
1.  Introduction
The interannual variability (IAV) of the atmospheric carbon dioxide (CO2) growth rate has been attributed 
primarily to the tropical land carbon (C) sink (Jones et al., 2001; Keeling et al., 1995; Rayner et al., 2008; W. 
Wang et al., 2013; Worden et al., 2021; Zeng et al., 2005). The tropical land surface stores a substantial fraction 
of global C stocks, both as live biomass (Avitabile et al., 2016; Saatchi et al., 2011) and dead organic matter 
(Jackson et al., 2017). These ecosystems are highly sensitive to climatic conditions, and year-to-year regional 
and pan-tropical climate fluctuations, such as El Niño-Southern Oscillation, induce a substantial variation in the 
net terrestrial CO2 flux (Bowman et al., 2017; Cox et al., 2013; Jung et al., 2017; J. Liu et al., 2017; X. Wang 
et  al.,  2014; J. Wang et  al.,  2016). Understanding IAV in the tropics, therefore, may provide valuable clues 
regarding the fate of terrestrial ecosystems in a changing climate, and their ability to serve as sources or sinks of 
atmospheric CO2.

However, there is a considerable uncertainty about the role of water stress on CO2 flux variability across both wet 
and dry tropical ecosystems (Humphrey et al., 2018; Jung et al., 2017; Piao et al., 2020; W. Wang et al., 2013; 
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Plain Language Summary  The amount of carbon that gets absorbed by land ecosystems in the 
Earth's tropics changes from year to year, and dominates the global carbon dioxide growth rate variability. 
These changes are related to climate, but it is unclear how much they are driven by water stress relative to other 
climatic factors. Here, we showed that water stress is responsible for the majority of this variability, not only in 
the dry tropics, where we would have expected water limitations, but also, surprisingly, in the wet tropics. We 
found that this variability is driven moderately more by demand from atmospheric aridity than it is by deficits 
of water in the soil, particularly in the wet tropics. This indicates that water stress will play an important role in 
the net carbon balance of tropical land ecosystems in a changing climate.
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X. Wang et al., 2014; J. Wang et al., 2016; A. Zhang & Jia, 2020). Recent studies indicate that the dry tropics 
are substantial contributors to recent global net CO2 flux variability (Ahlström et al., 2015; Fan et al., 2019; 
Piao et al., 2020; Poulter et al., 2014), in part due to the prominent role of water limitations on photosynthetic C 
uptake. At the same time, the wet tropics have been found to respond considerably to variable water availability 
and climate variability (Bowman et al., 2017; Gatti et al., 2014; Green et al., 2020; Palmer et al., 2019; Yang 
et al., 2018). Furthermore, the wet tropics hold a substantially larger carbon stock (Saatchi et al., 2011), which, 
if close to a water-induced ecological tipping point (Ahlström et al., 2017; Saatchi et al., 2021), could become a 
stronger source of atmospheric C under future climate changes. Resolving the sensitivity of tropical ecosystems 
to water availability is key to understanding the influence of tropical ecosystems within the context of global 
carbon-climate interactions (Barkhordarian et al., 2021).

Gross primary production (GPP), which is the total uptake of atmospheric CO2 via photosynthesis, is the domi-
nant component of variability in the net terrestrial carbon balance (Mystakidis et al., 2016; Piao et al., 2020). GPP 
is fundamentally limited by a number of biotic and abiotic factors, including radiation, leaf area, temperature, soil 
moisture, and atmospheric aridity (Baker et al., 2021; Bonal et al., 2008; Claessen et al., 2019; Jung et al., 2020; 
Madani et al., 2020). Specifically, the total impact of water stress on GPP comprises the co-limitations of moisture 
supply at the soil-root interface and atmospheric demand for moisture at the leaf-atmosphere interface (Bonan 
et al., 2014; Novick et al., 2016, 2019; Sulman et al., 2016). Therefore, it is important to consider both supply 
and demand limitations when accounting for the impact of water stress on photosynthetic uptake and, ultimately, 
net CO2 fluxes.

In addition, the relative importance of supply and demand limitations in the total plant water stress remains a 
key uncertainty in predicting the tropical carbon sink in upcoming decades. Strong supply side limitations would 
imply that future tropical GPP will be regulated by water availability (precipitation and, ultimately, soil moisture), 
while strong limitations due to demand suggest that drivers of evapotranspiration (energy and atmospheric arid-
ity) will play an important role. Under conditions when soil moisture modulates surface atmospheric temperature 
and humidity, the feedbacks between supply and demand can become as impactful as the individual components, 
particularly in the tropics (Green et al., 2019; Humphrey et al., 2021). These feedbacks may be modulated by 
strategies developed by plants to minimize the risk of stress-induced mortality and leaf loss by regulate leaf 
stomatal openings—and consequently photosynthetic uptake—to reduce transpiratory water fluxes (Grossiord 
et al., 2020; Sperry et al., 2017).

At a process level, terrestrial ecosystem models have long accounted for water supply and demand limitations 
(Bonan et al., 2014; Trugman et al., 2018), but these parameterizations introduce uncertainty at coarser scales, 
particularly when based on plant functional types (PFTs) which are unable to account for hydroclimatic and 
edaphic conditions that lead to unique, emergent behavior of terrestrial ecosystems (Konings & Gentine, 2017). 
Here, we inform these parametric uncertainties with spatially explicit data from multiple Earth observation satel-
lites spanning multiple decades, using the CARbon DAta-MOdel fraMework (CARDAMOM), a model-data 
fusion system that constrains a simple ecosystem model with observations terrestrial carbon and water states 
and fluxes (Bloom & Williams, 2015; Bloom et  al.,  2016, 2020; Quetin et  al.,  2020; Yang et  al.,  2021; Yin 
et al., 2020). Bloom et al. (2020) recently extended the process model within CARDAMOM to include a mech-
anism for water supply to limit GPP. They demonstrated that with this mechanism, their reanalysis was able to 
capture the drought response of observationally constrained terrestrial CO2 fluxes in the tropics. Furthermore, 
the drought response could be further resolved into both the instantaneous effects of water supply limitations on 
photosynthesis, and the subsequent effects resulting from shifts in the ecosystem state (Bloom et al., 2020). Here, 
for the first time, we assimilate terrestrial water storage anomalies from the Gravity Recovery and Climate Exper-
iment (GRACE) (Wiese et al., 2016) as a constraint on the CARDAMOM model water states (see Section 2.2 
for details). In addition to the GPP water supply limitation (as in Bloom et al. (2020) and Yang et al. (2021)), 
we extend the process model in CARDAMOM to include an atmospheric water demand limitation on GPP, 
specifically via vapor pressure deficit (VPD, see Section  2.1 for details). With these developments, we used 
CARDAMOM to obtain a reanalysis of the coupled carbon and water cycles, constrained by satellite observations 
of carbon and water states and fluxes, in order to diagnose the IAV of water stress on tropical carbon fluxes in the 
first two decades of the 21st century.

