Check for
Updates

Simplifying Temporal Heterogeneous Network for
Continuous-Time Link Prediction

Ce Li Rongpei Hong Xovee Xu"
Iowa State University University of Electronic Science and ~ University of Electronic Science and
Ames, IA, USA Technology of China Technology of China

celi@iastate.edu

Goce Trajcevski
Iowa State University
Ames, IA, USA
gocet25@iastate.edu

ABSTRACT

Temporal heterogeneous networks (THNSs) investigate the struc-
tural interactions and their evolution over time in graphs with
multiple types of nodes or edges. Existing THNs describe evolving
networks as a sequence of graph snapshots and adopt mechanisms
from static heterogeneous networks to capture the spatial-temporal
correlation. However, these works are confined to the discrete-
time setting and the implementation of stacked mechanisms often
introduces a high level of complexity, both conceptually and com-
putationally. Here, we conduct comprehensive examinations and
propose STHN, a simplifying THN for continuous-time link predic-
tion. Concretely, to integrate continuous dynamics, we maintain a
historical interaction memory for each node. A link encoder that
incorporates two components - type encoding and relative time
encoding - is introduced to encapsulate implicit heterogeneous char-
acteristics of interaction and extract the most informative temporal
information. We further propose to use a patching technique that
assists with Transformer feature extractor to support the interac-
tion sequence with long histories. Extensive experiments on three
real-world datasets empirically demonstrate that STHN outper-
forms state-of-the-art methods with competitive task accuracy and
predictive efficiency on both transductive and inductive settings.

CCS CONCEPTS

« Information systems — Information systems applications;
« Computing methodologies — Machine learning.

*Corresponding author

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3615059

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Chengdu, Sichuan, China
rongpei.hong@std.uestc.edu.cn

1288

Chengdu, Sichuan, China
xovee.xu@gmail.com

Fan Zhou

University of Electronic Science and

Technology of China
Chengdu, Sichuan, China
Kash Institute of Electronics and
Information Industry
Kashi, Xinjiang, China
fan.zhou@uestc.edu.cn

KEYWORDS

temporal heterogeneous network; graph representation learning;
temporal link prediction

ACM Reference Format:

Ce Li, Rongpei Hong, Xovee Xu, Goce Trajcevski, and Fan Zhou. 2023.
Simplifying Temporal Heterogeneous Network for Continuous-Time Link
Prediction. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management (CIKM °23), October 21-25, 2023,
Birmingham, United Kingdom. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3583780.3615059

1 INTRODUCTION

In many real-world applications — such as social networks [43, 44],
transportation [41], recommendation systems [42], citation net-
works [36], etc. — the data capturing the interplay of main entities
can be represented as an evolving network of heterogeneous struc-
tures. Given the diversity of the types of nodes and relationships,
the interaction of links with the nodes is extracted and heteroge-
neous network representation learning is often used to map nodes
to low-dimensional space, preserving the heterogeneities of both
node properties and structures, which is essential for enabling
graph-related services [5, 17, 28, 34].

Traditional learning paradigms for heterogeneous networks have
often focused on static settings — however, many heterogeneous
networks are time-dependent, i.e., the graph structure and features
are evolving over time [14, 30, 33]. Several recent studies have ac-
knowledged the necessity for adaptations for dynamic scenarios
and began to incorporate discrete dynamics into heterogeneous
graph learning to capture the evolution over time for dynamic
(GCN [15] and HGT [11, 29] necessitate specific adaptations for
dynamic scenarios). The prevalent approach employed in existing
dynamic heterogeneous graph learning methods is based on captur-
ing snapshots of the graph at different timestamps [5, 13, 14, 34]. As
shown in Figure 1(a), these snapshots refer to the state of the graph
at a specific time instant and are learned through a static hetero-
geneous graph encoder to obtain their representations. Typically,

https://orcid.org/0000-0002-2202-632X
https://orcid.org/0009-0007-4977-1657
https://orcid.org/0000-0001-6415-7558
https://orcid.org/0000-0002-8839-6278
https://orcid.org/0000-0002-8038-8150
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583780.3615059
https://doi.org/10.1145/3583780.3615059
https://doi.org/10.1145/3583780.3615059
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615059&domain=pdf&date_stamp=2023-10-21

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

(a) Discrete-time Dynamic Model

Heterogeneous Snapshots

Go Gt Qﬂ e ‘H }\~ redict
Graph HG F’ RNNs p
@ @ Encoder ‘ Mentlon t:
e (o

Type Specific Encoder

o (@@ — (oot)

Encoder | 4’

|

I

|

I

I

- (@@ i ‘

concat !

-® = (et)5 | (G |

|

............ &0 1
G I
o (@@ — (Ercoterin) — |

Interaction Sequence
Sy, (ts), for vy before tg

Timestamps

Vertices
V1 — Vg
vy — U3
VU1 — U4
vy — U3
V3 — U4
Vg — Us
vy — Vg
Vs — Vg

Temporal Heterogeneous Network

Figure 1: Visual illustration of dynamic heterogeneous graph
models. (a) Discrete-time dynamic model with the type-
specific graph encoder takes a two-step strategy (graph en-
coder followed by a sequence model) to capture spatial-
temporal correlations. (b) Continuous-time dynamic model
memorizes the historical interaction streams for each node.

the encoder splits the graph snapshot into multiple parts accord-
ing to the node or edge types [6, 32, 39], simplifying the graph
learning process from a heterogeneous network to multiple homo-
geneous subnetworks. These snapshots are subsequently encoded
to produce a series of heterogeneity-preserving embeddings, and
sequence-based models such as recurrent neural network (RNN)
[10] and Transformers [26] are used to aggregate node embeddings
at pre-specified timestamps as well as update their representations.

Challenges & Motivation: Despite the achieved improvements
(e.g., in effectiveness), most works remain limited to discrete-time
settings. However, representing dynamic graphs as a sequence of
heterogeneous graph snapshots over time forces the model to digest
discrete dynamics. This, in turn, may result in inefficient behavior
that may not be acceptable for real-world applications, especially
the ones where new edges can appear at any time [22]. Clearly, in
many such cases, it is preferable for THNs models to make immedi-
ate link predictions. From a complementary perspective, learning
graph dynamics with discrete snapshots is not scalable to large
networks due to the high space usage and redundancy inherent in
maintaining multiple snapshots. Another consideration is that cur-
rent THNs adopt many building blocks from static heterogeneous
networks, notably the explicit type-specific design and attention
mechanism, as shown in Figure 1(a). The effects of type-specific
designs have been investigated in static heterogeneous network
studies [18, 40] and it has been shown that type-specific embed-
dings only bring minor improvements. However, no studies have
examined the effects of these designs on dynamic heterogeneous

1289

Ce Li, Rongpei Hong, Xovee Xu, Goce Trajcevski, and Fan Zhou

networks. Part of our motivation was to close this gap by con-
ducting comprehensive examinations of these building blocks and
designs carried over from static graph learning models. Towards
that, we got two significant findings: (1) splitting historical interac-
tions into disparate subnetworks breaks the order that originally
exists in the interaction sequences and hinders the model to cap-
ture the correlations between different but nearby relationships. (2)
self-attention mechanisms are critical feature extractors, but their
performance and effectiveness will be degraded when dealing with
long interaction sequence.

