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Abstract—Discovering interesting yet unvisited point-of-
interests (POIs) is among the most practical applications but
challenging problems in location-based social networks (LBSNs).
Popular approaches face several issues, such as data sparsity
and difficulties in modeling latent nonlinearity between users and
POIs. Furthermore, the uncertainty in LBSNs poses additional
obstacles to learning good representations of users’ general and
current interests. To effectively address these issues, we postulate
that fusing multiple sources of information is paramount. Toward
that, we propose a novel deep generative recommender system—
Wasserstein autoencoder for POI recommendation (WaPOIR). It
unifies the information from users’ personal preference, social
influence, and geographical data, and captures users’ general
interests from historical check-ins, while modeling users’ current
interests from recently visited POIs. Unlike previous methods,
WaPOIR learns the latent distribution of data in the Wasserstein
space as a potential representation for each POI and each user
in LBSNs. This enables simultaneous maintenance of social and
POI interactions and modeling the uncertainty of their rela-
tionships. WaPOIR is a stochastic recommendation approach
that allows Bayesian inference and approximation of variational
posterior distribution. Extensive experiments conducted on real-
world LBSN datasets demonstrate that WaPOIR achieves better
performance over the state-of-the-art approaches.

Index Terms—Adversarial learning, collaborative filtering
(CF), point-of-interest (POI) recommendation, variational infer-
ence, Wasserstein autoencoder.
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I. INTRODUCTION

THE POPULARITY of location-aware social media has
brought about a number of location-based social networks

(LBSNs), such as Yelp and Foursquare. These, in turn, provide
references for users to make an informed visiting decision. A
large amount of user-point-of-interest (POI) interaction data
facilitates a range of promising services, among which per-
sonalized POI recommendation is one of the most important
applications and consistently received attention in recent years.
The goal of POI recommendation is to learn the users’ visit-
ing preferences from the visiting history based on their spatial,
temporal, and other contextual information—and then provide
a ranked list of POIs that the user may be interested in but
has not visited yet [1], [2].

In general, most of the existing models [3], [4], [5],
[6], [7] predict the user preference relying on the user-
POI rating matrix. Collaborative filtering (CF) techniques
exploit the user-POI interactive patterns (the rating matrix)
via a matrix factorization [8] to make relevant predictions.
A common drawback in these methods is that they ignore
negative samples which might help improve the recom-
mendation performance [9], [10]. Thus, researchers have
incorporated the ranking methods into the recommendation
procedure. For example, a ranking-based geographical factor-
ization method (Rank-GeoFM) leveraging both visited POIs
and unvisited POIs for POI recommendation was developed
in [6]. Subsequently, a listwise ranking system by injecting
users’ geosocial preferences was proposed in [11]. Such CF-
based methods typically suffer from: 1) sparsity issues because
the preference dynamics and auxiliary information related to
users’ interaction are ignored and 2) user-POI interactions
are modeled in a simple linear way, rather than using more
complicated nonlinear relations [12].

Our perspective for the problem settings is illustrated in
Fig. 1. We consider three graph-structured data sources, char-
acterizing the relationships among the entities of interest:
1) users’ check-ins; 2) social friendships among users; and
3) geographical relationships among POIs. We postulate that,
while each of them can be used to learn the latent fac-
tors for POI recommendation in LBSNs applications, fusing
them in an integrated approach can greatly improve the
quality/effectiveness of such recommendations.

A plethora of POI recommendation approache have
attempted to improve the performance by adding rich auxiliary
information available in LBSNs with memory-based CF. For
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Fig. 1. Illustration of three different types of relationships.

example, some works [4], [5] incorporate geographical, tempo-
ral, and social information for POI recommendation to tackle
the data sparsity issue. Recently, Qian et al. [13] proposed a
translation-based recommender framework to model the rela-
tionship among users, POIs, and spatiotemporal contexts for
POI recommendation. Though achieving improvement to some
extent, these methods still have certain limitations, especially
in their modeling capacity—in the sense that they are not able
to learn suitable representation from the primary data.

Recently developed deep learning-based recommendation
approaches are capable of not only modeling the nonlinear-
ity, but also showing a great potential for learning effective
representations, which enabled them to achieve promising
performance improvements in recommendation systems. For
example, a novel deep neural network with a co-attention
mechanism by leveraging rich meta-path-based context was
proposed in [14]. It was able to learn interaction-specific
representations for users, items and meta-path context. The
Bayesian recommendation model proposed in [15] can help
alleviate the issues of sparsity and cold start. However, the
formation and evolution of real-world LBSNs abound with
uncertainties from various (heterogeneous) sources [16]. For
example, users tend to change behavior due to the new
POI exploration, user experience, POIs’ popularity, and social
influence [17], which makes existing Bayesian methods inap-
plicable for large-scale POI recommendation.

Inspired by the recent advances of coupling neural networks
with the CF and the deep generative models such as variational
autoencoder (VAE) [18], we tackle the POI recommenda-
tion problem by: 1) learning deep latent representations from
geographical influence along with user preference and social
influence and 2) capturing implicit relationships between POIs,
users and spatiotemporal contexts from both users’ histori-
cal and recent check-ins with an attention network. Different
from conventional recommendation techniques directly learn-
ing user preference, social, and geographical influence, we
present a novel auxiliary information fusion method with
stochastic inference for POI recommendation.

We propose the Wasserstein autoencoder for POI rec-
ommendation (WaPOIR) model, which learns the Gaussian
distribution embeddings of users and POIs, and employs
Wasserstein distance (also known as the Earth Mover’s

distance) to measure the similarity between the model distribu-
tion and the real distribution. We also use Wasserstein distance
to calculate the latent representation similarity between users
and the similarity between POIs, aiming to identify more rel-
evant users or POIs from any user pairs and POI pairs [19].
The main contributions of this work are listed.

1) We present a new CF model that leverages Bayesian
inference and probabilistic generative model with VAE-
based networks for POI recommendation, which can
capture the nonlinear and significant user-POI rela-
tionships. Moreover, our model can alleviate the data
sparsity issue by incorporating the geographical influ-
ence along with user preference and social influence. In
addition, our novel neural attention network can simul-
taneously capture users’ general and current interests.

2) Different from conventional VAE-based recommender
systems, we learn the Gaussian distribution embedding
of input data in the Wasserstein space. Our model sat-
isfies the triangle inequality (cf. [20]), which can well
preserve the transitivity in LBSNs. More importantly, it
introduces the representation uncertainty of both users
and POIs, as well as their similarities which, in turn,
improves the learning of their latent representations
and interactions.

3) When constructing the training set that computes the
similarity of latent representations between users and
POIs, we use the same constructive method as BPR-
based methods. However, for calculating the stochastic
gradient descents of the objective function, we develop a
sampling scheme, which not only optimizes the objec-
tive function, but also significantly alleviates the time
complexity issue of learning the ranks of POIs.

We conducted a comprehensive experimental evaluation on
three real-world datasets, demonstrating that our proposed
WaPOIR model significantly outperforms the state-of-the-art
baselines for POI recommendation.

This article is structured as follows. In Section II, we for-
mally define the studied problem and introduce necessary
backgrounds. In Section III, we detail our model framework.
We present the results from the comprehensive experimental
evaluations in Section IV and review the related literature in
Section V. Section VI concludes this work.

II. PRELIMINARIES

We now formalize the POI recommendation problem and
summarize the basic notations used throughout this article.
Subsequently, we describe the necessary background regarding
VAEs and Wasserstein distance.

A. Problem Definition

The setting that we consider is represented by two basic
sets: a set of users U = {u1, . . . , um} and a set of POIs V =
{v1, . . . , vn}.

For a given user ui, we assume that there is a record
of his history of visited POIs (i.e., check-ins)—Vui =
[v(ui,1), . . . , v(ui,l)], ordered by the time of the visit—i.e.,
v(ui,j).t < v(ui,j+1).t, whereby v(ui,l) is the most recently visited
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TABLE I
LIST OF NOTATIONS

POI by ui. The POI recommendation problem aims at deter-
mining (i.e., recommending) the top-K new POIs V/Vui that
user ui would like to visit in the future given his/her historical
visited check-in set.

