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Abstract—Fine-grained urban flow inference (FUFI) problem
aims to infer the fine-grained flow maps from coarse-grained
ones, benefiting various smart-city applications by reducing
electricity, maintenance, and operation costs. Existing models
use techniques from image super-resolution and achieve good
performance in FUFI. However, they often rely on supervised
learning with a large amount of training data, and often lack
generalization capability and face overfitting. We present a new
solution: Spatial-Temporal Contrasting for Fine-Grained Urban
Flow Inference (STCF). It consists of (i) two pre-training networks
for spatial-temporal contrasting between flow maps; and (ii)
one coupled fine-tuning network for fusing learned features. By
attracting spatial-temporally similar flow maps while distancing
dissimilar ones within the representation space, STCF enhances
efficiency and performance. Comprehensive experiments on two
large-scale, real-world urban flow datasets reveal that STCF
reduces inference error by up to 13.5%, requiring significantly
fewer data and model parameters than prior arts.

Index Terms—Contrastive learning, traffic management, urban
computing, urban flow inference.

I. INTRODUCTION

THE rapid development and miniaturization of sensing
systems (e.g., mobile devices, surveillance cameras, and

particle concentration sensors), along with the advances in
communication and information infrastructures, have enabled
a plethora of novel applications in the realm of smart cities and
urban computing [1], [2], [3]. An important consequence is the
generation of vast volumes of heterogeneous spatial-temporal
data that could be used for improved management of quality of

Manuscript received 28 March 2023; revised 27 August 2023; accepted 4
September 2023. Date of publication 18 September 2023; date of current version
13 November 2023. This work was supported in part by the National Natural
Science Foundation of China under Grants 62273071, 62072077, and 62176043,
in part by the Natural Science Foundation of Sichuan Province, China, under
Grant 2022NSFSC0505, and in part by the National Science Foundation under
Grant SWIFT 2030249 and in part by Kingland Foundation. Recommended for
acceptance by Y. Tong. (Corresponding author: Bei Hui.)

Xovee Xu, Ting Zhong, and Fan Zhou are with the University of Electronic
Science and Technology of China, Chengdu, Sichuan 610054, China, and also
with the Kash Institute of Electronics and Information Industry, Kashi, Xin-
jiang 84400, China (e-mail: xovee.xu@gmail.com; zhongting@uestc.edu.cn;
fan.zhou@uestc.edu.cn).

Zhiyuan Wang and Bei Hui are with the University of Electronic Sci-
ence and Technology of China, Chengdu, Sichuan 610054, China (e-mail:
zhy.wangcs@gmail.com; bhui@uestc.edu.cn).

Qiang Gao is with the Southwestern University of Finance and Economics,
Chengdu, Sichuan 611130, China (e-mail: qianggao@swufe.edu.cn).

Goce Trajcevski is with Iowa State University, Ames, IA 50011 USA (e-mail:
gocet25@iastate.edu).

Digital Object Identifier 10.1109/TBDATA.2023.3316471

life. However, one of the main challenges, from both economic
and technical perspectives, is how to balance the trade-offs
between the number of devices and communication overheads
versus maintaining a satisfactory inference/prediction perfor-
mance in various transportation systems [4].

In many real-world urban computing and traffic applica-
tions, e.g., transportation managing and planning, city resource
scheduling and allocating, real-time decision making and city
construction planning [5], a specific problem that attracts con-
siderable attention is the so-called Fine-grained Urban Flow
Inference (FUFI), which aims to upscale the coarse-grained,
low-resolution urban flow map into fine-grained, high-resolution
ones. FUFI can be employed in large-scale urban transportation
systems [6], e.g., citywide traffic flow monitoring [7] and radio
map reconstruction [8]. In traditional sensing systems, deploy-
ing and maintaining a large number of devices require large
amounts of electricity and human labor. The FUFI problem can
effectively reduce the expensive maintenance/operation costs
while also upholding an acceptable accuracy when inferring the
real-time fine-grained flow maps, contributing to environmental
protection, energy-saving, and emission reduction.

Existing Work: Researchers have addressed the FUFI problem
by mainly utilizing deep convolutional neural networks (espe-
cially in the point view of single image super-resolution in com-
puter vision [9]) tailored for urban crowd flow data. UrbanFM [7]
is among the first to formalize the FUFI problem, which adopts
a deep residual architecture [10] as the main building block,
and designs a distributional upsampling layer and a feature
fusion sub-net for capturing the spatial constraint and external
influence factors, respectively. FODE [11] extends UrbanFM
by introducing neural ordinary differential equations [12] in
an affine coupling layer, balancing between inference accuracy
and computational efficiency. UrbanODE [13] further enhances
FODE by introducing a pyramid attention network for spatial-
temporal feature extraction.

Limitation: Although existing methods surpass traditional
image super-resolution models such as SRCNN [14] and
VDSR [15], being fully supervised, they rely on special and
complex architectural designs and often require massive training
data to guarantee satisfactory inference performance. Further-
more, stacking convolutional layers to increase the receptive
fields is also inefficient according to [16]. Supervised methods
with large architectures run substantial risks of overfitting and
low generalization capabilities [17], [18], limiting their practical
use in FUFI systems.
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Challenge: To address the above limitations, self-supervised
representation learning is a promising direction, which has
shown excellent results in many language and vision tasks [19],
[20], primarily due to their impressive power in learning uni-
versal features, requiring fewer data, generalizing well, and
mitigating the overfitting issues [21], [22]. However, directly
applying self-supervised techniques into FUFI models faces
several vital obstacles: (i) data augmentation procedures – which
are commonly used in visual representation learning, such as
crop, resize, and rotation – would greatly disrupt the spatial
structure of flow maps; (ii) existing pre-training strategies, e.g.,
solving jigsaw puzzles [23], predicting relative position [24],
global-local contrast [25], would break the spatial-constraint
required in FUFI [7]. Instance discrimination approaches [21],
[26], on the one hand, ignore the temporal correlations between
flow maps and, on the other hand, rely on data augmentations to
create similar data views for contrasting.