Approach and Contributions: Motivated by the aforementioned
observations and findings, we propose a novel temporal hetero-
geneous learning model STHN for link prediction, which studies
heterogeneous node representations in a simpler and continuous-
time manner. We maintain a historical interaction memory for each
node (cf. Figure 1(b)) to capture node interaction dynamics, en-
abling immediate link prediction for both seen and unseen nodes.
Moreover, we introduce a link encoder that incorporates two com-
ponents — type encoding and relative time encoding — to encapsulate
implicit heterogeneous characteristics of interaction and extract the
most informative temporal information. Inspired by the patching
technique [4], we decompose long interaction histories into patches
as input tokens for a Transformer-based feature extractor. Extensive
experiments on three real-world heterogeneous network datasets
demonstrate that the proposed STHN model can effectively predict
future links and outperform strong baselines. Our contributions
can be summarized as follows:

e We identify the challenges in predicting links on temporal het-
erogeneous networks and present a continuous dynamic graph
learning approach.

e We propose STHN, a novel method that does not use the common

type-specific design and simplifies neighborhood aggregation by

implicitly incorporating structural heterogeneity and temporal
information.

To enhance STHN’s capability for learning long interaction se-

quences, we apply a patching technique that maintains local

semantic proximities while reducing computational costs.

e We provide extensive experimental evaluations comparing
STHN against seven baselines (from three different categories)
over three datasets, and empirically demonstrate that STHN con-
verges more rapidly and predicts links more accurately in both
transductive and inductive settings.

2 PRELIMINARIES

We now introduce the necessary background and formally define
the problem. Typically, a graph G = (V, &) is a pair consisting of
a set of vertices V and a set of edges & C V' x V. This definition
implicitly assumes a homogeneity among the (types of) nodes and
edges. In a heterogeneous setting, ‘V is a union of disjoint sets —
ie, V=V UV, U...UVg and every node from a given subset is
of the same type. More formally, we assume a collection of types
A ={A1, A, ..., A1, } to denote a set of node types. Each v; € V
is associated with — equivalently, has properties that make it an
instance of - a particular A;. A type (respectively, property) can
be either primitive (i.e., consisting of a single, atomic attribute) or
composite (i.e., consisting of structures, possibly nested). Thus, we

Simplifying Temporal Heterogeneous Network for Continuous-Time Link Prediction

assume that there exists a mapping ¢ : V — A. In the context of
Figure 1(a) this is shown by the different colors of the nodes (we
do not show the actual structures corresponding to the respective
properties). Furthermore, we assume that each edge e; € & has a
distinct type which essentially means: (1) it connects a pair of nodes
of specific types; and (2) it has a particular structure describing its
properties (e.g., weight). We use R = {Ry, Ra, ..., Ry, } to denote the
collection of edge-types — and we have a corresponding mapping
¥ : & — R. In the context of Figure 1(a), edges with the same color
and shape belong to the same edge type (relation). For example, a
solid red edge links yellow nodes; solid blue edge links red nodes;
etc. With these in mind, we have the following definitions:

Definition 2.1. (Heterogeneous Graph) A heterogeneous graph
is a six-tuple G = (V, 8, A, R, ¢, V), where |A| + |R| > 2 (in the
case that |A| = |R| = 1, the graph is homogeneous).

Definition 2.1 formalized the concept of a graph with many
types of nodes and edges. However, it did not capture the notion of
evolution of respective entities over time. Following [32], we have:

Definition 2.2. Temporal Heterogeneous Network. A tempo-
ral heterogeneous network is a heterogeneous network in which
certain links occur in different time instants, i.e.:

E={(eij(t),r)|vi,vj € V,r e R}, (1)

where e; j(t) is a link between node v; and vj, r(r € R) is the link
type, and t is the timestamp when e; j(t) is built.

An example is provided in Figure 1 which shows the timestamps
of occurrence for the respective edges in the graph.

Definition 2.3. Interaction Sequence. For a node v, its aggre-
gated historical temporal information before timestamp t, pre-
sented in chronological order, is defined as an interaction sequence:

@

Problem Statement. Given the definitions above, the problem of
Continuous-Time Link Prediction is defined as: Given a node u € V
and a timestamp t,, the goal of THNS is to learn a d-dimensional
time-dependent node representation hy(t,) € R9 based on its
(historical) interaction sequence Sy (t,). With the learned node
representation hy, (t,) and h, (¢,) for nodes (u, v), the link prediction
is used to predict whether they are connected at timestamp t,,. Note
that the link existence prediction between the nodes is not our only
objective. In addition, we expect the models to make relationship
type predictions for graphs with multiple types of links.

So(tn) = {(ejj(t), 7)o =vj orv =0j,t < ty}.

3 METHODOLOGY

In this section, we present the architecture of the proposed
STHN model and discuss its main aspects. The overall framework
is depicted in Figure 2 and, as shown, it consists of three main mod-
ules: (1) Heterogeneous link encoder is designed to encode different
link features (e.g., link feature, link type, and link timestamps) into
embeddings. (2) Semantic patches fusion is designed to summarize
the information from temporal interaction sequence; (3) Link pre-
dictor makes a prediction for whether a link exists between two
nodes based on the learned temporal node representations. In the
next three subsections, we describe each of the modules in detail.

1290

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

3.1 Heterogeneous Link Encoder

The historical interactions of the nodes are critical for predicting the
respective future behaviors. Impacts of those interactions are not
only related to the node features but also depend on the diverse rela-
tionships and interactions between the node and its neighborhood
like, for example, type, frequency, and time instants (i.e., temporal
information). Since there exist multiple kinds of interactions that
may happen between two nodes, we maintain all the historical
interactions Sy (#,) that a node u has participated in before time
tn. Each link (e;j(t),r) € Su(ty) is labeled with a timestamp ¢
and the sequence of interactions is maintained in a chronological
order. A particular link (e; j(t), r), in addition to the timestampe ¢
is also associated with another (second) basic feature - its type r. To
capture the heterogeneities and produce temporal link embeddings,
we develop a heterogeneous link encoder (cf. Figure 2) that includes
two components - type encoding and time encoding — to enable
the implicit involvement of heterogeneous interactions and extract
the most important temporal information.

