open RAN paradigm and its specification introduce an
“open” architecture with abstractions that enable closed-loop control and
provide data-driven, and intelligent optimization of the RAN at the user-
level. This is obtained through custom RAN control applications (i.e.,
xApps) deployed on near-real-time RAN Intelligent Controller (near-RT
RIC) at the edge of the network. Despite these premises, as of today
the research community lacks a sandbox to build data-driven xApps,
and create large-scale datasets for effective Artificial Intelligence (AI)
training. In this paper, we address this by introducing ns-O-RAN, a
software framework that integrates a real-world, production-grade near-
RT RIC with a 3GPP-based simulated environment on ns-3, enabling at
the same time the development of xApps and automated large-scale
data collection and testing of Deep Reinforcement Learning (DRL)-
driven control policies for the optimization at the user-level. In addition,
we propose the first user-specific O-RAN Traffic Steering (TS) intelli-
gent handover framework. It uses Random Ensemble Mixture (REM),
a Conservative Q-learning (CQL) algorithm, combined with a state-of-
the-art Convolutional Neural Network (CNN) architecture, to optimally
assign a serving base station to each user in the network. Our TS xApp,
trained with more than 40 million data points collected by ns-O-RAN,
runs on the near-RT RIC and controls the ns-O-RAN base stations.
We evaluate the performance on a large-scale deployment with up to
126 users with 8 base stations, showing that the xApp-based handover
improves throughput and spectral efficiency by an average of 50% over
traditional handover heuristics, with less mobility overhead.
Index Terms—O-RAN, ns-3, Deep Reinforcement Learning, Traffic
Steering, Network Intelligence

1 INTRODUCTION

F IFTH generation (5G) cellular networks and beyond
shall provide improved wireless communications and

networking capabilities, enabling heterogeneous use cases
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such as Ultra Reliable and Low Latency Communications
(URLLC), Enhanced Mobile Broadband (eMBB), and mas-
sive machine-type communications, ranging from industrial
Internet of Things (IoT) to metaverse, telepresence and
remote telesurgery. The use-case requirements and deploy-
ment scenarios keep changing with evolving radio access
technologies. As a consequence, 5G and beyond Radio Ac-
cess Networks (RANs) are expected to be complex systems,
deployed at a scale that is unforeseen in commercial net-
works so far [1].

This complexity and the evolving use-case requirements
have prompted research, development, and standardization
efforts in novel RAN architectures, and, notably, in the
O-RAN paradigm. Nowadays, classic RANs are deployed
with monolithic network functions (e.g., base stations) on
black-box hardware. Such architecture is considered static
and hard to reconfigure on-demand without any manual
on-site intervention. The O-RAN architecture disrupts the
classical approach by adopting the principles of Disaggre-
gation, Openness, Virtualization, and Programmability. In O-
RAN, the classic base station is disaggregated, i.e divided
across multiple RAN nodes. The interfaces between the
different nodes are open and standardized, to achieve multi-
vendor interoperability. Network functions that implement
the classic RAN operations are virtualized and software-
based and deployed on white box hardware [2]. Software
enables algorithmic and programmatic control based on the
current network status, enabling the dynamic configuration
of the infrastructure.

The combination of these principles introduces complex,
virtualized architectures with RAN Intelligent Controllers
(RICs) that (i) have a centralized abstraction of the network;
and (ii) host applications performing closed-loop control
of the RAN. This custom logic leverages the centralized
aggregation of analytics on multiple network functions to
run advanced data-driven Artificial Intelligence (AI) and
Machine Learning (ML) techniques. For example, the near-
real-time (near-RT) RIC hosts third-party applications called
xApps [3] that interact with the RAN through the E2 inter-
face and take Radio Resource Management (RRM) decisions
at a time scale between 10 ms and 1 second [4]. Such archi-
tecture can efficiently learn complex cross-layer interactions
across nodes, going beyond traditional control heuristics
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toward optimal RRM [5, 6].
Unlocking the intelligence in the networks is a crucial

aspect of O-RAN. Specifically, the xApps integrate custom
logic and AI/ML algorithms for the RAN [7, 8], paving the
way to an enhanced network control with an User Equip-
ment (UE)-level granularity that would not be possible with
the classical RAN architectures. Indeed, the availability of
data and analytics on the network in a centralized location
(i.e., the RIC) enables new approaches to traditional network
management problems. One of this use cases is the Traffic
Steering (TS), i.e., the management of the mobility manage-
ment of individual UEs served by the RAN [9]. TS involves
key RAN procedures, such as handover management, dual
connectivity, and carrier aggregation, among others. While
handover management is a classic problem, the require-
ments and deployment scenarios for optimizing handovers
keep changing with evolving radio access technologies and
use-cases, posing newer challenges and requiring newer
optimization strategies [10]. As an example, the handover
optimization requirements for broadband access, e.g., eMBB
UEs streaming high-quality video, are different from those
of an autonomous car, i.e., an URLLC UEs.

In this context, traditional RRM solutions, largely based
on heuristics only involving channel quality and load
thresholds, are not primed to handle UE-centric handover
decisions for new use-cases, and are often based on lo-
cal, and thus limited, information. Data-driven solutions
at the RIC can leverage a centralized point of view to
learn complex inter-dependencies between RAN parameters
and target the optimization to the Quality of Service (QoS)
requirements of each UE.

Despite the promising architectural enablers, how to de-
sign and test effective and intelligent RAN control solutions
to embed into xApps is still a challenge [11]. First, any ML
solution needs to be properly trained. This requires data
collection on large-scale setups, with a massive amount
of data points to collect to properly represent the state
of the system and allow the agent to learn an accurate
representation of the system. Then, when it comes to closed-
loop control through Deep Reinforcement Learning (DRL),
the ML infrastructure requires an isolated environment for
testing and online exploration, to avoid impacting the per-
formance of production RANs. The TS mentioned before,
for instance, includes the optimization of handover across
multiple base stations through data-driven xApps. The data
collection would need to cover large scale deployments,
with different network configurations, operating frequen-
cies, combinations of source traffic, and user mobility. At the
same time, testing poorly trained solutions or performing
online exploration on a large scale, commercial deployment
may cause users to unexpectedly lose connectivity or ex-
perience a degraded service due to sub-optimal handover
decisions [12].

Contributions — In this paper, we adopt a system-level
approach and introduce a novel framework for handover
management for TS, based on conservative Q-learning and
the capabilities exposed by the O-RAN infrastructure. We
first build an O-RAN-compliant near-RT RIC platform.
Then, we propose the first TS xApp with DRL to optimally
control mobility procedures at a UE level, using the central-
ized viewpoint of the RIC, RAN Key Performance Measure-

ments (KPMs), and advanced Reinforcement Learning (RL)
techniques to select the optimal target cells for handover
of individual UEs. We also propose ns-O-RAN, a software
module to connect the near-RT RIC to Network Simulator
3 (ns-3) to collect the data for training the TS xApp and to
evaluate the end-to-end performance of our system, which
improves relevant KPMs by up to 50%. Specifically, the
contributions of this paper are as follows.
• System Design: We design and build a standard-compliant
near-RT RIC platform with O-RAN-defined open interfaces
and service models (i.e., standardized mechanisms to inter-
act with RAN nodes). The relevant system design details are
discussed in Section 3.
• Integration: We build ns-O-RAN, a virtualized and simu-
lated environment for O-RAN, which bridges large scale 5G
simulations in the open-source ns-3 with a real-world near-
RT RIC. ns-O-RAN combines the scale and flexibility of a
simulated RAN with any real-world, E2-compliant RIC. In
this context, simulation based on realistic channel and pro-
tocol stack models contributes to the collection of data for
the ML-based xApps without the need of large scale deploy-
ments. ns-O-RAN extends the ns-3 5G RAN module [13] by
adding an O-RAN compliant E2 implementation, including
the protocol capabilities and advanced service models. ns-
O-RAN enables the RAN to stream events and data to the
near-RT RIC, and the RIC to send control actions to the RAN
over the E2 interface. These control actions are reflected in
the call processing of the RAN functions and the updated
data are streamed to the RIC. Thus, ns-O-RAN enables
xApps development without relying on RAN baseband and
radio units; the same xApps can subsequently be tested on
a real RAN, without additional development effort. The
relevant details are discussed in Section 3. We pledge to
release ns-O-RAN as open-source in the O-RAN Software
Community (OSC)1 and the OpenRAN Gym platform [14].
• TS Optimization: We build a data-driven AI-powered TS
xApp in the near-RT RIC to maximize the UE throughput
utility, specifically, through handover control, as defined
in the O-RAN technical specifications [15]. We use ns-O-
RAN to collect data for, design, and test the TS xApp. We
formulate the problem as a Markov Decision Process (MDP)
and solve it using RL techniques. In particular, we use
novel variants of the Deep-Q Network algorithm, namely
Conservative Q-Learning (CQL) and Random Ensemble
Mixture (REM) to model the Q-function and the loss func-
tion, along with a custom Convolutional Neural Network
(CNN) design to maximize the expected reward. Our design
enables multi-UE control with a multi-dimensional state
space using a single RL agent. The problem formulation and
optimization details are discussed in Section 4.
• Performance Evaluation: We extensively evaluate the xApp
using different Key Performance Indicators (KPIs), such as
UE throughput, spectral efficiency, and mobility overhead
on a large-scale of RAN network created by ns-O-RAN.
Leveraging the fine-grained UE-level intelligence and op-
timization at the near-RT RIC, we demonstrate significant
performance improvements ranging from 30% to 50% for
the above KPIs in Section 5.