Present Work: In this article, we propose a new FUFI solution
– Spatial-Temporal Contrasting for Fine-Grained Urban Flow
Inference (STCF), which follows a pre-training & fine-tuning
paradigm. We design two new augmentation-agnostic pretext
tasks specifically for urban flow data: (i) spatial-contrasting
between coarse- and fine-grained flow maps; and (ii) temporal-
contrasting between time-related coarse-grained flow maps. The
fine-grained flow maps during self-supervised pre-training are
served as discrimination samples rather than prediction labels,
facilitating the model to learn better flow map representations.
The proposed two pre-training networks are able to attract
positive samples in the representation space without destructing
the spatial structures of flow maps. Moreover, we propose a
new external influence factor aggregation module that accounts
for the influence of factors on individual map cells. Finally,
we adopt a coupled fine-tuning network to link the pre-trained
feature maps for fine-grained flow map inference. STCF has
a simple structure, requires no special/complex architecture
designs [7], [11] nor stacked deep convolutional layers [27],
[28], but achieves significant performance boosting. Our main
contributions are as follows:
� Spatial-temporal contrastive pretext tasks are designed

for urban flow map feature learning: To the best of our
knowledge, STCF is the first attempt to introduce self-
supervised learning into fine-grained urban flow inference.
We design two novel augmentation-agnostic pretext tasks
in a contrastive manner: multiple (spatially or temporally
correlated) positive flow map samples are attracted together
in the representation space, while negative samples are
repelled away from the positive samples.

� Combining spatial-temporal correlations for fine-grained
urban flow map inference: We jointly model the flow map
relationships in a coupled fine-tuning network without
special and complex architecture designs or stacked deep
convolutional layers that may result in overfitting. We
further propose a new external influence factor aggregation
module that accounts for fine-grained factor influence on
individual map cells.

� Our framework is data-efficient, lightweight, and out-
performs prior arts by non-trivial margins: We con-
ducted extensive experiments on two large-scale real-world

Fig. 1. Urban flow inference performance comparison between our proposed
STCF and three state-of-the-art baselines on TaxiBJ dataset, with different data
fractions and model parameters. STCF is data- and parameter-efficient and
achieves significant performance improvements (indicated by the green arrows
in three axis directions).

urban flow datasets demonstrate that STCF significantly
improves urban flow inference performance compared to
state-of-the-art approaches.

As shown in Fig. 1, combining our contributions, STCF sur-
passes three strong baselines on TaxiBJ P1 dataset, decreasing
the inference error up to 13.5% (or 22.9% without external
factors) compared to UrbanODE [13]. STCF generally needs
20–50% fewer data to perform on par with or even better than
baselines and uses much fewer model parameters. These traits of
STCF provide obvious advantages when computing resources or
training data are limited, which is critical in FUFI that obtaining
a large amount of data or maintaining many sensors require
expensive costs or heavy crowd-sourcing, contributing to a green
and sustainable transportation system.

II. RELATED WORK

A. Fine-Grained Urban Flow Inference

Fine-grained urban flow inference (FUFI) problem is first
formulated by [7] aiming at reducing the high costs of long-term
operation and maintenance, and bridging the gap between stor-
age/processing efficiency and data usability for large-scale trans-
portation systems [6]. Closely related to single-image super-
resolution (SISR) in computer vision, FUFI has several common
concepts in comparison to SISR, e.g., they both study the regular
data (urban flow maps can be seen as a special type of image),
utilizing convolutional layers and upsampling techniques to
infer high-resolution “images” from low-resolution “images”.
However, FUFI problem, despite its similarity to SISR, poses
distinct characteristics and new challenges. First, SISR is an
ill-posed problem, while FUFI has a unique solution that we want
to infer the fine-grained urban flows as accurately as possible
(often measured by mean squared errors other than PSNR and
SSIM [29]). Moreover, FUFI problem has a spatial-constraint in
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urban maps and is associated with complex external influence
factors which greatly affect the urban flow distributions.

Existing FUFI models proposed several dedicated learning
modules for addressing the challenges and improving the in-
ference performance [30]. UrbanFM [7], as the first one to
formulate and tackle the FUFI problem, distinguishing itself
from SISR models by two essential components: an inference
network with distributional upsampling and an external factor
fusing subnet. Subsequent works mainly follow the learning
paradigm of UrbanFM, such as stacked convolution layers and
skip-connections between the low-level and high-level feature
maps, but also propose new mechanisms to improve FUFI from
different aspects [6], [31], [32], [33], [34].

For example, Zhou et al. [11] designed an affine coupling layer
to overcome the gradient computation instability and introduced
neural ordinary differential equations (ODE) [35], [36] into their
model. The ODE-based module balances the trade-off between
FUFI performance and computational overhead. Li et al. [8]
explored the spatial-temporal relationships between historical
urban maps by using stacked ST-Residual blocks and masked
loss function. UrbanODE [13] adopted pyramid attention blocks
to improve the flow map feature extraction.

Li et al. [31] studied the FUFI problem from the sparsity
and incomplete data perspectives, i.e., the coarse-grained flow
maps are unevenly distributed and incomplete. In such cases,
accurately inferring the urban flows becomes extremely difficult.
The authors proposed a multi-task urban flow completion and
super-resolution model named MT-CSR, which first completes
the coarse-grained urban flows and then upscales the flow map.
MT-CSR incorporates the local spatial dependencies, global POI
similarities, and the complex associations between coarse- and
fine-grained urban flows.

In [16], the authors analyzed the characteristics of crowd flows
and revisited the shortcomings of convolutional neural network
(CNN)-based methods: inefficiency in learning global spatial
dependencies and ignoring latent region functions.

These approaches often made strong assumptions and adopted
complex architecture designs (e.g., the skip connections and
pyramid attentions), which suffers from severe overfitting prob-
lems. In this work, we use a simple model architecture and
self-supervised pre-training to improve the generalizability of
our model.