The user-POI relationship is represented by a feedback
matrix (i.e., check-in matrix) C ∈ R

m×n. Each entry cij repre-
sents the check-in history of user ui with respect to the POI
vj, i.e., cij = 1 means that the POI vj has been visited by the
user ui, and cij = 0 denotes that ui has not yet visited vj.

We assume that all of the latent representations are defined
as a lower-dimensional Gaussian distribution embeddings and
use D to denote the dimension of the latent feature fac-
tors. The corresponding representations for the users and
POIs are denoted as U = {u1, . . . , um} ∈ R

m×D and V =
{v1, . . . , vn} ∈ R

n×D, respectively.
In accordance with [21], [22], we use side information about

users and POIs to train our model. For each POI, we use
lj = {longitude, latitude} to denote its geographical location as
a pair of the corresponding coordinates. Let the matrix Gp ∈
R

n×n represent the pair-wise distances—i.e., gjk = djk(lj, lk)—
between POIs vj and vk. If djk(lj, lk) is less than a given threshold
dt, we consider them to be neighbors. We use the symbol
Nvj = {vk|djk(lj, lk) < dt} to indicate the neighborhood set of
the POI vj. We assume that there exist other types of information
context for each POI—e.g., tag words, spatio-temporal visitors
density, etc. For users, we use an undirected graph Gu = (U , E)

to represent a social network, where edges in E denote friendship
between users in U and N (ui) = {uj|(ui, uj) ∈ E} denote the
neighbor set of user ui. A summary of the symbols used in
this article is presented in Table I.

B. Background

VAE [18]: Is a probabilistic generative network which mod-
els the data distribution using amortized variational inference.
It consists of an encoder and a decoder, aiming at utilizing
pθ (x) := ∫

z pθ (x|z)p(z))dz to maximize

log pθ (x) ≥ Eqφ(z|x)

[
log pθ (x|z)] − DKL

[
qφ(z|x)||p(z)

]
= LVAE(x; θ, φ) (1)

with respect to pθ (x|z). It describes a generative model
parameterized by θ , which usually is chosen to follow a con-
ditional Gaussian distribution. The Kullback–Leibler (DKL)
in (1) can be viewed as a regularizer. Normally, in order to
calculate DKL easily, VAE assumes that the prior distribu-
tion p(z) is a standard Gaussian distribution. And the term
qφ(z|x) describes a recognition model that encodes the input
data to a latent factor z, which encourages the posterior to
match the prior distribution p(z). That is, VAE is minimizing
the evidence lower bound (ELBO) on the negative marginal
log-likelihood or, equivalently, on the Kullback-Leibler (KL)-
divergence DKL[qφ(z|x)||p(z)].

Since the latent variables are stochastic, the probability dis-
tributions are learned for each data sample. It has been proved
that the learned data variation may lead to more robust repre-
sentations and yield enhanced recommendation performance
compared to the deterministic neural network-based meth-
ods [15], [23], [24].

Wasserstein Distance or Kantorovich–Rubinstein metric, is
a distance function defined between probability distributions
on a given metric space. It can be used to measure the dis-
tance (similarity) between two distributions, which is defined
as follows [25], [26]:

W
(
px, pg

)
p =

(
inf

π∼�(px,pg)
E(a,b)∼π

[
d(a, b)p])1/p

(2)

where p ≥ 1 and �(px, pg) is a set of all possible joint distri-
butions with marginals px and pg. It is a.k.a the Earth-mover
distance (EMD) when p = 1.

The main advantage of the Wasserstein distance compared
to the KL divergence and the Jensen–Shannon (JS) diver-
gence is that the distances of the two distributions can still
be reflected even if the support sets of the two distributions
do not overlap or have very little overlap. In this work, we
use the Wasserstein distance as the similarity measure because
it is able to calculate the similarity between two distribu-
tions while simultaneously satisfying the triangle inequality.
Since we use distributions rather than deterministic vectors to
embed the POIs and users, the Wasserstein distance is suit-
able to be a similarity measure of the latent representations of
POIs and users, which can guarantee the model to preserve
the transitivity of similarity between POI/user pairs.

III. METHOD: WAPOIR

This section presents the details of the proposed model—
WaPOIR—the main components of which are illustrated in
Fig. 2. It is inherently a deep generative model for item rec-
ommendation, which learns the Gaussian distribution as a
potential representation of each input data in the Wasserstein
space. Specifically, we use ranking-based methods to calcu-
late similarity between entities (both users and POIs) using
the Wasserstein distance. Through combining users’ histori-
cal check-in information, along with the auxiliary information
associated with the entities, we obtain two features matrices as
input and use our WaPOIR to learn the Wasserstein distance.
This is the main difference of our model from the conventional
Bayesian recommendation models [23], [24], [27].
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Fig. 2. Overview of the WaPOIR model.

We first discuss the method of measuring user similarity and
POI similarity, and present the way of modeling users’ long-
short interests with attention mechanism. Then, we describe
the details of uncertainty-aware user and POI representation
learning, followed by the pairwise similarity measure and the
method for computing the Wasserstein distance. Finally, we
present the implementation details of the proposed model.

A. User Similarity and POI Similarity Measure

Recall that there are three graph-like data structures that
we rely upon: 1) users’ check-ins C; 2) social friendship of
users Gu; and 3) geographical relationship among POIs Gp. In
WaPOIR, we provide a deep variational model to train the rep-
resentations of users and POIs, and then use CF to recommend
POIs for users. In particular, let X = {x1, . . . , xm} ∈ R

m×n be
users’ feature matrix, and Y = {y1, . . . , yn} ∈ R

n×m be the
corresponding matrix for the POIs

X = Norm(S ⊗ Q), Y = Norm
(W ⊗ Qᵀ) (3)

where Norm(·) means normalizing the matrix and ⊗ denotes a
multiplication of matrices; S ∈ R

m×m denotes user similarity
matrix. Sij represents the similarity between user ui and user
uj, and its value is between 0 and 1, which is calculated by

Sij = γ Uij + (1 − γ )Fij. (4)

In the equation above, γ is a hyperparameter for balancing the
social influence and user influence; Fij denotes the friendship
similarity; and Uij is the cosine similarity between user i and
user j. According to [28], they can be computed as follows:

Fij = β ·
∣∣Fui ∩ Fuj

∣∣∣∣Fui ∪ Fuj

∣∣ + (1 − β) ·
∣∣Vui ∩ Vuj

∣∣∣∣Vui ∪ Vuj

∣∣
Uij =

∑
vk∈V cik · cjk√∑

vk∈V cik
2 ·

√∑
vk∈V cjk

2
. (5)

The purpose of β is to balance the friend influence based on
social connections and check-in activities; Fu and Vu denote
the friend set and user historical check-in set, respectively.

Fig. 3. Illustration of user preference learning.

In (3), W ∈ R
n×n is the geographical influence matrix,

where each value Wij ∈ W represents the mutual impacts
between POI vi and POI vj. In our settings, this implies that
users are likely to visit POIs close to their homes or offices,
and they may also like to explore POIs that near other POIs
they are in favor of. In order to incorporate geographical influ-
ence on nearby unvisited POIs, we use the Gaussian radial
basis function (RBF) to calculate the value of Wij as follows:

Wij = exp
(
−ξ

∥∥li − lj
∥∥2

)
(6)

where ξ is a hyper-parameter.

B. Modeling Users’ Long-Short Interests

We first present a novel attention net for capturing users’
long (general) and short (current) interests, as illustrated in
Fig. 3. Given a user ui and his historical check-in set Vui =
[v1, . . . , vk, . . . , vl] = [v(ui,1), . . . , v(ui,k), . . . , v(ui,l)] of length
L, we denote the first check-in as one-hot vector h1 ∈ R

1×n,
the kth check-in as hk ∈ R

1×n. We use the vectors ci and gi

to denote the current (the latest) interest and general interest
of user ui, respectively

ci = hL, gi = 1

L

L∑
k=1

hk. (7)

According to (7), we can calculate the attention coefficient
vector αui = {α1, . . . , αk, . . . , αL} of historical check-ins with
respect to user ui as follows:

αk = δ
(
ciwc + hkwh + giwg + bi

)
(8)

where δ(·) denotes a nonlinear activation function (we use
sigmoid in this work), ci, gi ∈ R

1×n, wc, wh, wg ∈ R
n×n are

weighting matrices, and bi is a bias vector.
Then, a general interest vector about user ui can be recal-

culated as follows:

ai =
L∑

k=1

αkhk. (9)
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Considering user’s current interest, we can obtain the prefer-
ence vector of user ui for all POIs as follows:

Qi = ai + αLhL (10)

where matrix Q ∈ R
m×n denotes the preference for all users.

