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Abstract— Identifying the geolocation of social media users is
an important problem in a wide range of applications, span-
ning from disease outhreaks, emergency detection, local event
recommendation, to fake news localization, online marketing
planning, and even crime control and prevention. Researchers
have attempted to propose varions models by combining different
sources of information, including text, social relation, and contex-
tual data, which indeed has achieved promising results, However,
existing approaches still suffer from certain constraints, such as:
1) a very few samples are available and 2) prediction models are
not easy to be generalized for users from new regions—which are
challenges that motivate our study. In this article, we propose a
general framework for identifying user geolocation—MetaGeo,
which is a meta-learning-based approach, learning the prior
distribution of the geolocation task in order to quickly adapt
the prediction toward wsers from new locations. Different from
tvpical meta-learning settings that only learn a new concepl from
few-shot samples, MetaGeo improves the geolocation prediction
with conventional settings by ensembling numerons mini-tasks,
In addition, MetaGeo incorporates probabilistic inference to
alleviate two issues inherent in training with few samples: location
uncertainty and task ambiguity. To demonstrate the effectiveness
of MetaGeo, we conduct extensive experimental evaluations on
three real-world datasets and compare the performance with
several state-of-the-art bemchmark models. The results demon-
strate the superiovity of MetaGeo in both the settings where
the predicted locations/regions are known or have not been seen
during training.

Index Terms— Bavesian learning, few-shot learning, geoloca-
tion, meta-learning, semisupervised learning.

I. INTRODUCTION

ITH the increased popularity of social media services,
such as Twitter, Facebook, Wikipedia, and Instagram,
users have enabled the generation of unprecedented volumes
of heterogeneous data (e.z., posted texts, shared images, and
social network structures). Due to various reasons, such as
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privacy concerns (enforced by regulations and/or platform
policies) and social media usage habits, most users are not
willing to explicitly disclose their physical geolocations. Stud-
ies have shown that only a very small portion of posted
information is published with explicit geotags (e.g., only 1%
of the tweels are recorded with real-time locations) [1]. Tden-
tifying geolocation is a crucial component in a wide range of
downstream online applications—such as emergency location
identification, disease outhreak prediction, political election,
local event/place recommendation, crime control, and preven-
tion [2]. However, the users may reveal their geolocations
implicitly via their published content—e.g., by mentioning
the places they visited or the cities they lived—which makes
the prediction of users’ physical geolocations possible. For
example, people from Los Angles may frequently mention
“Lakers™ or “Clippers” and those from Houston may often
publish tweets containing the word “Rockets.” As such, the
problem of identifying user geolocation (or geocoding) from
implicit sources has received tremendous attention from both
academia and industry in the past decade [1], [3]-[7].

Existing studies have attempted to propose many machine
learning models by combining various types of information,
including text [8]-[12], online social relations [13]-[15], and
certain contextual data, such as posting time [16], self-declared
profiles [17], [18], and searching behavior [19]—all of which
have enabled achieving promising resulis in geolocation identi-
fication for social media users. Since single-view learning does
not ensure accurate geolocation, researchers have turned to
unifying multiple features and paradigms. For example, multi-
entry neural network (MENEXT) [5] incorporates various
types of features extracted from texts, the user interactions
and temporality in time zones into their learning models (e.g.,
doc2vec [20] and node2vec [21]). More recently, a multiview
geolocation model that jointly learns from tweet content and
social networks was presented in [1], based on graph neural
networks [22].

Despite achieving significant progress, especially when
combined with deep learning and graph learning, existing
approaches still suffer from certain constraints.

{C1) The training data (e.g., the geotagged data) are extremely
sparse, which means that some regions/locations have
very few or no users associaled. Though transductive
learning-based models, such as GCNs [22] may, to some
extent, alleviate this problem, the results are far from sat-
isfactory because of their imbalanced characteristics [1].
Taking the Twitter-World data [3] for example, the
number of users in different regions is extremely imbal-
anced and follows a heavy-tail distribution, as shown in
Fig. 1ia), where more than 200 target regions have less
than 80 users,
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Fig. 1. (a) Distribution of users per region from the Twitter-World
datasel [3] with 930 regions. The r-axis: the number of regions a user visits.
(b) Visited geopraphical regions on GeoText [8]. The dark the color, the
maone users are associated with the region, The best view is in colors.

(C2) Existing methods are not able to handle the scenario
where only a few samples are available in each region.
(C3) Existing methods predict the location of individual users
independently in a (semi-)supervised manner, which,
consequently cannot generalize the knowledge learned
from the training to new regions which are unseen during
training. Fig. 1{b) plots the geographical location of
users in the CeoText dataset [B]. The star-labeled
regions are far from those in the east/west coast (circles)
and have fewer users visiling, which makes inferring the
location of users in these regions more challenging.
Many efforts have been made to alleviate the data imbal-
ance issue. Conventional approaches focus on designing
data re-sampling stratepies, over-sampling the tail classes
or down-sampling the head classes [23], cost-sensitive fea-
ture representation learning [24], and class-balanced loss
designs [25]. However, these methods either need to man-
ually set a specific form of weighting function based on
cerlain assumplions on training data or involve hyperpara-
melers, increasing the difficulty of application and reducing
performance stability. Recently, meta-learning has emerged
as a promising way of addressing the class-imbalanced
learning problem in the community. For example, recent
works [26], [27] propose to automatically learn implicit or
explicit loss-weight function parameterized by neural net-
works from data in a meta-learning manner, while the
Jamal et al. [28] augment the classic class-balanced learn-
ing by explicitly estimating the differences between the
class-conditioned distributions with a meta-learning approach.
Inspired by recent advances in few-shot learning and domain
adaptation methods dealing with the class imbalance issue,
we present a novel user geolocation identification model,
called MetaGeo, relying on the meta-learning paradigm to
address the constraints (C1-C3) in existing methods. Meta-
Geo consists of a text view component and a fast graph
neural network to jointly capture: 1) content and network
features and 2) their latent relations. By optimizing the model
over the distribution of few-shot tasks, MetaGeo can quickly
adapt to regions with only a few available users. It learns
a well-generalized model initialization from a variety of
geolocation tasks and aggregales the contextual information
from source regions to predict the regions with few samples.
Instead of relying on the transductive learmning of graph neural
networks, MetaGeo fine-tunes the task learmners to improve the
capability of adapting to new regions and learn transferable
knowledge for regions that have not been seen during training
[e.g., the star-labeled ones in Fig. 1{b}]. In summary, the main
contributions of this article are fourfold.

B@51

1) We provide a novel perspective of identifying the geolo-
cation of users on social media by leveraging the
meta-learning paradigm to learn a prior distribution over
tasks with a small number of users and their generated
content.

2) We propose a novel framework—MetaGeo—to tackle
the user geolocation prediction problem where we theo-
retically introduce a probabilistic graphical inference for
parameter updating. In addition to faster adaptation (o
new regions, MetaGeo also takes task uncertainty and
ambiguity into account during training.

3) MetaGeo learns from regions general knowledge encod-
ing both tweet content and social network features and
transfers the knowledge to those regions with few users,
which leads to significant performance improvement for
unseen regions.