B. Contrastive Self-Supervised Learning

Being fully-supervised, classical deep learning-based models
achieving great success in research community in tremendous
prediction tasks due to their outstanding ability to learn rep-
resentations from large-scale datasets. However, such models
often require massive data to guarantee a good performance
and face several obstacles such as generalization capability,
adversarial attack, and spurious data [37], especially when labels
are expensive (or even impossible) to obtain.

Self-supervised learning (SSL), as a subset of unsupervised
learning, provides researchers an alternative approach to learn
good representations without human-annotated supervision. In

recent years, SSL gained immense attention and showed no-
ticeable results on downstream tasks. Researchers proposed
several novel mechanisms that are enabling model training
from data itself. They are often categorized into two directions:
predictive or contrastive. Predictive SSL is focuses on designing
hand-crafted pretext tasks, such as solving jigsaw puzzles [23],
maximizing mutual information between local and global [25],
predicting relative patch [24] and rotation [38]. Pretext tasks
provide pseudo-labels for model training and pattern learning,
and have shown promising results in computer vision (CV),
natural language processing (NLP), and graph learning [22],
[37], [39]. However, artificially designed pretext tasks rely on
ad-hoc heuristics and domain-specific knowledge and therefore
limiting their generalization capability [26].

Contrastive SSL can be seen as an instance discrimination
method, aiming to train an encoder capable of discriminating
positive and negative pairs by using a contrastive loss [40], [41],
[42], [43], [44], [45], [46]. Several augmentation techniques and
negative sampling strategies have been proposed to create differ-
ent views of the same sample and optimize the feature-learning
process. For example, He et al. [21] proposed momentum con-
trast mechanism to decouple the batch size from dictionary size;
Chen et al. [26] used data augmentations (e.g., color distort, crop,
resize, and Gaussian blur) to create two related views for instance
discrimination; and Veličković et al. [47] presented DIM model
which maximizes the mutual information between global and
local representations of graphs.

Unlike existing contrastive SSL models, we study the ur-
ban flow inference problem and propose modeling the spatial-
temporal relationships between urban flow maps in both coarse-
and fine-granularities. The temporal-contrasting module in
STCF considers temporally correlated flow maps as positive
samples and lets them be close in representation space, while the
spatial-contrasting module directly utilizes the fine-grained map
as a related “view” of the coarse-grained map. It is worth noting
that fine-grained flow maps were utilized during pre-training, but
they served as self-supervision signals for contrastive learning
rather than labels for supervised learning. These two modules are
essentially different from previous SSL pretext tasks. They avoid
the structure-destructive data augmentations and are suitable for
the FUFI problem. To the best of our knowledge, STCF is the
first work to study spatial-temporal contrastive learning and is
also the first work to create sample views in different granularity
in contrastive learning.

III. PRELIMINARIES

FUFI problem is essentially different from the visual super-
resolution since the former models the city flows rather than
image pixels, colors, or video frames. In addition, FUFI problem
obeys spatial constraint where the sum of fine-grained flow
volume in a region should equal the coarse-grained flow volume
in that region. Also, urban city flows are variable to external
influence factors such as weather, geographical location, time,
and holidays. Inferring the fine-grained flow maps exposes new
challenges compared to visual SR problem.
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TABLE I
MATHEMATICAL NOTATIONS (IN ALPHABETICAL ORDER)

We now formally define the FUFI problem. Mathematical
notations in this work are listed in Table I. Assuming that the
urban area of interest M consists of H ×W spatial grid-cells,
a cell rij denotes the ith row and the jth column of M, and
Xt ∈ RH×W

+ denotes the flow map, at a given time t, where
each entry xij ∈ R+ corresponds to the volume of the flow in
the region rij .

Intuitively, the flow volumext
ij captures the number of entities

inside the respective region rij over time window of [t− T, t].
Following previous models [7], [11], [13], [48], we formally
define the FUFI problem as follows:

Definition 1 (Fine-Grained Urban Flow Inference): For a
city map M, given its coarse-grained, low-resolution flow map
Xt

coarse at time t, the FUFI problem is to learn a mapping function
F to transform the coarse-grained flow map Xt

coarse ∈ RH×W
+

into fine-grained, high-resolution flow map:

Xt
fine = FΘ(X

t
coarse), (1)

whereXt
fine ∈ RSH×SW

+ ,Θ denotes the learnable model param-
eters, and S is an upscaling factor.

Different from visual SR problem, FUFI obeys the following
spatial constraint:

Definition 2 (Spatial Constraint): The flow volume xt
ij,coarse

in cell rij of the coarse-grained flow map Xt
coarse should equal

the overall flow volume in the corresponding S × S cells in
fine-grained flow map Xt

fine, i.e.,

xt
ij,coarse =

∑
i′∈[(i−1)S+1,iS]
j′∈[(j−1)S+1,jS]

xt
i′j′,fine, (2)

where i ∈ [1, H], j ∈ [1,W ] and i′ ∈ [1, SH], j ′ ∈ [1, SW ].
An illustration of FUFI problem and spatial constraint for

Beijing city is shown in Fig. 2. We note there is no temporal
constraint in FUFI.

IV. STCF: METHODOLOGY

In this section, we present a Spatial-Temporal Contrasting
model for fine-grained urban Flow inference (STCF). Specifi-
cally, we first introduce the two pre-training networks, which

Fig. 2. Illustration of fine-grained urban flow inference. Take Beijing City as
an example, given a coarse-grained, low-resolution flow map (32 × 32), we aim
to infer a fine-grained, high-resolution flow map (128× 128) while also obeying
the structural constraint.

effectively extract useful feature maps in the aspects of spatial-
temporal city flow dynamics, capture spatial-temporal flow map
correlations, and require no data augmentations which would
break the spatial constraint of FUFI. Then we describe STCF’s
external influence factor (EIF) aggregation module. Finally, we
show how the coupled fine-tuning network can infer better
fine-grained flow maps. A sketch of STCF framework is shown
in Fig. 3.