For all users, the loss function is defined as the cross-entropy

Lec =
m∑

i=1

⎛
⎝−

n∑
j=1

cij log
(
Qij

) + (
1 − cij

)
log

(
1 − Qij

)⎞⎠ (11)

where cij ∈ C (i.e., cij is either 0 or 1).

C. Uncertainty-Aware Representation Learning

When it comes to recommendation systems, there are many
Bayesian collaborative methods [24], [29] that purely use user
rating matrix to predict missing rating. Recent work [23] has
incorporated feedback matrix and side information—which
achieved a positive effect on improving the inference of
users’ and items’ latent factors. An important assumption,
though, is that the links between entities in the network are
deterministic. However, the real-world user-POI interactions
are full of uncertainty, which renders these recommenda-
tion approaches to be nonoptima. Inspired by the network
embedding method [30], the proposed WaPOIR exploits the
stochastic variational inference that can learn the mean and
uncertainty of the entity through the mathematical correlation
of mean and variance by the sampling process, respectively.
For all the users and POIs in the network, their correspond-
ing latent representations are generated through the respective
latent variables zui ∈ R

1×D and zvj ∈ R
1×D, where zui and zvj

are inferred by input features with user preference matrix and
auxiliary information, respectively. The user and POI genera-
tive latent variable models are, respectively, parameterized by
θu and θv. Similarly, the user and POI inference networks are,
respectively, parameterized by φu and φv. Then, we can obtain
users’ and POIs’ representations as follows:

ui ∼ pθu

(
ui|zui

)
, zui ∼ qφu

(
zui |xi

)
(12)

vj ∼ pθv

(
vj|zvj

)
, zvj ∼ qφv

(
zvj |yj

)
. (13)

Similar to traditional probabilistic matrix factorization
(PMF) approaches (cf. [31]), we also consider collaborative
information associated with both users and POIs. We note that
the collaborative information is embedded in the collaborative
latent variables subjected to normal distribution

uc
i ∼ N(0, ID), vc

j ∼ N(0, ID). (14)

Thus, the latent representations of users and POIs are
combined with two latent variables as follows:

ui = uc
i + zui , vj = vc

j + zvj . (15)

The probability of user ui visiting POI vj is drawn from the
inner product between their latent representations

Pij = uivj
ᵀ (16)

where P ∈ Rm×n is the probability matrix that all users visit
all POIs.

With the WaPOIR model constructed (cf. Fig. 2), the joint
distribution of our model is given as follows:

p(U, V,P, Zu, Zv) =
∏
i,j

p
(Pij|ui, vj

)︸ ︷︷ ︸
Bernoulli

· p
(
ui|zui

)
p
(
zui

)︸ ︷︷ ︸
for users

·p(vj|zvj

)
p
(
zvj

)︸ ︷︷ ︸
for POIs

(17)

where we ignore the subscripts without creating ambiguity.
In the remainder of this article, we only present the method

for user-aspect representation learning when there is no ambi-
guity for the sake of simplicity. We note that the POI-aspect
learning is in the same way.

To further improve the POI recommendation, we need to
draw the latent factors of user ui and POI vj from zui and
zvj through a generative neural network. This suggests that
the joint probability distribution in (17) is not our main task.
Instead, we are interested in the posterior over users’ and POIs’
latent factors. Inspired by recent successes of VAEs [18], we
use stochastic gradient variational Bayes [32] to approximate
the posteriors. In our model, we introduce two VAEs, each
consisting of an inference network (encoder) and a genera-
tion network (decoder). One of the inference networks is used
for approximating posteriors of the latent variables of user ui,
whereas the other one targets the latent variables related to
POI vj. More specifically, we have

q
(
zui , zvj |xi, yj

) = qφu

(
zui |xi

) · qφv

(
zvj |yj

)
(18)

where the prior distributions of zui and zvj are usually assumed
to be diagonal-covariance Gaussian distributions N(μ, σ ), sat-
isfying μ ∈ R

D, σ ∈ R
D×D. Thus, in our model, we set the

latent variables related to users as follows:

qφu

(
zui |xi

) = N
(
μφu(xi), diag

(
σφu

2(xi)
))

. (19)

The input data xi and yj are obtained from the user pref-
erence matrix and the side information for users and POIs
according to (3). When optimized, we push the variational
posterior distribution qφu(zui |xi) and qφv(zvj |yj) to approximate
the intractable distribution p(zui) and p(zvj), respectively. As is
standard when learning latent-variable models with variational
inference [33], we can lower-bound the log marginal likeli-
hood (described in Section II-B). That is, the maximization
of ELBO LVAE(x; θ, φ) can be alternatively done by mini-
mizing the KL divergence between the posterior and the prior.
This is the well-known variational lower bound which provides
a theoretically grounded framework successfully employed
by VAEs [18], [34]. It makes use of amortized variational
inference—trained with the reparameterization trick [18]—
to propagate stochastic gradients from the decoder to the
inference model.

Similar to VAE-based recommendation models
[15], [23], [24], the objective of our model also con-
tains two terms: one is the loss reconstruction, which aims
at capturing the information of the users’ and the POIs’
input and the other is the regularization term [cf. (1)]—it
encourages the encoded training distribution to match the
prior distribution. However, instead of KL divergence used in
previous works [15], [23], [24], we use a Wasserstein distance
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to minimize the distance between the model distribution and
the target distribution, which leads to a different regularization
than the one used in typical VAEs [18]. According to [20],
the Wasserstein distance allows our model to compute the
similarity between any distributions.

D. Pairwise Ranking

In many real-world networks, if there exists an observed
edge linking two entities, then these two entities are con-
sidered to have similar characteristics. For example, if two
users are friends in LBSNs, they may have a common
interest. Complementary, users typically visit POIs that are
geographically close to those POIs they have visited. However,
real-world LBSN data are usually too sparse to capture a large
number of links. Toward that, we introduce similarity calcu-
lations between a pair of entities based on their neighborhood
network structure, even if there is no edge between them using
link prediction techniques [35].

As proximity-criteria for entities in LBSNs, we would like
the entities to be closer to their neighbors in the latent space. In
this way, we can alleviate the sparsity and better capture a kind
of a global network structure [36]. Following the Bayesian
ranking with implicit feedback [19], we first create two train-
ing datasets, Du and Dv for users and POIs, respectively,
e.g.,

Du = {(
ui, uj, uk

)|uj ∈ N (ui) ∧ uk ∈ U/N (ui)
}
. (20)

Then, we combine all the pairwise constraints as follows:

Lu
pair =

∑
(ui,uj,uk)∈Du

[
W
(
ui, uj

) + exp
(−W

(
uj, uk

))]
(21)

where ui = N(μui , σui) denotes the D-dimensional Gaussian
distribution for each user; the mean vectors μui captures the
position of entities in the Wasserstein embedding space; the
variance vector σuj preserves the uncertainty of the entities;
and W(·) is the 2nd Wasserstein distance, which can estimate
two distributions’ similarity, besides that the calculation speed
is faster than general-formed Wasserstein distance. According
to [20], we can calculate the Wasserstein distance between the
two Gaussian distributions as follows:

W(N(μ1, σ1), N(μ2, σ2)) = W(N(μ1, σ1), N(μ2, σ2))2

= ‖μ1 − μ2‖2 + Tr

(
σ1 + σ2 − 2

(
σ1

1
2 σ2σ

1
2

1

) 1
2
)

. (22)

Now, per (22), we can get the objective functions (21), and
then penalize ranking errors by the energy of the pairs, which
makes the similarity between positive cases greater than the
similarity of negative examples.

E. Wasserstein Distance for Generative Models

As stated before, WaPOIR is a variant of the Bayesian rec-
ommendation model using the user feature matrix X and POI
feature matrix Y as model inputs. It therefore has many prop-
erties of variational CF methods, such as stable training and
nice latent manifold structure, while generating better latent
representations about users and POIs.