1. The code is available at https://gerrit.o-ran-
sc.org/r/gitweb?p=sim/ns3-o-ran-e2.git.
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2 B A C K G R O U N D

I n t hi s s e cti o n, w e r e vi e w t h e st at e of t h e a rt o n O- R A N, T S
a n d n s- 3.

2. 1  O- R A N C ell ul ar Ar c hit e ct ur e

R A N Pr ot o c ol St a c k — Fi g u r e 1 p r o vi d e s a hi g h-l e v el
o v e r vi e w of t h e O- R A N a r c hit e ct u r e. I n t hi s, t h e b a s e b a n d
u nit of t h e N R b a s e st ati o n, al s o c all e d t h e N e xt G e n e r ati o n
N o d e B a s e ( g N B), i s l o gi c all y s plit i nt o R A N f u n cti o n al
n o d e s - C e nt r ali z e d U nit - C o nt r ol Pl a n e ( C U- C P), C e nt r al-
i z e d U nit - U s e r Pl a n e ( C U- U P), Di st ri b ut e d U nit ( D U), a n d
R a di o U nit s ( R U s). T h e s e f u n cti o n s a r e d e pl o y e d a s l o gi c al
n o d e s i n t h e R A N a n d c o n n e ct e d t h r o u g h st a n d a r di z e d
O- R A N a n d 3 r d G e n e r ati o n P a rt n e r s hi p P r oj e ct ( 3 G P P)-
d e fi n e d i nt e rf a c e s. I n p a rti c ul a r, t h e C U- C P f e at u r e s t h e R a-
di o R e s o u r c e C o nt r ol ( R R C) a n d P a c k et D at a C o n v e r g e n c e
P r ot o c ol - C o nt r ol Pl a n e ( P D C P- C) l a y e r s, a n d m a n a g e s t h e
c o n n e cti vit y a n d m o bilit y f o r t h e U E s. T h e C U- U P h a n dl e s
t h e S e r vi c e D at a A d a pt ati o n P r ot o c ol ( S D A P) a n d P a c k et
D at a C o n v e r g e n c e P r ot o c ol - U s e r Pl a n e ( P D C P- U) l a y e r s,
d e ali n g wit h D at a R a di o B e a r e r s ( D R B s) t h at c a r r y u s e r
t r af fi c. T h e D U f e at u r e s t h e R a di o Li n k C o nt r ol ( R L C),
M e di u m A c c e s s C o nt r ol ( M A C) a n d U p p e r P h y si c al ( P H Y-
U) l a y e r s, f o r b uff e r m a n a g e m e nt, r a di o r e s o u r c e all o c ati o n,
a n d p h y si c al l a y e r f u n cti o n aliti e s, s u c h a s o p e r ati n g t h e
N R c ell s. F o r w h at it r e g a r d s t h e L o n g Te r m E v ol uti o n
( L T E), all t h e l a y e r s a r e m a n a g e d i n a si n gl e f u n cti o n c all e d
e v ol v e d N o d e B a s e ( e N B). Fi n all y, t h e R U i s r e s p o n si bl e
f o r L o w e r P h y si c al ( P H Y- L) l a y e r, d e ali n g wit h t r a n s mi s si o n
a n d b e a mf o r mi n g.

R A N I nt elli g e nt C o ntr oll er s — T h e n e a r- R T RI C i s t y p-
i c all y d e pl o y e d a s a n et w o r k f u n cti o n i n a vi rt u ali z e d cl o u d
pl atf o r m at t h e e d g e of t h e R A N. It o n b o a r d s e xt e n si bl e
a p pli c ati o n s ( x A p p s) [ 3], a p a rt f r o m O- R A N st a n d a r di z e d
pl atf o r m f r a m e w o r k f u n cti o n s, t o o pti mi z e R R M d e ci si o n s
f o r d e di c at e d R A N f u n cti o n aliti e s u si n g l o w-l at e n c y c o nt r ol
l o o p s at n e a r- R T g r a n ul a rit y (f r o m 1 0 m s t o 1 s e c o n d). T h e
n e a r- R T RI C c o n n e ct s t h r o u g h t h e E 2 i nt e rf a c e t o t h e C U-
C P, C U- U P, D U a n d e N B, c oll e cti v el y r ef e r r e d t o a s t h e E 2
n o d e s.

E 2 i nt erf a c e — E 2 i s a bi- di r e cti o n al i nt e rf a c e t h at
s plit s t h e R R M b et w e e n t h e E 2 n o d e s a n d t h e n e a r- R T

RI C. Wit h t hi s a r c hit e ct u r e, t h e c all p r o c e s si n g a n d si g n al-
i n g p r o c e d u r e s a r e i m pl e m e nt e d i n t h e E 2 n o d e s, b ut t h e
R R M d e ci si o n s f o r t h e s e p r o c e d u r e s a r e c o nt r oll e d b y t h e
RI C t h r o u g h x A p p s , i. e., mi c r o s e r vi c e s o n b o a r d e d o n t h e
RI C [ 3] . F o r e x a m pl e, t h e h a n d o v e r p r o c e d u r e s f o r a U E
a r e e x e c ut e d b y t h e E 2 n o d e, b ut t h e U E’ s t a r g et c ell f o r
h a n d o v e r i s d e ci d e d a n d c o nt r oll e d b y t h e RI C.

T h e p r o c e d u r e s a n d m e s s a g e s e x c h a n g e d o v e r t h e E 2
i nt e rf a c e a r e st a n d a r di z e d b y E 2 A p pli c ati o n P r ot o c ol
( E 2 A P) [ 2]. U si n g E 2 A P, t h e E 2 n o d e s c a n s e n d r e p o rt s t o
t h e n e a r- R T RI C wit h R A N d at a o r U E c o nt e xt i nf o r m a-
ti o n. I n a d diti o n, t h e n e a r- R T RI C c a n s e n d c o nt r ol a cti o n s
c o nt ai ni n g R R M d e ci si o n s a n d p oli ci e s t o t h e E 2 n o d e. T h e
x A p p s i n t h e n e a r- R T RI C e n c o d e a n d d e c o d e t h e p a yl o a d
of t h e E 2 A P m e s s a g e s c o nt ai ni n g R R M- s p e ci fi c i nf o r m ati o n,
a s d e fi n e d b y t h e E 2 S e r vi c e M o d el s ( E 2 S M s) [ 1 6]. T h e
x A p p s h a v e a c c e s s t o t h e R A N r e p o rt s a n d c o nt r oll e r s, a n d
t h e y c a n al s o e m b e d d at a- d ri v e n a n d AI- b a s e d p oli ci e s t o
c o nt r ol a n d o pti mi z e t h e R A N u si n g t h e v al u e s p r o vi d e d
b y t h e di s a g g r e g at e d u nit s. T h e s e r vi c e m o d el s d e fi n e t h e
i nf o r m ati o n m o d el a n d s e m a nti c s of R R M o p e r ati o n s o v e r
E 2. T w o E 2 S M s of i nt e r e st i n t hi s p a p e r a r e E 2 S M- K P M [ 1 7],
w hi c h all o w s E 2 n o d e s t o s e n d R A N p e rf o r m a n c e d at a t o
t h e RI C, wit h g r a n ul a rit y d o w n t o t h e U E-l e v el, a n d E 2 S M-
R A N C o ntr ol ( R C) [ 1 8], w hi c h all o w s t h e RI C t o s e n d b a c k
c o nt r ol b a s e d o n R R M d e ci si o n s f r o m x A p p s [ 2].