Type encoding. In a heterogeneous graph, any given node may
have one or multiple types of links. To preserve the structural het-
erogeneity, dynamic heterogeneous GNNs differ in learning link
type information. Existing works [6, 12, 39] divide associated links
into different subnetworks according to their types, i.e., links of the
same type will be grouped together into the same subnetwork. Each
such subnetwork is equipped with a type-specific graph encoder
to gather and aggregate the same-type neighbor information. This
design is popular for static heterogeneous graph methods — how-
ever, in such settings there are no temporal dependencies between
links. However, order and nearby cooperation relationships that
exist in a dynamic/evolving interaction sequence cannot be actually
captured in fixed/static setting. In fact, we will show quantitatively
in Section 4 that type-specific designs are not effective for dynamic
heterogeneous graph learning. In this work we introduce an im-
plicit type signal as a part of link embedding. The link type set R
can be considered as a collection of categorical variables with a
finite set of values. Therefore, one-hot encoding xg (r) € RIRI is
used here as an alternative way to produce and distinguish the type
encoding, which is simple and easy to generalize.

Time encoding. The other key feature of temporal heteroge-
neous network is the link timestamp ¢, which indicates when the
link was created and reveals critical temporal information [35].
Here, we follow the approaches in [3, 45] and involve the times-
tamp into training by providing a relative time encoding function
®:t" — R%. The purpose is to map the relative timestamp value
t/ = t, — t from time domain to a d;-dimensional vector space.
The obtained time vectors (encoding) should show similarity or
spatial proximity in vector space when the timestamps are close in
time-axis. Specifically, the encoding function can be represented as

®(t') = cos(t’ xw),w = {a_(i_l)/ﬁ}?z'l, (3)
where d; is the dimension of the time encoding, and « = = Vd;.
The mapping function first maps relative time ¢’ to monotonically
exponentially decreasing vector ¢’ X w € (0, t], and then projects
all the values of the vector t’ X to [-1, 1] by using cosine function.
However, during our experimental evaluations we found that in
practice this module may not work well for all the datasets, since

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

(a) Heterogeneous Link Encoder

—

< | @ @— X, (ta)

o xe(e15(t),7) o

(;3) t e l Patching

s " @C?;C (R ()X (e5) B(tn = ta) X4, (tn)

g :

o N |

@ 2 Type Time iti

§ " O O (cntana) [eommana) &—(e

§ o 020 T

|0 1 |

£ to| @)--@)—— (easlts).r) Batch
t F7: ,_ Embedding
tn, b g |

(b) Semantic Patches Fusion

Ce Li, Rongpei Hong, Xovee Xu, Goce Trajcevski, and Fan Zhou

(c) Link Predictor

() -
Encoder f . Classification
FFN Layer ?
. @
Q0
LayerNorm Q
3 ©
0
o
v m 1
=3 ! FC
Self-Attention Q :
|
- - 1
|
L/ - "

Figure 2: STHN architecture. (a) Heterogeneous Link Encoder with two components - type encoding and time encoding -
embeds historical interaction sequence to produce temporal link representation. (b) In semantic patches fusion, sequential
representations are divided into different patches, which are set as the token input of Encoder. Average mean pooling is used to
compress the patch embeddings into a single vector. (c) Combining the representations of nodes u and v, the link predictor

makes link prediction with FC layer and CrossEntropy loss.

their respective temporal scales are different. For example, in the
MathOverflow dataset, timestamps are recorded at a granularity of
seconds, whereas in the Netflix dataset, updates occur on a daily
basis. This can produce numerical differences in timescales and
contribute to instable training performance. To address this issue,
we perform a MinMax Scaling for the relative time feature to first
shift the data by minimum value and then scale it by the amount

= Wﬁilﬁ(f')' After the
normalization, we introduce a hyper-parameter y — the maximum
numerical difference of timestamp into encoding equation: ®(¢’) =
cos(pt’ X w) to make the time encoding distinguished. Given the
outputs of type embedding and time embedding, we can simply
concatenate them with the original edge feature XEdge(ei, j(t),7)
into a vector and generate the mixing link embedding with one-

layer MLp as:

xe(eqj (1), 1) = MLp(xg (M) |@() X% (e j (1), 7). (4)

Adding to previous discussions, we emphasize that the encoding
components allow the link encoder to receive and digest implicit
heterogeneous characteristics and temporal information in a single
building block, which is both conceptually simpler and enables a
simplified network design, in turn, leading to better generalizability.

of 1/(max — min) represented as: t’

3.2 Semantic Patches Fusion

Sequence models are typically employed to aggregate neighboring
link embeddings in traditional heterogeneous network learning
methods, wherein point-wise input tokens are fed into the training
network. However, the efficiency and effectiveness of this approach
can be questionable when dealing with long sequences. Since nearby
tokens usually exhibit stronger correlations compared to distant
ones, we propose a shift from concentrating on individual point
levels — and integrate local semantic information at a patch level.

Patching. Patching technique was introduced in ViT [4] to reshape
a 2D image input into a 1D sequence of token embeddings for
the purpose of adaptation to the Transformer architecture. Differ-
ent from vision features, the historical interactions of a node in
temporal network are already “natively” in 1D. In our case, each

1291

input interaction sequence S, (t,) of node u is first divided into
patches that can be either overlapped or not. Let the link embed-
dings of S (t,) be denoted as Xy, (t,) € RIXu(ta)IXds where the
patch length is p. The whole sequence will be divided into p-length
[Sultn)l jnteractions.
XN *ds iS

patches and each patch is equipped with N =

Finally, the sequence embeddings of patches Xﬁ (tn) €RP
generated.

Transformer Encoder. As shown in the central part of Figure 2, we
use a “vanilla” Transformer encoder (cf. [26]) to extract the reshaped
patch features and aggregate them in the latent representation
space. Specifically, the sequence embeddings of patches Xﬁ(tn)
are first normalized by Layer Normalization [1] for Transformer
input Sipput = LN(Xﬁ(t,,)) and then mapped to Q,K, V by three
projection matrices W, Wg and Wy € RN-ds¥di and an additive
positional encoding Wp, € RP*dk The matrices Q,K and V are
intermediate representations of the Transformer input and their
rows can be treated as queries, keys and values, respectively. Then
a scaled dot-product attention layer is employed:

T

K
ATTN(Q,K, V) = SorTmMAX(Q
k

Vv ®)

to generate the weighted sum of the value vectors. The architecture
of the Transformer encoder consists of two parts: self-attention
layer and channel forward layer, which are linked by a skip con-
nection which are performed as:

Stoken = Sinput + ATTN(Q, K, V),
Soutput = Stoken + Mrrz (GELU(MLP1 (LN(Sioken))))

(6)
@)

where Soutput € RP*dk is the output of Transformer encoder. Here,
tin ¢
link
R as the link representation of a node u. Note that the application
of patching operation actually reduces the number of tokens in
Transformer by a factor of N which, in turn, makes it viable for
longer sequence inputs. Our experiments in Section 4 demonstrate
that this design significantly reduces the computational cost while
retaining the effectiveness of the model.

we use mean pooling to compress Soutput into a single vector s

Simplifying Temporal Heterogeneous Network for Continuous-Time Link Prediction

3.3 Temporal Link Predictor

Before making predictions for the link, we start by aggregating the
node features and capturing the node identity information from the
node’s neighborhood. Different from previous models that leverage
multi-hop neighborhood information, we define N (u; t,, t) as the
1-hop neighbors of node u with link times from ¢ to t,. Accordingly,
we can gather the 1-hop neighborhood information using:
=Xy, + MeaN {Xpl|v € N(u;tp, 1)},

U,lp

node (8)

where t,, is the timestamp at which we will make the prediction
for u. We note that, in this work, we do not extract the information
from all neighbors for a given node. To achieve a reduced space cost
(i.e., memory limitation), we set a bound on the maximum values
for both the quantity of links and neighbors.