4) Our extensive experiments demonstrate that MetaGeo
achieves superior performance over several existing
state-of-the-art geolocation prediction models on three
benchmark datasets while being able to recognize
users from new regions with a few samples, which is
extremely difficult for the previous methods.

The following is the roadmap of the rest of this article.
We provide the necessary background and introduce the for-
malisms used in the rest of this article in Section 1I. The gen-
eral framework of MetaGeo and the details of implementation
for adapting it to user geolocation identification are discussed
in detail in Section 1. Our experiments, including the setup,
datasets, and evaluation against baselines, are reported in
Section TV. We overview the related work and position our
contributions in that context in Section V. Finally, we provide
concluding remarks and outline directions for future work
in Section VL

II. PRELIMINARIES

We now define the problem settings and objectives, followed
by a concise introduction of the necessary background with
respect to generating geographical regions and the building of
interaction networks, and the content representation. Finally,
we discuss the background in feature learning.

A. Problem Definition

The main objective of our study is to enable home loca-
tion prediction of the users of social networks (in our case,
Twitter users). We follow [2] and consider it as a multiclass
classification problem.

Muore specifically, let Y = [y, ..., ¥m) denote a set of m
geographical regions, and V = {uy,...,8,] denote the set
of n users. The objective of the user geolocation prediction
problem is to identify the home locations of users in V'—and
we propose to achieve it by training a classification model fj
with parameters & on the user-generated content (tweets).

B. Data Preprocessing

We realize MetaGeo extracting textual information and
forming user—user interactions network from the user-
generated content. We note that although Twitter is used as
the context to illustrate our study, MetaGeo can be easily
generalized to other similar sources of data and is Aexible
to incorporate other features (e.g., tweeting-time, registration
timezone, search terms, and so on).
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1) Geographical Regions: As the location of a Twilter user
is indicated by latitude and longitude, we need to partition
locations into a set of discrete regions. Following [29], we use
k-d tree to generate discretized regions with finer resolutions
in popular areas.

2) User—User Interaction Network: The user—user inter-
action network is constructed from user mentioning tags.
Following [12], user interaction matrix A £ B"*" (symmetric
adjacency matrix) is build based on the collapsed @-mention
graph & = (V, A) among users. Each node v = V' corresponds
to a particular user. An edge a;; is an implicit link between
two users oy and o; created when: 1) user o; V' mentions
directly user n; € V' and (2) two users o; € V and n; € V
co-mention a third user o (even oy might not be in V,
we still add an edge to avoid the connection sparsity [12]).
Furthermore, because celebrities are very frequently men-
tioned by others, to avoid any biased connections derived
from these celebrities, we ignore mentions of celebrities when
constructing A.

. Feature Learning

MetaGeo relies on two categories of features.

1} User Content Features: For each user v, we aggrepate
all the tweets to form a document and use TF-IDF [30] to
measure the importance of each word in it. This, in turn,
increases proportionally to the number of times it appears in
the document but is offset by the frequency of the word in the
corpus. TF-IDF measures the informative quantity of a word
across documenis—i.e., a common word would be given low
weight while a rare term gets a relatively higher weight. After
the word representation, the user content features matrix X can
be immediately obtained the rows in X represent users and
the columns are all the unique words across all documents.
Note that other representation methods, such as word2vec or
doc2vec can also be chosen. In this study, we follow previous
work [1], [15] and use TF-IDF for fair comparisons.

2} Network Features; The network structure of user latent
interactions can be captured by various network representation
approaches or graph neural networks, e.g., node2vec [21]
has been used for user representation [5] while GCNs [22]
has been directly employed for modeling network features
and predicting user geolocation [1]. Here we use simple
graph convolutional (SGC) networks [31] for network feature
representation, which simplifies the GCNs model by removing
nonlinearity between layvers and smoothing the hidden feature
aggregation with linear transformations.

Specifically, we learn the network feature representation of
all users with D-layer graph convolutions, where the update
in each layer h? (d = {0,1,..., D — 1}) is a simple sparse
matrix multiplication

S = D :AD:
hd+1 = Sh.n!

(1
(2)

where A = A + 1 is the adjacency matrix with self-loops
added, I} is the degree matrix of ,1, and 8 is the normalized
adjacency matrix, i.e., the normalized adjacency matrix with
self-connections. The input layer is the user content features,
i.e., h? = X. Subsequently, the final preference representation
of a user obtained in the last layer is used for the downstream
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prediction task, which can be expressed as
h? — spP! — sPR® — g0x

T e
- (f:)x + (?)SX PO (g)gﬂx.

The motivation behind the basic GCNs is to average the
representation of locally neighboring nodes and propagate the
features through the network. To make the graph learning
efficient, we remove the nonlinearity between layers and only
keep the last softmax layer following [31] to produce the
probability distribution for each user o

$ = softmax(fa(v)) = softmax(MLP(8”X)) (4)
where [ is the SGC [31] model and & denotes the parameters.

(3)

IHI. METAGEDO METHODOLOGY

In this section, we describe the details of our proposed
user geolocation prediction framework MetaGeo. Specifi-
cally, we explain the process of task sampling, followed by
the meta-training and implementation aspects. Subsequently,
we present application-oriented perspectives of MetaGeo for
the purpose of evaluating its generalizability. We finish the
section with a discussion of the complexity and universality
aspects.

A, Task Sampling

Instead of training a single model of user geolocation
prediction as previous methods, we are more interested in
augmenting the learning ability of prediction models via
meta-training. However, meta-learning algorithms are specifi-
cally designed to identify and learn new concepls (e.g., new
classes) with few-shot samples, which usually require a sel
of mela-training and meta-testing lasks. In conventional user
location prediction settings, we do not need to sample tasks
for meta-testing. In this regard, one natural question is: can
we follow the traditional test settings but at the same lime
leverage meta-learning lo improve the prediction model?

In this work, we propose to enhance the classification model
by stacking numerous mini meta-learners. Formally, we split
training data D" into support sets S and query sets Q to
form a set of tasks T = [T), Tz, ..., Ty} following the typical
meta-training procedure [32]. Each task 7; € T contains a
support set &; and a query set Q;, which are used for training
and testing (in each task), respectively. Specifically, we first
define { as the task index and j as the region index. Then,
we perform the following steps to obtain the tasks T for
training our model.

1) Randomly sample a subset of regions Y;; ~ ),

\¥,1 = N.

2) For each region y; € Y; ;. sample K users to form a

support set 5 and P users (¢ &) Tor a query set ;.

3) Repeat steps 1) and 2) for |T| = M times.

The above-mentioned sampling process forms a N-way
K-shot learning problem. Note that K is usually small
(e.g., 3 or 5) which is consistent with traditional meta-leaming
settings [33]-[35]. However, N is not limited to a small
number as typical meta-learning studies. In Section TII-D,
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we discuss the values of & according to different applications
setlings.

Fig, 2. Plate model for MetaGeo,

B. Meta Training

MetaGeo trains the base model fi on the support set & and
predicts the target regions of users in the query sets @—in the
same way as the supervised leaming computes the prediction
loss and updates the model parameters through backpropaga-
tion. The prediction model fy outputs the probability thal a
user v is associated with the region y while incorporating the
content and network-based features as in (4).