Let PX and PY denote the input data distributions, satis-
fying xi ∼ PX and yj ∼ PY. Like VAE, our model includes
reconstruction losses and the regularization. In our work, we
reconstruct the input data X and Y, aiming at preserving the
neighborhood structure for users and POIs, while the regu-
larizer fosters the posterior to approximate the prior during
training. Due to data sparsity, we only need to consider the
nonzero entries in input feature matrices X and Y, e.g., we
can obtain the objective function regarding users as follows:

Lu = inf
qφu (Zu|X)∈�EpXEqφu (Zu|X)

[∥∥∥X ·
(

X − X̃
)∥∥∥2

]
+ λu · Dz

(
qφu(Zu|X), p(Zu)

)
(23)

where � is the set of probabilistic encoders, X̃ and Ỹ are
generated by generative models pθu(X̃|Zu) and pθv(Ỹ|Zv),
respectively. Let Zu ∈ R

m×D and Zv ∈ R
n×D be the

latent variables we are interested in. The qφu(Zu|X) and
qφv(Zv|Y) are posterior distributions related to users and
POIs, respectively. Dz(·) is an arbitrary divergence between
posterior distribution qφ(Z∗|
) and prior distribution p(Z∗)
(∗ means u or v, 
 denotes X or Y). Similar to VAEs [18],
we need to find a similarity metric like KL-divergence to
measure the distance between qφ(Z∗|
) and p(Z∗). Inspired
by [26], we use a different penalty to calculate the distance,
that is Dz(qφ(Z∗|
), p(Z∗)) = DJS(qφ(Z∗|
), p(Z∗)). In each
iteration, we sample a batch of latent representations from
the user (or POI) prior distribution p(Zu) (or p(Zv)) as “true”
data {zu1, . . . , zuM } (or {zv1 , . . . , zvN }), and sample “fake” data
{z̃u1, . . . , z̃uM } (or {z̃v1 , . . . , z̃vN }) from the user (or POI) pos-
terior distribution qφ(Zu|XM) (or qφ(Zv|YN))—M and N are
the related batch-size about users and POIs. Then, we use
adversarial training to estimate it

Dz
(
qφu(Zu|X), p(Zu)

)
= λu

M

M∑
i=1

log Dλu

(
zui

) + log
(
1 − Dλu

(
z̃ui

))
(24)

where λu is the regularization coefficient. At the same time,
we can update the encoder parameters and decoder parameters
of users as follows:

φu, θu ∼ 1

M

M∑
i=1

∥∥xi − x̃i
∥∥2 − λu · log Dλu

(
z̃ui

)
. (25)

This idea is very similar to generative adversarial net
(GAN) [37]. However, in our model, we set the prior distribu-
tion to a Gaussian, which makes our optimization task easier
than matching an uncertain intricate, and possibly multimodal
distributions as usually done in GANs. Similar to VAEs, we
use a deep neural network to parameterize the encoder and
decoder of our model. However, the encoder is different from
VAEs, which allows the input vector to be mapped directly to
a latent variable.

F. Implementation Details

1) Optimization: In LBSNs, there are many users and
POIs. If we calculate all valid triples for Du and Dv in each
training epoch, then the optimization objective function (21) is
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computationally expensive. To address this problem, we need
to sample triplets from Du uniformly. In each epoch, for each
user, we take one triplet from Du; for each POI, we take one
triplet from Dv. In each iteration, we sample m triplets for
users and n triplets for POIs to compute the gradient, and
replace

∑
(ui,uj,uk)∈Du

with E(ui,uj,uk)∼Du in (21). Thus, we
modify the loss function of (21) as follows:

Lu
pair = E(ui,uj,uk)∼Du

[
W
(
ui, uj

) + exp
(−W

(
uj, uk

))]
. (26)

For (23), we can obtain an unbiased estimate by sampling
from qφ(Z∗|
), which is a noncontinuous operation and cannot
trivially take gradients with respect to φ through this sam-
pling process. In this case, it is difficult to perform stochastic
gradient ascent to optimize these loss functions. Inspired by
[18], [32], we use a reparameterization trick to sidestep this
issue. First, we sample ε ∼ N(0, ID), and then reparameterize
Z∗ = μφ∗(
) + σφ∗(
) 
 ε. By giving the input data 
 and ε,
the stochasticity in the sampling process is isolated and the
objective functions (23) is deterministic and continuous in the
parameters of encoder and decoder, which can be optimized
using stochastic gradient descent.

In this way, we jointly optimize the model by using
stochastic gradient descent, the loss function is presented as
follows:

L = Lu + Lv + ρLu
pair + (1 − ρ)Lv

pair (27)

where ρ is a hyper-parameter balancing the weight of social
and geographical influence.

2) Prediction: We now describe how we make POI recom-
mendation for users given a trained generative network. After
training, we obtain all parameters and weights of the encoder
and decoder. Most importantly, we have latent representations
of users and POIs. Therefore, the prediction distribution p(Pij)

can be made as follows:

p
(Pij|xi, yj

) =
∫

p
(Pij|ui, vj

)
q(ui|xi)q

(
vj|yj

)
duidvj. (28)

We can use the expectation of p(Pij|ui, vj) as the predictive
value for user ui and POI vj. Then, (28) can be rewritten as
follows:

E
(Pij|xi, yj

) = (
E
[
zui |xi

] + E
[
uc

i |xi
])ᵀ(

E
[
zvj |yj

] + E

[
vc

j |yj

])
where E[zui |xi] = μφu(xi) and E[zvj |yj] = μφv(yj) are
produced by the user inference network and POI inference
network, respectively.

G. Complexity Analysis

In WaPOIR, there are three graph-structured data, i.e., user’
check-in matrix C, social relations graph Gu, and geographical
graph among POIs Gp. For each graph, the time complexity of
calculating gradients and updating parameters in each iteration
is O(E · (|N | · L + L · D + D)), where E is the number of the
edges, |N | is the average degree of the entities, L is the size of
hidden layers, and D is the dimensionality of representation.
In practice, we only need to reconstruct the nonzero elements
in each graph, which means the complexity of the encoder and
decoder networks is O(|N | · L). Compared to the variational

TABLE II
STATISTICS OF DATASETS USED IN EXPERIMENTS

recommender systems [15], [23], [24], the main overhead is to
compute the Wasserstein distance between the node distribu-
tions, which only requires O(D) extra complexity. As shown
in the experiments, we empirically found that WaPOIR can
converge to the best performance within a few iterations, e.g.,
40–50 epochs dependent on the scale of the datasets.

IV. EXPERIMENTS

Since the main goal of our work is to develop a novel VAE-
based learning method for personalized POI recommendation,
we conducted a series of quantitative and qualitative evalu-
ations that can demonstrate the benefits of our contribution.
Specifically, we try to answer the following questions.

1) Q1: Can WaPOIR improve the performance compared
with the state-of-the-art recommendation models?

2) Q2: Does the uncertainty-aware embedding method
capture meaningful user and POI representations?

3) Q3: Do the auxiliary information-specific priors benefit
the recommendation performance?

4) Q4: How do the key hyper-parameters affect the recom-
mendation performance?

5) Q5: Is the proposed model efficient?

A. Experimental Settings

We conducted our experiments on three publicly available
LBSNs datasets, including Gowalla,1 Foursquare,2 and Yelp.3

Following [38], we filter out those users with fewer than
20 check-in POIs and those POIs with fewer than 20 visitors
for the Gowalla dataset. In Foursquare and Yelp, the users
whose check-in are fewer than 10 and the POIs with fewer
than ten visitors are discarded.

The datasets after preprocessing are described in Table II.
We partition each dataset into training, tuning, and testing sets.
For each user, the earlier 70% check-ins are used as the train-
ing data, the recent 20% data for testing, and the remaining
10% for model validation.

1) Baselines: We empirically evaluate the proposed model
for POI recommendation by comparing our method with state-
of-the-art approaches.

1) USG [28]: Is a CF-based method combining user pref-
erence, social influence, and geographical influence.

2) IRenMF [39]: Incorporates the features of neighboring
POIs into a weighted matrix factorization model for POI
recommendation.