A. Spatial-Contrasting Pre-Training Network

The input of the spatial-contrasting (SC) network is the
coarse-grained flow map Xt

coarse, which we encode by two
convolutional layers withC channels and 3× 3 kernel size, each
layer followed by ReLU nonlinearity. The two convolutional lay-
ers are taken as a feature learning network to map coarse-grained
flow map Xt

coarse to low-level hidden feature maps Ht,spatial
coarse ∈

RH×W×C . We call this network a spatial-contrasting encoder
Encspatial

coarse(·) later used in fine-tuning stage. Then we adopt a
batch normalization layer, another convolutional layer (withSC
channels and 3× 3 kernel size) followed by ReLU and global av-
erage pooling layer. Finally, we use a fully-connected layer with
SC hidden units to get a dense representation zt,spatial

coarse ∈ RSC .
The global average pooling layer and dense layer are similar to

the MLP-based projection head used in previous self-supervised
learning (SSL) models [26], [49], which purpose is to bridge
the learning objective gap between the two representations (one
for downstream task and another for contrasting). However, the
projection head in STCF aims to project feature mapsHt to flow
map representation zt, while previous SSL models project one
dense representation to another.

Similarly, we build another convolutional neural network to
model the fine-grained flow map Xt

fine, which has an identical
structure but with different layer weights. It outputs zt,spatial

fine ∈
RSC along with zt,spatial

coarse for spatial contrastive learning. Both
coarse- and fine-grained flow maps at the same time are com-
pared in the representation space. Now we have defined two pre-
training networks and we train them with InfoNCE contrastive
loss function [26].

Given N urban flow samples in the pre-training set (i.e.,
Xt

coarse and Xt
fine, t ∈ [1, N ]), we randomly sample a mini-batch

of flow maps, batch size is B. Then the loss function for our
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Fig. 3. Illustration of our proposed STCF framework. It has two pre-training stages for modeling spatial-temporal correlations between urban flow maps (a) and
(b), and one coupled fine-tuning stage for urban flow inference (c). For simplicity, the c, f , s, and t in superscript/subscript denote coarse, fine, spatial, and temporal,
respectively. The encoders and projection layers in the temporal contrasting pre-training network share their parameters. More details of external influence factor
(EIF) aggregation module are depicted in Fig. 4.

spatial-contrasting pre-training network is defined as:

LSC,i = − log
exp (sim(ztcoarse,i, z

t
fine,i)/θ)∑2B

k=1 1[k �=i] exp (sim(ztcoarse,i, z
t
k)/θ)

− log
exp (sim(ztfine,i, z

t
coarse,i)/θ)∑2B

k=1 1[k �=i] exp (sim(ztfine,i, z
t
k)/θ)

, (3)

where sim(·, ·) is a similarity function between two representa-
tions (e.g., cosine similarity or inner dot product), θ ∈ R+ is a
scalar temperature hyper-parameter, 1[·] is an indicator function
(we omit the spatial superscript for brevity). The final loss is
computed by LSC = 1

2B

∑B
i=1 LSC,i.

This loss function compares all the mini-batch samples
in the latent representation space, where the positive pairs
(ztcoarse,i, z

t
fine,i) and (ztfine,i, z

t
coarse,i) are attracted to be close,

while negative samples are repelled away from positive samples.
Minimizing the (3) is usually understood as maximizing a lower
bound on mutual information between the representations of
positive samples [41].

The motivation behinds SC network is that, by pre-training
an encoder capable of capturing the spatial-correlations be-
tween the same flow maps with different granularity, the trained
encoder should help the model overcoming the problem of
overfitting and improve the urban flow inference performance,
especially when training data are few (which is critical for
reducing the deployment/maintenance costs of transportation
monitoring system).

B. Temporal-Contrasting Pre-Training Network

Now we introduce how to model the temporal correlations be-
tween flow maps in the representation space. Different from the
spatial-contrasting (SC) network that uses two distinct flow map
encoders, the encoders in temporal-contrasting (TC) network
share their parameters since they only encode the coarse-grained
flow maps at different times. The architecture of TC network
is similar to SC network, the temporal-contrasting encoder
Enctemporal

coarse (·) consists of two convolutional layers followed by

ReLU activation, along with the global average pooling layer
and dense layer which project the low-level temporal hidden
feature maps Ht,temporal

coarse ∈ RH×W×C to a high-level flow map
representation zt,temporal

coarse ∈ RSC for temporal contrasting pretext
task.

In the TC network, there are multiple choices to determine
the temporal correlated flow maps, e.g., given a flow mapXt

coarse
observed during time [t− T, t], its temporal neighboring flow
maps Xt−T

coarse and Xt+T
coarse can be both considered as positive

samples. The periodic flow map is another type of positive
samples, e.g., the flow map at the same time of the next day
or of the next week. These time-close flow maps or periodic
flow maps inherently exhibit similar urban flow dynamics under
the regular situations.

Considering a set of temporally correlated flow maps T =
{Xt

coarse} ∪ {Xτ
coarse}τ , whenever |T | = 2 the loss function (3)

can be readily used. However, when |T | > 2, a new loss function
should be defined, supporting more than two positive samples in
a mini-batch for the TC network. We generalize (3) to support
arbitrary number of positive samples.

Specifically, given a batch of B urban flow maps in a pre-
training dataset, for an anchor flow mapXt

coarse,i, we have T − 1
positive samples and B − |T | negative samples w.r.t. the anchor
sample. Then we design the following loss to optimize the TC
network:

LTC,i =
−1

|T ′|

T ′∑
τ

log
exp (sim(ztcoarse,i, z

τ
coarse,i)/θ)∑2B

k=1 1[k �=i] exp (sim(ztcoarse,i, zk)/θ)

+
−1

|T ′|

T ′∑
τ

log
exp (sim(zτcoarse,i, z

t
coarse,i)/θ)∑2B

k=1 1[k �=i] exp (sim(zτcoarse,i, zk)/θ)
,

(4)

where T ′ = {Xτ
coarse}τ (for brevity, we omit the temporal su-

perscript of zt,temporal
coarse ). The final loss is computed by LTC =

1
2B

∑B
i=1 LTC,i.
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The intuition behind this loss function is that for multiple
temporally correlated flow maps, their feature map projections
should also be correlated (close) in the latent space.