A possible way to train the base model fj is Model-agnostic
meta-learning (MAML) [34], which explicitly learns some
shared parameters # that make the model easier to seek the
right task-specific parameters ¢ when facing a novel task
with limited (i.e., K') samples. However, applying MAML for
training fu raises two challenges: 1) while MAML can directly
optimize the model on the training data D" its performance
is only able to adapt to novel classes, rather than existing
regions in training—the latter being the case of conventional
geolocation setting and 2) the user locations are bounded by
a region partitioned by k-d tree, which is uncertain and very
sensitive to their parameters, especially for those from dense
population areas, e.g., the east coast in the US [cf. Fig. 1{b)].
This may result in unstable task training and unsatistactory
prediction results with only a few-shot samples in each task.

To adapt our model to the conventional testing while consid-
ering the task uncertainty, we introduce a probabilistic graph
model for maximum posterior inference toward estimating and
alleviating the task ambiguity problem in training MetaGeo.
The graphical model of MetaGeo is shown in Fig. 2, where
D; is independent of # given ¢ (lask-specific parameter),
and &; is independent of O;. Inspired by recent advances in
probabilistic meta-learning [36]-[39], we use the amortized
variational inference [40] to estimate the posterior distribution
of network parameters. Specifically, we consider the following
optimization problem in a mini-batch of B tasks with support
and query set split:

B

W e
again £ 1-3 K loep(@id:)

By

+ KL(qalei |5 || pld|Si, 6))

+ KL (g ()] p(@)). (5)

The maximum a posteriori estimate of ¢@; is obtained by a
fixed number of optimizations with support data, and w is
the variational parameter of the approximate posterior over &,
Equation(5) needs to approximate p(gy|S;i, #) with proposal
galih|Si ). which can be obtained by updating the parameters
with support set (see Appendix for derivation). We note that
following [39], here, we also use the support set for amortized
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------ |
update parametars
Fig. 3. Paramefer updating in MetaGeo.

variational inference. However, in MetaGeo, the parameter
update is different from [39]. We further clarify the details
of implementation in Section IMI-C.

Fig. 3 shows the parameters updating procedure of Meta-
Geo, which is performed via a mini-batch gradient descent
with random initialization of variational parameters. It consists
of inner updates and outer updates, described next.

1) Inner Updates With &;; In the inner update with support
set data &;, the inference is performed by running a gradient
descent on the loss £(S;: ¢ ') for a fixed number (L) of
iterations starting from ¢ =

ﬁ{Si;Gﬁf_I] e lng p{&lﬁ_l]
# =" —aVyL(S:47)
s gl
=¢ ' - w e

where a is the task-based learning rate. In our work, since
we treat the user geolocation prediction as a supervised
classification problem, we use cross-entropy error as the
loss function. In the case of supervised classification with
inputs .x‘f. corresponding labels v;& and a classifier fgr,
we denote the negative log-likelihood of the data under the
classifier as

£(s:: ¢f“} = —log p(Sil¢i ")
- X leep(3 R A). @
XS

For discrete classification tasks with a cross entropy loss,
we have

Lsad ) = X yirog sy (=)

Xy, ¥yl

+(1-37)10g(1 - £ (7). ®

2) Outer Updates With Q;: After each inner update, the
model parameters @ in the overall meta-objective £(Q;; ¢)
are updated using gradient descent

B L
0=0-pV3 3 anl(Q 4l) ©)

i=1 i=1

L(Qi; ¢7) = argmin—log p| Qs 14" —aVy-1 L(Si: ¢/7")

¢:

(10)
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Algorithm 1 MetaGeo Training

Algorithm 2 Evaluating MetaGeo

Input: training data D" = (5, Q); task-based learning
rale a; meta-leaming rate B the number of inner
loop updates L
Output: optimal model parameters 6°.
1 Initialize § = {ug, o2} at random;
2 p0) = N(p; 0, 1) I'(zg: @, b):
3 while not done do

4 | Sample a mini-batch of tasks T, ~ T, i =[l1,..., B];
5 | foreach T7; do
6| | mh=no o) =0
/* Training on & * )
7 for/=1,...,L do
¢ = [#.;s-, E’.;sm]
Compute mean and variance:
i ‘:fiﬁl_,u#_ —a?uﬁ(b ¢flf y;
1 |-:|r§|”:I i“ 3 —aV o2 uﬁ(isr,"?“II B
12 Evaluate weighted query loss ey £(Q;; ¢)) on
query set Q;;
13 end
14 | end
1s | Compute the total loss: 3% 31 | en £(Q;; ¢l):
6 | Update 0 by: 6 =6 — BV 32 3F | an£(Qs; ¢l ).

17 end

where § is the meta-learning rate, and oy denotes the impor-
tance weight of the query set loss at /th step used for improving
the gradient stability of training MetaGeo suggested by [41].

C. Implementation Details

Ravi and Beatson [39] use the local reparameterization trick
for the fully connected layers and the Flipout technique for
the convolution layers to generate (almost) completely inde-
pendent weight samples. When implementing (5), we instead
calculate the Kullback—Leibler (KL)-divergence terms analyt-
ically and approximate the expectations by averaging over a
number of samples from the approximate posterior.

Specifically, we assume that the prior p(#) = A (s, a7)
follows a Gaussian with mean gy and variance rr,f for each
parameter of the model fy. Then the posterior pidi|S;, &)
is also a Gaussian, i.e., p(¢|S;, @) = N(di; po, 57). When
approximating pig; |5, &), the proposal ga (g |S;) is computed
with L iterations in the inner loop with initialization ¢ = 8 =
{ua, nr,:,.} Then, for each iteration ! = 1, ..., L, we can update
# = 020 as

#.;,r., = ‘u;:] - a?p:ijlﬁtﬁ';#_l}

El'i_“] — a;{f_” — H?ﬂin' :1£{Si;¢f_lj. (11)

The rest of the problem is how to initialize the parameters
of the prior p(#) from which ¢; is sampled at the beginning
of each iteration. According to Bayes mle

Pladi|Si, 8) o p(S;, Bl pleh)

Py 7415, 8) o p(Si, Ol 7y ) P, 7)) (12)

Input: testing data D" = (S"%, 0"*'); model

parameters £,

1 while not done do
¢ | foreach T; do

/* Update ¢; with S™=t, *
3 #3, = Hge; :rjjm} = o}
4 for!=1,...,L do
5 ¢ = [#% g
6 By, = g —aV, o LS ¢,
7 73" = 330V — Va0 LSS 1;
] end
Y Update model parameters: # = r,tn;";

/* New region user prediction. * f
1 foreach wser v* € O do
1" | predict the region §* = fy(o*);
12 end
13 end
14 end

where 1-‘; =1 ,.-‘rrjf” is the precision. After L ilerations with
support data S;, the proposal gg(¢|S;) is updated to gy (1),
which can be writlen as
qo(¢f) = qolug, 7)) = @ (pg ) q0(ss) (13)
where we assume a mean field variational appmxlmauﬂn
o true pmmrmr pldiS;, #). The optimal factors gl .,»J'
and q.g{r -} have analytical solutions according to general
varmtmnal inference [42], which, combined with the outer
updates, can be then used to initialize p{#) at the next iteration.
As for the prior p(¢!) that initialized with p(8), we have

p(#;)

which is derived according to the Gaussian-Gamma conjugate
prior distribution. In (14), @ and & are the alpha and beta
parameters for the Gamma distribution.