Understanding the interannual sensitivities of tropical ecosystems to water stress—namely the co-limitations 
of water demand and supply on photosynthetic C uptake—is critical to advancing understanding of (a) soil 
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moisture-atmosphere feedbacks in the Earth system, (b) the resilience of tropical C stores in a changing climate, 
(c) the role of hydrologic variability (in both supply and demand) relative to other climatic factors (i.e., solar radi-
ation, temperature, and ecosystem memory), and (d) our overall understanding of tropical carbon-water cycling in 
the coming decades (Bloom et al., 2020; Qian et al., 2008; W. Wang et al., 2013; J. Wang et al., 2016). To resolve 
the role of water stress across tropical land ecosystems, here we pose the following questions:

1.	 �How much does water stress contribute to the IAV of carbon uptake (GPP) at continental and pan-tropical scales?
2.	 �How much do the instantaneous effects of water limitations to GPP contribute to the IAV of the net carbon 

balance?
3.	 �How much of the IAV in water stress is the result of limitations from soil water supply versus those from 

atmospheric demand?

2.  Methods and Data
Section 2.1 describes the ecosystem model used within the CARDAMOM framework, and explains its water 
stress parameterizations. Section 2.2 summarizes how we assimilated multiple satellite observations and derived 
data products into the CARDAMOM framework, and details our recently developed method for including 
GRACE as a constraint on water storage. Section 2.3 describes how we leveraged the observationally constrained 
monthly reanalysis to distinguish between (a) water stress and (b) the combination of all other factors driving the 
variability of C uptake.

2.1.  Modeling Water Stress

CARDAMOM is a model-data fusion system designed to assimilate multiple sources of observational data into 
a parsimonious model that represents the states and fluxes of the terrestrial carbon and water cycles. We used 
the Data-Assimilation Linked Ecosystem C (DALEC) model (Williams et al., 2005), which has been used exten-
sively within CARDAMOM to diagnose terrestrial C cycle dynamics across a range of site-level and spatially 
resolved approaches (Bloom & Williams, 2015; Bloom et al., 2016, 2020; Quetin et al., 2020; Yang et al., 2021; 
Yin et al., 2020). The specifics of DALEC have been described extensively by Bloom et al. (2020), to which we 
refer the reader for a complete description of the model. The CARDAMOM framework, namely DALEC model 
states and processes, observational constraints and forcing data sets are summarized in Figure S1 of the Support-
ing Information S1.

Bloom et al. (2020) introduced a representation of water stress into DALEC—in the form of a commonly used 
“β” approach (Trugman et al., 2018)—in which GPP is calculated in two sequential steps: First, the Aggregated 
Canopy Model (ACM) (Williams et  al., 1997) is used to calculate how much GPP would be expected under 
conditions of no water stress, that is, a saturated rooting-zone soil and canopy airspace. This quantity–henceforth 
abbreviated as GPPpot(t)–is a function of radiation, temperature, leaf area, and atmospheric CO2 concentrations at 
time t; therefore GPPpot represents time-varying non-water stress limitations on GPP, such as wet-to-dry season 
variability in downward radiation or leaf area variability in deciduous ecosystems.

Subsequently, actual GPP is calculated as the product of GPPpot(t) and a water stress scaling factor, βpaw(t), which 
is defined as

𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) =

⎧
⎪
⎨
⎪
⎩

PAW(𝑡𝑡)

PAW𝑤𝑤𝑤𝑤

, if PAW(𝑡𝑡) < PAW𝑤𝑤𝑤𝑤

1, if PAW(𝑡𝑡) ≥ PAW𝑤𝑤𝑤𝑤

� (1)

in which PAW(t) is the prognostic plant-available water (PAW) state and PAWwp is a time-invariant, 
CARDAMOM-optimized parameter representing a conceptual threshold below which GPP linearly reduces to 
zero along with PAW (Figure 1a). Here, we introduced an additional scaling factor, βvpd(t), to account directly for 
VPD limitations at time t that are independent of PAW as

𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡) =

⎧
⎪
⎨
⎪
⎩

1 −

(
VPD(𝑡𝑡)

VPDmax

)𝑏𝑏

, if VPD(𝑡𝑡) < VPDmax

0, if VPD(𝑡𝑡) ≥ VPDmax

� (2)
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where VPDmax and b are optimized parameters in a function (Figure  1b) 
designed to approximate the range of hypothesized responses of GPP stress 
to VPD (Grossiord et al., 2020; Leuning, 1995), and VPD is calculated using 
2-m air temperature and dewpoint temperature from the ERA-Interim forcing 
data. The overall GPP is calculated as

GPP = 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣GPP𝑝𝑝𝑝𝑝𝑝𝑝.� (3)

2.2.  Data Assimilation

CARDAMOM uses an iterative Bayesian framework to optimize the parame-
ters and initial states of DALEC based on multiple streams of observations and 
derived data products (Bloom & Williams, 2015; Bloom et al., 2016). Here, we 
conducted a pan-tropical (30°S–30°N) CARDAMOM analysis at a resolution 
of 4° latitude × 5° longitude, following the same approach and using the same 
observational data and uncertainties as Bloom et al. (2020), aside from three 
exceptions described below. The complete set of observation and associated 
uncertainties is shown in Table S1 of the Supporting Information S1; the uncer-
tainty choices and their implications on our results are discussed in Section 3.4.