After obtaining the embeddings of a temporal link and a node,
we concatenate these embeddings and predict the link existence
and link type at time t5, using the output of the heterogeneous link
encoder sﬁntl'; and node encoder sz;(’l‘ . The representation of node
u is obtained by concatenating the link and node embeddings:

b () = [spetr st |

link ""“node

S

©

Recall that our objective is to predict the existence (and type) of
a link between two nodes at a specific timestamp based on all
the available temporal graph information obtained prior to that
timestamp. Such a prediction can be made by examining the two
link temporal embeddings via a link predictor based on MLPs:

Pred = Mve([hy (tn)|[ho(2n)]). (10)

4 EXPERIMENTS

We now present the details of our experimental evalua-
tion. For reproducibility, the code is publicly available at
https://github.com/celi52/STHN.

4.1 Setup

Datasets. We use three real-world datasets: MathOverflow [21, 39],
Netflix [19], and Movielens [9]. The first dataset is collected from
the stack exchange website - Math Overflow and open source at
the SNAP platform. There are three different relationships between
users on stack exchange: answer to question, comment to question,
and comment to answer. Netflix and Movielens datasets are com-
posed of historical film reviews from users on the Netflix platform
and MovieLens website, respectively. These movie-related datasets
include two types of nodes: users and movies, along with five dis-
tinctive link types representing the range of user ratings from 1 to
5. The statistics of each dataset are shown in Table 1. It is important
to note that we have not incorporated any domain-specific mecha-
nisms into the proposed STHN methodology - i.e., our results are
not bound by any particular data domain(s). While MathOverflow
is Q&A centric and Netflix and Movielens are oriented towards film
reviews, our method retains the flexibility to be applicable to (data
from) other fields like, for example, social networks.

Data preparation. In this study, we use chronological split for
training, validation, and test sets (7/1.5/1.5), enabling our model and
baselines to work for unseen nodes. Note that, for snapshot-based
methods, we keep the default settings as described in the original
papers [6, 39].

1292

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Table 1: Dataset Statistic

MathOverflow Netflix Movielens
Nodes 24,818 36,558 2,626
Edges 506,550 1,500,000 100,000
Node & Edge Types 1,3 2,5 2,5
Timestamps Frequency per second daily daily
Time Span 2350 days 3 years 7 months

Evaluation and Metrics. We evaluate STHN’s efficiency via tem-
poral link prediction task. At a future prediction time t,, the model
utilizes the information accumulated up to time t,, - i.e., we have
all the historical information of the source node u and target node v,
used to predict the existence or type of link between u and v in times-
tamp t,. Following [39], we use the areas under the receiver oper-
ating characteristic (AUROC) and Precision-Recall Curve (AUPRC)
to evaluate candidate models. For each node u with positive edge
(u,v) at time t,,, we randomly selected nodes from the node set as
the negative linkage samples for the source node u. Additionally,
to test the generalization capability of the trained model on unseen
data (those nodes that are not observed during the training phase),
we consider two different evaluation rules: (1) Transductive link
prediction task allows the trained model to use all the incoming
links after training for validation and testing. (2) Inductive link
prediction task focuses on the links associated with nodes that are
not observed during the training phase [23]. Following the task
design from [31], there are two types of links: (i) new vs. new links
- i.e,, the links between two unobserved nodes; (ii) new vs. old links
- i.e., the links between an observed node and an unobserved node.
Baselines. STHN is compared with three groups of different GNNs.
They are: (1) Homogeneous static graph neural networks methods.
GraphSAGE [8] is the first inductive graph learning method, which
leverages neighborhood sampling and message passing to support
large-scale GNN learning. GAT [27] internalizes the self-attention
mechanism into GNN neighbor aggregation. It studies the similar-
ity and weights between neighbors by computing the attention.
(2) Homogeneous temporal networks. JODIE [16] presents a con-
tinuous homogeneous temporal network and introduces coupled
RNN that learns dynamic embeddings of nodes from a sequence of
temporal interactions. TGAT [35] proposes to address inductive rep-
resentation learning on time-dependent graphs and generalizes the
functional time encoding in temporal network, which eliminates the
need for an additional sequence model (like RNNs) to capture the
time information. TGN [22] keeps the same temporal graph model-
ing as TGAT, but involves a Memory Update strategy in its training
phase, which saves the historical states of the nodes and updates
their states after each new interaction, and also makes it possible
to memorize long term dependencies for the nodes in the graph. (3)
Snapshot-based dynamic heterogeneous networks. DyHATR [39] and
HTGNN [6] divide the dynamic heterogeneous graph into different
snapshots and apply a two-step strategy (graph encoder followed
by a sequence model) to extract the spatial-temporal correlation
between these snapshots. Note that, the objective function used in
DyHATR trains the model by increasing the neighbor’s similarity,
which can not obtain the representation for unseen nodes. Thus,
we omit DyHATR in inductive experiments.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Ce Li, Rongpei Hong, Xovee Xu, Goce Trajcevski, and Fan Zhou

Table 2: Experimental Comparison for Transductive Temporal Link Prediction Tasks (Dash symbol means model DyHATR can
not train with Netflix dataset due to excessive memory usage).

MathOverflow Netflix

Movielens

Math. Type Netflix Type Movielens Type

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GraphSAGE [8] 83.49 85.94 92.28 91.82 84.70 81.42 74.92 4757 68.03 27.64 68.01 27.49
GAT [27] 84.74 84.34 90.53 89.56 82.83 78.96 75.49 47.77 73.74 29.14 68.62 27.37
JODIE [16] 92.64 93.01 95.83 94.79 86.97 83.59 79.64 52.06 76.49 30.75 69.70 28.10
TGAT [35] 85.65 87.86 88.62 85.47 82.80 79.11 77.66 51.15 72.72 27.87 71.15 28.19
TGN [22] 90.21 91.62 96.56 95.59 87.58 83.54 80.02 52.91 75.77 31.43 75.36 31.88
DyHATR [39] 7251 89.07 - - 60.62 64.26 63.75 34.52 - - 55.00 19.58
HTGNN [6] 84.85 81.27 86.39 84.18 76.74 72.79 78.21 49.31 73.03 29.00 67.08 25.65
STHN - Type 93.74 94.15 92.24 92.22 82.68 76.39 91.74 75.29 81.79 38.14 79.35 35.99
STHN - Trans 96.87 9735 9675 96.27 9492 9368 92.88 7677 8526 42.11 84.94 42.50
STHN - Patch 96.99 9744 9668 96.23 9513 94.09 9343 77.94 8523 41.93 84.90 41.93