Guaussian Variational Posterior: In previous endeavors [40],
[43], KL-divergence is obtained by analysis and calculation,
while the expectation values are approximated by taking the
average of multiple samples from the approximate posterior.
Here, we describe the Gaussian variational posterior, shifting
parameters by a mean u and scaling by a standard deviation o .
We parametrize the standard deviation pointwise as @ =
log(1 4 exp(p)). Then, for function f

= p() = N(pe: 0, )T (rg: a, b) (14)

Jalp, o) =logq((u + o o €)lf)

—logp(p+aoe)p(Tl(p +aoe)) (15)

where o is pointwise multiplication, ¢ ~ A/(0, ). Then, for
each optimization, we calculate the gradient with respect to
the mean

8fo(u,o)  Ofu(u, o)

16
dp+ooe) dp g

g =
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For the standard deviation parameter we calculate the gradient
as follows:

_ Ofelp, o) € ofalp, o)
BT B+ o oe) l +exp(—p) ap

To learn both the mean and the standard deviation, we simply
calculate the usual gradients found by backpropagation and
then scale and shift them as above. In a few-shot learn-
ing selting, we can casily generate multiple weight samples
by replicating data in each task. In the case of defining
Gaussian distribution, we use the learned prior knowledge and
Adam [44] to optimize the model.

(17)

D. Application Details in MetaGeo

The pseudocodes for training and evaluating MetaGeo
are, respectively, outlined in Algorithms 1 and 2. We eval-
uale the generalizability of the model in two scenarios.
In Section II-D.1, we compare our model with conventional
user geolocation methods. In Section [I-D.2, we evaluate
MetaGeo's performance on identifying the user from unseen
regions. The specific experimental setups are described in
Sections IV-C and IV-D, respectively.

1} Application-1 { User Geolocation Prediction): In the case
of conventional user geolocation prediction, ie., the regions
that the testing users belong to have been seen during training,
fa is a |V|-classifier model, where ) is the label set for
location prediction. Therefore, we classify each testing user o*
into the most likely region by the trained model fy through
the softmax function: softmax{fy{v*)), which outputs the
probability p(#*) of the region that »* is classified to.

Note that here, we modify the meta-learner to be a
| V|-classifier, rather than a N-classifier in typical few-shol
learning (|)| = N).

2} Application-2 (Generalization to New Regions); When
predicting the user regions that are wnkrown during meta-
training, MetaGeo turns to address a typical meta-learning
problem. In other words, it becomes an N-classifier model,
where N is the number of regions (labels) in each task, rather
than ¥ in Application-1. Namely, we classify each user o™ into
one of the N classes using the softmax function.

MNote that in this application the model would still update
the parameters (inner updates) with support data in T
when predicting users from new regions (cf. Algorithm 2).
We also note that in the implementation, MetaGeo does not
directly parameterize the variance parameters but the standard
deviation instead. This trick is suggesied by [39] and [43],
which allows us to parameterize the standard deviation and
guaraniees that o is always nonnegative.

E. Discussion

1} Computational Complexity: By operating in the weight
space, MetaGeo substantially reduces sample complexity. For
clarity, we compare our method with the GCN4Geo model.
Similar to [38] and [45], we consider splitting the model
architecture into the features extractor layers and the classifier.
For the GCN4Geo model, the network features extractor is a
GCN with D layers and the classifier is an MLP with softmax
output. In MetaGeo, we share the feature extractor across all
the users, whereas each user has its own classifier. Therefore,
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the computational complexity of GCN4Geo is O(|fgen| +
[ pl). MetaGeo's features extractor also combines the text-
and network features by D-layer linear feature aggregation—
however, we remove the nonlinearities between layers in graph
learning, which could reduce the computation complexity
to ((1). Note that MetaGeo's classifier is a single-layer fully
connected network with softmax output. Therefore, the com-
putational complexity of the MetaGeo network is O(|fyrp|).

For the parameter updating procedure of MetaGeo in a
mini-batch (B) task, we gel the initial network parameters
with Gaussian distribution by variational inference. During
inference, the complexity of MetaGeo can be divided into
two parts. The first part is the support set (8 has N x K
samples) complexity caused by the inner updates. The second
part is query set () has N x P samples) complexity due
to the outer updates. The space complexity of MetaGeo is
O(BN(K |thap|+ P [dmre])), where gnp has the same dimen-
sion as fyyp o represent the parameters updated by gradient
descenl. In contrast, the space complexity of the same number
of samples in GCN4Geo is O(BN(K + P)(|facn| + [Ewrel ).

2) Universality of MetaGeo: We now address the last
question: whether MetaGeo is a generic framework for iden-
tifying user geolocation. More specifically, is it applicable
both for traditional user geolocation and identifying users in
unseen regions studied in this article? To answer this question,
we investigate the way of parameter learning in MetaGeo.
Suppose we predict the location #* for a test user v*: ¥* =
falv*), where parameters & are learned from MetaGeo. Since
there are K users during training in each task, parameters are
updated by

K

1
$=0-aVep > L(vjs falv;)) (18)
i=l
where y; is the ground truth for o, and C can be any loss
function (e.g.. cross entropy). For a neural network f that can
approximale the underlying function, ils postupdate function
is

1 E N
1o0?) =0 —a 303 veei (o 35),): n

J=1 i=1

(19)

where h(-; &) is a neural network with hidden layers,
and vector vec is approximated by vec((v;.¥ ;-}f:l, v') =
[0,....¥j,....0]" for discrete labels y;. The summation
over vec amounts to and completely describes the frequency
counts of the triplets (o), ¥, }J‘.":], o™} and can also decode the
labels y;. Since neural network h is a universal function
approximator and its representation is redundant in o™, it con-
tains sufficient information to decode the test input »* and set
of users (v, ¥ f}f=1‘ That is, function f4 is a universal function
approximator w.r.t. ((v;, yj]f=1, u*}—thus, it does not depend
on the specific forms of loss function. Tt has been theoretically
proven in [46] thal cross entropy loss and mean-squared error
allow for the universality of gradient-based meta-learning.

TV. EVALUATION

We mnow present the details of our experimental
evaluation of MetaGeo. Specifically, we first describe
the datasets and meltrics. Subsequently, we follow with
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Fig, 4. Regions obtained via k-d tree. (1) GeoText. (h) Twitter-us.
[c) Twitter-World.

Sections [II-D.1 and UI-D.2, and in each of them, we present
the state-of-the-art baselines we compared and the outcomes
of the evaluation.