2. 2 I nt elli g e n c e i n t h e RI C

A s al r e a d y di s c u s s e d, t h e di s a g g r e g ati o n of t h e R A N f u n c-
ti o n s e n a bl e s t h e g e n e r ati o n of l a r g e d at a s et s t h at c a n b e
l e v e r a g e d t o st u d y d at a d ri v e n a p p r o a c h e s t o t h e cl a s si c al
R R M p r o bl e m s. T o s u p p o rt t hi s t r e n d, t h e O- R A N alli a n c e
h a s d e fi n e d s p e ci fi c ati o n s f o r lif e c y cl e m a n a g e m e nt of M L-
d ri v e n R A N c o nt r ol. D u ri n g t h e t r ai ni n g, a m o d el u s u all y
t ri e s t o e x pl o r e all t h e p o s si bl e st at e s a n d, t h u s c a n d e ci d e
t o a p pl y a cti o n s t h at c a n l e a d t o t h e di s r u pti o n of R A N
f u n cti o n aliti e s, wit h n et w o r k o ut a g e s a n d d e g r a d ati o n of
t h e q u alit y of s e r vi c e of t h e fi n al u s e r s. F o r t hi s r e a s o n,
i n O- R A N a n y M L m o d el s h all b e t r ai n e d of fli n e [ 1 9] a n d
d e pl o y e d a s x A p p s f o r o nli n e i nf e r e n c e a n d R R M c o nt r ol i n
t h e RI C.

O n e of t h e m o st p r o mi si n g a p p r o a c h e s i s t h e R L, w hi c h
t e a c h e s a n a ge nt h o w t o c h o o s e a n a cti o n f r o m it s a cti o n
s p a c e, wit hi n a p a rti c ul a r e n vi r o n m e nt, t o m a xi mi z e re w ar ds
o v e r ti m e. T h e g o al of t h e R L a g e nt i s t h e n t o c o m p ut e a
p oli c y, w hi c h i s a m a p pi n g b et w e e n t h e e n vi r o n m e nt st ates
a n d a cti o n s s o a s t o m a xi mi z e a l o n g t e r m r e w a r d. R L
p r o bl e m s a r e p a rti c ul a rl y of i nt e r e st t o RI C, b e c a u s e of t h ei r
n at u r al cl ose d-l o o p f o r m.

T h e R L m o d el of i nt e r e st t o t hi s p a p e r i s D e e p Q-
N et w o r k ( D Q N), w hi c h i s a m o d el-f r e e, off- p oli c y, v al u e-
b a s e d R L. O u r R L al g o rit h m u s e s a Q - v al u e t h at m e a s u r e s
t h e e x p e ct e d r e w a r d f o r t a ki n g a p a rti c ul a r a cti o n at a gi v e n
st at e. D Q N s c a n b e t r ai n e d of fli n e wit h a n o nli n e r e fi n e m e nt
of t h e l e a r n e d p oli c y, t h u s t h e y c a n s u b s e q u e ntl y k e e p
g etti n g d e pl o y e d i n t h e i nf e r e n c e h o st t o w a r d s g e n e r ati n g
o pti m al a cti o n s, a s t h e a g e nt r e c ei v e s li v e d at a st r e a m s f r o m
t h e e n vi r o n m e nt [ 2 0].
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2.3 Dual connectivity and traffic steering

Dual connectivity is a mode of 5G RAN deployment, where
the UE is jointly connected to more than one base station.
One of them is designated as the master node, which is
responsible for control plane procedures of a UE, and the
other is considered as a secondary node and it is responsible
for data transfer for the UE along with the master node. A
prevalent 5G deployment in North America and globally
is E-UTRAN-NR Dual Connectivity (EN-DC) Non Stand
Alone (NSA) mode 3X, where the LTE eNB is the master
node, and NR gNB is the secondary node.

Traffic Steering is a RAN functionality of the RRC layer
for managing connectivity and mobility decisions of UEs
in the RAN. More specifically, TS handles (on a UE basis):
(i) Primary cell selection and handover, (ii) selection and
change of master and secondary nodes for dual connectivity,
(iii) selection and handover of the secondary cell.

As previously discussed, the handover problem has been
widely studied and optimized in the literature. Without O-
RAN, this mechanism can be implemented by using differ-
ent approaches [10]. Generally, it is common practice to per-
form handover based on channel quality hysteresis, and/or
to advance handovers from overloaded to less loaded ones
for load balancing. More recent approaches exploit RL to
select the target node for the handover.

In the literature, there are several examples of AI-based
handover procedures. One of the possible approaches is
represented by the use of a centralized RL agent with
handover control using Q-learning [21] and subtractive
clustering techniques [22] to optimize the UEs mobility.
Other work considers distributed Q-Learning approaches or
cooperative multi-agents [23, 24] to optimize the handover
process on Self-Organizing Networks (SONs). Another area
of interest is represented by the use of the Deep Neural
Network (DNN) in both the online training mode on the
UEs [25] or via offline schemes [6, 26, 27]. [25] uses DNN
with supervised learning to transfer knowledge based on
traditional handover mechanisms and avoid negative ef-
fects of random exploration for an untrained agent. Other
examples of similar works are represented by [25, 28]. [29]
proposes a unified self-management mechanism based on
fuzzy logic and RL to tune handover parameters of the
adjacent cells. More examples can be found in [30], which
discusses the state of the art and the challenges of intelligent
RRM.

These works, however, generally do not optimize the
performance of individual UEs and do not fully satisfy the
need for per-UE control and optimization. Indeed, existing
cellular networks implement procedures which are mostly
cell-centric, even if there are usually high variations across
the performance, requirements, and channel state of differ-
ent UEs in the same cell [9]. Improved performance thus
can be achieved with the UE-based approach we propose,
enabled by the O-RAN architecture. User-centric handover
schemes have been proposed for non-conventional radio ac-
cess architectures, such as non-terrestrial networks [31, 32],
ultra-dense networks with cooperative transmissions [33–
35], cell-free massive MIMO [35, 36], and vehicular net-
works [37]. These solutions, however, on non-standard
3GPP information and/or parameters that are inaccessible

at the RAN side (e.g., the user position and speed). This
limits their potential implementation on a real network.

Recent literature considers the traffic steering use case
and handover management in Open RAN networks [38–40].
In [38], the authors present a general overview of O-RAN
and its potentialities by exploring the TS use case, showing
the flexibility of this novel architecture and its orchestration
capabilities. The authors also show how the dynamic setup
of three different xApps dedicated to the TS management
can affect and change the performances of the network.
However, their work is more tailored to the O-RAN ca-
pabilities rather than their xApp performances. In [39], the
authors consider a contextual multi-armed bandit problem
to model handover across 5G cells, and considers per-UE
Reference Signal Received Power (RSRP) metrics as input. In
this paper, we consider a more complete set of RAN KPMs
as input, thanks to the support of the O-RAN E2 interface
between the RAN and the near-RT RIC. This makes it possi-
ble to improve the overall RAN performance, as discussed
in Section 5. The growing interest in the O-RAN architecture
has also led the scientific community to focus its atten-
tion on the implementation of xApps and rApps. Several
papers in the literature implement xApps [14, 41, 42] and
rApps [43] or both working cooperatively [44, 45] that can
be onboarded and tested on the RICs for studying different
use cases such as network slicing, orchestration and RAN
management, and security. Compared to these works, in this
paper, we focus on the TS use case which is a problem usu-
ally for large-scale scenarios with hundreds of UEs. In [42],
Kouchaki et al. illustrate the step-by-step design, develop-
ment, and testing of an AI-based resource allocation xApp
for the near-RT RIC of the O-RAN architecture without
focusing on the actual results of the AI-scheme proposed,
but it is not clear if their online training can be performed on
a real RAN. In contrast, our work focuses more on the xApp
performances and the creation of a novel framework to ease
the study of RL applied to O-RAN. Additionally, we support
natively the large scale scenario generation without the need
for hardware infrastructure, allowing the data to feed the
xApp agent with an offline training process that does not
require RIC deployment. O-RAN-based closed-loop control
is also discussed in [40], where the authors study the power
adjustment of the transmitters in a 5G cellular orientation
using two different xApps that act as a simulation of the
network in the RIC. This simulator, however, does not rely
on 3GPP stochastic channels and thus the results may not
be plausible once the model is deployed on a real network.
In this paper, we implement an O-RAN compliant near-RT
RIC and use xApps with standard-compliant service models
that can be deployed on a real network. In addition, we test
the performance of the xApp combining the real-world RIC
with a large scale RAN deployment based on end-to-end,
full-stack, 3GPP-based simulations in ns-3.