The first exception is that in place of the solar induced fluorescence (SIF) 
product from the Greenhouse Gas Observing Satellite (GOSAT) as used in 
Bloom et al. (2020), we obtained estimates of SIF from the contiguous SIF 
(CSIF) product (Y. Zhang et  al.,  2018), which is a continuous 2001–2018 
SIF product trained on Orbiting Carbon Observatory-2 (OCO-2) data along 
with longer-spanning ancillary data sets; because SIF is not a direct measure-
ment of GPP, we follow the approach of MacBean et al. (2018) and Bloom 
et al. (2020), in which SIF and GPP are both normalized by their temporal 

mean values so that SIF only informs the temporal variability of GPP. The second exception is that we constrain 
the temporal mean of CARDAMOM GPP using the FluxCom 2001–2014 GPP product (Jung et al., 2019): for 
lack of specific knowledge on decadal time-averaged FluxCom GPP product accuracy, we opted for an uncer-
tainty factor of 1.05 (approximately ±5%, see Table S1 in Supporting Information S1), as we found that larger 
GPP uncertainty choices led to substantial and systematic inconsistencies in the spatial patterns between the 
CARDAMOM and FluxCom time-averaged GPP values.

The third exception is a significant development to the CARDAMOM framework that allows it to assimilate terrestrial 
water storage anomalies—available from 2003 to 2016 from GRACE—as a constraint on water storage in DALEC: 
the constraint on terrestrial water storage was achieved by (a) adopting the development of Yang et al. (2021), which 
appends the Bloom et al. (2020) formulation of PAW to include a second prognostic plant unavailable water (PUW) 
pool, and (b) expanding the CARDAMOM cost function of Bloom et al. (2020) to include the GRACE constraint 
(Wiese et al., 2016). In contrast to PAW, PUW represents water that is inaccessible to plant roots but still part of 
the total water balance. The sum of PAW and PUW pool represents total water storage within the land surface and 
subsurface, in mm of equivalent water thickness; as a result, temporal changes in PAW and PUW are directly compa-
rable to the total water storage anomalies (TWSA) provided by GRACE. Specifically, for each monthly GRACE 
TWSA observation (TWSAO(t)), an equivalent monthly DALEC model TWSA (TWSAm(t)) is calculated as follows:

𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑚𝑚(𝑡𝑡) = PAW(𝑡𝑡) + PUW(𝑡𝑡) −

𝑁𝑁∑

𝑡𝑡=1

PAW(𝑡𝑡) + PUW(𝑡𝑡)

𝑁𝑁
� (4)

where PAW(t) and PUW(t) are the monthly PAW and PUW water states concurrent with the GRACE observa-
tions in month t, and N is the number of months in the observational record. This ensures that the modeled and 
observed TWSA are relative to a mean value from the same set of months. We then calculate the likelihood of the 
DALEC model TWSA, 𝐴𝐴 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇 , as follows:

𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇 = exp

(

−
1

2

𝑁𝑁∑

𝑡𝑡=1

(𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑚𝑚(𝑡𝑡) − 𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑂𝑂(𝑡𝑡))
2

𝜎𝜎2

)

.� (5)

Figure 1.  Water stress functions in DALEC based on limitations from plant 
available water (a) and vapor pressure deficit (b).
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We prescribe a ±50  mm observation uncertainty (σ  =  50  mm) for TWSA, which conservatively represents 
GRACE error estimates (Wiese et al., 2016).

With the previously mentioned exceptions of the SIF product substitution, the mean GPP constraint, and the 
addition of the GRACE constraint, we otherwise assimilated the same set of observational data used by Bloom 
et al.  (2020) (see Data Availability Statement for details on all data sources). This includes data from (a) the 
National Aeronautics and Space Administration's Carbon Monitoring System Flux (CMS-Flux), which assimilates 
satellite observations of carbon to infer grid-scale net carbon fluxes from 2010 to 2018 (J. Liu et al., 2014, 2021), 
(b) mean biomass estimates from the Geoscience Laser Altimeter System (GLAS) (Saatchi et  al.,  2011), (c) 
leaf area index from the Moderate-resolution Imaging Spectroradiometer (MODIS) (Myneni et al., 2015), from 
which we assimilated only the mean LAI due to seasonal LAI retrieval biases (Bi et al., 2015), (d) soil organic 
carbon (SOC) from the Harmonized World Soil Database (HWSD) for the year 2001 (Köchy et al., 2015), and (e) 
mean fire C emissions from 2001 to 2015 from the inversion estimates of Worden et al. (2017) (see Table S1 in 
Supporting Information S1 for details).

We forced DALEC with monthly temperature, humidity, radiation, and precipitation from the European Center 
for Medium Range Forecasting Interim (ERA-Interim) reanalysis (Berrisford et al., 2011), burned area from the 
Global Fire Emissions Database (GFED4) (Randerson et al., 2017), and atmospheric CO2 concentrations from 
the National Oceanic and Atmospheric Administration's Earth System Research Laboratories (Dlugokencky & 
Tans, 2020). Monthly forcing and observational data were regridded to a common resolution of 4° latitude × 5° 
longitude from 30°S to 30°N. Parameters and initial conditions were optimized independently at each grid cell 
using an adaptive Metropolis Hastings Markov Chain Monte Carlo to sample 4,000 solutions from the posterior 
distribution (see Bloom and Williams  (2015) and Bloom et  al.  (2020) for details). As highlighted by Bloom 
et al. (2020) and J. Liu et al. (2017), there are substantial spatial error covariances between 4° × 5° pixels due 
to the effectively coarser (continental-scale) information content of the inversion-based CO2-flux estimates. To 
mitigate the impact of these errors on our analysis, we conduct the analysis of water stress variability (Section 
2.3) to (a) 6 hemi-continental regions, (b) the dry tropics and wet tropics, and (c) the pan-tropical study domain.

To quantitatively evaluate the updated DALEC model structure's ability to reproduce and independently predict 
seasonal and interannual variations in tropical C fluxes, we (a) evaluate the timing and amplitude of monthly 
CARDAMOM GPP, NBP, and TWS anomalies against the corresponding assimilated observations (CSIF, 
CMS-Flux, and GRACE, respectively, where and when these are available), and (b) perform a dedicated training/
validation experiment based on the Bloom et al. (2020) approach, where we only use 2001–2015 observation 
data and evaluate the CARDAMOM skill in predicting 3 years of withheld 2016–2018 NBP data. The timing and 
amplitude comparison provides an evaluation of the model skill in representing the observation timing and ampli-
tude throughout the 2001–2018 time period; for each quantity, we use the standard deviation of the 2001–2018 
time series as an integrated measure of observed and modeled variable amplitude, and we use the Pearson's 
correlation coefficient (henceforth abbreviated as r) as an integrated measure of timing consistency between the 
two signals. The dedicated training/validation experiment provides an evaluation of the process model skill in 
representing the integrated land-atmosphere CO2 flux in the absence of observational constraints. For both eval-
uation steps, we conduct both full monthly data and de-seasonalized anomaly comparisons (see Section 2.3 for 
de-seasonalized anomaly derivation).