A. Datasets

We evaluate the methods using three benchmark Twit-
ter datasets, i.e., GeoText [B], Twitter-UsS [29], and
Twitter-World [3], which have been widely used for
evaluating user geolocation prediction models. GeoText and
Twitter-US consist of users across the main continental of
the U.S., while Twitter-World covers a set of worldwide
users. The label (region) of each user is determined by the geo
graphical coordinates of the training data using k-d tree [3]
which results in 129, 256, and 930 regions for GeoText,
Twitter-US, and Twitter-World, respectively. We note
that a visualization of the k-d tree-based regions for the
datasets is presented in Fig. 4, which provides an illustration
of the distribution of regions obtained via the k-d tree, for
three datasets used in this work. We evaluate the general-
izability of the model in two scenarios. In Section IV-C,
we compare our model with traditional user geolocation
methods. In Section IV-D, we replace our meta-learning
method with several state-of-the-art approaches and evalu-
ate their performance in identifying the user from unseen
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TABLE 1

DATA DESCRIPTION. | V]: THE NUMBER OF UJSERS; m: THE NUMRBER OF
REGIONS (LARELS); £: THE NUMBER OF EDGES; N: THE NUMRBER OF
WATYS (REGIONS) IN EACH TASK; K/P: THE NUMBER OF USERS
IN SUPPORT SET AND QUERY SET FOR EacH Task: |T|:

THE NUMBER OF SAMPLED TASKS

GeoText Twitter-Us Twitcter-world
|Vl 0475 449,200 1,386,766
| V| e 5,685 420 200 1,366,766
[ W]t 1,885 10,000 10,000
[ V] st 1,895 100,000 10,00
y 129 256 930
£ 77,155 5,207,215 1.0010,181
N 10 40 40
KipP 5430 575 515
[T 12,804 16,000 25,600

regions. The specific experimental setups are described in
Sections IV-C and IV-D, respectively. Table | shows the
statistics of the datasets.

B. Metrics

We measure the distance between the predicted and the
true geolocation and evaluate the models with three com-
monly used metrics in geolocation prediction, i.e., ACC@ I61,
Median, and Mean value of error distances. ACC@JI67 is an
accuracy metric that considers predictions having errors within
161 km (or 100 miles) as correct predictions, while Median
and Mean denote the median and mean value of error distances
in predictions, respectively. As a classification metric, the
higher value of ACC@ 6/ indicates a good prediction. On the
contrary, lower values of Median and Mean distance errors
indicate better performance.

C. Application-1: User Geolocation Prediction

In the first group of experiments, we compare the overall

performance of methods on user geolocation prediction.

1) Baselines: We compare MetaGeo with several state-of-

the-art approaches, including in the following.

1) HierLR [4] is a text-based geolocation model, which
adopts a grid representation of locations and resorts (o
hierarchical classification using logistic regression (LR).

2y MADCEL [15] combines the text and network informa-
tion and uses LR for location prediction.

3) MLP4Geo [12] is a text-based model which uses dialec-
tal terms to improve the prediction performance. A sim-
ple MLP network is used to predict locations.

4) MENET [5] is a MENEXT architecture unitying various
teatures of tweets. To have a fair comparison, we only
use texi and network information in MENET, i.e., we do
not use the metadata, such as timestamps, thal have been
exploited in [5].

5) GeoArr |6] models the textual context with an atiention-
based RNN. We remove the location descriptions in
GeoAdt for a fair comparison.

6) DCCA [1]is a multiview geolocation model using twitler
text and network information and measures the canonical
correlation for location prediction.

Ty BiLSTM-C [47] is a text-view geolocation model
which treats user-generated content and their associated
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TABLE Il
PERFORMANCE COMPARISON OF METHODS ON THREE DATASETS

| Acc@ial Median Mean | Acc@161 Median Mean | Acc@161 Median Mean

| GeoText | Twitter-Us | Twitter-World
Hierl.R 42% 426 B56 485 191 GE6 3% 509 1,669
MADCEL 58% a6l 586 54% 116 705 45% 279 2525
MLPAGen ki ki Hdd 54% 120 354 M 415 1,456
MENET 55% 125 643 56% 93 526 52% 126 1,250
CreoAtt 57% Bl 612 54% 91 545 505 214 1,263
DCCA 56% 79 627 58% L] 516 21% 913 2,095
BiLSTM-C 45% 3a3 T 495 137 (4 41% 423 1,543
Altn 52% 236 657 51% 105 602 45% 2B6 2456
GCN4Geo 605 45 546 6% Ti 485 5445 108 1,130
SGCAGeo 61% 45 343 62% 71 487 5% 108 1,133
MetaGeo | 62% 42 533 | 63% T 479 | 55% 105 1,118

locations as sequences and employs bidirectional long
short-term memory (LSTM) and convolution operations
to infer locations,

8) Artn [47] is an attentive memory network tor the local-
ization of social media messages. It consists of an
attentive message encoder, which selectively focuses
on lecation-indicative terms o derive a discriminative
message representation.

) GON4Geo [1] is a GCNs-based model that utilizes both

text and network context for geolocation prediction,

where layerwise gates are employed for controlling the
neighborhood smoothing to alleviate the noisy propaga-
tion in GCNs,

SGC4Ger is a simplified graph convolutional net-

work [31] that reduces the excess complexity of GCNs

by repeatedly removing the nonlinearities between GCN
layers and collapsing the resulting function into a single-
linear transformation. It locates the home position of

users given users’ posts and social connections.
2} Experimental Seftings: Following previous works [1],

[6]. [10], [15]. the datasets are partitioned into the train,
validation, and test sets. The parameters in all baselines follow
the settings in the original papers. For MetaGeo, we sample the
mela-training data from the original training set using the task
sampling algorithm described in Section III-A. The validation
and test sets are the same as the conventional settings of
previous geolocation approaches [17. The values of parameters
N, K, P and |T| in meta-training phase are as shown in
Table 1, unless otherwise specified. In addition, the batch
size B in all deep learning methods is set to 32, 64, and
128 for GeoText, Twitter-US, and Twitter-World,
respectively. Finally, we use 4, 3, and 3 layer linear feature
aggregation for interaction network structure learning.

3} Performance on User Geolocation Prediction: Table [l
shows the overall performance of all methods across three
datasets, from which we have the following observations.

1} MetaGeo consistently outperforms the baselines on all
metrics, which proves the effectiveness of tackling
the user geolocation problem with the proposed meta-
learning framework. This improvement lies in training
MetaGeo in an ensemble learning manner even with
few-shot samples within each task, which improves
the classification accuracy via leaming the cross-task
generality. This result also suggests another important

10}

application of few-shot learning except identifying new
concepts that meta-learning and transfer learning did.
That is, we can stack a number of minor and simple
neural networks o improve the classification perfor-
mance in a conventional testing way.

2) The performance ol deep learning-based models, includ-
ing MENET, GeoAll, DCCA, and GCN4Geo, are very
similar if both text and network features are used.
Surprisingly, they are also very close to the models using
simple classification methods, e.g., the LR in MAD-
CEL. This result implicates that meaningful features are
more important than complicated models in the user
geolocation prediction task. This observation can be
further proven in previous work [5], [6] that incorporates
more strong indicators, such as timezone of wsers and
descriptions in the location field—however, improving
MetaGeo with more features is beyond the scope of this
work and is left for future work.