2.4 5G and AI in ns-3

ns-3 [46] is a discrete-event time network simulator targeted
for research and educational use. It is considered the de facto
standard for network simulators because of the variety of
protocols used, its wide deployment and the widespread
support of the scientific community. The discrete event
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approach allows researchers to simulate the interactions in
form of time-based events, allowing the modeling of each
aspect of the communication, from the application layer to
the physical layer. Such layers are the fundamental building
blocks of a wireless network simulation and they can be
combined in ns-3 to study particular use cases that other-
wise would be very hard with a real deployment. Indeed,
one of the major reasons for using ns-3 in this work is
because of the very accurate 3GPP stochastic models [47]
available within the simulator combined with the possibility
of creating large scale deployments with no telecommu-
nication hardware required. These peculiarities are also
enhanced by the possibility to integrate real world features,
such as buildings and obstacles and mobility models for the
wireless nodes, to create realistic scenarios. In this work, we
use the 5G and mmWave ns-3 module [13], which extends
the ns-3 LTE module with new detailed modeling of the
mmWave channel that can capture spatial clusters, path
dynamics, antenna patterns and beamforming algorithms.

The ns-3 simulator is also an optimal tool for implement-
ing better AI solutions for the networks. In recent years,
different works have extended the normal capabilities of
ns-3 to combine its potentialities with some well-known
ML development software. In [48], the authors propose
ns3-gym, a framework that integrates both OpenAI Gym
and ns-3 in order to encourage usage of RL in networking
research. Following the same principles of ns3-gym, ns3-
ai [49] provides a high-efficiency solution to enable the
data interaction between ns-3 and other python based AI
frameworks. However, both of these tools cannot be used
as a framework for the development of O-RAN xApps that
can be used directly in a production environment, unlike the
ns-O-RAN framework proposed in this paper.

3 SYSTEM DESIGN AND ARCHITECTURE

Here, we discuss the system model assumption, the near-RT
RIC software architecture and the ns-O-RAN design.

3.1 System Model
The system architecture is shown in Figure 2a. We con-

sider a network with M LTE cells, and E2 nodes of N NR
cells, and a set U of 5G UEs. The infrastructure is deployed

as a 5G NSA network with EN-DC RAN and option 3X
for dual connectivity [50]. With this, a 5G UE is jointly
connected to an LTE eNB (master node) and the E2 nodes
of a 5G gNB (secondary node). Each UE is jointly served
by the primary cell of its master node and the secondary
cell of its secondary node in EN-DC. The UEs subscribe to
heterogeneous types of data traffic (as detailed in Section 5).
In the RAN, each UE-subscribed data traffic flow is split
at the PDCP-U layer of the gNB CU-UP. Each packet is
sent to the lower RLC layer at either the gNB DU (over
the F1 interface) or the LTE eNB over the X2-U interface
for subsequent transmission to the UE via the NR or LTE
radio, respectively. In addition, we consider a near-RT RIC
connected to each LTE and NR cell through the E2 interface.
The near-RT RIC is deployed at the edge of the RAN
and features the TS xApp to optimize UE handover. The
delivery of the KPM data between the E2 nodes and the RIC
allows the exchange of network data and handover control
actions at near-RT periodicity and is enabled through the
use of the E2SM-KPM service model. We use the E2SM-RC
service model to generate control actions from the RIC to
the E2 node for handover of specific UEs from their current
serving cells to the target cells identified by the TS xApp.
Additionally, E2SM-RC is used to report UE-specific L3 RRC
measurements (such as RSRP, or Signal to Interference plus
Noise Ratio (SINR) with respect to its serving and neighbor
cells) from the E2 node to the RIC periodically and during
mobility events. We assume that the RAN configures the
UE measurement reporting so that it can provide periodic
estimates of the channel quality toward current and neigh-
boring cells. Overall, the combination of the capabilities
provided by the E2 interface, and the granularity required
for optimization and control of the handover process in
highly dynamic wireless environments makes xApps on the
near-RT RIC the ideal hosts for traffic steering control.

3.2 Near-RT RIC Software Architecture
We implement a near-RT RIC platform [51] with the com-
ponents shown in Figure 2b. In general, the near-RT RIC
has two sets of applications, namely the xApps (for the
control of the RRM of dedicated RAN functionalities) and O-
RAN-standardized platform services [2]. The latter manage
integration of xApps, interfacing with E2 nodes, and the
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overall functioning of the RIC. In particular, they include
the E2 Termination service, which routes the E2AP messages
between the platform services and the E2 nodes over the
E2 interface based on SCTP transport protocol. The service
also performs ASN.1 encoding/decoding and manages data
exposed by E2 nodes. The xApp Subscription Management
service maintains, manages, validates, and sends/receives
xApp subscriptions toward E2 nodes. The data collection
and aggregation for the xApps is managed by two addi-
tional platform services. The Data Pipeline and KPM job con-
trol makes sure that xApps do not duplicate KPM requests to
the RAN by interacting with the Subscription Management
service and filtering duplicated subscription requests on
behalf of the xApps. The KPM data received by the RAN
is aggregated, processed, and presented to the xApps by the
Extract, Transform and Load (ETL), data aggregation and inges-
tion service. In our implementation, the TS xApp leverages
the services of the RIC platform to (i) collect KPMs on the
status of the network; (ii) process them and perform online
inference to decide if one or more UEs should perform
a handover to a different cell; and, eventually, (iii) send
the handover control action to the RIC Routing Manager,
which will decide whether deliver or not the message to the
RAN. The TS xApp triggers an E2 node KPM subscription
specifying the parameters for the data collection, i.e., the
list of KPMs and serving-cell and neighbor-cell L3 RRC
measurements, and the periodicity at which these values
need to be reported by the E2 nodes. The TS xApp and the
simulated RAN implemented with ns-O-RAN (described in
Section 3.3) collectively support streaming 40 UE-level, cell-
level, and node-level KPMs from E2 nodes.

The E2 nodes accepts the subscription and starts stream-
ing KPMs and L3 RRC measurements. The raw streamed
KPM data is stored by Data Pipeline and KPM job control
service. The ETL, data aggregation and ingestion service re-
trieves relevant measurements stored in this data repository,
and correlates and aggregates in time series the UE level
KPM information and L3 RRC measurements. The TS xApp
can then fetch and process the data to perform inference
with the algorithm described in Section 4. If a handover
needs to be performed, the TS xApp communicates with the
E2 termination service to send the control action to the RAN.

3.3 Connecting O-RAN with ns-3: ns-O-RAN

One key contribution of this paper is represented by ns-
O-RAN, the first O-RAN integration for ns-3. ns-O-RAN
is an ns-3 module that connects a real-world near-RT RIC
with ns-3, enabling large scale (i) collection of RAN KPMs
and (ii) testing of closed-loop control of simulated cellular
networks. We use the term “real-world” to indicate that the
RIC used in this framework is a standard compliant O-RAN
near-RT RIC that is also capable of communicating with
real hardware equipment. This aspect allows ns-O-RAN to
be a powerful tool for the development of the xApp that
can be then activated on real world RANs. Indeed, thanks
to the flexibility of ns-3, such integration eases the design,
development, and testing of xApps across different RAN
setups with no infrastructure deployment cost. As already
introduced in Section 2, ns-3 provides realistic modeling
capabilities for large-scale wireless scenarios. It features
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Fig. 3: ns-O-RAN Architecture.

a channel model with propagation and fading compliant
with 3GPP specifications [52], and a full-stack 5G model
for EN-DC RAN [13], besides the TCP/IP stack, multiple
applications, and mobility models.