Model Variants. We propose three versions of STHN listed in
the bottom part of Table 2. STHN-Type implies we integrate type-
specific design in graph encoder, as discussed in Section 1. STHN-
Trans means that the original interaction sequence is set as the to-
ken input of vanilla Transformer without patching. STHN-Patches
indicates that we divide the interaction sequence into patches and
obtain the node temporal embedding with semantic patches fusion.
STHN architecture. All of the models are following the same
experimental setup. We use 100 hidden dimension for time encoding,
transformer encoder, Layernorm and link predictor. We allow at
most 20 epochs’ validation loss increasing before early stopping.
We report the test set AUROC and AUPRC when the best validation
loss is achieved. We implemented all the homogeneous temporal
networks as well as STHN using PyTorch 1.13.0 using NVIDIA RTX
3090 with 128GB RAM. We set the mini-batch size to 600 and the
largest training epochs to 500. For semantic patches fusion module,
the number of attention heads is 2, and the searching range of
learning rate is [1e-2, 1e-4]. Considering the scales of the datasets,
the default lengths K of the interaction sequence for MathOverflow,
Netflix, and Movielens are set to 100, 50, and 100, respectively, and
the default patch length N is 5.

4.2 Results in Transductive Evaluation Settings

We firstly compare our models with baselines under the transduc-
tive setting. Table 2 shows that STHN (and its variants) consistently
outperforms the baseline models across all three datasets for both
metrics, in both link prediction (first three columns) and type predic-
tion (last three columns). Additionally, we notice that homogeneous
temporal network tends to have a better performance in compar-
ison with discrete-time heterogeneous models like DyHATR and
HTGNN. The reason is that the homogeneous temporal networks -
JODIE, TGAT, and TGN - are all continuous dynamic models and can
capture more fine-grained temporal information. While TGN [22]
tends to have a closer performance as our approach for link exis-
tence prediction on dataset Netflix, it fails to speculate in the link
type prediction task. We also see the benefits from involving im-
plicit type information to link encoding, where STHN significantly
outperforms the baselines in all link type prediction tasks. On the
one hand, the results suggest that type information is critical for

1293

link type prediction task. On the other hand, we note that the type-
specific encoder design is not the only way to involve link type
information. By integrating type encoding and time encoding in
heterogeneous link encoder, STHN implicitly involves type and
temporal information and also simplifies the architecture design.
Moreover, the temporal models surpass the static methods, since a
static homogeneous network does not incorporate time encoding of
interaction into modeling. As for the link type prediction, we notice
that STHN gets a much better performance when compared against
the baseline models. This is reasonable since the historical link
type information has been embedded in the node representation
learning. Finally, we can see from Table 2 that the task of predicting
the link type is harder than predicting the existence of a link.

4.3 Results in Inductive Evaluation Settings

In the inductive evaluation phase, we follow the experimental set-
ting specified in [31] and remove the links that connected nodes
which showed up during the training phase and split the remain-
ing links into new vs. new and new vs. old. We describe the results
of inductive evaluation in Table 3. It shows that, in comparison
with transductive learning, it is more difficult for models to make
link predictions for the unseen nodes, which always have limited
historical information. On the one hand, the values for the link
prediction accuracy of most models in new vs. old are lower than
those in transductive setting (cf. Table 2). On the other hand, the
performance of most models in new vs. new is worse than those in
new vs. old. This, again, is reasonable since the newcoming nodes
often have a short history, which makes it harder to forecast their
behaviors. Overall, the results demonstrate the superiority of our
approach in learning representations for inductive setting too.

4.4 Ablation Study

To verify the effectiveness of heterogeneous link encoding in STHN,
we designed two variants (a) Without time encoding (STHN - w/o
Time); or (b) Without type encoding (STHN - w/o Type). Figure 3
shows that our model outperforms the variants. The STHN -w/o
Type variant brings the most significant performance decline, indi-
cating the importance of the temporal information. Complementary
to this, type information does not contribute to the link existence
prediction a lot, but plays an important role in link type prediction

Simplifying Temporal Heterogeneous Network for Continuous-Time Link Prediction

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Table 3: Experimental Comparison for Inductive Temporal Link Prediction Tasks.

Task | Methods MathOverflow Netflix Movielens Math. Type Netflix Type Movielens Type
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
GraphSAGE 84.68 87.43 45.55 45.88 28.36 37.85 69.68 41.67 48.94 16.46 49.22 18.89
GAT 85.33 81.95 70.67 60.86 19.65 35.47 65.08 39.47 49.88 17.74 35.01 15.61
§ JODIE 88.71 87.43 59.59 57.85 36.39 39.99 67.28 45.11 48.20 17.33 37.43 13.83
g TGAT 93.57 93.67 73.48 72.39 58.40 71.52 79.09 55.32 57.86 21.41 53.13 21.42
2 TGN 94.82 95.21 66.46 57.10 47.01 44.39 77.49 52.81 59.61 20.54 38.97 13.88
2 | HTGNN 88.79 83.41 26.46 43.90 37.26 40.21 76.43 43.55 34.34 13.38 21.97 12.30
v STHN - Trans 95.26 95.18 78.08 81.43 70.53 73.60 89.87 71.28 63.00 25.89 70.05 31.02
s STHN -Patch 95.00 94.73 79.12 82.65 69.75 76.29 90.84 71.95 63.87 26.31 78.65 37.93
'§ GraphSAGE 66.60 68.60 94.08 93.64 86.63 83.73 62.84 38.96 70.05 28.88 69.91 28.33
- GAT 85.89 82.72 93.49 92.73 65.24 60.79 65.15 41.90 74.42 29.86 56.79 19.70
:5; JODIE 91.07 86.76 96.02 94.23 85.41 81.42 73.50 43.82 76.36 30.33 69.19 27.41
g TGAT 89.77 90.60 92.10 89.98 80.24 72.55 78.59 55.93 72.73 27.16 66.76 25.06
% TGN 93.22 93.93 97.05 96.41 89.53 87.47 81.62 60.48 76.54 31.04 71.84 28.18
< | HTGNN 77.28 69.89 88.55 86.69 76.67 72.25 75.75 48.10 74.18 29.30 68.98 26.21
STHN - Trans 92.52 93.47 97.40 97.15 94.06 92.62 87.83 69.12 84.95 40.88 84.02 40.37
STHN -Patch 94.70 94.48 97.39 97.08 95.65 94.03 91.39 74.56 85.00 40.84 84.57 40.84
Link Prediction Table 4: Hyperparameter investigation of STHN architecture
100] 1 STHN-w/o Time B STHN-w/o Type EEE STHN with varying interaction sequence (K € {50,100,200}) and
o %5 patch length (N = {5,10}).
g 90 1
3 . MathOverflow Netflix Movielens
I 851 Models Setting
. AUROC AUROC AUROC
75 - ’ K =50 96.91 97.24 94.92
MathOverflow Netflix Movielens
L STHN-Trans K =100 96.81 96.80 92.27
Type Prediction K =200 96.73 9206 88.43
100 4 [STHN-w/o Time EEE STHN-w/o Type EEE STHN
05 K=50,N=5 96.97 96.88 95.14
8 0 K =50,N=10 97.00 97.05 94.77
x | K =100, N =5 96.97 96.03 92.57
2] STHN-Patch ’
< & AN K-1000N=10 9695 9656 92.71
801 K=200,N=5 96.95 96.27 88.73
75 - = =
MathOverflow Netflix Movielens K =200, N =10 96.95 96.27 89.23

Figure 3: Ablation study: STHN variants w/o time or w/o type
encoding. Top: link prediction. Bottom: type prediction.