3) Relying only on tweet content [4], [12] is not enough
for accurate geolocation prediction. In other words, user
interaction network plays a crucial role in predicting
locations. For example, GCN4Geo directly leverages
GCNs for modeling user interactions and usually per-
forms best among baselines. However, one drawback
of GCN4Geo is the computational complexity due to
the considerably nonlinear transformations in GCNs.
In contrast, our MetaGeo removes the nonlinearities
between GCNs layers and therefore requires signifi-
cantly less overhead in extracting the network structure.
Though stacking numerous tasks incurs extra overhead,
it is trivial compared to leamning textual and network
features, due to the very few samples within each task.

4) Sensitivity Analysis: There exist many parameters

involved in MetaGeo that might affect its performance. In this
section, we conduct a sensitivity analysis to understand the
impact of these parameters on model effectiveness. We use the
dataset GeoText as illustrative example. Similar phenomena
are also observed on the other two datasets.

a) Effect of |T|: Fig. 5(a) shows the influence of the
number of tasks on the performance of MetaGeo, where we
vary the value of |T| from 1600 to 25600. We can see
that the best performance is achieved when there are around
13000 tasks. Intuitively, we need to sample enough tasks
to stahilize the model, but we also observe overfitting of
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Fig. 5.

Impact of parameters on performance. GeoText: (a) effect of [T7); (b) effect of &; and (c) effect of K. Twitter-U8: {d) effect of |T|; (2) effect

of N and () effect of K. Twitter-World: (g) effect of |T|; (h) effect of N; and (i) effect of K.

the model when the tasks are over-sampled, e.g., beyond
15000 tasks. The main explanation is that many tasks might
be similar or even the same when |T| is too large, which
may skew the model performance via focusing more on these
tasks. A straightforward method of alleviating this is to remove
repeated tasks, which is effective based on our study (details
are omitted since this is not the focus of this article).

b) Effect of N: N determines the number of classes (tar-
get regions) in each task. We investigate its impact by varying
the value from 2 to 40. Intuitively, the performance of Meta-
Geo should be improved with the value of N increased. How-
ever, we empirically observe that a small number of & (e.g.,
10} is enough to achieve good performance [see Fig. 5(b)].
This is reasonable since the tasks are sufficiently sampled, few
classes are enough to train the MetaGeo, i.e., the performance
of MetaGeo is more related to the number of tasks. In addition,
fewer classes in each region require less computation overhead
which is more desirable from the efficiency perspective.

c) Effect of K: Fig. 5(c) illustrates the impact of K,
where we can observe that the performance of MetaGeo
becomes stable if K is larger than 5. This is intuitive: while
increasing the samples in tasks is a straightforward method
to improve the leaming ability of base models (e.g., when
K = 3), this effect would be neutralized if there are sufficient
tasks,

D. Application-2; Generalization {0 New Regions

We now turn to the results of identifying locations of users
in new regions by comparing MetaGeo to few-shot learning

baselines. This is one of our main objectives as we expect the
system can be generalized to new areas that are unseen in the
training set.

1) Baselines: To further demonstrate the superiority of
MetaGeo, we add several meta-learning-based benchmark
models:

1) Maiching Network [48] learns a classifier defining a
probability distribution over output labels given a test
sample, and uses a kernel to weight the samples in the
support sel.

2} Prototypical Network [49] is a metric learning approach
that encodes each input data into a low-dimensional
vector. Then the prototype feature vector—i.e.. the mean
vector of the embedded support samples in each class—
is used to predict the labels using k-NN.

3) Mera-learner [50] implements an LSTM as the
meta-learner to update parameters using a small support
set so that the learner can adapt to new tasks quickly.

4) MAML [34] is an optimization-based method, which
learns an initialization for a base model such that
after a few gradient updates w.orl samples in sup-
port set, the base-model can achieve strong general-
ization performance on new classes given only a few
samples.

5) BMAML [38] is a Bayesian MAML model that com-
bines gradient-based meta-leaming with nonparametric
variational inference. It applies approximate Bayesian
inference to lask-specific paramelters.

6) ABML [39] extends the work of [36] that considered
hierarchical variational inference for meta-learning by
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learning the posteriors over both meta- and task-specific
parameters with variational inference,

2} Experimental Settings: We randomly select |C™"|
regions and the corresponding users for meta-training ("™,
and |C"™| regions for meta-testing ('), Note that the regions
in D" are unseen during training, ie., C™" N "™ = @.
We repeat this process ten times for each dataset and report
the average performance. The meta-learning parameters of all
methods, such as K, P and |T| in meta-training and meta-
testing phase are shown in Table 1, except that N is set to 5.
The batch size B in all the methods is set to 32, 64, and 128
for GeoText, Twitter-US and Twitter-World,
respectively.

In both Maiching Network and Prototypical Network,
we use a CNN containing four layers as a backbone network,
each of which comprised 64-filters of 3 x 3 convolution,
a Relu nonlinearity function, and max pooling. A fully con-
nected layer followed by a softmax nonlinearity is used to
define the baseline classifier. Here we add dropout to each
convolutional block in both matching network and prototyp-
ical network to prevent overfitting. For Meta-learner, we use
a 2-layer LSTM as a meta-learner, where the first layer is a
normal LSTM and the second layer is the modified LSTM
meta-learner. The gradients and losses are preprocessed and
fed into the first layer LSTM, and the regular gradient coordi-
nates are also used by the second layer LSTM to implement the
state update rule. In meta-learner, we use Adam to train LSTM.
For the hyperparameters of the Adam optimizer, we set the
learning rate to (.001 and wuse gradient clipping with a value
of 0.25. Finally, MAML uses the same backbone networks
as MetaGeo, however, it does not need to estimate the task
uncertainty.

3} Performance Comparisan on  New Region Users:
Table III reports the results for the settings of new region
user geolocation prediction. As shown, our model achieves
around 7 1%, 66%, and 57% Acc@ 161 on three datasels, which
are significantly better than GCN4Geo—a semisupervised
graph neural networks model. Note that we omit other user
geolocation baselines because they are supervised methods
and less competitive in recognizing users from new regions.
Here, the models are performing five-class classification in
each meta-testing task, which means that GCN4Geo only
performs slightly better than a random guess. Although GCNs
has been effective in user geolocation prediction with a few
labeled data due to its ability of in-network label propagation,
it is inapplicable to the scenario where users are from the
regions that have not been seen during training. In contrast,
our MetaGeo can accurately locate users from new regions
with limited exposure to the few-shot samples in the new
task.