2.3.  Analysis of Water Stress Variability

To diagnose the relative contribution of water stress to the temporal variability of GPP, we first decompose the 
GPP variability into (a) the GPP component attributable to water stress, and (b) the GPP component attributable 
to all other drivers of GPP variability. Decomposing GPP into component terms was facilitated by the water stress 
formulation of DALEC described in Equation 3, as GPPpot already represents all factors affecting GPP other than 
water stress. We can then define the GPP “deficit” (GPPdef), in parallel with a similar concept based on evapo-
transpiration (Stephenson, 1998), as

GPP𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡) = GPP(𝑡𝑡) − GPP𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡).� (6)

Here, GPPdef represents the additional GPP that could be attained instantaneously in the absence of water stress, 
but does not account for synchronous or delayed feedbacks to the ecosystem, such as changes to leaf area or plant 
mortality. By rearranging Equation 6 as
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GPP(𝑡𝑡) = GPP𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) − GPP𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡),� (7)

we have divided GPP into the two component time series, with -GPPdef representing the contribution of water 
stress to GPP variability, and GPPpot representing the contribution of everything else, that is, radiation, temper-
ature, and leaf area.

To further assess the variability of water stress within the context of net land-atmosphere CO2 fluxes, we exam-
ined the effect of GPPdef on the net biosphere production (NBP), defined as uptake from GPP minus C losses 
due to respiration and disturbance (where a positive value represents a net land-atmosphere CO2 uptake). We 
derived the “potential” NBP (NBPpot) that represents the net CO2 flux in the absence of instantaneous GPP water 
limita tions as NBPpot = NBP + GPPdef, which we then rearrange as

NBP = NBP𝑝𝑝𝑝𝑝𝑝𝑝 − GPP𝑑𝑑𝑑𝑑𝑑𝑑 .� (8)

We further partitioned GPPdef into two terms corresponding to limitations due to insufficient supply of plant 
available water (𝐴𝐴 GPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 ) and limitations due to excessive demand from atmospheric VPD (𝐴𝐴 GPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 ) so that

GPP𝑑𝑑𝑑𝑑𝑑𝑑 = GPP
𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
+ GPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑� (9)

where we define 𝐴𝐴 GPP
𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 as

GPP
𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
= GPP𝑑𝑑𝑑𝑑𝑑𝑑

(
1 − 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝

(1 − 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝) + (1 − 𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣)

)
� (10)

in order to distribute interactions proportionately between the two terms. Note that βpaw is large when the deficit 
associated with PAW is small; we therefore weight by 1 − βpaw instead of by βpaw. We similarly define 𝐴𝐴 GPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 as

GPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
= GPP𝑑𝑑𝑑𝑑𝑑𝑑

(
1 − 𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣

(1 − 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝) + (1 − 𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣)

)
.� (11)

To isolate the inter-annual variations from the seasonal component of each flux term in Equations 7–9, we first 
subtract the mean 2001–2018 seasonal cycle as follows:

Δ𝐹𝐹𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑖𝑖𝑖 −
1

𝑁𝑁

𝑁𝑁−1∑

𝑘𝑘=0

𝐹𝐹𝑖𝑖𝑖𝑖𝑖� (12)

where Fi,j is the carbon flux term—namely GPP, GPPdef, GPPpot, 𝐴𝐴 GPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 , 𝐴𝐴 GPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 and NBPpot—at month =  i 

and year = j, and N is the number of years (N = 18), and ΔFi,j represents the de-seasonalized anomaly; hence-
forth, for each flux, we denote the de-seasonalized anomalies as ΔGPP, ΔGPPdef, ΔGPPpot, ΔNBPpot, 𝐴𝐴 ΔGPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 , 

and 𝐴𝐴 ΔGPP
𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 , respectively. We derived regional estimates of each de-seasonalized flux by (a) calculating the 

mean CARDAMOM flux at each grid cell, (b) regionally aggregating area-weighted fluxes across each region, 
and (c) de-seasonalizing regional time-varying fluxes using Equation 12. We then summarize the 2001–2018 
inter-annual variability (IAV) as the standard deviation of the monthly de-seasonalized anomalies, and denote 
these as σΔGPP, σΔGPPdef, σΔGPPpot, 𝐴𝐴 𝐴𝐴ΔGPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 , 𝐴𝐴 𝐴𝐴ΔGPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 and σΔNBPpot.

3.  Results and Discussion
3.1.  Evaluation of CARDAMOM Carbon-Water Reanalysis

Overall, the CARDAMOM modeled GPP, TWSA and NBP (Figure 2) are in broad agreement with the corre-
sponding observations of SIF, GRACE TWSA and CMS-Flux NBP across the six hemi-continental regions 
(Table  1): we find all correlations are positive and significant (with p-value <0.05) between GPP and SIF 
(r = 0.32–0.95), terrestrial water storage anomalies (r = 0.82–0.97) and NBP (r = 0.56–0.95). We also find 
broad consistency between the amplitudes of 2001–2018 NBP, TWSA and relative amplitudes of GPP, and the 
corresponding observation amplitudes (Table 1 and Figure 2): across the six hemi-continental regions, the ratio of 
modeled-to-observed amplitudes for the full monthly data timeseries span 0.61–1.38 across all observational data 
sets. On a pantropical scale, the FluxCom time-averaged GPP (86.7 PgC/y) is within the range of CARDAMOM 

 19449224, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

B
007702 by Stanford U

niversity, W
iley O

nline Library on [27/01/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Global Biogeochemical Cycles

LEVINE ET AL.