40000- 6000 -
[Correct [Correct
[0 Wrong 73.5% = Wrong 55.8%
«»n 30000- n
e € 4000
) o
o o
© 20000- ©
= =
a]
2000-
F* H*

10000-
12.9%

1 2 3 4 5

1 2 3
MathOverflow Link Type Movielens Link Type

Figure 4: Class distribution and proportion of correct predic-
tions on MathOverflow and Movielens.

task. The comparison demonstrates the effectiveness of temporal
link encoder in collecting type and temporal information from
historical interaction sequence.

4.5 Factors Affecting the Performance

We considered two sources that can affect the performance of STHN.

1294

The effect of imbalanced class distribution. When comparing
the results of metrics, it must be pointed out that the AUPRC metric
always has lower values than AUROC for the link type prediction
task, while they achieve close values for the traditional (i.e., exis-
tential) link prediction task. Generally, both metrics (AUROC and
AUPRC) are useful in classification tasks. However, they differ in
evaluation aspects of the performance for the classifier. AUROC is
the area under the precision-recall curve and measures how well
the model distinguishes between classes. AUPRC evaluates the
trade-off between precision and recall at different thresholds. Un-
der macro-average mode, the precision and recall are computed
for each class independently and then averaged. It does not take
the weight of class which makes AUPRC metric more sensitive to
class imbalance. We provide the class distribution and proportion
of correct predictions on Movielens dataset in Figure 4. It can be
seen that the values of prediction accuracy for different classes are
imbalanced. For example, the link type with a bigger proportion of
the dataset, e.g., link type 4 in Movielens, gets 55.8% accuracy in link
type prediction, while the link type 1 which only has around 1000
data points gets 12.9% accuracy for link type prediction. Although
the model performs well on the majority classes, poor performance

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Ce Li, Rongpei Hong, Xovee Xu, Goce Trajcevski, and Fan Zhou

—— STHN GraphSAGE ---- GAT ---- JODIE TGAT TGN ---- HTGNN
MathOverflow Netflix Movielens
0.700 0.700 0.800
\
0 \ 0 [0
$ 06001 3 0.600—'\\ 2 0700
Jou S~ | T S S Sy SRS S o S it e
0.500 Sy PAesmomrsmaoo o500~ T TTTTTTTTTTTTTTTTTTTTTTTT 5 v T ey
2 2 . 206004 L
[P T ettt T e c | - c L [t
= 0.400 1\ N 0.400 5 I
p) S = 05001
03001% 3001 ety =elele] SS5z
0.200 el 0.200{ "=~ 0400
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch
VS e
™~ 0.900
8 0.900 8 0.900 1 8 AN\
% \»—-—-—u TR TR e e | % r”——_—_ %
2 os00] S . 2 7 08001
c / c 0.800 1=~ TTTTToTTTTSs ST o oS oo mm s mmsaee c =" A
o 1 o [} o ’
= ! = ! BO0T00, cmmmmmevers poammmne
o o700 2 0.7004 2 T
= 0.600 ‘l = $ 0s00y
‘ ‘ ‘ ‘ 0.600 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

Figure 5: Training loss (top row) and validation AUROC (bottom row) on MathOverflow, Netflix, and Movielens datasets.

Table 5: Transductive link prediction computational costs on
MathOverflow. “4Params” denotes the number of parame-
ters. “Train(s)” and “Prediction(s)” denote the average epoch
training time and prediction time, respectively.

Model #Params Train(s) Prediction(s) Memory(MB)
GraphSAGE 66101 5.8 53 23015
GAT 34801 5.9 0.7 7230
JODIE 61101 5.4 2.8 4159
TGAT 65101 5.5 0.8 10198
TGN 221901 8.1 7.5 12039
DyHATR 443584 594.9 6.8 2294
HTGNN 82437 1.0 0.1 2592
STHN-Type 446000 27.2 0.4 13289
STHN-Trans 121901 14.1 0.3 2885
STHN-Patch 172001 6.3 0.3 1763

on minority classes could bring down the average precision and re-
call, hence lowering the AUPRC score. Comparing with Movielens,
MathOverflow gains a better AUPRC score for link type prediction
task, which can also be seen in Figure 4, showing that STHN gets a
relatively higher accuracy for MathOverflow link type 2 and 3.

Hyperparameter investigation of patching. We systematically
analyze the effect of hyperparameters used in STHN patching step,
including the number of recent neighbors K and patch length N, as
shown in Table 4. The experiments are conducted on three datasets
with model STHN-Patch and STHN-Trans on AUROC metric, and
results are summarized in Table 4. We search K within {50, 100, 200}
in all cases, and {5, 10} for patch length N. Firstly, we observe that
the performance of vanilla transformer tends to decline when the
length of interaction sequence increasing, e.g., AUROC score of
STHN-Trans on Netflix dataset will drop to 92.06 when K increases
to 200. Transformer is designed to model global dependencies due

1295

100
STHN-Patch
© STHN-Trans
95
(0] o
—
S © JODIE STHN-Type
[}
O 90 @ TGN
o
5
< HTGNN TGAT
85| 0 O GAT
oGraphSAGE
80 T T
1 10 20 30

Train (Epoch/s)

Figure 6: Model performance vs. training time consumption
on MathOverflow for transductive link prediction task.

to its fully connected attention mechanism. But, in practice, it strug-
gles with long sequence and may get strong connection with one
specific point, losing sight of the long-term dependencies. However,
STHN-Patch divides the long sequence into patches, in which the
information is gathered in patch-level. It helps Transformer encoder
to capture comprehensive semantic information.