Among few-shot leamning baselines, matching network and
meta-learner do not show comparable performance. These
metric learning-based methods use deep neural networks to
map the input space into the embedding space. The main idea
is to classify samples based on the learned distance function,
i.e., users belonging (o the same regions should be close in the
embedding space. However, this assumption may not be true
in the user geolocation task since we only have their textual
features and interaction networks. In other words, users that
are geographically close (or in the same region) might have

TABLE Il

PERFORMANCE COMPARISON FOR NEW REGION USER GEOLOCATION
PREDICTION. THE REPORTED NUMRERS ARE THE
AVERAGE RESULTS ON TEN SAMPLED DATASETS

AcciE 161 Median Mean
GeoText (|07 /0| = 95/34)
GONAGeo 30105 BR0+264 10414219
Martching Met 47+TR 22684 697151
Meta-learner 52+ 7% 187444 647134
MAML 59+0% 6EL24 467121
Prototypical Met  61+£5% 54417 4214107
BEMAML 673 % 49118 406110
ABML 63t4 % 5519 4224101
Meta(zen T+3% 41+13 3641496
Twitter-Us(|T™0 /O = 189/67)

GCN4Geo 221+2% 1,255+114  1,379+44

Matching Met 494T5% 174445 6794164
Meta-learner 3510% 94134 523£110
MAML 58L11% 82126 5194147
Prototypical Met  60=6% Tot2l 451+126
BMAMIL b4 R 6OE19 4474104
ABML 6213 % Tit23 4494109
MetaGeo bb 4% 6417 442493

Twitter-wWorld(JCmie)/|ce| = 687/243)

GCN4Geo 194£3% 14532001 20214121
Marching Met ITE5% M2 1L321E117
Meta-learner A6+4% 29195 1,533+173
MAML AlE6% 203122 1,2781£1353
Protoiypical Met  5345% 114423 11204115
BMAML 5545 % 93124 10991110
ABMIL 5415 % 10721 1103116
MetaGeo 574+3% 89+15 1,043494

different posting behavior and social interactions. We note that
the prototypical network exhibits the best performance among
baselines, though it still follows the line of metric leamning.
The reason is that the prototypical network leams a prototype
for each class which could, to some extenl, compensate for
the discrepancy of user representation in each region.

Our model outperforms MAML because we consider the
task uncertainty and stabilize the inner parameter updates with
stochastic inference, besides learning the parameter initializa-
tion. Compared with BMAML and ABML which also lever-
age Bayesian inference for meta-learning, MetaGeo generates
more accurate geolocation results. This benefit comes from the
different parameter update strategies in our model. For exam-
ple, ABML minimizes the loss of the support and query sets
of a task jointly. It is equivalent to maximize E[log p(S, Q)]),
which does not explicitly encourage the model to maximize
the posterior E[log p(Q|S)] that optimized in our method—the
latter can well generate the model performance on the support
data to the query set for the present work.

4) Error Analysis: We conducted another experiment to
understand the prediction error of MetaGeo. Specifically,
we first sample the test data C™" from the dense population
areas (e.g.. the east coast in the US. [cef. Fig. 1{b)] while
keeping other experimental settings unchanged. The resulls
are shown in Fig. 6, where we can see that MetaGeo achieves
very high accuracy if users are from the dense population
areas, even if the regions are unknown during training. On the
contrary, Fig. 7 shows the performance of models on geolo-
cating users from remote areas, where we can see that all
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methods decline significantly, although our MetaGeo performs
relatively well due to its ability to handle task uncertainty. The
reason behind this phenomenon is obvious, i.e., there are a
few users in these remote areas who are far from each other,
which makes it difficult for the model to identify the users,
especially with few-shot samples. These results indicate that
our model can be more effective when locating users from
geographically close areas, and also hint at an open problem
for future work, i.e., how to generalize the knowledge from
knowledge-intensive areas to locate users from remote regions.

V. RELATED WORK

We now present an overview of the related literamire and
position our work in that context.

A. Twitter User Geolocation

Previous works can be broadly categorized as content-
based methods, user interaction network-based approaches,
and multiview fusion models. Earlier efforts [8]-[10], [29].
[58]-[60] focused on leveraging user-generated content for
geolocation prediction, motivated by the fact that user loca-
tion can be casually revealed by certain location-indicative
words in his/her posting content. These methods study the
location-related terms with the probabilistic model by char-
acterizing the conditional distribution of user location given
their published content [2]. This, however, requires extensive
manually labeled location-related words to achieve satisfactory
results.

Another important factor is the online social relation with
the homophily assumption [13]-[15], [61], [62], i.e., peo-
ple prefer to interact with others who have higher geolo-
cation similarity. Rather than solely relying on friendship,
researchers found that various types of connections, such as
user co-mention tags, interactions between nonfriends, and

e T T TN Y

A e Ny e W
(e}

proke- Mty an

114/15). (b) Twitter-US (R = 225/31). (c) Twitter-World

social influence, are also strong indicators for location pre-
diction [12]. Due to the involvement of location dependency
between socially connected users, some issues still need to
be carefully investigated, e.g., the location of connected users
of a focal user is often unknown, or their locations might be
contradicting with each other.

Recent efforts [1], [6], [12], [47] have developed many
deep learmming-based methods to tackle the user location
prediction problem. For example, bag-of-words represen-
tation of wser-generated content and fully connected net-
works have been implemented for predicting geolocations
in [12], while RNN and attention mechanisms have been
used for text content modeling and indicative location cap-
turing [47]. Recently, [1] employed GCNs for jointly learn-
ing user-generated content and network structures. However,
these methods fail to consider the scenario with few sam-
ples and cannot be applied to infer users belonging to new
regions—i.e., regions which have not been encountered during
training.

A detailed comparison of existing user geolocation methods
is summarized in Table I'V. We note that the data management
community has also studied the co-located community detec-
tion (CCD) problem in the context of social networks [63],
[64]. However, CCD deals with “snapshot” data (i.e., instan-
laneous data) and does not predict users” geolocalions.

B. Few-Shot and Meta-Learning

Few-shol learning [65] plays a key role in stimulating
human intelligence due o its ability to bridge the gap between
machine leamning and human recognition, ie., humans can
quickly acquire new concepts with little supervision infor-
mation, whereas machine learning (especially deep learning)
models usually require a certain amount of labeled data. Meta-
learning or learning-to-learn [32] aims al addressing the new
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TABLE IV
SUMMARY OF STUDIES ON TUSER GEOLOCATION PREDICTION { SORTED BY PUBLICATION YEARS)
Work DataSource Ground Truth Gramularity Muslel Features Few-Shiat
" ; ’ " Creographncal Vanation
AL 10 18] Twitler The earliest geo-lagged city St with m ']b];lc Content ®
i . Laocal Filtering with
CIEM 10 [31] Twitter Musat frequent geo-tagged city Clry Neighborhood 5 hing Content E
WWWTID [13] Facebook Coordinates Coordinates Maximmum Likelibood qug. i i B
ACL'12 [29] Dl The carlicst geo-tagged cocrdinates Grid Document Similarity Coatent %
COLING' 12 [3] Twither Must frequent geo-tagged city City Lticative Wards Content B
YLDB 12 [52] Twitler Registerad localions City Multiple Location Profiling Conlent, Network "
: Twither Laocation profile, i i i
AMALT 53] F i Median ] Sinatcs Coordinates Spatial Label Propagation Nermwork E4
E Z i € : Decision Tres,
CIEM' 13 [34] Twitter Medion geo-tagged coordinates Coordinares Maxi Likelitood Bst Metwoork B
VLDR' 14 [14] mﬁ ]'h"‘] i’:fu“:"mm““" Coordinates Social friendship-based Network ®
) : The carlicst peo-tapged coordinates, e :
ACL1S [15]) Twither E . ok ity Coordinates Logistic Regresaion Condent, Network X
| . The enrliest geo-lagged coordinales, . .
ACL'LT [12] Twither nates of tle most frequent ged ity Grd Multilayer Perceptron Conbent =
) ; The enrliest peo-lagged coordimabes, = Nenral Networks, Content, Network,
ACL17 [6] Twiltex majority vote of the closest city center g Anention Mechanism Comtext, Timestamp 2
CoRR' 17 [$] Tiwitte The earliest peo-tapged cocedinates cirid Neural Nerworks Cemimt, Ntwmrk %
Timestamp
EMMLFP"1T [55] Twither The enrlicst geo-tagped coondinnbes Coordinates Mimmare Density Networks Context B
ACL'LS [1] Twither The eorlicst geo-tagped coordinates Grid Graph Comeolutional Merwarks Content, Network k4
EMMNLF18 [56] :{:ﬂ? The earliest geotagged o Cin Knowledge-Based Model Content *
TEDE 18 [47] Twitter Single ciry City Bayes-based Model Content, Timsestamp B
- . P ¥ - Cianssian Mixiure
TEDIY 18 7] Twither The earliest peo-lagped coordinabes Grd Based Model Content, Network b
: ; i Content.
SDM19 [57] Twitter Coordinate of POI center Coondinates Attention Memory Model Points-of-Interest E
MetaCheo (Ours) Twitter The earliest poo-tagped coondinates Coordinate Meto-learning, Content, Network W