3) GeoMF [4]: Leverages user’s interest-based preference
and the geographical preference, and augments latent

1http://snap.stanford.edu/data/loc-gowalla.html
2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
3https://www.yelp.com/dataset
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TABLE III
SUMMARY OF SIDE INFORMATION IN OUR EVALUATION

factors with user activity areas and location influential
areas, respectively.

4) RankGeoFM [6]: Is a geographical factorization method
considering spatial-temporal factors and users’ prefer-
ence rankings for POIs.

5) PACE [40]: Is an embedding-based method that jointly
learns the representations of users and POIs.

6) Self-Attentive Encoder (SAE)-Neighbor-Aware Decoder
(NAD) [21]: Consists of an SAE and an NAD with geo-
graphical influence, which adaptively differentiates the
user preference degrees in multiple aspects, by adopting
a multidimensional attention mechanism.

7) APOIR [17]: Is a state-of-the-art POI recommendation
model, which consists of two parts, a recommender and
a discriminator, which are jointly trained for learning
user preference by playing a minimax game considering
geographical influence and social relations as rewards in
a reinforcement learning manner.

8) GPR [41]: Is a graph neural network-based POI recom-
mendation model, which learns the latent representations
with graph convolutional networks and estimates user
preferences with the influences of POIs.

In addition, we compared our approach against the follow-
ing VAE-based recommendation models.

1) CVAE [15]: Is the first collaborative VAE-based item rec-
ommendation method that maximizes the lower bound
of the conditional log-likelihood of target variables
incorporating content information from items into MF.

2) CLVAE [23]: Is a conditional ladder VAE [42] based
recommendation method which extends the CVAE with
hierarchical VAE structure and uses a generative adver-
sarial network to extract the low-dimensional represen-
tations influenced by the social links.

3) Mult-VAE [24]: Is very similar to CVAE except that it
uses multinomial conditional likelihood as the prior and
that it only incorporates the user preference information
for recommendation.

We summarize the comparison of the side information used
in each baseline in Table III, where “�” means that a dataset
contains social or geographical information, and “×” denotes
the opposite. Since there are no social relationships in the
original Foursquare data, we constructed one based on the
cosine similarity between users. According to [43], we treat
user ui and user uj as friends when Uij > 0.5, [cf. (5)]. For
those general models, we use POIs’ geographical information
to represent content information of items.

2) Metrics: For validity purposes, we selected four com-
mon metrics to evaluate the performance comparison for
POI recommendation, including Pre@K (Precision), Rec@K
(Recall), nDCG@K (normalized discounted cumulative gain),
and MAP@K (mean average precision) following previous

works [38], [40]. They show different perspectives of the
performance evaluation: while precision and recall measure
the number of correct recommendations, nDCG and MAP
consider the rank of recommended POIs.

3) Implementation Details: We implemented all methods
with TensorFlow on a machine with one NVIDIA GeForce
GTX 1080Ti, Intel Xeon CPU E5-2650 with 2.30 GHz, and
128-GB RAM. For a fair comparison, we set the latent factors
zui and zvj for each user and each POI in the low-dimensional
space of the same dimension—128 (unless otherwise speci-
fied). All deep learning models are trained with the Adam
optimizer. The regularization coefficients λu and λv are set
to 6 and 8, respectively; while the mini-batch size and learn-
ing rate were tuned according to performance in validation
sets. According to the statistics of [38], we realize that 50%
of users’ transition distances are less than 2 km in Gowalla,
3 km in Foursquare, and 6 km in Yelp. Therefore, the geo-
graphical distance parameter dt is accordingly set to 2, 3,
and 6 km for Gowalla, Foursquare, and Yelp, respectively. For
the social influence, we keep the similarity when the value is
above 0.1 for all three datasets. We set γ = 0.2 and β = 0.5
on both Gowalla and Yelp. Since there is no social relation
in Foursquare data, we do not need to explicitly calculate Fij,
and then set the α = 0. In our experiments, we adjust param-
eter ρ to be in the range [0, 1]. In addition, the geographical
correlation level is set to 60.

B. Overall Performance (Q1)

Table IV summarizes the performance of WaPOIR in com-
parison to the existing state-of-the-art models for top-K POI
recommendation on three datasets, where the best performance
is shown in bold and a paired t-test was performed for sta-
tistical significance of the results (p < 0.005). Based on the
results, we have the following important observations.

(O1): Our proposed model WaPOIR performs the best
on the three datasets across all evaluation metrics.
Overall, our model outperforms the baselines by
a large margin. Taking the Yelp data for exam-
ple, WaPOIR achieves 5.13% on Precision@10,
4.39% on Recall@10, 5.24% on nDCG@10, 5.75%
on MAP@10 over the second best model GPR,
which confirms the superiority of our model. Among
baselines, GPR usually outperforms other non-VAE-
based methods (e.g., PACE, APOIR, SAE-NAD,
USG, etc.), which indicates its effectiveness of cap-
turing user preference through modeling POI inter-
actions with graphs and estimating geographical and
social influences using graph neural networks.

(O2): The MF-based methods (e.g., IRenMF, GeoMF, and
RankGeoFM) exhibit better recommendation quality
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TABLE IV
RECOMMENDATION PERFORMANCE COMPARISONS AMONG DIFFERENT ALGORITHMS ON THREE LBSN DATASETS. A PAIRED t-TEST

IS PERFORMED AND * INDICATES A STATISTICAL SIGNIFICANCE p < 0.005 AS COMPARED TO THE BEST BASELINE METHOD

than USG. One possible reason is that although USG
models user preference, geographical, and social
influence simultaneously for POI recommendation,
it still cannot model user’s check-ins as implicit
feedback and learn latent features underpinning the
complex interactions between the users and the
POIs. However, MF-based models only learn lin-
ear interactions among users and POIs, which cannot
capture the nonlinear relations that are important for
estimating user preference.

(O3): One of the latest methods, SAE-NAD, does not per-
form very well. The main reason is that SAE-NAD
is an autoencoder-based recommendation model with
an attention mechanism, which cannot simulate data
in chronological order. In addition, the recommenda-
tion performance is constrained by the POI distance
as it only considers close POIs. Besides, SAE-NAD
ignores the social influence and high-order inter-
actions between users and POIs, while failing to
capture the uncertainty of the users’ preference and
POI representations, which has been proved to be
effective in recommending user-interested items.

(O4): PACE is another baseline performing well, which
indicates its effectiveness in learning user-POI inter-
actions through modeling the implicit feedback
data and context knowledge by neural embedding.
However, PACE relies on sparse historical data to
learn user and POI representations, which may not
capture high-order interactions. APOIR, in contrast,

considers geographical and social influences in an
adversarial learning manner, which allows it to cap-
ture nonlinear and high-order interactions through
estimating the awards with reinforcement learning.
Nevertheless, APOIR requires geographically closed
POIs and social friends as positive labels, limit-
ing its ability to capture meaningful signals from
implicit and negative feedback. As WaPOIR, GPR
is a graph-based POI recommendation model, gen-
erally showing the best performance among baseline
approaches. However, it only exploits the POI-POI
graph and user-POI interactions, failing to consider
the social influence. Besides, GPR relies on graph
neural networks to capture the relations, which is
known to suffer from the oversmoothing problem
when stacking deeper layers. In other words, it can
only model shallow interactions and relations when
aggregating information from neighbor nodes. In
contrast, our WaPOIR learns the embeddings in the
Wasserstein space while being able to model the
uncertainty of representations for both users and
POIs.

(O5): Finally, VAE-based models, such as CVAE, CLVAE,
and Mult-VAE perform relatively well, although they
are not specifically tailored for POI recommenda-
tions. These results demonstrate the potential effec-
tiveness in modeling the nonlinearity and uncertainty
of user-POI interactions with a Bayesian framework.
Among these methods, Mult-VAE is a nonlinear

Authorized licensed use limited to: Iowa State University Library. Downloaded on January 29,2024 at 17:17:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: UNCERTAINTY-AWARE HETEROGENEOUS REPRESENTATION LEARNING 4531

TABLE V
PARAMETER SETTINGS FOR CONSIDERING DIFFERENT

AUXILIARY INFORMATION

probabilistic model and applies a deep neural struc-
ture for implicit feedback, but it still does not achieve
better results than RankGeoFM, primarily because it
does not leverage the auxiliary information important
for POI recommendation. For other Bayesian models,
CLVAE benefits from learning richer flexibility of
variational distributions with hierarchical VAE, and
it also incorporates the social information to improve
the performance. CVAE is a strong baseline that per-
forms well in most cases. The reason is that CVAE
uses both geographical influence and collaborative
information concerning the users and POIs.