4.6 Efficiency Considerations

To compare the actual computational efficiency of model training,
we collect model parameters, average epoch train/prediction time
and GPU memory usage for the models involved in this study and
show the statistics in Table 5. Because the model designs of homo-
geneous networks are similar, they get similar trainable parameters
as well as training time. Since TGN is equipped with a memory
updater to store the long-term information, the prediction time
of TGN is obviously longer than other models. Comparing with

Simplifying Temporal Heterogeneous Network for Continuous-Time Link Prediction

STHN-Type and STHN-Trans, STHN-Patch simplifies the architec-
ture design by dropping the frequently used type-specific design
and combining patching technique with Transformer information
fusion. Due to simplicity, the GPU memory usage data shows that
our STHN uses the least GPU memory and enjoys the fastest pre-
diction speed among all temporal networks. One may observe that
HTGNN exhibits fast Train and Prediction times, as it is a snapshot-
based model. However, its Memory requirement is still higher than
STHN-Patch - and, as mentioned earlier (cf. Tables 2 and 3) its
effectiveness is lower than STHN-Patch.

To further compare the model performance in terms of training
efficiency and effectiveness, in Figure 6 we show the average epoch
training time and test AUROC score for temporal networks on
MathOverflow dataset. As shown, STHN emerges as the best trade-
off between model performance and training speed. We note that
DyHATR fails to accomplish the link prediction task from the per-
spective of efficiency and effectiveness. Lastly, Figure 5 compares
the convergence speed of STHN and the baseline models. Since we
employ a 20-epoch early stopping regularization, the number of
training epochs varies by model. As can be seen from the top row
of Figure 5, STHN enjoys a fast convergence speed and achieves
a low loss value at the very beginning of training process. The
heterogeneous link encoder separates STHN from other temporal
networks and enables it to extract meaningful information and
converge faster on link prediction task.

5 RELATED WORK

Dynamic heterogeneous graph learning is a popular topic in the
broader paradigm of graph learning and the results are useful for a
plethora of downstream tasks such as evolving android malware
detection [5], citation prediction [7, 13, 36], financial time series
prediction [34], opioid overdose prediction [32], real-time event
prediction [17] - to name a few. For a broader overview, we refer
the readers to recent surveys on dynamic graph learning [25, 28,
38]. Depending on the updates manner, dynamic heterogeneous
graph methods can be classified into discrete and continuous models
(cf. [38]).

5.1 Discrete Dynamic Heterogeneous Network

Discrete-time dynamic heterogeneous graph learning was inspired
by GNNis originally developed for static settings. In order to embed
the temporal dependency between graph updates and capture evolu-
tionary patterns of the graph structure, the most intuitive approach
was to split the changing graphs into different snapshots and learn
the node representation from a sequence of evolving heterogeneous
graph snapshots. The methodologies used in discrete heterogeneous
graph learning [2, 6, 7, 13, 24, 34] can be perceived as stemming
from two perspectives: graph encoder and sequence model. Specifi-
cally, homogeneous GNNs (e.g., GCN [15] and GAT [27]) were first
utilized as graph encoder to embed the graph structure informa-
tion for each snapshot with a specific timestamp. Then the model
obtains the node embedding by gathering node representations
of specified timestamps with a sequence model, e.g., RNN or at-
tention. However, discrete dynamic models suffer from two major
shortcomings. First, the timestamps {1,. .., t} of split snapshots are
predefined and the prediction for whether a link will appear is only

1296

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

made at the specific (¢ +1)-th snapshot, which limits the model that
it has to be retrained based on the data of timestamps {2, ..., ¢, t+1}
if we try to predict the (¢ + 2)-th snapshot. Most of the discrete
heterogeneous graph methods lack inductive learning capability
and can only handle transductive tasks since they need re-training
to infer embeddings for unseen nodes [35]. Second, type-specific
aggregators are usually designed in discrete model to combine the
information from links that belong to the same type. That means
the number of aggregators is equal to the number of link types.
The stacked aggregators bring high computational costs to hetero-
geneous graph learning [28] and these costs can quickly become
prohibitively high for evolving graphs with many link types.

5.2 Continuous Dynamic Graph Learning.

Continuous-time graph learning (e.g., temporal networks [20]) ap-
proaches are usually confined to homogeneous settings, in which
edges are labeled by time. Compared with discrete-time graph learn-
ing, in the continuous-time dynamic graph learning a temporal
graph is constructed with newcoming nodes and edges which are
added in a stream-like manner [37, 38]. Every interaction (edge) is
annotated with a certain timestamp. CTDNE [20] is the first frame-
work for learning time-dependent graph representations based on
temporal random walk. JODIE [16] learns embedding trajectories
of users and items with a coupled RNN. However, aforementioned
models only generate embeddings for graphs at the final state,
which is not scalable for inductive graph learning tasks. To ad-
dressed this, TGAT [35] and TGN [22] introduced temporal graph
attention layer by mixing GraphSAGE [8] and GAT [27]. As men-
tioned, these kinds of temporal networks focused on modeling
homogeneous graph, ignoring the cases of heterogeneity in nodes
and/or links. We note that [32] incorporated continuous dynamics
with heterogeneous graph learning targeting opioid overdose pre-
diction and demonstrating strong performance on this task. Our
STHN is more general in the sense of focusing on both existence
and type of link prediction in transductive as well as inductive
settings. The main distinction of STHN is how it simplifies the
architecture design and improves the effectiveness and efficiency.

6 CONCLUSION

We presented STHN - a novel approach to incorporate both the
heterogeneity of the nodes and links as well as the continuous gran-
ularity of the temporal dimension for the purpose of link prediction
in evolving heterogeneous networks. We observed that assuming
homogeneity of the types of nodes and links may be restrictive for
many practical domains and discrete-time evolution models hinder
the possibility of reasoning in continuous manner. The implicit in-
corporation of structural heterogeneity and temporal information
makes STHN easy to generalize to different domains/settings. As
part of our future work, we will investigate predicting not only the
occurrence of a link but also its (minimal) duration.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under Grant SWIFT
2030249 and Kingland Foundation; in part by the NSFC under Grant
62072077 and Grant 62176043; in part by the Natural Science Foun-
dation of Sichuan Province, China, under Grant 2022NSFSC0505.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom Ce Li, Rongpei Hong, Xovee Xu, Goce Trajcevski, and Fan Zhou

REFERENCES [24] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza- .
Attention Networks. In WSDM. 519-527.

tion. arXiv preprint arXiv:1607.06450 (2016).

[2] Ranran Bian, Yun Sing Koh, Gillian Dobbie, and Anna Divoli. 2019. Network (25] Chuan Shi, ?(iao Wang, and Philip S Yu. 2022. quamic HeFemgeneous' Grfiph
Embedding and Change Modeling in Dynamic Heterogeneous Networks. In SIGIR. Representation. In Heterogeneous Graph Representation Learning and Applications.
107-143.
861-864. - i . o
[3] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang [26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Tong, and Mehrdad Mahdavi. 2023. Do We Really Need Complicated Model Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
Architectures For Temporal Networks?. In ICLR. you Need. In NeurIPS. 5998-6008.

[27

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[28] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. 2022.