C. Coupled Fine-Tuning Network for STCF

After the two pre-training networks pre-trained, we have two
encoders in hand for downstream fine-tuning stage, i.e., the
spatial contrasting encoder Encspatial

coarse(·) and temporal contrast-
ing encoder Enctemporal

coarse (·). We now introduce STCF’s coupled
fine-tuning network, which fuses the feature maps learned from
two pre-training networks.

In the fine-tuning stage, the two encoders are directly used for
coarse-grained flow map feature learning. We then build another
encoder Enccoarse initialized from scratch for fine-tuning. This
encoder takes the input X̃t

coarse combining flow maps and dense
EIF maps (cf. next subection IV-D). The fine-grained flow map
inference process is defined as:

Ht,spatial
coarse = Encspatial

coarse

(
Xt

coarse

)
, (5)

Ht,temporal
coarse = Enctemporal

coarse

(
Xt

coarse

)
, (6)

Ht
coarse = Enccoarse

(
X̃t

coarse

)
, (7)

Ht
fine = Dec

(
Concat

(
Ht,spatial

coarse ,Ht,temporal
coarse ,Ht

coarse

))
, (8)

where Concat(·) is the concatenate operation, Dec(·) is a de-
coder network, which starts with a convolutional layer (C chan-
nels and 3 × 3 kernel size), followed by another convolutional
layer (S2 C channels and 3 × 3 kernel size). Then the extracted
feature maps are fed into a PixelShuffle layer [50] to upsample
the coarse-grained feature map (∈ RH×W×S2 C) to fine-grained
feature map (∈ RSH×SW×C). The decoder ends with a single
channel convolutional layer with 3 × 3 kernel size.

D. External Influence Factor Aggregation

External influence factors, such as time, weather, and tem-
perature, are of great importance for inferring the fine-grained
flow maps. Prior works found that incorporating EIFs into flow
inference can improve model’s rebustness and performance [7],
[8], [11], [13], [51].

Similar results can also be found in [8], [13]. The EIF ag-
gregation module used in prior arts generally consists of three
steps: (i) EIFs are fed into dense layers after pretreatment; (ii)
obtained dense representations are reshaped into feature map or
used in sub-pixel blocks for upsampling; and (iii) concatenation
between flow map and feature map. By doing so, implicit spa-
tial relationships of external influence factors with urban flow
volumes are readily linked. Although existing EIF aggregation
modules improved FUFI performance, they cannot fully exploit
the spatial correlation between EIF and flow volume in finer
level of granularity, i.e., the influence of EIF on individual map
cells is neglected.

As shown in the top of Fig. 4, hidden EIF representations
are directly transformed into single feature map, which ignores
the rich cell-interactions and the influence of individual EIFs.
Motivated by this, we propose a new EIF aggregation module.

Fig. 4. Illustration of our external influence factor (EIF) aggregation module
compared to prior arts [7], [8], [11], [13].

Given the coarse-grained flow mapXt
coarse and its corresponding

EIF vector F t which dimension is dF , our module first expands
the EIF vector to dF -channels H ×W feature maps. The ex-
panded feature maps are then fed into full-connected layers
to obtain the dense EIF maps Ft ∈ RH×W×C/2. In this way,
all EIFs are considered and modeled for each individual map
cell. Furthermore, to strengthen the robustness of our model,
we copy the flow map Xt

coarse for C/2 times, and apply a small
Gaussian noise on all the replicas. Finally, we concatenate the
Dense EIF maps and flow maps as the input of base encoder:
X̃t

coarse ∈ RH×W×C .
We note some of the previous models [7], [11] further upsam-

ple the EIF feature map to fine-granularity Ft
fine ∈ RSH×SW×1

which used in the later part of their models as an information
highway to prevent information perishing. Next, we illustrate
how to infer the final fine-grained flow map.

E. Inferring Fine-Grained Urban Flow Map

Base Encoder: sim used in [7], [11]. Fig. 5 provides a visual
encoder comparison between UrbanFM, FODE, and STCF.

Distributional Upsampling: Prior FUFI methods often adopt
this upsampling technique at the end of their networks [7], [11],
which, the prediction of the network is not the exact fine-grained
flow map but a flow distribution. We also use distributional
upsampling (i.e., S2-Normalization) in STCF: at the end of the
encoder network. We take the final single channel feature map
as input and then predict a distributional flow map where the
values fall into the range [0, 1]. Specifically, a weighted flow
distributional map is defined as:

wt
i′j′ =

xt
i′j′,H∑

i′′∈
(
� i′
S �S,(� i′

S �+1)S
]

j′′∈
(
� i′
S �S,(� j′

S �+1)S
]
xt
i′′j′′,H

, (9)

x̂t
i′j′,fine = wt

i′j′x
t
ij,coarse, (10)

where xt
i′j′,H is the i′th row and j ′th column cell in Ht

fine,
wt

i′j′ ∈ [0, 1] is a weighted parameter for xt
i′j′,fine, x̂t

i′j′,fine is
the predicted fine-grained flow volume, and xt

ij,coarse is the
coarse-grained flow volume in Xt

coarse, i ∈ �i′/S�, j ∈ �j′/S�.
Now we have the inferred fine-grained urban flow map X̂t

fine =
(xt

i′j′,fine) ∈ RSH×SW×1.
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Fig. 5. Encoder network architecture comparison between UrbanFM [7],
FODE [11], and STCF. Our proposed model does not have stacked residual
blocks, skip connections, or FODE block, and only requires a single layer of
PixelShuffle, resulting fewer parameters and better generalizability.