C. Visualization Analysis (Q2)

Given that our goal is to learn better latent representations
for users and POIs that could improve the recommendation
performance, an important/direct indicator to show the validity
of our model is visualization. Moreover, disentangled rep-
resentation is generally considered to contain interpretable
semantic information and reflect separate factors of variation
in the data. Therefore, we visualize the learned latent rep-
resentations of users and POIs. Specifically, we first extract
the latent low-dimensional (128 dimensions) representations
of each user and each POI obtained from the model, and then
map them in 2-D using the t-SNE algorithm [44].

The visualization of the latent space is plotted in Fig. 4,
where we can clearly observe the clustering phenomena
learned by WaPOIR. The results also demonstrate that the
uncertainty-aware embedding and Wasserstein distance mea-
sure used in our model can extract meaningful representations
that could help discriminate the user preference over POIs. On
the other hand, we can observe that the entities are better clus-
tered in Gowalla and Foursquare while being more entangled
in Yelp data. This result suggests that the better the cluster-
ing effect, the more accurate recommendation performance the
model can achieve, e.g., all models perform better on Gowalla
and Foursquare than on Yelp (cf. Table IV).

D. Ablation Study (Q3)

The social and geographical information show a significant
impact on the effectiveness of POI recommendation. To ver-
ify the performance of each aspect, we set the values of three
hyper-parameters γ , β, and ρ as shown in Table V (for Yelp,
the ρ is set to 0.7 in WaPOIR), which indicates that we can
vary the parameters to understand the roles of social influence
and geographical influence played in POI recommendation.
Here, we denote the model with user preference and geograph-
ical information as POIR-Geo, the model with user preference
and social information as POIR-Soc, WaPOIR is our model
considering all of the information contexts.

Fig. 4. Visualization of the user and POI representations. (a) User on
Gowalla. (b) POI on Gowalla. (c) User on Foursquare. (d) POI on Foursquare.
(e) User on Yelp. (f) POI on Yelp.

TABLE VI
PERFORMANCE COMPARISON AMONG DIFFERENT AUXILIARY

INFORMATION FOR POI RECOMMENDATION ON

GOWALLA, FOURSQUARE, AND YELP

The results shown in Table VI exhibit the effectiveness of
different side information. We can observe that.

(O1): WaPOIR achieves better performance than POIR-
Geo and POIR-Soc which means that combining two
important information for POI recommendation can
effectively improve the performance of the model.
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(a) (b)

Fig. 5. Impact of D in three datasets. (a) Gowalla. (b) Foursquare.

(O2): POIR-Geo shows the second best on Gowalla and
Foursquare which indicates that geographical influ-
ence has a more significant impact than social influ-
ence on the effectiveness of POI recommendations.

(O3): POIR-Geo and POIR-Soc demonstrate the opposite
performance on the Yelp. One explanation could
be that geographical influence has less effectiveness
than social influence for POI recommendation, since
the distance between the Yelp users’ check-in POIs
is relatively larger making it difficult for modeling
users’ geographical preferences.

E. Sensitivity of Parameters (Q4)

There are several important hyper-parameters that need to
be carefully tuned for WaPOIR. We optimized our model by
varying these parameters—the dimension of latent representa-
tions D, the hyper-parameter for balancing the weight of social
and geographical influence ρ, the user similarity parameters
γ and β, and the geographical correlation level ξ .

As shown in Fig. 5, the dimensionality of embedding D is
tuned with six different values: {4, 16, 32, 64, 128, 256}. The
performance increases initially as the value of D on four met-
rics in three datasets. However, as it continues to increase
(D ≥ 128), the performance tends to be stable which means
that most of the useful information about users and POIs
have already been encoded into the latent vectors. A larger
dimension consumes more computing resources, and it has
a less improvement on performance. Therefore, we fix the
embedding size to 128 for all datasets.

Fig. 6 shows the effect of the four different parameters on
the results of the three data sets. The variation of ξ is shown
in Fig. 6(d). From the figure, we can see that when ξ > 10
the model is insensitive to this hyper-parameter. In our experi-
ments, we use ξ = 60. Fig. 6(a) and (c) illustrate the impact of
user similarity parameters on nDCG and Precision for the three
datasets. As can be seen, the best performances are achieved
when γ = 0.2 and β = 0.5. Fig. 6(b) illustrates the impact of
ρ on Recall for the three datasets.

We note that the results are consistent with Table VI—i.e.,
the performance of POIR-Geo (ρ = 0) and POIR-Soc (ρ = 1)
are worse than WaPOIR with other parameters fixed. It demon-
strates that both social influence and geographical influence
are important for POI recommendation. More specifically, we
observe that our method is not sensitive to the choice of ρ.
For the best performance, we choose ρ = 0.5, ρ = 0.5, and
ρ = 0.7 for Gowalla, Foursquare, and Yelp, respectively.

(a) (b)

(c) (d)

Fig. 6. Results of parameter sensitivity in three datasets. (a) Precision.
(b) Recall. (c) nDCG. (d) MAP.

(a) (b)

Fig. 7. Convergence of the training process. (a) Precision. (b) MAP.

Fig. 8. Training time comparison. (a) Foursquare. (b) Yelp.

F. Training Process and Efficiency Comparison (Q5)

The advantages of WaPOIR stem from its capability to effi-
ciently learn users’ and POIs’ latent representations. Fig. 7
plots the training process on Gowalla, Foursquare, and Yelp.
We observe that WaPOIR can converge within a few epochs
on three datasets, e.g., around 50 epochs on Gowalla and
Foursquare datasets and 45 epochs on Yelp dataset, which
demonstrates the efficiency of our pairwise similarity measure
and ranking loss optimization (cf. Section III-D).

Fig. 8 compares the training time of the POI recommen-
dation algorithms. Deep learning-based approaches are signif-
icantly faster than MF-based approaches (e.g., GeoMF and
RankGeoFM) which usually need more time to estimate user
preference. APOIR is computationally intensive among deep
learning methods because GAN-style representation learning
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requires more time to explore the feature space. The train-
ing time of WaPOIR is very close to the previous VAE-based
approaches (i.e., SAE-NAD, CVAE, and Multi-VAE), except
that our model requires slightly more time to estimate the
Wasserstein distances. In other words, WaPOIR achieves a
good balance between expensive GAN-based and VAE-based
approaches while consistently outperforming previous gener-
ative recommendation models. These results demonstrate that
our method can be scaled to large-scale LBSN datasets.

V. RELATED WORK

A. POI Recommendation

With the expeditious growth of the geographical data, per-
sonalized POI recommendation has been widely studied and
various machine learning techniques have been introduced into
POI recommendation systems. Many proposed methods incor-
porate different side information related to users and POIs,
such as check-ins, comments, and social correlations, into POI
recommendation to enhance the recommendation accuracy in
a CF setting [4], [6], [45], [46], [47]. For example, early
works [28], [39], [48] assumed that people share their check-
in activities among friends and therefore recommended POIs
by exploring the preferences of social friends. Recently, some
efforts have been conducted in the community to address the
reliability [49], [50], cold start, and data sparsity issues [51]
that could benefit the POI recommender systems.

B. Deep Generative Recommendation

Deep recommendation models have shown great success
in capturing meaningful data representations and achieving
advanced recommendation performance. However, desirable,
accuracy improvement may be insufficient for a modern
recommender system [12]. Therefore, researchers begin to
focus on providing holistic recommendation experience to
users, such as diversity, fairness, and interpretability. On the
other hand, deep generative models have shown promising
improvements in recommendation systems by learning effec-
tive representations of network nodes. The representative deep
generative models are GANs [37], VAEs [18], and flow-based
generative networks [52].