10.1029/2023GB007702

7 of 17

2001–2018 time-averaged GPP (IQR  =  74.3–93.8  PgC/y), and mean grid-scale CARDAMOM GPP values 
(Figure S3 in Supporting Information  S1) are in broad agreement with the corresponding FLUXCOM GPP 
values (r = 0.94; p-value < 0.05). We find that in the two wetter regions–NH South America and SE Asia–show 
the lowest consistency in terms of the timing of GPP and SIF (r = 0.42 and r = 0.32 respectively); we note that 
in both regions the observation and model normalized dynamical ranges are relatively lower (normalized SIF 
and GPP standard deviation span 7%–11%, see Figure 2) relative to other regions, where the dynamical ranges 
of normalized GPP and SIF are considerably larger (normalized SIF and GPP standard deviation ≥25%). We 
speculate that the relatively lower variability could either (a) be a limitation in the sensitivity of CSIF predictors 
to relatively small changes in GPP, (b) a limitation in the CARDAMOM structure for representing relatively small 

Figure 2.  Time series of the three time-varying observational constraints used in this study (black) and the corresponding quantity from the CARDAMOM posterior 
distribution (red) across the six hemi-continental regions used in the analysis. The top row of each panel shows SIF from CSIF and GPP from CARDAMOM, both 
divided by their time mean. The second row of each panel shows the total water storage anomaly (TWSA) from GRACE and CARDAMOM, both with their time mean 
removed. The normalizations of SIF and TWSA data (along with the corresponding CARDAMOM quantities in each panel) illustrate the transformations necessary for 
the assimilation for CSIF and GRACE (see Section 2.2). The bottom row of each panel shows NBP from CMS-Flux and CARDAMOM. The model-data fit correlation 
metrics and standard deviation ratios are reported in Table 1.
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wet tropical seasonal variations, and/or (c) a limitation in the CARDAMOM cost function sensitivity to small 
relative GPP variations. On a pan-tropical scale, we generally find consistency between observation and model 
amplitudes (0.60–1.31), however correlations span lower values (Table 1), and in particular we find no significant 
correlation between wet tropical modeled GPP and observed SIF across the entirety of the wet tropics (r = 0.05; 
p-value > 0.05); the reduced correlations on pantropical scales are generally expected as the inter-hemisphere and 
inter-continental compensation effects of seasonal cycles can amplify model-data inconsistencies from individual 
hemi-continental regions.

On a de-seasonalized basis, monthly anomalies modeled by CARDAMOM are broadly in agreement with the 
equivalent observations (Figure S2 in Supporting Information S1; Table 1). Relative to the full monthly time-
series, we find lower yet positive and significant correlations for GPP, TWSA, and NBP (against the correspond-
ing de-seasonalized observations) across the six hemi-continental regions, with the exception of NH Sub-Saharan 
Africa, were correlations are positive but not significant for GPP and TWSA (see Table 1), and a modestly broader 
range of modeled-to-observed ratios in the de-seasonalized variability (0.71–1.34, 0.61–1.28, and 0.51–0.95). 
We find a notable model-data mismatch between SIF and GPP in Northern Hemisphere South America region 
during the 2015–2016 El Niño (Figure S2 in Supporting Information S1); however, we find that the model NBP is 
consistent with the CMS-Flux NBP, which in itself represents both GPP and gross land-atmosphere C losses. The 
lack of simultaneous model consistency with joint GPP and NBP constraints on an inter-annual basis could be 
attributable to (a) limited sensitivity of the CSIF product to wet tropical ecosystem drought, and/or (b) limitations 
in the CARDAMOM representations of combined NBP and GPP drought responses. On a pantropical basis, we 
find de-seasonalized anomaly amplitudes are broadly consistent with assimilated data sets (de-seasonalized vari-
ability ratios span 0.51–1.13), and correlations are all significant albeit generally lower than the hemi-continental 
values (Table 1); similarly to the full monthly data sets, we expect hemispherical and continental compensation 
explains the modest degradation of amplitude and correlation skill across pantropical scales.

In the dedicated training/validation experiment, we find broad monthly model-observation consistency during 
the 2010–2015 training period for all hemi-continental regions (r = 0.54–0.95; Table 2) with root-mean-square 
error values approximately an order of magnitude smaller than the seasonal NBP variability. With the exception 
of NH Sub-Saharan Africa, we find a modest degradation of correlation during the 2016–2018 validation period 
(r = 0.18–0.93); and a modest increase in the corresponding RMSE values.

Overall, the CARDAMOM model structure used in this study can (a) skillfully represent the timing and variabil-
ity of observation-based GPP, TWSA, and NBP estimates (Table 1), and (b) adequately predict NBP variability 
during a prediction period (2016–2018), relative to training period performance (2010–2015; Table 2). The limi-
tations of modeled variables, observational constraints and the broader implications of model-data mismatches 
are further discussed in Section 3.4.

Full monthly data r (σM/σO) Deseasonalized anomalies r (σM/σO)

SIF/GPP TWSA NBP SIF/GPP TWSA NBP

NH South America 0.42* (0.95) 0.94* (0.91) 0.62* (1.10) 0.29* (1.34) 0.90* (0.87) 0.74* (0.71)

SH South America 0.92* (1.06) 0.97* (1.08) 0.79* (1.04) 0.38* (1.16) 0.77* (1.11) 0.43* (0.95)

NH Sub-Saharan Africa 0.88* (0.74) 0.91* (1.03) 0.95* (0.74) 0.03 (1.26) 0.08 (0.61) 0.45* (0.51)

SH Africa 0.95* (1.04) 0.89* (1.34) 0.92* (1.01) 0.15* (1.07) 0.30* (0.95) 0.29* (0.56)

Southeast Asia 0.32* (0.61) 0.82* (1.03) 0.56* (0.84) 0.57* (1.15) 0.51* (1.28) 0.62* (0.74)

Australia 0.79* (0.98) 0.91* (1.38) 0.91* (1.03) 0.69* (0.71) 0.88* (1.26) 0.70* (0.93)

Tropics 0.34* (1.31) 0.81* (1.14) 0.41* (0.95) 0.23* (0.71) 0.79* (1.13) 0.52* (0.56)

Wet Tropics 0.05 (0.60) 0.81* (0.91) 0.53* (0.67) 0.15* (0.96) 0.66* (0.90) 0.55* (0.61)

Dry Tropics 0.70* (1.20) 0.74* (1.27) 0.59* (0.95) 0.36* (0.60) 0.84* (1.16) 0.40* (0.51)

Note. The asterisks denote the statistical significance of r with p-value < 0.05. The bracketed numbers denote the ratio of CARDAMOM posterior mean standard 
deviation (σM) versus observation standard deviation (σO), where and when observations are available (see Figure 2).