Optimization: The overall optimization of STCF is to mini-
mize the mean squared error (MSE) between ground-truth flow
map Xt

fine and the predicted flow map X̂t
fine at time t:

LSTCF (Θ) =
1

N

N∑
t=1

∥∥Xt
fine −FΘ(X

t
coarse)

∥∥2 , (11)

where N is the number of training coarse-grained flow maps, Θ
denotes the learnable parameters.

V. EXPERIMENTS

Now we present the experiments examining the inference
performance of STCF compared with state-of-the-arts. Our ex-
periments cover: (i) two large-scale urban flow datasets; (ii)
two SISR baselines and three FUFI baselines; (iii) empirical
evaluations conducted on different data fractions; (iv) ablation
study, case study, and complexity analysis. For the ease of

reproducing our results, the source code and datasets are publicly
available at https://github.com/Xovee/stcf

A. Datasets

We perform experiments on two public urban flow datasets,
including four taxi flow sub-datasets in Beijing City and one bike
flow dataset in New York City. Detailed statistics of datasets are
shown in Table II and Fig. 6.
� TaxiBJ datasets (https://github.com/yoshall/UrbanFM) are

originally released in [7] containing urban taxi flow in Bei-
jing within four different periods from 2013 to 2016. The
resolution of flow map in TaxiBJ is 128 × 128, each cell in
the flow map indicates the taxi flow volume in 30 minutes.
The upscale factor S is 4, i.e., we use a downsampled 32 ×
32 coarse-grained map to infer the 128 × 128 fine-grained
map. The taxi flow maps are collected between 7 AM and
9 PM, and some extremely noisy data are removed [7].

� BikeNYC dataset is initially released by Citi Bike (https://
citibikenyc.com/system-data) and processed by [11]. This
dataset contains bike flow in New York City from Jan 1 to
Mar 31, 2019. The resolution of flow map in BikeNYC is
80 × 32, each cell in the flow map indicates the bike flow
volume in an hour. The upscale factor S is 2, i.e., we use a
downsampled 40 × 16 coarse-grained map to infer the 80
× 32 fine-grained map.

Both datasets are associated with external influence factors
which may affect the city flow in certain areas or at a certain
time, e.g., weather, date, and temperature. Each dataset was
divided into training (50%), validation (25%), and test (25%)
sets. To evaluate the data-efficiency capabilities of our model
and baselines, we use different training data percentages from
10% to 100% when conducting experiments.

B. Baselines

We compare STCF with the following six baselines, a com-
parison between them is shown in Table III.
� Historical Average (HA): is a simple baseline proportion-

ally predicting the flow volume by its historical average.
� ESPCN [50]: is a real-time single image model which

extracts feature maps in the low-resolution space and pro-
poses an efficient sub-pixel convolution layer for aggregat-
ing features maps.

� SRResNet [28]: is a deep residual SISR model which stacks
many residual blocks for image super-resolution.

� UrbanFM [7]: is the first work to study fine-grained
urban flow inference (FUFI) problem. It proposes three
key modules: a deep inference network to learn spatial-
correlations, a distributional upsampling layer to impose
spatial-constraint, and an EIF fusing subnet to improve
FUFI performance.

� FODE [11]: leverages neural ordinary differential equa-
tions (ODE) for memory-efficient flow map feature learn-
ing, and proposes an augmented S2-Normalization layer.

� UrbanODE [13]: introduces a pyramid attention network
to infer high-quality flow maps based on neural ODEs.
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TABLE II
STATISTICS OF TWO URBAN FLOW INFERENCE DATASETS

Fig. 6. Flow volume distributions for two datasets (left part is TaxiBJ P1 and right part is BikeNYC). Take fine-grained flow volumes in TaxiBJ dataset as an
example, top 20% volumed map cells account for 79.18% total flow volumes.

TABLE III
BASELINE COMPARISON

C. Experimental Settings

Spatial Constraint: We note that for all SISR baselines, we
add a S2-Normalization layer at the end of their architectures to
obey the spatial constraint of FUFI problem.

Configurations: For baseline and STCF configurations, to
be fair, we uniformly adopt the following settings whenever
possible. We use Adam optimizer, initial learning rate is 1e−4,
batch size is 16, default number of base channels is 128 (equal
to 4x model size). Except following specific configurations, we
keep other hyper-parameters unchanged. For
� ESPCN, the number of channels of two convolution layers

are set to 768 and 384, as suggested in [7].
� UrbanFM, we use the official PyTorch implementa-

tion (https://github.com/yoshall/UrbanFM), the number of
residual blocks is 16.

� FODE [11] and UrbanODE [13], we implement their ar-
chitectures by PyTorch (cf. https://github.com/Anewnoob/
FODE), the number of DE block is 1, the ODESolver is
Dopri5 numerical method. The θ in UrbanODE’s PA block
is embedded Gaussian and ρ is a linear embedding.

We train STCF as well as baselines on training set at most
1,000 epochs, and when validation loss is not declined for
100 consecutive epochs, we early stop the training process and
report the inference performance on test set. The default scalar
temperature θ is 0.1. For pre-training networks, the batch size
is 32. Following [7], the values of max-scalar for coarse- and
fine-grained flows in TaxiBJ datasets are set to 1,500 and 100,
respectively. For BikeNYC, the max-scalar values are set to 400
and 25.

Computing Infrastructure: For STCF and baselines, we run
the experiments on Ubuntu 20.04, 64 GB RAM, Intel CoreTM i7-
8700 K CPU, and single NVIDIA 1080 with 8 GB RAM.
STCF is implemented with TensorFlow 2.9.