Amaortized Bayesian Lenming

task adaption problem by leaming the prior knowledge to
tackle a new few-shol classification task. This has been widely
used for benefiting various application domains, including
computer vision [33], [35], [66]. natural language process-
ing [67], [68], healthcare [69], graph data leamning [70], [T1],
concept drift adaptation [72], and spatiotemporal data min-
ing [73]. In particular, meta-learning has shown dominant per-
formance in image classification, where low-level patterns and
features are transferable across tasks [34], [30], [74]. In this
spirit, MetaGeo is among the first works that learn to utilize
distributional user-generated content and interaction network
structure in the context of cross-region knowledge transfer.
Existing meta-learning methods can be broadly classi-
fied into three groups: metric learning [48], [49], [75]-[77],
model-based methods [33], [35] and optimization-based meth-
ods [34], [50]. The main idea of metric learning is to learn the
representation of samples (in the support set) and predict the
labels of samples (in the query set) using the designed distance
kernel functions. For example, Matching Networks [48] learn
a classifier by defining a probability distribution over output
labels given a test sample, where attention kernel is used
for weighting the samples in the support set. Prototypical
Networks encode each input data into a low-dimensional
vector and the prototype feature vector—i.e., the mean vector
of the embedded support samples in each class—is used to

predict the labels, which is similar to the K-NN method.
Similarly, Relation Networks [77] predict the relation score
between any pair of samples using a CNN classifier. Metric
learning-based approaches strongly rely on the i.i.d. assump-
tion of the data/task distributions, which, unfortunately, does
not always hold in realistic scenarios.

Model-based meta-learning methods use specifically
designed neural networks (e.g., RNNs) to update model's
states (e.g., the internal state of RNNs), which are then
utilized to make predictions. MANN [33] uses external
memory storage to cache the knowledge from previous tasks
in order to facilitate the learning process of new tasks. The
antention mechanism is utilized for important information
retrieval, which decides how to assign attention weights
to information in the memory. MetaNet [35] consists of
a base learner and a meta learner—the former performs
in the input task space whereas the latter operates in a
task-agnostic metaspace. The meta-learner learns meta-level
knowledge across tasks and rapidly parameterizes both itself
and the base learner to recognize new concepls of new tasks.
Despite their promising performance on new task adaptation,
model-based methods require specific neural architecture
and/or external memory. In addition, the oplimal strategy of
designing a meta-learner for arbitrary tasks may not always
be obvious [78].

Authonzed keensed use limited to: lowa State University Library. Downloaded on January 29 2024 at 17:10:58 UTC from IEEE Xplore. Restrictions apply.



Optimization-based approaches frame meta-leaming as a
bilevel optimization procedure, where the inner steps try to
adapt a given task, and the outer meta-learner generalizes the
adaptation ability of models. The goal of the meta-learner is
therefore to find a single set of model parameters with a few
steps of gradient descent using the support set. MAML [34] is
one of the typical optimization-based methods that are inde-
pendent of the underlying specific models and has achieved
superior performance compared with the other popular meta-
learning approaches. It also inspired numerous extensions in
the recent years [36]-[39], [41], [79]. Significantly, instead of
directly applying MAML, we modify the training process and
present a few-shot learning paradigm to adapt MetaGeo (o the
typical geolocation selling.

We borrow the idea of stochastic inference and probabilis-
lic meta-learning [36]-[39] o alleviate the task uncertainty
issues arising from coarse-level user geolocation prediction.
However, the parameter update in MetaGeo is different from
previous methods, For example, these methods usually use
the local reparameterization trick for the fully connected
layer and flip the convolution layer to generate (nearly) com-
pletely independent weight samples. In contrast, we obtain
KL-divergence by analysis and calculation and approximate
the expectation values with the average of multiple samples
from the approximate posterior.

V1. CONCLUSION

We presented a new perspective on the user geolocation
prediction by casting the problem in the realm of meta-
learning. We devised a few-shol learning protocol for train-
ing a number of sampled geolocation predictors to optimize
the model performance on prediction adaptation, enabling
Bayesian posterior inference to ease the geolocation task ambi-
guity issue and alleviate the location uncertainty. The empirical
results show that our method not only achieves the state-of-
the-art geolocation prediction performance in the conventional
settings but is also able to identify users from unseen regions.
Our future work includes investigating the effect of the pro-
posed model on other location-based prediction problems, such
as human mobility prediction and event location prediction.
In addition, we will tackle the explainability of the model
behavior (i.e., theoretical explanations of the ensembled meta-
learners) and investigate the application of the proposed model
on other graph learning tasks such as link prediction and graph
classification.

APPENDIX
EviDENCE LOWER BounD

The lower bound of the data with support set and query set
split can be derived as
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where K1 denotes the Kullback—Leibler divergence. Maximiz-
ing (20) can then be translated into the following minimization
problem:

(20)

argmin E
ti~fy

i
I Z(@E, log(p(Qild)p(Si|di))
=1 J

+ KL (g, (i)l plhi W}])} + KL({gy (@) p(8))
(21)

where we approximate the posterior p(gh |8} with a fixed num-
ber (L) of iterations using support dala S;. This is achieved
by gradient descent with samples in &, which corresponds
exactly to maximum a posteriori (MAP) inference under a
Gaussian prior p(g;|6)—however, the exact form of pi{#;|8) is
intractable. We alternatively interpret this MAP approximation
as inferring a posterior of ¢ in the form of pig|S;, &),
which is obtained via gradient descent on & starting
from #. Therefore, we reformulate the above-mentioned
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objective as

i
min E §— E lo A
arg erl ;qﬁwwd g p(Qilén)

+ KL(qu(: |Sp)| p(i |Si, 2))

+ KL(gy (91| p(®)). (22)

Recall that the maximum a posteriori estimate of ¢y corre-
sponds to the global mode of the posterior pigy|S;., &)

P(Si16)
where the global parameters # are independent of &;.

p(#1Si, 0) = o p(Si|g) p(¢lB)  (23)
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