Table 1 
Correlation Coefficients (r) Between Assimilated Observations and CARDAMOM Posterior Mean Across Six Hemi-Continental Regions (Time Series Illustrated 
in Figure 2) and the Corresponding Metrics for De-Seasonalized Observations and CARDAMOM Posterior Mean (Time Series Illustrated in Figure S2 of the 
Supporting Information S1)
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3.2.  Drivers of Tropical Carbon Flux Variability

On a pan-tropical scale, we find that the IAV of GPPdef anomalies (σΔGPPdef) is 52% greater than the IAV of GPPpot 
anomalies (σΔGPPpot) throughout 2001–2018 (σΔGPPdef = 1.98 PgC/yr, σΔGPPpot = 1.30 PgC/yr; see Figure 3 
for regional values). The dominance of GPPdef persists across both the dry tropics (σΔGPPdef is 26% greater than 
σΔGPPpot), the wet tropics (σΔGPPdef is 94% greater than σΔGPPpot), and four of six hemi-continental regions 
(σΔGPPdef is 22% and 11% smaller than σΔGPPpot in Southern Hemisphere South America and Australia respec-
tively, and 15%–89% larger across other regions). On both a pan-tropical and regional basis, de-seasonalized 
anomalies of GPPpot and GPPdef are positively correlated (r = 0.22–0.53; p < 0.05; see Table S3 in Supporting 
Information S1), indicating that conditions of high photosynthetic potential (i.e., more sunlight and/or leaf area) 

Full monthly data r (RMSE) Deseasonalized anomalies r (RMSE)

Assimilated NBP 
(2010–2015)

Predicted NBP 
(2016–2018)

Assimilated NBP 
(2010–2015)

Predicted NBP 
(2016–2018)

NH South America 0.73* (0.19) 0.33* (0.31) 0.77* (0.12) 0.72* (0.15)

SH South America 0.77* (0.27) 0.71* (0.31) 0.35* (0.17) 0.14 (0.17)

NH Sub-Saharan Africa 0.93* (0.32) 0.96* (0.40) 0.42* (0.23) 0.44* (0.16)

SH Africa 0.95* (0.34) 0.93* (0.45) 0.35* (0.25) 0.25 (0.21)

Southeast Asia 0.54* (0.24) 0.18 (0.30) 0.68* (0.14) 0.63* (0.11)

Australia 0.91* (0.14) 0.87* (0.16) 0.68* (0.13) 0.54* (0.11)

Tropics 0.68* (0.10) 0.24 (0.14) 0.62* (0.06) 0.57* (0.05)

Wet Tropics 0.62* (0.15) 0.35* (0.18) 0.59* (0.13) 0.48* (0.11)

Dry Tropics 0.81* (0.11) 0.55* (0.16) 0.40* (0.06) 0.35* (0.05)

Note. We then compared NBP between the observations (CMS-Flux) and the mean of the optimized posterior distribution for 
both the assimilation time and prediction time periods. We report correlation coefficients (r; the asterisks denote statistical 
significance with p-value < 0.05), and root mean squared error (RMSE, in units of gC m −2 d −1) for both the original monthly 
data and for annual averages.

Table 2 
Validation of CARDAMOM Framework Against Assimilated and Withheld Data for the Assimilation/Prediction Sensitivity 
Experiment (See Section 2.2); Observations From CSIF, GRACE, and CMS-Flux Were Withheld for the Prediction Period 
(2016–2018) While Retrieving Parameters During the Assimilation Stage (2010–2015)

Figure 3.  (a) Pan-tropically integrated monthly anomalies from the mean climatology of GPP (ΔGPP) and its two additive components (ΔGPPpot and Δ-GPPdef, see 
Equation 7). (b) Standard deviation of monthly anomalies of GPP (σ ΔGPP) and its two components (σ ΔGPPpot, and σ ΔGPPdef) for the pan-tropics (the time series in 
a), the wet tropics, the dry tropics, and (c) six hemi-continental regions.
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are associated with more water stress; these compensating interactions allow σΔGPPdef to exceed σΔGPP in 
some regions. The relative prominence of σΔGPPdef over σΔGPPpot across the tropics—and within most indi-
vidual regions—indicates that hydrologically imposed limitations to photosynthetic CO2 uptake (GPPdef) are 
more highly variable on an inter-annual basis than the combined effects of radiation, temperature, and leaf area 
(GPPpot).

Extending the analysis to the net atmosphere-to-land CO2 flux (NBP), the IAV of NBPpot (σΔNBPpot) is generally 
greater than σΔGPPpot, but less than σΔGPPdef (Figure 4). σΔGPPdef exceeds σΔNBPpot by 24% across the tropics 
as a whole, by 26% in the wet tropics, and by 7% in the dry tropics, and by 2%–39% across all hemi-continental 
regions. As with σΔGPPpot, σΔNBPpot is greater than σΔGPPdef in Southern Hemisphere South America and 
Australia (by 15% and 3%, respectively), while σΔGPPdef exceeds σΔNBPpot in the other regions by 3%–28%. This 
indicates that with the exceptions of Southern Hemisphere South America and Australia, the IAV of water stress 
on GPP equals or exceeds the IAV of the combination of individual components comprising ΔNBPpot (namely 
ΔGPPpot and anomalies of fire and respiration fluxes). Furthermore, with the aforementioned regional exceptions, 
σΔGPPdef is greater than the IAV of individual components of ΔNBPpot (see Tables S4–S6 in Supporting Infor-
mation S1 for full variance-covariance matrices). Despite σΔNBPpot exceeding σΔGPPpot across the wet, dry, and 
pan-tropics, and half of the hemi-continental regions, σΔNBP is always less than σΔGPP. The low σΔNBP reflect 
compensating interactions between GPPdef and NBPpot (r = 0.49–0.92, p < 0.05), which include the previously 
mentioned interactions between GPPdef and GPPpot in addition to interactions between GPPdef and respiration (see 
Tables S4–S6 in Supporting Information S1).