Metrics: Different from image super-resolution evaluating
metrics, in FUFI problem the prediction target is flow volume of
map cell rather than image pixel color – metrics such as PSNR
and SSIM [29] are inappropriate here. We mainly use the mean
squared error (MSE) for model evaluation, which is defined as:

MSE =
1

N

N∑
i=1

∥∥∥Xt
fine,i − X̂t

fine,i

∥∥∥2 , (12)
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Fig. 7. Performance comparison between STCF and all baselines with different data fractions without using external influence factors (EIF). We note some
results of ESPCN are not showed due to their significantly higher MSEs compared to other models.

where N is the number of test samples. We additionally in-
clude four more metrics for evaluation: mean absolute error
(MAE), mean absolute percentage error (MAPE), mean squared
logarithmic error (MSLE), and accuracy with 20% tolerance
(ACC@20%), they are defined as:

MAE =
1

N

N∑
i=1

∥∥∥Xt
fine,i − X̂t

fine,i

∥∥∥ (13)

MAPE =
1

N

N∑
i−1

∥∥∥∥∥Xt
fine,i − X̂t

fine,i

Xt
fine,i

∥∥∥∥∥ (14)

MSLE =
1

N

N∑
i=1

∥∥∥logXt
fine,i − log X̂t

fine,i

∥∥∥2 (15)

ACC@20% =
100

N

N∑
i=1

1

(∥∥∥∥∥Xt
fine,i − X̂t

fine,i

Xt
fine,i

∥∥∥∥∥ ≤ 0.2

)
(16)

where 1(·) is indicator function. For MAPE and ACC@20%,
we add 1 to all flow volumes to avoid division by zero.

D. Experimental Results and Analysis

We now compare our proposed STCF with baselines and
report the experimental results. For fairness, we use two evalu-
ation protocols: with or without external influence factors. The
FUFI performances are shown in Figs. 7 and 8. Specifically, we
have the following observations:
� Fig. 7 shows MSE on five datasets with different data

fractions. We can observe that, STCF consistently and sig-
nificantly outperform all other baselines. When comparing
to UrbanODE, STCF achieves relative performance gains
of 22.9%, 59.8%, 23.4%, 23.3%, and 48.2% on TaxiBj
P1-P4 and BikeNYC datasets, respectively, with only 10%
data. The improvements become larger when using fewer

data, which indicates that STCF is data-efficient and greatly
reduces the risk of overfitting problem when data are
limited, hopefully saving the operation and maintenance
costs of urban sensor equipment. This is in line with
our motivation that contrastive pre-training and coupled
fine-tuning can help learn robust map features and improve
FUFI performance.

� For baselines, ESPCN is incapable of tackling FUFI prob-
lem and results in the worst performance. As a simple
heuristic model, HA neglects temporal and dynamic char-
acteristics of urban flows and only considers the aver-
age flow distribution, which, making it uncompetitive.
FUFI baselines, powered with deep residual blocks or ODE
solvers, outdo HA and ESPCN. However, their perfor-
mances are rather similar. STCF distinguishes itself from
competitors due to its advantages of learning expressive
EIF and flow map features, and the ability to overcome
overfitting and reduce training data demand.

� Fig. 8 shows the inference performances of STCF and
FUFI baselines (UrbanFM, FODE, and UrbanODE) when
using EIFs. Again, our proposed STCF greatly outperforms
all the baselines on five datasets, up to 13.5%, 36.6%,
15.6%, 17.2%, and 46.8% relative MSE gains, respectively,
compared to UrbanODE with only 10% data. The improve-
ment gaps become smaller, this might be owning to the
performance saturation.

� External influence factors generally improve the FUFI
performance on all five datasets (as shown in Table IV),
and the improvements are statistical significant with a level
of p < 0.05 (student’s t-test). EIFs have proven to be ef-
fective for inferring the urban flow map in fine-granularity.
Specifically, our proposed new EIF aggregation module
provides additional performance boost.

� For all datasets, FUFI models perform better on BikeNYC
and worse on TaxiBj-P3. We speculate this is because the
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Fig. 8. Performance comparison between STCF and FUFI baselines with different data fractions. External influence factors (EIF) are used.

TABLE IV
EIF IMPROVES FUFI PERFORMANCE

average flow volume and variance of P3 are larger than
others, making it hard for inference.

Overall, we conclude that STCF is data-efficient (generally
requires 20–50% fewer data to obtain the same level of results),
capable of addressing the overfitting problem, and sets a new
state-of-the-art on fine-grained urban flow inference.

E. Ablation Study
� Impact of model size: Fig. 9 reports the inference perfor-

mance under different model sizes (2×, 4×, 6×, 8×).
Here, 2× denotes the model layers have 64 channels.
In general, the best performance is achieved using 6×
model size, further increasing the model size (8×) does
not bring additional improvements. Notably, STCF 2× is
better or comparable with all other baselines while also
saving ∼90% model parameters (compared to UrbanODE
6x).

� Impact of learning rate: Fig. 10 records the performance
and training loss of STCF using different learning rates. We
can see that learning rate has a big impact on performance
and 1e−4 clearly won out over others.

Fig. 9. Impact of model size of STCF and baselines on 10% TaxiBJ-P1 dataset.
We use 4x as the default setting of model size in this article.

� Impact of pre-training network and batch size: We test
the performance of spatial-contrasting network (SC),
temporal-contrasting network (TC), Joint pre-training of
the SC and TC, and STCF in the left of Fig. 11. We
find that SC does better than TC. When training data are
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Fig. 10. Impact of learning rate with different data fractions on TaxiBJ-P3.
Left: performance; Right: training losses (10% data).

Fig. 11. Impact of pre-training network (left) and batch size (right) of STCF on
TaxiBJ-P3 with different data fractions.

Fig. 12. Impact of max-scalar for both coarse- and fine-grained flow maps in
BikeNYC dataset. We use UrbanFM trained on 50% data. UrbanFM without
using max-scalar, i.e., set max-scalars to 1, results a poor MSE of 4540.

sufficient, the performance of TC catches up. Overall,
Joint pre-training and fine-tuned STCF have the lowest
and comparable MSEs. The right of Fig. 11 shows the
performance of STCF under different batch size settings.
We can see that a small batch size is sufficient for obtaining
a good performance. Prior contrastive methods [20] value
the importance of large model & batch sizes, we conjecture
that such settings are not necessary for FUFI since the
variances and information in the flow maps are less than
that in large-scale image dataset.