A survey on heterogeneous graph embedding: methods, techniques, applications
and sources. IEEE Transactions on Big Data 9, 2 (2022), 415-436.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW. 2022-2032.

[30] Xiao Wang, Yuanfu Lu, Chuan Shi, Ruijia Wang, Peng Cui, and Shuai Mou. 2020.
Dynamic heterogeneous information network embedding with meta-path based
proximity. IEEE Transactions on Knowledge and Data Engineering 34, 3 (2020),
1117-1132.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In ICLR.

Qianlong Wen, Zhongyu Ouyang, Jianfei Zhang, Yiyue Qian, Yanfang Ye, and
Chuxu Zhang. 2022. Disentangled Dynamic Heterogeneous Graph Learning for
Opioid Overdose Prediction. In KDD. 2009-2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2019. A Comprehensive Survey on Graph Neural Networks. CoRR
abs/1901.00596 (2019).

Sheng Xiang, Dawei Cheng, Chencheng Shang, Ying Zhang, and Yugqi Liang. 2022.
Temporal and Heterogeneous Graph Neural Network for Financial Time Series
Prediction. In CIKM. 3584-3593.

Da Xu, Chuanwei Ruan, Evren Kérpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In ICLR.

Xovee Xu, Ting Zhong, Ce Li, Goce Trajcevski, and Fan Zhou. 2022. Heteroge-
neous dynamical academic network for learning scientific impact propagation.
Knowledge-Based Systems 238 (2022), 107839.

Xovee Xu, Ting Zhong, Fan Zhou, Rongfan Li, Goce Trajcevski, and Qinggang
Meng. 2023. Learning Spatiotemporal Manifold Representation for Probabilistic
Land Deformation Prediction. IEEE Transactions on Cybernetics (2023).
Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen
Kong. 2022. Dynamic network embedding survey. Neurocomputing 472 (2022),
212-223.

Hansheng Xue, Luwei Yang, Wen Jiang, Yi Wei, Yi Hu, and Yu Lin. 2020. Modeling
dynamic heterogeneous network for link prediction using hierarchical atten-
tion with temporal rnn. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. 282-298.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. 2023.
Simple and Efficient Heterogeneous Graph Neural Network. In AAAL Vol. 37.
10816-10824.

Mehmet Yildirimoglu, Isik Ilber Sirmatel, and Nikolas Geroliminis. 2018. Hi-
erarchical control of heterogeneous large-scale urban road networks via path
assignment and regional route guidance. Transportation Research Part B: Method-
ological 118 (2018), 106-123.

Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandel-
wal, Brandon Norick, and Jiawei Han. 2014. Personalized entity recommendation:
a heterogeneous information network approach. In WSDM. 283-292.

Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S. Yu. 2015. COSNET:
Connecting Heterogeneous Social Networks with Local and Global Consistency.
In KDD. 1485-1494.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR.

[5] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wengiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. 2021. Heterogeneous Temporal Graph Transformer:
An Intelligent System for Evolving Android Malware Detection. In KDD. 2831~
2839.

[6] Yujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. 2022. Heterogeneous
Temporal Graph Neural Network. In SDM. 657-665.

[7] Hao Geng, Deqing Wang, Fuzhen Zhuang, Xuehua Ming, Chenguang Du, Ting

Jiang, Haolong Guo, and Rui Liu. 2022. Modeling Dynamic Heterogeneous Graph

and Node Importance for Future Citation Prediction. In CIKM. 572-581.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In NeurIPS. 1024-1034.

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),

1-19.

[10] John J Hopfield. 1982. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences
79, 8 (1982), 2554-2558.

[11] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In WWW. 2704-2710.

[12] Hong Huang, Ruize Shi, Wei Zhou, Xiao Wang, Hai Jin, and Xiaoming Fu. 2021.

Temporal Heterogeneous Information Network Embedding. In IJCAL 1470-1476.

Song Jiang, Bernard Koch, and Yizhou Sun. 2021. HINTS: Citation Time Se-

ries Prediction for New Publications via Dynamic Heterogeneous Information

Network Embedding. In WWW. 3158-3167.

[14] Mengyuan Jing, Yanmin Zhu, Yanan Xu, Haobing Liu, Tianzi Zang, Chunyang
Wang, and Jiadi Yu. 2022. Learning Shared Representations for Recommendation
with Dynamic Heterogeneous Graph Convolutional Networks. ACM Transactions
on Knowledge Discovery from Data 17, 4 (2022), 1-23.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[16] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-

bedding Trajectory in Temporal Interaction Networks. In KDD. 1269-1278.

Wenjuan Luo, Han Zhang, Xiaodi Yang, Lin Bo, Xiaoging Yang, Zang Li, Xiaohu

Qie, and Jieping Ye. 2020. Dynamic Heterogeneous Graph Neural Network for

Real-time Event Prediction. In KDD. 3213-3223.

[18] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress?: Revisiting, benchmarking and refining heterogeneous
graph neural networks. In KDD. 1150-1160.

[19] Inc. Netflix. 2019. Netflix Prize data. https://www.kaggle.com/datasets/netflix-

inc/netflix-prize-data

Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.

In Companion of the The Web Conference. 969-976.

[21] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. In WWW. 601-610.

[29

[31

&

[32

[9

=

[33

&
=)

[35

[36

[13

[37

[38

@
20,

[17

[40

[41

[42

[20

T~
&

22] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico . .

(22] Monti. and Michael M. Bronstein. 2020. Temporal Granh Netzvorks for Dee [44] Fan Zhou, Xovee Xu, Goce Trajcevski, and Kunpeng Zhang. 2021. A survey of
Learni’n on Dynamic Cra hs. In I CML ‘2020 MZ +esho OI; Graph Re resentatio?z information cascade analysis: Models, predictions, and recent advances. Comput.
Leammg Y phs. P ph Kep Surveys 54, 2 (2021), 1-36.

[23] Sina Sajadmanesh, Sogol Bazargani, Jiawei Zhang, and Hamid R. Rabiee. 2019. [45] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios loannidis, Xiang Song, and

George Karypis. 2022. TGL: A General Framework for Temporal GNN Training

Continuous-Time Relationship Prediction in Dynamic Heterogeneous Informa- on Billion-Scale Graphs. Proc. VLDB Endow. 15, 8 (jun 2022), 1572—1580.

tion Networks. ACM Trans. Knowl. Discov. Data 13, 4 (2019), 44:1-44:31.

1297

https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Heterogeneous Link Encoder
	3.2 Semantic Patches Fusion
	3.3 Temporal Link Predictor

	4 Experiments
	4.1 Setup
	4.2 Results in Transductive Evaluation Settings
	4.3 Results in Inductive Evaluation Settings
	4.4 Ablation Study
	4.5 Factors Affecting the Performance
	4.6 Efficiency Considerations

	5 Related Work
	5.1 Discrete Dynamic Heterogeneous Network
	5.2 Continuous Dynamic Graph Learning.

	6 Conclusion
	Acknowledgments
	References