ns-O-RAN bridges ns-3 to our real-world, O-RAN-
compliant RIC to enable production code to be developed
and tested against simulated RANs. These capabilities also
help reducing the cost associated with AI training. Indeed,
ns-O-RAN can be used to identify an effective set of weights
for the xApp neural networks over a simulated generalized
scenario, which makes it possible to quickly refine the model
with online training on a real deployment (as also discussed
in [11, 14] for emulation to over-the-air transitions). The
main features of ns-O-RAN are discussed in the next para-
graphs.
• e2sim — We connect the E2 termination of the RIC to
a set of E2 endpoints in ns-3, which are responsible for
handling all the E2 messages from and to the simulated
environment. This connection was developed by extending
the E2 simulator, namely e2sim [53], and wrapping it into
an ad hoc module for ns-3. e2sim is a project in the O-RAN
Software Community that provides basic E2 functionalities
to perform integration testing of the near-RT RIC. ns-O-RAN
leverages and extends e2sim as the E2 termination on the
ns-3 side. It can decode, digest, and provide feedback for
all the messages coming from the RIC, and streams RAN
telemetry based on simulation data to the RIC.
• Message dispatching — The design of ns-O-RAN ad-
dresses several challenges that would otherwise prevent
communications between the simulated and real-world en-
vironments. Firstly, as discussed in Section 2, the near-RT
RIC expects to interface with a number of disaggregated
and distinct endpoints, i.e., multiple DUs and CU-CPs/CU-
UPs, which are usually identified by different IP addresses
and/or ports. Instead, all the ns-3 simulated RAN functions
are handled by a single process. e2sim itself was not
designed to handle multiple hosts at once, while the E2
protocol specifications, which rely on the SCTP protocol for
E2AP, do not pose any limitation in this sense. To address
this, we extended the e2sim library to support multiple
endpoints at the same time and created independent entities
(i.e., C++ objects) in the simulated environment to represent
different RAN-side E2 terminations. Each RAN function is
bound to just one E2 interface, as depicted in Figure 3,
and has its own socket address. ns-O-RAN can successfully
establish connectivity between multiple RAN nodes and
the near-RT RIC even if a single IP is associated to the
simulation process, as it can filter E2AP messages through
unique ports, ensuring the independence of data flow with
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the near-RT RIC from the others. In this way, it is possible
to assign the same IP to every base station created in the
simulation, but each with a different and unique port and is
possible to enable the data flow from multiple independent
e2 terminations in the simulation and the RIC. Moreover, we
extended ns-3 to instantiate independent threads for each E2
termination and use callbacks that can be triggered when
data is received or transmitted over E2.
• Time Synchronization — Finally, there is also a gap in
timing between the real-world RIC and the ns-3 simulator,
which is a discrete-event framework that can execute faster
or slower than the wall clock time. This may potentially
lead to inconsistencies between the simulated environment
and the near-RT RIC expecting the real-world timing. To
synchronize the two systems, at the beginning of the simu-
lation ns-3 stores the current Unix time in milliseconds and
uses it as baseline timestamp. Whenever an E2 message is
sent to the RIC, the simulator will sum the simulation time
elapsed and the baseline timestamp. In this way, the RIC can
correctly reorder the messages according to the same times-
tamp of the simulation without any loss of generality and
thus ensuring consistency on both sides of the happened-
before relationship.

4 TRAFFIC STEERING OPTIMIZATION

In this section, we formulate the optimization problem for
the traffic steering xApp and discuss the algorithm design
to determine the optimal target cells for handover of UEs.

To the best of our knowledge, this is the first paper to
develop a data-driven UE-based traffic steering/handover
optimization technique based on Conservative Q-learning.

Firstly, we formulate the general optimization problem
in Eqs. 1 and 2 of Section 4.1, showing that there is no closed
forms for the optimization objective as function of the 5G
KPIs considered in production networks. Secondly, in Sec-
tion 4.2, we embed the aforementioned equations in a data-
driven RL framework to study the UE-based optimization
and apply the of Conservative Q-Learning algorithm which
lead to a performance gain of up to 50% in throughput and
spectral efficiency that will be discussed in Section 5.

4.1 Problem Formulation

We consider as objective function the weighted cumulative
sum of the logarithmic throughput of all the UEs across
time, as a function of their instantaneous target Primary
cell of the Secondary Node (PSCell). The optimization goal
is to maximize the objective function by optimizing the
choice of the target PSCells for all UEs. At the same time,
we want to avoid frequent handovers for individual UEs,
since they increase network overhead and deteriorate their
performance. Thus, we associate a cost function for every
UE-specific handover and model it as an exponential decay
function of the linear difference in time since the previous
handover for that UE. This means that smaller the difference
in time, higher is the cost, and vice-versa. We add this cost
function as a constraint to make sure that the cost does not
exceed a predefined cost threshold.

Let βu be a weight associated with any UE u ∈ U . Ru,t

is the throughput at any discrete window of time t, which

depends on cu,t, i.e., the PSCell assigned to u during t, and
on B RAN performance parameters b1, b2, . . . bB .

These metrics are available during the time window t at
the near-RT RIC, where the optimization is solved, thanks to
the KPM reports from the E2 nodes CNR is the universe of
all the N NR cells. The reporting periodicity of the E2 nodes
is set to 100 ms, which also represents the time window
available to the AI agent to trigger the handover actions of
one or more UEs. The cost associated with handover for UE
u at time t is given by Ku,t, the initial cost is K0 (where
K0 > 0), the decay constant is δ (where 0 < δ < 1), t′u is
the time when the previous handover was executed for u,
Xu,t is a 0/1 decision variable which yields a value 1, if u
was subject to handover at time t, and 0, otherwise. W is
a predefined cost threshold, which represents a maximum
value that cannot be exceeded by the cost function. We
consider any time window t for an infinite time horizon
ranging from t0 to ∞. The constrained optimization prob-
lem is formulated as follows:

Maximize
cu,t∈CNR

∞∑
t=t0

∑
u∈U

βu logRu,t(cu,t, b1, b2, . . . bB)

subject to Ku,t ·Xu,t ≤W,

Xu,t ∈ [0, 1],

(1)

where Ku,t = K0e
−δ·(t−t′u), K0 > 0 and 0 < δ < 1. Apply-

ing Lagrangian multiplier λ to the constrained optimization
problem in Eq. 1, the constrained optimization problem
becomes as follows:

Maximize
cu,t∈CNR

∞∑
t=t0

∑
u∈U

βu logRu(cu,t, b1, b2, . . . bB)

−K ′e−δ·(t−t′u)Xu,t +W ′

subject to Xu,t ∈ [0, 1] and λ ≥ 0

(2)

where K ′ = λK0 and W ′ = λW .

4.2 Algorithm Design

MDP and RL — We use a data-driven approach (specif-
ically, RL) to model and learn Ru,t as a function of
{cu,t, b1, b2, . . . bB}, due to the lack of a deterministic closed-
form equation for Ru,t as a function of the parameters, and
its relationship with cost Ku,t and the handover decision
variable Xu,t. We consider the infinite time horizon MDP to
model the system, where the environment is represented by
ns-O-RAN, and a single RL agent is deployed in the near-
RT RIC containing the TS xApp. The system is modeled
as an MDP because the TS xApp in the RIC controls the
target PSCell for the UEs handover, while the resulting state
(including the RAN performance parameters and the user
throughput) is stochastic. The MDP is defined by the tuple
⟨S,A,P,R,⃝, I⟩, where:
• S is the state space, comprising of per-UE E2SM-KPM
periodic data and per-UE E2SM-RC periodic/event-driven
data. Let C ′

u,t ⊆ CNR be the set of serving PSCell and neigh-
boring cells for any UE u at time t. The state vector for u at
time t from the environment (s⃗u,t) includes the UE identifier
for u and the set of parameters b1, b2, . . . bB . The latter
includes (i) the UE-specific L3 RRC measurements (obtained
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from the E2 node CU-CP) such as sinru,c,t for any cell
c ∈ C ′

u,t for the UE u; (ii) PRBc,t, the cell-specific Physical
Resource Block (PRB) utilization for c at time t obtained
from the E2 node DU; (iii) Zc,t, the cell-specific number
of active UEs in the cell c with active Transmission Time
Interval (TTI) transmission at t obtained from DU; (iv) Pc,t,
the total number of MAC-layer transport blocks transmitted
by cell c across all UEs served by c at time t (obtained
from the E2 node DU); (v) pQPSK

c,t , p16QAM
c,t , p64QAM

c,t , the cell-
specific number of successfully-transmitted transport blocks
with QPSK, 16QAM and 64QAM modulation rates from the
cell c to all UEs served by the c at time t normalized by
Pc,t. (vi) Finally, the set of parameters includes the cost the
UE u would incur, if handed over to cu,t at t (i.e., where
cu,t ̸= cu,t−1), given by:

k(cu,t) = K0e
−δ·(t−t′u)x(cu,t);

where x(cu,t) =

{
1 if cu,t ̸= cu,t−1

0 otherwise

Note that the cost k(cu,t) is zero if there is no handover,
i.e., cu,t = cu,t−1. The above state information are aggre-
gated across all the serving and neighbor cells of u, i.e.,
∀c ∈ C ′

u,t ⊆ CNR, along with the cell identifier for c, during
the reporting window t to generate a consolidated record
for u for t. This aggregated state information for u is fed as
input feature to the RL agent on the TS xApp. This is done
for all UEs in U , whose aggregated state information is fed
to the same RL agent. If any of the parameters in the state
information from the environment for any UE u is missing,
the RIC ETL service uses a configurable small window ϵ to
look back into recent history (tens to few hundred of ms)
and fetch those historical parameters for the missing ones.
• A is the action space, given by:

A = {HO(c1),HO(c2), . . .HO(cN ),HO}

where, c1, c2, . . . cN ∈ CNR. Here, au,t = HO(c), where
au,t ∈ A, indicates that the RL agent is recommending a
handover action for u to any cell c at t, and au,t = HO
indicates no handover action for u at t, meaning that the UE
shall continue being served by its current primary serving
cell.
• P(s⃗u,t+1|s⃗u,t, au,t) is the state transition probability of UE
u from state s⃗u,t at t to s⃗u,t+1 at t + 1 caused by action
au,t ∈ A.
• R : S × A → R is the reward function for UE u at t + 1,
as a result of action au,t, given by the following:

Ru,t+1 = βu · (logRu,t+1(cu,t+1)− logRu,t(cu,t))

− k(cu,t+1) (3)

The reward for UE u is the improvement in the logarithmic
throughput Ru,t due to the transition from s⃗u,t to s⃗u,t+1

caused by action au,t taken at t, minus the cost factor. The
reward is positive, if the improvement in log throughput
is higher than the cost, and negative, otherwise. Ru,t is
obtained from CU-UP using E2SM-KPM.
• γ ∈ [0, 1] is the discount factor for future rewards. The
value function V π(s) is the net return given by the expected

cumulative discounted sum reward from step t onwards
due to policy π, provided as follows:

V π(s) = E

[∑
u∈U

∞∑
i=0

γiRu,t+i|s⃗u,t = s, π(a|s)
]

(4)

• I is the initial distribution of the UE states.
•We consider two policies: (i) a target policy π(a|s), to learn
the optimal handover action a for any state s = s⃗u,t; and (ii)
a behavior policy µ(a|s), to generate the handover actions
which result in state transition and a new state data from
the environment.

Q-function and Deep-Q Network — We use Q-
learning, a model-free, off-policy, value-based RL approach.
We compute the Q function, an action-value function which
measures the expected discounted reward upon taking any
action a on any given state s based on any policy π. The
value returned by the Q-function is referred to as the Q-
value, i.e.,

Qπ(s, a) = E

[∑
u∈U

∞∑
i=0

γiRu,t+i|s⃗u,t = s, au,t = a, π(a|s)
]

= r(s, a) + γEP(s′|s,a) [Q
π(s′, a′)|s, a, π]

(5)

Here, r(s, a) = E

[∑
u∈U

Ru|s⃗u,t = s, au,t = a, π(a|s)
]

. From

(5) and (4), we have

V π(s) =
∑
a

π(a|s)Qπ(s, a). (6)

The optimal policy π⋆ is the one that maximizes the
expected discounted return, and the optimal Q function
Q⋆(s, a) is the action-value function for π⋆ given by the
Bellman equation as follows:

π⋆(a|s) = argmax
π

Qπ(s, a)

Q⋆(s, a) = r(s, a)+

+ γEP(s′|s,a)

[
max
a′

Q⋆(s′, a′)|s⃗u,t = s, au,t = a, π⋆

]
(7)

We use the Q-learning algorithm to iteratively update the Q-
values for each state-action pair using the Bellman equation,
as seen in 8, until the Q function converges to Q⋆. The
value iteration by the RL agent leverages the exploration-
exploitation trade-off to update the target policy π. It explores
the state space of the environment by taking random han-
dover control actions and learning the Q-function for the
resulting state-action pair, and exploits its learning to choose
the optimal control action maximizing the Q-value, i.e.,

Qπ
i+1(s, a) = r(s, a) + γE

[
max
a′

Qπ
i (s

′, a′|s, a, π)
]
. (8)

Such value iteration algorithms converge to the optimal
action-value function, i.e., Q⋆ := lim

i→∞
Qπ

i . The Bellman error
∆, as in (9), is the update to the expected return of state s,
when we observe the next state s′. Q-learning repeatedly

8
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adjusts the Q-function to minimize the Bellman error, as
shown in (9) as in

∆i+1 =

[
r(s, a) + γmax

a′
Qπ

i (s
′, a′)

]
−Qπ

i+1(s, a)

Qπ
i+1(s, a)← (1− ω)Qπ

i+1(s, a)+

+ ω

[
r(s, a) + γmax

a′
Qπ

i (s
′, a′)

]
.

(9)

This approach of lim
i→∞

Qπ
i → Q⋆ has practical constraints,

as discussed in [54]. To address this, we use a CNN approx-
imator with weights θ to estimate the Q function Q(s, a; θ),
and refer to it as the Q-network. Our CNN architecture
design is shown in Fig. 4. Deep Q-learning comes from
parameterizing Q-values using CNNs. Therefore, instead of
learning a table of Q-values, we learn the weights of the
CNN θ that outputs the Q-value for every given state-action
pair. The Q-network is trained by minimising a sequence of
loss functions MSEi(θi, π) for each iteration i. The optimal
Q-value, as a result of CNN approximator, is given by Q

⋆

as follows:

MSEi(θi, π) =

= E

[(
r(s, a) + γmax

a′
Qπ(s′, a′; θi−1)−Qπ(s, a; θi)

)2
]

Q
π
i = argmin

Qπ
{E [Qπ(s, a, θi)|s, a, π(a|s)] + ωMSE(θi, π)}

Q
⋆
:= lim

i→∞
Q

π
i

(10)

Here, EP(s′|s,a)

[
r(s, a) + γmax

a′
Qπ(s′, a′; θi−1)|s, a, π

]
is

the target for iteration i. The parameters from the previous
iteration θi−1 are fixed for optimizing the loss function
MSE(θi). The gradient of the loss function is obtained by
differentiating the loss function in Eq. 10 with respect to θ
and the loss can be minimized by computing its stochastic
gradient descent.

Thanks to the CNN, we are able to train and use the
same weights for different cells, i.e., one single model for
all, and we can approximate a non-linear dependency be-
tween input values and the reward function with a reduced
dimensionality.
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Fig. 4: Our CNN architecture design

We use an off-policy Q-learning algorithm, called
DQN [54] for this purpose. The DQN algorithm leverages
an experience replay buffer, where the RL agent’s expe-
riences at each step et = (st, at, rt, st+1) are collected
using the behavior policy µ and stored in a replay buffer
D = {e1, e2, . . . et−1} for the policy iterate πi. D is pooled
over many episodes, composed of samples from policy
iterates π0, π1, . . . πi, so as to train the new policy iterate
πi+1 (as Q⋆ = lim

i→∞
Qπ

i ). At each time step of data collection,
the transitions are added to a circular replay buffer. To
compute the loss MSE(θi) and the gradient, we use a
mini-batch of transitions sampled from the replay buffer,
instead of using the latest transition to compute the loss and
its gradient. Using an experience replay has advantages in
terms of an off-policy approach, better data efficiency from
re-using transitions and better stability from uncorrelated
transitions [54].

REM and CQL — To leverage the full potential of
the integrated ns-3 simulation environment in ns-O-RAN
and harness large datasets generated from the simulator via
offline data collection for data-driven RL, we use offline
Q-learning. This enables us to learn the CNN weights by
training the Q-network using the DQN model from dataset
D collected offline based on any behavior policy (potentially
unknown, using any handover algorithm) π without online
interactions with the environment and hence, no additional
exploration by the agent beyond the experiences et available
in D via µ. The trained model is then tested against a
fresh batch of simulations and the Q-function is iteratively
updated online according to the values generated by the
simulations. We use a robust offline Q-learning variant of
the DQN algorithm, called REM, which enforces optimal
Bellman consistency on J random convex combinations
of multiple Q-value estimates to approximate the optimal
Q-function [55]. This approximator is defined by mixing
probabilities on a (J − 1) simplex and is trained against its
corresponding target to minimize the Bellman error [55].

ˆMSEi(θi, π) =

= E

[(
r(s, a) + γmax

a′
Q̂π(s′, a′; θi−1)− Q̂π(s, a; θi)

)2
]

= E[(r(s, a) + γmax
a′

∑
j

αjQ
π
j (s

′, a′; θi−1)−

−
∑
j

αjQ
π
j (s, a; θi))

2]

Q̃π
i = argmin

Qπ

ˆMSEi(θi, π)

(11)

Here, αj ∈ RJ , such that
J∑

j=1

αj = 1 and αj ≥ 0, ∀j ∈ [1, J ].