� Impact of max-scalar: Since baselines (UrbanFM, FODE,
UrbanODE) require an important hyper-parameter max-
scalar as a normalization method to speed model training
(make loss small enough), we ablate the impact of max-
scalar for UrbanFM on BikeNYC dataset, the results are
shown in Fig. 12. We found that max-scalars – whether

Fig. 13. Complexity analysis on model parameters. We report MSE in terms
of model parameter on 10% TaxiBJ-P1.

TABLE V
RESULTS OF TRANSFER LEARNING (MSE)

used for coarse- or fine-grained flow map – greatly influ-
enced the FUFI performance. We use the best-performed
combination (400 and 25) throughout the paper. Notably,
STCF does not need this hyper-parameter.

� Impact of model parameters: Now we analyze the space
complexity of STCF. We report MSE in terms of model pa-
rameters in Fig. 13. It is easy to see that STCF significantly
performs better than baselines within the level of model
parameters. This mainly attributes to STCF’s lightweight
architecture, i.e., without complex stacked residual blocks,
ODE solvers, and/or pyramid attention. We observe 4× is
a better choice for model size in terms of efficiency versus
performance trade-off. For a small model size (2×), the
performance drops severely.

F. Results of Transfer Learning

The generalization capability of FUFI models is crucial for
practical applicability. One of the most important goals of
FUFI problem is to save the maintenance and electricity costs
of urban sensing systems. On the one hand, the fine-grained
flow maps become unavailable once the deployed sensors are
closed or dismantled. On the other hand, re-training FUFI model
requires new data, which might be expensive. Thus, training a
generalized and efficient model that can be effectively trans-
ferred to other datasets is vital. We train our model and baselines
on one dataset and test them separately on other datasets; The
transferring results are shown in Table V. Green numbers in
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Fig. 14. Case Study: FUFI inference visualization of STCF and baselines on TaxiBJ P1 dataset. Darker (higher) cell indicates larger flow volume.

TABLE VI
MODEL COMPARISON IN TERMS OF MAE, MAPE, MSLE, AND ACC@20% ON 10% TRAINING DATA

brackets indicate performance improvement of STCF compared
to the best baseline. Orange numbers in parentheses indicate
performance change of current model compared to original
result (train and test on the same dataset).

We can see that for all models, not surprisingly, their perfor-
mances declined about 18–50%. For example, there is a 26.6%
performance decrease for UrbanODE on P2. The deterioration
becomes larger for later datasets. This points out that FUFI pre-
dictions for future flow maps become harder. In comparison to
baselines, STCF effectively reduces the performance degrada-
tion, showing superior generalization capability.

G. Case Study

Here we present two case studies for better understanding
the urban flow inference problem, our proposed model, and
prediction interpretation.

1) Inference Error Visualization: To explore the effective-
ness of STCF on FUFI inference, we visualize the inferred
urban flow map as well as a 4 × 4 sample region in Fig. 14.
We can observe that compared to ground truth, the prediction of
STCF best approximates the true flow distribution. ODE-based
models (UrbanODE and FODE) fail to reconstruct the flow
distribution, resulting in the highest inference error. UrbanFM,
in contrast, successfully predicts the high-volume cells. How-
ever, it uniformly treats the low-volume cells and thus loses
information.

2) More Metrics: We provide additional experiments in
Table VI, where we show the performance comparison of
STCF with baselines on 10% TaxiBJ P1 and BikeNYC datasets,
in terms of MAE, MAPE, MSLE, and ACC@20%. Different
metrics have different emphases on the prediction. For example,
MSE pays more attention to the performance of the model
in regions with high flow volumes, while MAPE values the
overall performance of the model in all regions. We can see that
STCF significantly outperforms the baselines on all metrics.

Fig. 15. Importance scores of external influence factors on two datasets. Top:
TaxiBJ. Bottom: BikeNYC.

3) EIF importance/influence on Flows: We conduct random
feature permutation [52] on external influence factors and report
the mean performance change of STCF by 10 runs on the test
set, the results are shown in Fig. 15, higher values represent
higher importance. It was easy to see that hour of the day and
temperature are two most important factors for STCF. For taxi
flow in Beijing, the peak flow volumes occur during office
hours. In New York, people are more likely to ride a bike
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Fig. 16. Visualization: the flow volume distribution change by altering external
influence factors on a sample map in TaxiBJ P1.

during commuting hours and are less likely to ride a bike at low
temperatures. EIFs affect not only the total volumes of flows but
also the distribution of flows. For example, when we manually
alter the hour of the day and temperature values for a sample map
in TaxiBJ, the flow distribution changes (cf. Fig. 16). Beyond our
expectation, the influence of weather factors are minimal, which
might be the cause of data sparseness. Overall, the improvements
of the EIF module are not as significant as that brought by the
contrasting networks. We speculate it is because: (i) the sparsity
of the factors, e.g., some weather conditions rarely occurred;
(ii) there may exist other EIFs that we did not take advantage
of, e.g., traffic control signals and mega events such as football
match and concert; (iii) EIFs are not involved in the pre-training
stage; (iv) spurious correlations are learned during training. Data
augmentation and feature engineering on EIFs may address these
limitations and further improve the FUFI performance.

VI. CONCLUSION

We presented STCF, a novel spatial-temporal framework for
data- and parameter-efficient fine-grained urban flow inference.
STCF follows a pre-training & fine-tuning paradigm, upscaling
the coarse-grained flow map by spatial-temporal contrastive pre-
trainings. The pre-trained feature maps and external influence
factors are effectively fused via a coupled fine-tuning network,
yielding non-complex architecture and yet achieving significant
performance improvements over the state-of-the-art.

Our future work will focus on designing more helpful pretext
tasks and effective external influence factors, further improving
STCF by explicitly modeling dynamical flow distributions by 3D
convolution or sequential models, and transferring the learned
knowledge to other types of urban flows and/or other cities [53],
[54].
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