GAN has been widely used in information fusion and
recommendation systems to improve the model robustness
via perturbation with adversarial samples [53] or optimiz-
ing model parameter inference [54] with adversarial learning.
IRGAN [29] is a representative work, which leverages a
game theoretical minimax game to iteratively optimize dis-
criminator and generator, simultaneously. A most recent work
APOIR [17] leverages different side information (e.g., geo-
graphical and social influence) into the rewards in a reinforce-
ment learning manner and adopts a generative framework for
training. VAE is a nonlinear probabilistic model of traditional
neural autoencoders. CVAE [27] is one of the first Bayesian
generative models that considered both user ratings and auxil-
iary features. It jointly performs deep representation learning
for the side information and CF for the rating (feedback)
matrix. Later, Lee et al. [23] proposed a VAE-based model that
augmented CF with ladder network [42], and then leveraged

GAN to exact the low-dimensional representations influenced
by the auxiliary information. Meantime, Liang et al. [24]
introduced a multinomial conditional likelihood-based VAE
framework. It can address the problem of under-fitting when
modeling large, sparse, high-dimensional data [55]. Recently,
there is a growing interest in improving variational CF with
flow-based models [56], [57], which could alleviate the inac-
curate posterior estimation problem in previous VAE-based
recommender systems.

Though our work is inspired by the recent progress of deep
generative models in the fields of recommendation systems, we
have several key differences compared to existing approaches.
First, we combine several available side information as input
features to reduce the data sparsity issue and use a sam-
pling trick described in Section III-F to address the time
complexity of calculating gradients and updating parameters.
Second, compared to conventional CF-based POI recom-
mender systems, we model the problem within a probabilistic
recommendation setting which allows our model for Bayesian
inference and capturing nonlinear and complicated user-POI
interactions. Third, in contrast to the traditional VAE-based
methods [23], [24], [27] which use the KL divergence as the
distribution measure, our approach learns representations in
the Wasserstein space, enabling our model to better reflect the
uncertainties of POI and user representation, and preserve the
transitivity of representations among users and POIs.

VI. CONCLUSION

In this article, we proposed a method WaPOIR. It can
model the uncertainties of user and POI representation and
address the issues related to biased inference, data spar-
sity, and cold start by leveraging the Bayesian inference for
probabilistic recommendation and learning the latent repre-
sentations as Gaussian distributions in the Wasserstein Space.
WaPOIR is among the first method that combines collabora-
tive VAE and Wasserstein distance for POI recommendation.
Further, WaPOIR is a generative model capable of alleviating
the agnostic posterior estimation problem inherent in existing
Bayesian recommendation methods.

One of our future directions is to find a suitable way of
learning priors for better capturing the real distributions in the
CF settings. Meanwhile, the auxiliary information explored
in this work can provide more interaction signals by extract-
ing the user-item interactions using graph neural networks.
Therefore, incorporating the uncertain user/item embedding
into the graph neural networks-based recommender system is
worth investigating. In this work, we embedded users/items
into Gaussians, which may not fully reflect the real distribu-
tions. In this vein, how to extend the present work to model
the tractable data distribution using more expressive generative
models such as normalizing flows is an interesting direction
for improving the performance of Bayesian recommendation.

REFERENCES

[1] N. Lim, B. Hooi, S. Ng, Y. L. Goh, R. Weng, and R. Tan, “Hierarchical
multi-task graph recurrent network for next POI recommendation,”
in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2022,
pp. 1133–1143.

Authorized licensed use limited to: Iowa State University Library. Downloaded on January 29,2024 at 17:17:37 UTC from IEEE Xplore.  Restrictions apply. 



4534 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 7, JULY 2023

[2] X. Wang, G. Sun, X. Fang, J. Yang, and S. Wang, “Modeling spatio-
temporal neighbourhood for personalized point-of-interest recommenda-
tion,” in Proc. Int. Joint Conf. Artif. Intell., 2022, pp. 3530–3536.

[3] H. Zhang, W. Ni, X. Li, and Y. Yang, “Modeling the heterogeneous
duration of user interest in time-dependent recommendation: A hidden
semi-Markov approach,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48,
no. 2, pp. 177–194, Feb. 2018.

[4] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui, “GeoMF: Joint
geographical modeling and matrix factorization for point-of-interest rec-
ommendation,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2014, pp. 831–840.

[5] C. Chudzicki, D. E. Pritchard, and Z. Chen, “GeoSoCa: Exploiting
geographical, social and categorical correlations for point-of-interest
recommendations,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2015, pp. 443–452.

[6] X. Li, G. Cong, X.-L. Li, T.-A. N. Pham, and S. Krishnaswamy, “Rank-
GeoFM: A ranking based geographical factorization method for point of
interest recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2015, pp. 433–442.

[7] Y. Zhang, C. Yin, Q. Wu, Q. He, and H. Zhu, “Location-aware deep
collaborative filtering for service recommendation,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 51, no. 6, pp. 3796–3807, Jun. 2021.

[8] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” J. Comput., vol. 48, no. 8, pp. 30–37, 2009.

[9] L. Wu, P. Sun, R. Hong, Y. Ge, and M. Wang, “Collaborative neural
social recommendation,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51,
no. 1, pp. 464–476, Jan. 2021.

[10] D. Wu, X. Luo, M. Shang, Y. He, G. Wang, and M. Zhou, “A deep
latent factor model for high-dimensional and sparse matrices in recom-
mender systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 7,
pp. 4285–4296, Jul. 2021.

[11] J. He, X. Li, and L. Liao, “Category-aware next point-of-interest rec-
ommendation via listwise Bayesian personalized ranking,” in Proc. Int.
Joint Conf. Artif. Intell., 2017, pp. 1837–1843.

[12] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recom-
mender system: A survey and new perspectives,” ACM Comput. Surveys,
vol. 52, no. 1, pp. 1–38, 2019.

[13] T. Qian, B. Liu, Q. V. H. Nguyen, and H. Yin, “Spatiotemporal rep-
resentation learning for translation-based POI recommendation,” ACM
Trans. Inf. Syst., vol. 37, no. 2, pp. 1–24, Mar. 2019.

[14] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-path based
context for top-N recommendation with a neural co-attention model,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2018,
pp. 1531–1540.

[15] X. Li and J. She, “Collaborative variational autoencoder for recom-
mender systems,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2017, pp. 305–314.

[16] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 1050–1059.

[17] F. Zhou, R. Yin, K. Zhang, G. Trajcevski, T. Zhong, and J. Wu,
“Adversarial point-of-interest recommendation,” in Proc. World Wide
Web Conf., 2019, pp. 3462–3468.

[18] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. Int. Conf. Learn. Represent., 2014, pp. 1–14.

[19] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in Proc. Conf.
Uncertainty Artif. Intell., 2009, pp. 452–461.

[20] P. Clement and W. Desch, “An elementary proof of the triangle inequal-
ity for the Wasserstein metric,” in Proc. Amer. Math. Soc., 2008,
pp. 333–339.

[21] C. Ma, Y. Zhang, Q. Wang, and X. Liu, “Point-of-interest recom-
mendation: Exploiting self-attentive autoencoders with neighbor-aware
influence,” in Proc. Conf. Inf. Knowl. Manag., 2018, pp. 697–706.

[22] M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang, “Learning
graph-based POI embedding for location-based recommendation,” in
Proc. Conf. Inf. Knowl. Manag., 2016, pp. 15–24.

[23] W. Lee, K. Song, and I.-C. Moon, “Augmented variational autoencoders
for collaborative filtering with auxiliary information,” in Proc. Conf. Inf.
Knowl. Manag., 2017, pp. 1139–1148.

[24] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational
autoencoders for collaborative filtering,” in Proc. World Wide Web Conf.,
2018, pp. 689–698.

[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 214–223.

[26] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein
auto-encoders,” in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–20.

[27] H. Li, Y. Ge, D. Lian, and H. Liu, “Learning user’s intrinsic and extrinsic
interests for point-of-interest recommendation: A unified approach,” in
Proc. Int. Joint Conf. Artif. Intell., 2017, pp. 2117–2123.

[28] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee, “Exploiting geographical influ-
ence for collaborative point-of-interest recommendation,” in Proc. Int.
ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2011, pp. 325–334.

[29] J. Wang et al., “IRGAN: A minimax game for unifying generative and
discriminative information retrieval models,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2017, pp. 515–524.