αj represents the probability distribution over the standard
(J − 1)-simplex. While REM prevents the effect of outliers
and can effectively address imbalances in the offline dataset
D, offline-Q learning algorithms suffer from action distri-
bution shift caused by a bias towards out-of-distribution
actions with over-estimated Q values [56]. This is because
the Q-value iteration in the Bellman equation uses actions
from target policy π being learned, while the Q-function is
trained on action-value pair generated from D generated

9
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Algorithm 1 Offline Q-learning training
1: Store offline data (generated from ns-3) using any handover algo-

rithm and behavior policy µ into replay buffer D consisting of UE-
specific records (∀u ∈ U )

2: while D not empty and value iteration i
3: Begin training step:
4: Select a batch of 2x1 samples for input to the CNN
5: Use the Q-function and loss function ˆMSE from Eq. 12 to

train the CNN weights θi based on CQL and REM for value
iteration i of target policy π for Q̆π

i
6: Set i← i+ 1
7: end while

Algorithm 2 Online value iteration and inference
1: while Incoming experience data et for any UE u from RAN envi-

ronment to near-RT RIC for t ∈ [t0,∞]
2: Append et to replay buffer D′ ⊆ D in AI/ML training services

with length D′ ≤ D
3: Begin inference step:
4: Repeat steps 4 and 5 from Algorithm 1
5: Generate HO control action for u from the TS xApp over E2

to RAN environment based on Q̆π
i

6: Set i← i+ 1
7: end while

using behavior policy µ. To avoid this problem of over-
estimation of Q-values for out-of-distribution actions, we
use a conservative variant of offline DQN, called CQL,
which learns a conservative, lower-bound Q-function by
(i) minimizing Q-values computed using REM under the
target policy distribution π and (ii) introducing a Q-value
maximization term under the behavior policy distribution
µ [56]. From Eq. 10, the iterative update for training the Q-
function using CQL and REM is given by:

Q̆π
i ← argmin

Q̂π
{E

[
Q̂π(s, aπ; θi)|s, aπ, π(aπ|s)

]
︸ ︷︷ ︸

minimize REM Q-value under π

− E
[
Q̂(s, aµ; θi)|s, aµ, µ(aµ|s)

]
︸ ︷︷ ︸

maximize REM Q-value under µ

+ ω ˆMSEi(θi, π)}
Q̆⋆ := lim

i→∞
Q̆π

i

(12)

Here, ˆMSEi(θi, π) and Q̂π(s, a; θi) are as defined in Eq. 11.
To summarize, the sequence of steps is outlined below

in Algorithms 1 and 2. The Q-learning algorithm is trained
offline with Algorithm 1 and deployed in the TS xApp for
online inference and control following Algorithm 2.

5 PERFORMANCE EVALUATION

In this section, we first describe the simulation scenario, the
baseline handover modes considered for the comparison,
and the metrics of interest. We then discuss the results
based on a large scale evaluation in different deployment
scenarios.

Dense urban scenario — We model a dense urban
deployment, based on the 3GPP TR 38.913 [57], with M = 1
eNB and N = 7 gNBs, as shown in Figure 5. One of the
gNBs is co-located with the eNB at the center of the scenario,
the others provide coverage in an hexagonal grid. Each node
has an independent E2 termination, with reporting period-
icity set to 100 ms. We study two different configurations:
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Fig. 5: Simulation scenario.

(i) low band with center frequency 850 MHz and inter-site
distance between the gNBs of 1700 m; and (ii) C-band, with
center frequency 3.5 GHz and inter-site distance of 1000 m.
In each configuration, the bandwidth is 10 MHz for the eNB
and 20 MHz for the gNBs. The channel is modeled as a
3GPP Urban Microcell (UMi) street canyon channel [52].
The 3GPP NR gNBs use numerology 2. NUE = |U | dual-
connected UEs are randomly dropped in each simulation
run with a uniform distribution, and move according to a
random walk process with minimum speed Smin = 2.0 m/s
and maximum speed Smax = 4.0 m/s. This setup represents
the average condition for typical 3GPP scenarios (pedestrian
to slow vehicle mobility). We focus on the subset of UEs that
are more interested by handovers, rather than, for example,
static users, with a random walk model to generalize the
mobility through the simulations.

Traffic model — The users request downlink traffic
from a remote server with a mixture of four traffic models,
each assigned to 25% of the UEs. The traffic models include
(i) full buffer Maximum Bit Rate (MBR) traffic, which sat-
urates at Rfb,max = 20 Mbit/s, to simulate file transfer
or synchronization with cloud services; (ii) bursty traffic
with an average data rate of Rb,max = 3 Mbit/s, to model
video streaming applications; and (iii) two bursty traffic
models with an average data rate of 750 Kbit/s and 150
Kbit/s, for web browsing, instant messaging applications,
and Guaranteed Bit Rate (GBR) traffic (e.g., phone calls).
The bursty traffic models feature on and off phases with a
random exponential duration.

Baseline Handover Strategies — We consider three
baseline handover models [58] for training the AI agent
from in Section 4 and to evaluate its effectiveness. They
represent different strategies generally used for handovers
in cellular networks [10]. We consider a RAN RRM heuristic,
which decides to perform a handover if a target cell has
a channel quality metric (in this case, the SINR) above a
threshold (specifically, 3 dB) with respect to the current
cell. The other algorithms use more advanced heuristics,
based on a combination of a threshold and a Time-to-Trigger
(TTT). The first (called SON1 in the rest of the paper)
assumes a fixed TTT, i.e., the handover is triggered only
if the target cell SINR is above a threshold (3 dB) for a fixed
amount of time (110 ms). The second (called SON2) uses
a dynamic TTT, which is decreased proportionally to the
difference between the target and current cell SINR [58].
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Hyperparameters Value

DQN Agent (Offline)
Target update period 8000
Batch size 32
Number of heads (n heads in Fig. 4) 200
Number of actions (N in Fig. 4)) 7
Minimum replay history 20000
Terminal (Episode) length 1
Gamma 0.99
Replay capacity 1000000
Number of iterations 400
Training steps 100000

Optimizer
Optimizer AdamOptimizer
Learning rate 0.00005

Neural Network (Fig. 4)
Conv1D Layer filters=32

kernel size=B=8
strides=B=8
activation=ReLu

Flatten Layer 225 neurons
Dense Layer 1 128 neurons
Dense Layer 2 32 neurons
Dense Layer 3 1400 neurons

TABLE 1: RL hyperparameters and their values.

Performance metrics — For the performance evaluation
of the TS xApp we consider the metrics related to through-
put, channel quality, spectral efficiency, and mobility over-
head. For the first, we report the average UE throughput
at the Packet Data Convergence Protocol (PDCP) layer, i.e.,
including both LTE and NR split bearers, as well as the 10th

and 95th percentiles of all the users in a simulation, aver-
aged over multiple independent runs. The channel quality
is represented by the SINR. For the spectral efficiency, we
analyze the average value for each UEs and cell, as well
as the 10th percentile, and the percentage of PRBs used for
downlink traffic. Finally, we evaluate the UE mobility over-
head Hu as the number of handovers per unit time weighted
by a throughput factor R̂u = E(Ru)/

∑
u′∈U E(R′

u), where
E(Ru) is the average throughput for the user over the same
unit time.

Data collection and agent training — The data col-
lection is based on a total of more than 2000 simulations for
the different configurations, including multiple independent
simulation runs for each scenario. We used the Simulation
Execution Manager (SEM) for ns-3 [59] to create multiple
independent permutations of the available parameters for
ns-3 scenarios. Each permutation generate an execution of
the scenario which is independent from the others and com-
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Fig. 6: Loss ˆMSE for the Q-function Q̆π for the offline training.

pletely reproducible. While collecting the full permutation
of all the possible states is impractical, the offline dataset
we generated features the combination of all possible pa-
rameters that can be configured in the ns-3 scenario, and
iterations over different random seeds for each combination.
This makes it possible to correctly represent the generalized
context of the problem with a reduced bias probability.

Table 1 provides the list of RL hyperparameters and their
values considered in this paper. In the offline training, the
frequency with which the target network gets updated is
set to 8000 training steps. We perform 400 iterations during
the offline training, and each iteration has 100K training
steps, for a total of 40 million training steps. In a training
step a batch of 32 samples (or data points) are selected
randomly for input to Neural Network. The first layer of
the network is the Conv1D layer with 2x1 = 32 filters (see
Fig. 4). The kernel size and strides are set to B = 8, as
each cell has B = 8 input parameters (Section 4), and the
activation function is ReLU. This is followed by a flatten-
ing layer which flattens the output of the Conv1D layer
(with y1B = 225) concatenated with the t − tu′ parameter.
Third, fourth and fifth layers are fully-connected layers with
2x2 = 128, 2x3 = 32 and 1400 units/neurons, respectively.
The number of units in the last layer is given by the product
of n = 200, the number of heads of the REM, and the
number of actions N = 7. We use the Adam optimizer with
a learning rate of 0.00005. Figure 6 shows the trend of the
loss ˆMSE for the Q-function Q̆π (as discussed in Section 4)
during the training of the RL agent, including a focus on the
first 3 · 105 iterations. The initial cost K0 from Eq. 1 is 1, and
δ (decay constant) is 0.1.