We find that the IAV of 𝐴𝐴 GPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 (𝐴𝐴 𝐴𝐴ΔGPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 ) is generally larger than the IAV of 𝐴𝐴 GPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 (𝐴𝐴 𝐴𝐴ΔGPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 ) across much 

of the tropics, indicating that the effects of atmospheric aridity are somewhat larger than the effects of soil mois-
ture on σΔGPPdef (Figure 5). 𝐴𝐴 𝐴𝐴ΔGPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 is 21% larger than 𝐴𝐴 𝐴𝐴ΔGPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 across the tropics as a whole, 33% larger 

in the wet tropics, and 6% larger in the dry tropics. Within the hemi-continental regions, 𝐴𝐴 𝐴𝐴ΔGPP
𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 exceeds 

𝐴𝐴 𝐴𝐴ΔGPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 in Southern Hemisphere South America and Southern Hemisphere Africa by 18% and 48% respec-

tively, while 𝐴𝐴 𝐴𝐴ΔGPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 is larger than 𝐴𝐴 𝐴𝐴ΔGPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 in the other regions by 7%–45%. From a process standpoint, we 

find that the retrieved onset of GPP stress (βpaw < 1, see Figure 1) is typically at ≤30% of mean plant-available 
across hemi-continental regions and on a pantropical basis (Figure S9 in Supporting Information S1). In contrast, 
VPD-induced GPP stress (βvpd < 1) span a broader range of VPD sensitivities; however, on a pantropical scale, 
we find that βvpd declines in response to relative VPD changes are comparable across both the wet and dry trop-
ics. Anomalies of 𝐴𝐴 GPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 and 𝐴𝐴 GPP

𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 are positively correlated (r = 0.09–0.65, p < 0.05), and the correlation is 

substantially greater in the wet tropics (0.65) than the dry tropics (0.32); this is consistent with previous work 

Figure 4.  (a) Pan-tropically integrated monthly anomalies from the mean climatology of NBP (ΔNBP) and its two additive components (ΔNBPpot and Δ-GPPdef, see 
Equation 8). (b) Standard deviation of monthly anomalies of NBP (σΔNBP) and its two components (σΔNBPpot, and σΔGPPdef) for the pan-tropics (the time series in a), 
the wet tropics, the dry tropics, and (c) six hemi-continental regions.

 19449224, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

B
007702 by Stanford U

niversity, W
iley O

nline Library on [27/01/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Global Biogeochemical Cycles

LEVINE ET AL.

10.1029/2023GB007702

11 of 17

diagnosing positive correlations between soil moisture and atmospheric aridity (Green et al., 2019; Humphrey 
et al., 2021; Levine et al., 2019).

3.3.  Water Stress in the Wet Tropics

Our finding that the IAV of GPPdef is greater than the IAV of GPPpot in both the wet and dry regions (Figure 3) 
demonstrate that the IAV of gross terrestrial CO2 uptake (GPP) in the tropics is dominated by hydrologically 
imposed limitations, with a relatively smaller contribution from downward radiation and ecosystem states. This 
dominance of water stress is reduced when considering the net CO2 sink, but it still remains a prominent compo-
nent of IAV, particularly in the wet tropics (Figure 4). Water supply (PAW) and demand (VPD) are both substan-
tial drivers of water stress variability throughout the tropics, being roughly comparable in the dry tropics, but in 
the wet tropics, VPD limitations to GPP are more variable (Figure 5).

The importance of water stress in the wet tropics is surprising, given that evapotranspiration and photosynthesis 
in these areas is often thought to be limited by energy, rather than water (Baker et al., 2021; Claessen et al., 2019). 
Our results contrast with previous pan-tropical and global-scale analyses, which suggest semi-arid ecosystems 
are the largest contributor to the IAV of GPP (Y. Zhang et al., 2016) and net CO2 fluxes (Ahlström et al., 2015; 
Fan et al., 2019; Piao et al., 2020; Poulter et al., 2014). While these efforts have used an array of models and 
observations to resolve water stress impacts on C fluxes, the differences are likely attributable to the absence of 
gridded top-down CO2 fluxes and water constraints, which are ultimately key for resolving the spatial variability 
in ecosystem carbon-water interactions. Because we resolve the contributions of GPPdef in a spatially explicit 
manner, we are able to capture the spatial variability of ecosystem response to water stress in a manner that cannot 
be accomplished by parameterizations with plant functional types (Bassiouni et al., 2020; Bloom et al., 2016; 
Konings & Gentine, 2017). We also capture the spatial variability of the SIF-GPP relationship, which is driven 
by water availability (Chen et al., 2020).

The wet tropics in general have been a source of uncertainty among land modeling efforts (Huntzinger 
et  al.,  2017), and yet are increasingly highlighted as a key term in the interannual atmospheric CO2 budget 
(Humphrey et al., 2018; J. Liu et al., 2017). Our assessment of water stress on NBP demonstrates that the instan-
taneous wet tropical water variability impacts on carbon cycling alone (0.75  PgC/y; see Figure  4; Table S2 
in Supporting Information  S1) amount to a substantial portion of the pantropical net carbon flux variability 
(0.95 PgC/y). Independent estimates of land carbon sink variations in wet tropical ecosystem responses to dry 
events (Bowman et al., 2017; Gatti et al., 2014) also support the inherent role of water stress in the wet tropics 

Figure 5.  (a) Pan-tropically integrated monthly anomalies from the mean climatology of GPPdef (ΔGPPdef) and its two additive components (𝐴𝐴 ΔGPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 and 𝐴𝐴 ΔGPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 , 

see Equation 9). (b) Standard deviation of monthly anomalies of GPPdef (σ ΔGPPdef) and its two components (𝐴𝐴 𝐴𝐴 ΔGPP
𝑣𝑣𝑣𝑣𝑣𝑣

𝑑𝑑𝑑𝑑𝑑𝑑
 , and 𝐴𝐴 𝐴𝐴 ΔGPP

𝑝𝑝𝑝𝑝𝑝𝑝

𝑑𝑑𝑑𝑑𝑑𝑑
 ) for the pan-tropics (the time 

series in a), the wet tropics, the dry tropics, and (c) six hemi-continental regions.
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as a key regulator of the global land carbon sink. We note that the lagged impacts on NBP—mediated by decline 
in leaf area due to prolonged GPP decline, additional respiration due to increased leaf turnover/mortality and 
subsequent decomposition, and increased vulnerability to fire—may further enlarge the relative contribution of 
water stress on NBP. Querying the full spectrum of concurrent and lagged ecosystem responses to single water 
stress disturbances (Frank et al., 2015) or cumulative impacts of water stress events on aggregate lagged effects 
(Bloom et al., 2020) is therefore a necessary step to resolve the cumulative impact of water stress of the tropical 
land carbon sink.