[30] D. Zhu, P. Cui, D. Wang, and W. Zhu, “Deep variational network embed-
ding in Wasserstein space,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., 2018, pp. 2594–2603.

[31] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 1257–1264.

[32] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropa-
gation and approximate inference in deep generative models,” in Proc.
Int. Conf. Mach. Learn., 2014, pp. 1–14.

[33] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, 2017.

[34] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational
Bayes: Unifying variational autoencoders and generative adversarial
networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 2391–2400.

[35] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” J. Amer. Soc. Inf. Sci. Technol., vol. 58, no. 7,
pp. 1019–1031, 2007.

[36] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale information network embedding,” in Proc. Int. World Wide Web
Conf., 2015, pp. 1067–1077.

[37] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[38] Y. Liu, T.-A. N. Pham, G. Cong, and Q. Yuan, “An experimental
evaluation of point-of-interest recommendation in location-based social
networks,” Proc. VLDB Endowm., vol. 10, no. 10, pp. 1010–1021, 2017.

[39] Y. Liu, W. Wei, A. Sun, and C. Miao, “Exploiting geographical neigh-
borhood characteristics for location recommendation,” in Proc. Conf.
Inf. Knowl. Manag., 2014, pp. 739–748.

[40] C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han, “Bridging collabora-
tive filtering and semi-supervised learning: A neural approach for POI
recommendation,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., 2017, pp. 1245–1254.

[41] B. Chang, G. Jang, S. Kim, and J. Kang, “Learning graph-based geo-
graphical latent representation for point-of-interest recommendation,” in
Proc. Conf. Inf. Knowl. Manag., 2020, pp. 135–144.

[42] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
“Ladder variational autoencoders,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 3738–3746.

[43] H. Ma, “On measuring social friend interest similarities in recommender
systems,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2014, pp. 465–474.

[44] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.

[45] S. Yang, J. Liu, and K. Zhao, “GETNext: Trajectory flow map enhanced
transformer for next POI recommendation,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2022, pp. 1144–1153.

[46] Y. Li, T. Chen, Y. Luo, H. Yin, and Z. Huang, “Discovering
collaborative signals for next POI recommendation with iterative
Seq2Graph augmentation,” in Proc. Int. Joint Conf. Artif. Intell., 2021,
pp. 1491–1497.

[47] D. Li and Z. Gong, “A deep neural network for crossing-city POI
recommendations,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8,
pp. 3536–3548, Aug. 2022.

[48] H. A. Rahmani, M. Aliannejadi, S. Ahmadian, M. Baratchi,
M. Afsharchi, and F. Crestani, “LGLMF: Local geographical based
logistic matrix factorization model for POI recommendation,” in Proc.
Asia Inf. Retrieval Soc. Conf., 2019, pp. 66–78.

[49] S. Ahmadian, M. Meghdadi, and M. Afsharchi, “Incorporating reli-
able virtual ratings into social recommendation systems,” Appl. Intell.,
vol. 48, no. 11, pp. 4448–4469, 2018.

[50] S. Ahmadian, N. Joorabloo, M. Jalili, Y. Ren, M. Meghdadi, and
M. Afsharchi, “A social recommender system based on reliable implicit
relationships,” Knowl.-Based Syst., vol. 192, Mar. 2020, Art. no. 105371.

[51] F. Tahmasebi, M. Meghdadi, S. Ahmadian, and K. Valiallahi, “A hybrid
recommendation system based on profile expansion technique to alle-
viate cold start problem,” Multimedia Tools Appl., vol. 80, no. 2,
pp. 2339–2354, 2021.

Authorized licensed use limited to: Iowa State University Library. Downloaded on January 29,2024 at 17:17:37 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: UNCERTAINTY-AWARE HETEROGENEOUS REPRESENTATION LEARNING 4535

[52] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1530–1538.

[53] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized ranking
for recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 2018, pp. 355–364.

[54] Q. Wang, H. Yin, Z. Hu, D. Lian, H. Wang, and Z. Huang, “Neural
memory streaming recommender networks with adversarial training,”
in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2018,
pp. 2467–2475.

[55] R. Krishnan, D. Liang, and M. Hoffman, “On the challenges of learning
with inference networks on sparse, high-dimensional data,” in Proc. Int.
Conf. Artif. Intell. Stat., 2018, pp. 143–151.

[56] T. Zhong, Z. Wen, F. Zhou, G. Trajcevski, and K. Zhang, “Session-based
recommendation via flow-based deep generative networks and Bayesian
inference,” Neurocomputing, vol. 391, pp. 129–141, May 2020.

[57] F. Zhou, Y. Mo, G. Trajcevski, K. Zhang, J. Wu, and T. Zhong,
“Recommendation via collaborative autoregressive flows,” Neural Netw.,
vol. 126, pp. 52–64, Jun. 2020.

Fan Zhou (Member, IEEE) received the B.S.
degree in computer science from Sichuan University,
Chengdu, China, in 2003, and the M.S. and Ph.D.
degrees in computer science from the University
of Electronic Science and Technology of China,
Chengdu, in 2006 and 2012, respectively.

He is currently a Professor with the School of
Information and Software Engineering, University
of Electronic Science and Technology of China. His
research interests include machine learning, neural
networks, spatio-temporal data management, graph

learning, recommender systems, and social network data mining.

Tangjiang Qian received the B.S. degree in soft-
ware engineering from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2021, where he is currently pursuing the M.S.
degree.

His research interests include social computing,
multimodal learning, and deep generative learning.

Yuhua Mo received the B.S. degree in soft-
ware engineering from Southwest Minzu University,
Chengdu, China, in 2017, and the M.S. degree
in software engineering from the University of
Electronic Science and Technology of China,
Chengdu, in 2020.

Her research interests include recommendation
systems, spatio-temporal data mining, and deep gen-
erative learning.

Zhangtao Cheng received the B.S. degree in elec-
tronic and information engineering from Southwest
Jiaotong University, Chengdu, China, in 2020. He is
currently pursuing the M.S. degree in software engi-
neering with the University of Electronic Science
and Technology of China, Chengdu.

His current research interests include social
network data mining and knowledge discovery,
spatio-temporal data mining, and recommender
systems.

Chunjing Xiao received the Ph.D. degree in com-
puter software and theory from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2013.

He is currently an Associate Professor with the
School of Computer and Information Engineering,
Henan University, Kaifeng, China. He was a
Visiting Scholar with the Department of Electrical
Engineering and Computer Science, Northwestern
University, Evanston, IL, USA. His current research
interests include recommender systems, anomaly

detection, and Internet of Things.

Jin Wu received the B.S. degree in automatic control
and the M.S. and Ph.D. degrees in computer appli-
cation technology from the University of Electronic
Science and Technology of China (UESTC),
Chengdu, China, in 1993, 1996, and 2004, respec-
tively.

She is currently an Associate Professor with
UESTC. Her research interests include machine
learning, knowledge mapping, software development
techniques, and process technology.

Goce Trajcevski (Member, IEEE) received the
B.Sc. degree in informatics and automation from
the University of Sts. Kiril i Metodij, Skopje, North
Macedonia, in 1989, and the M.S. and Ph.D. degrees
in computer science from the University of Illinois
at Chicago, Chicago, IL, USA, in 1995 and 2002,
respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA, USA. His research
has been funded by the NSF, ONR, BEA, and

Northrop Grumman Corporation. In addition to a book chapter and three
encyclopedia chapters, he has coauthored over 140 publications in refereed
conferences and journals. His main research interests are in the areas of spatio-
temporal data management, uncertainty and reactive behavior management in
different application settings, and incorporating multiple contexts.

Dr. Trajcevski was the General Co-Chair of the IEEE International
Conference on Data Engineering 2014 and ACM SIGSPATIAL 2019, the
PC Co-Chair of the ADBIS 2018 and ACM SIGSPATIAL 2016 and 2017,
and has served in various roles in organizing committees in numerous con-
ferences and workshops. He is an Associate Editor of the ACM Transactions
on Spatial Algorithms and Systems and the Geoinformatica Journals.

Authorized licensed use limited to: Iowa State University Library. Downloaded on January 29,2024 at 17:17:37 UTC from IEEE Xplore.  Restrictions apply. 