The likelihood of the loss curve ˆMSE is regular and
its trend approaches values close to zero, showing that the
weights of the CNN are actually improving after each iter-
ation and the information learned is a good approximation
of the non-linear dependency between the actions and the
reward.

5.1 Results

In this section, we analyze the results we obtained after
the training and the online testing of the xApp described
in Section 4. The RL agent was tested in simulations with
the baselines Handovers (HOs) disabled. The experiments
were repeated with different numbers of UEs, and aver-
aged around 600,000 records for FR1 850 MHz and around
300,000 records for FR1 C-band in online evaluation.

Figure 7a shows the average UE throughput for the 850
MHz deployment, while Fig. 7b reports the CDF of the SINR
with 126 UEs. The RIC RL introduces an improvement of the
average throughput (averaging around 50%) and SINR with
respect to the baselines, meaning that the RL agent is able
to customize the HO-control for each single UE. This trend
is also confirmed as the number of UEs increases, proving
the scalability of this approach over baselines. Indeed, while
the total amount of resources available to the network does
not change, the RIC RL algorithm leverages handovers to
perform load balancing across cells (i.e., moving users from
loaded cells to base stations with lower resource utilization)
and to improve the channel quality that the user is experi-
encing. Overall, this leads to a network configuration where
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Fig. 7: Throughput and SINR Cumulative Distribution Function (CDF) for the 850 MHz deployment, for the different baselines and the xApp-
driven handover control. The average throughput accounts for the traffic on the LTE and NR split bearer.
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Fig. 8: Spectral efficiency and mobility overhead metrics for the 850 MHz deployment, as a function of the number of users, for the different
baselines and the xApp-driven handover control.

resources are better matched to users’ demands. In addition,
as the number of users increases, the RIC RL algorithm
can exploit additional degrees of freedom to perform its
optimization, e.g., in terms of where and when to offload
users across cells. This is enabled by the RIC and xApps
ecosystem, which allows for the customization of the mobil-
ity of individual UEs through a centralized and abstracted
view of the network status.

To further analyze the throughput trend of Fig. 7a, we
report in Fig. 9 the average UE throughput for the RIC RL
and SON2 algorithms and for different kinds of source user
traffic, specifically, full buffer and video streaming. It can
be seen that for 42 users, the video streaming performance
is saturated (considering the combination of the channel
conditions and source traffic requests), thus the full buffer
users request additional traffic. As the number of users
increases, the network becomes more loaded, thus the full
buffer users back off (also considering that the scheduler is
primarily a round robin scheduler), while the traffic demand
from the other users keeps increasing, up to the point
where the average throughput for the two classes is similar
(126 users). The configuration with 63 users represents the
inflection point, as the video streaming/bursty traffic has
not increased but the full buffer traffic request decreases by
about 1.2 Mbps. Overall, this leads to the non-monotonic
behavior of the throughput in Fig. 7a, which decreases from
42 to 63 users and then increases again.

Additional insights on the performance improvement
are provided by the percentiles of the user throughput
(Fig. 7). It can be seen that our RL agent brings consistent
improvement not only on the average UEs, but also between

the worst (10-th percentile, Fig. 7c) users, showing 30%
improvements and best (95-th percentile, Fig. 7d) users,
showing around 60% improvement. The 126 UEs result is
particularly relevant, as also testified by the improvement in
SINR shown in Fig. 7b (the median point with RIC RL is 1.99
dB higher than the median for SON2). Note that the variance
in performance across users increases in the simulations for
126 users compared to scenarios with fewer users, leading
to larger confidence intervals in the throughput and spectral
efficiency metrics. Contrary to heuristic-based HOs, the RL
algorithm leverages UE-level and cell-level KPMs to take the
decision to centrally handover/steer the user to an optimal
NR neighbor, in terms of load and SINR. This results in
an improved spectral efficiency (and thus throughput), as
shown in Figs. 8a and 8b, demonstrating 52% and 35%
improvements, respectively. The same holds for the PRB
utilization (Fig. 8c). Indeed, since RIC RL utilizes cell-level
KPMs at 100 ms granularity, it is able to handover UEs to
a target cell with higher residual PRBs. The non monotonic
trend of the PRB utilization can be explained by the interac-
tion between the source traffic models, the RAN scheduling
process, and the handover policies, with the full-buffer users
requesting fewer resources as the network becomes more
congested. Nonetheless, the trend observed in Fig. 8c differs
for the baseline approaches and for the proposed RIC RL
algorithm, showing that the latter is more efficient in using
the available resources and in allowing the mobile terminals
to request more traffic.

However, these improvements in the throughput could
eventually come with a major cost in terms of HO manage-
ment, and thus energy. The mobility overhead Hu of Fig. 8d
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Fig. 9: Comparison between the average UE throughput for RIC RL
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Fig. 10: Comparison between the performance gain in the 850 MHz
band and in the 3.5 GHz band (or C-Band). Each bar represents the
ratio between the performance with the RIC RL and SON2 for the
corresponding metric.

clearly shows that our RL agent is not causing more HOs,
but instead follows the trend of the baselines, while at the
same time delivering better throughput. The only exception
is for 42 UEs, where the RL agent triggers more HOs than
all baselines. One of the possible reasons can be identified in
the cost function described in Eq. (2) (Section 4), where the
reward (logarithmic throughput gain, which is higher with
fewer users) compensates for the cost of handover thereby
resulting in an increase in mobility overhead Hu.

Furthermore, Fig. 10 compares the already discussed
results for 850 MHz with the C-Band deployment. In this
figure, we show the relative gains of the performances of the
RL agent in the two bands. The gain of each KPM shown in
the x-axis is defined as the ratio between the performance
with the RIC RL and SON2 for the corresponding metric.
Given this definition, the RL agent is performing better than
the baseline when the ratio is greater than 1. The analysis
of the relative gains shows that while the average PRB
utilization of the RIC falls below the baseline, the other
KPMs improves consistently, showing the adaptability of
RIC RL through different bands.

We also compare the performance of the proposed RIC-
enabled RL agent against the contextual multi-armed bandit
RL agent proposed in [39]. To do so, we implemented
the agent from [39] in the xApp, and trained it on the
same dataset used to train our agent. Fig. 11 compares
the performance between the two agents in terms of 10th

percentile throughput, for different numbers of users and
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the proposed xApp (RIC RL) and an xApp implementing the handover
control logic from [39].
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Fig. 12: Average cell spectral efficiency for the different traffic types, for
105 users and the 850 MHz deployment.

for deployments in the 850 MHz and C-Band frequencies.
The method proposed in [39] aims at improving the RSRP
for individual UEs through handover to different cells.
However, this does not improve the cell-edge throughput
as much as the RIC-enabled RL optimization proposed in
this paper, which provides consistently higher cell-edge user
throughput in the two frequency bands and with different
numbers of users. Compared to [39], the O-RAN-driven
solution we introduce in this paper exploits a richer input
feature set, which makes it possible to characterize the
user status with higher precision, and thus to select control
actions that go beyond the RSRP improvement optimizing
the user throughput itself.

Finally, one key aspect enabled by the per-UE control
made possible by our xApps design and the O-RAN archi-
tecture is the possibility of improving the performances of
a heterogeneous UEs, with different traffic models. Fig. 12
indeed shows the average cell spectral efficiency for the
different traffic types, for 105 users and the 850 MHz de-
ployment. Thanks to the optimized handover management,
the RIC RL policy is able to improve the conditions of the
all the UEs with significant gains for traffic models such
as the video streaming, the web browsing, and the instant
messages, whose performance fails to be optimized by the
baselines policies.

6 CONCLUSIONS

This paper introduced a complete, system-level, O-RAN-
compliant framework for the optimization of TS in 3GPP
networks. Specifically, we focused on throughput maximiza-
tion through the selection of the NR serving cell in an EN-
DC setup. We implemented a cloud-native near-RT RIC,
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which we connect through open, O-RAN interfaces to a
simulated RAN environment in ns-3. We developed a cus-
tom xApp for the near-RT RIC, with a data-driven handover
control based on REM and CQL. Finally, we profiled the per-
formance of the agent on a large scale deployment in mul-
tiple frequency bands, evaluating its gain over traditional
handover heuristics. The results show that, thanks to the
UE-level control at the near-RT RIC, our solution achieves
significant performance improvements ranging from 30%
to 50% for the average throughput and spectral efficiency,
demonstrating its effectiveness over different combinations
of UEs.
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