3.4.  Limitations and Future Directions

The magnitude of GPPpot (Section 2.1) accounts for all non-water stress terms; in addition to temperature and 
radiation forcing, GPPpot comprises of leaf-area phenology as well as host of underlying processes regulating 
photosynthesis, including species distribution and their phenological prominence, leaf-level photosynthetic effi-
ciency, seasonal senescence in deciduous ecosystems, and mortality impacts on leaf area. We highlight that the 
perennial state of GPPpot—which represent GPP values under non-arid conditions and are invariably not fully 
represented in the meteorological forcing record—is ultimately uncertain. However, as our analysis hinges on the 
variability (rather than the absolute values) of GPPpot, we expect uncertainties on mean GPPpot values to bear a 
secondary influence on our results.

The role of time-varying leaf area, however, is specifically a considerable source of GPPpot temporal varia-
bility; across both wet and dry tropical ecosystems, we find that temporal GPPpot variability is highly corre-
lated with leaf area (5th–95th percentile of r values across all pixels span 0.41–0.95; p < 0.05; Figure S10 in 
Supporting Information S1). Given the important regional roles of GPPpot—particularly in Southern Hemisphere 
South America and Australia where σΔGPPpot IAV is greater than σΔGPPdef (Figure 3)—we identify the need 
to advance understanding of leaf area temporal dynamics, the associated process controls, and their impact on 
GPP. We note that while deciduous leaf area dynamics are represented in DALEC (Bloom & Williams, 2015), 
there are no explicit process representations of stress-induced leaf area senescence, which could ultimately lead 
to ambiguous or inaccurate attribution of GPP anomalies to GPPpot and GPPdef where and when substantial leaf 
area changes take place. Ultimately, leveraging recent efforts resolving leaf area sensitivity to climate variability 
and soil water (Norton et al., 2023) provides a quantitative path forward for improving GPPpot estimates and the 
subsequent attribution of GPP anomalies to GPPpot and GPPdef.

We highlight that the results presented in Section  3.2 may ultimately bear a substantial sensitivity to uncer-
tainty choices prescribed for each observational data sets (see Data Availability Statement). Although uncertainty 
choices used in this study are broadly based on fundamental understanding of uncertainty for each observation 
type (Data Availability Statement; Table S1 in Supporting Information  S1), we acknowledge that additional 
error characterizations, such as (a) unknown roles of error co-variances within or across observation types, (b) 
systematic errors in model-data consistency (Bloom et al., 2020), and (c) model structure and its impact on skill 
(Famiglietti et al., 2021), may ultimately benefit from more formal treatment or further exploration. In addition, 
while the model evaluation approach presented in Section 3.1 provides a broad assessment of hemi-continental 
and pantropical model skill (Tables 1 and 2)—where the model-data consistency in both assimilated and withheld 
carbon fluxes provides partial support for prescribed observation uncertainties (Famiglietti et  al., 2021)—we 
nonetheless advocate for further and more systematic exploration on the role of uncertainty choices on future 
CARDAMOM carbon and water cycle inferences.

A limitation of our analysis is that we cannot fully account for the interactions between VPD and PAW resulting 
from land–atmosphere coupling (Green et al., 2019; Humphrey et al., 2021; Levine et al., 2019). Because VPD 
is part of the atmospheric forcing, it is unable to respond to variability in the prognostic PAW state. However, 
because PAW is constrained by observations from GRACE, the actual co-variability of PAW and VPD should 
be captured in our reanalysis. On the scale of individual plants, the limiting factor is hydraulic failure incurred 
when the water potential in xylem and leaf tissue becomes too low, which is a function of the water potential 
at both the roots and stomata. If plants do not sufficiently close stomata before atmospheric demand exceeds 
supply, they risk extremely negative leaf and xylem water potential, resulting in tissue damage. It has been 
hypothesized that individual plant species have evolved strategies for regulating the increased cost of PAW use 
due to increased VPD by decreasing stomatal conductance, thereby conserving water but limiting photosynthesis 
(Konings & Gentine, 2017; Massmann et al., 2019; Novick et al., 2019; Sperry et al., 2017). This has prompted 
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suggestions that land surface models should incorporate hydraulic traits in parameterizations of plant responses to 
soil moisture and VPD in place of the simpler formulations most models have been using (Anderegg et al., 2019; 
Novick et al., 2019; Trugman et al., 2018). Our results suggest that plant responses to water supply and demand 
are likely both key processes in regulating tropical plant hydraulics. To advance process-level understanding of 
the role of plant hydraulics on the evolution of the tropical C balance, we therefore advocate for the advance of 
Bayesian model-data integration methods representing plant hydraulics explicitly (Y. Liu et al., 2020; Massoud 
et al., 2021) to include a comprehensive ensemble of satellite measurements including terrestrial water storage, 
fluorescence and CO2 fluxes, and vegetation optical depth, among other ancillary ecosystem observations.

Linear scaling factors like βpaw and βvpd have been widely used in land surface models to parameterize reductions 
in photosynthesis and transpiration due to water stress (Trugman et al., 2018; Verhoef & Egea, 2014), although 
the simplicity of this approach has been criticized in recent literature, which argues that plant hydraulic traits are 
better predictors of response to water stress (Trugman et al., 2019). In the work presented here, the parsimony 
of this formulation was a strength, as it minimized the number of parameters that we needed to constrain with 
our observational data. Furthermore, many of the criticisms of the approach are related to the limitations of PFT 
parameterizations. Instead, we optimized parameters independently for each grid cell, which would be imprac-
tical in a more complex trait-based model, and which allows us to capture the spatial variability of water use 
efficiency (Lin et al., 2015; J. Liu et al., 2021) and water stress thresholds (Bassiouni et al., 2020). To augment 
insight on the role of process representation on inferred GPP sensitivity, we advocate for further exploration of 
optimized CARDAMOM model parameters, their covariance, principal components of variability (Famiglietti 
et al., 2021) and the sensitivity of emergent GPP variability–and its attribution to individual process controls–to 
underlying parameter combinations and their associated uncertainties.

4.  Summary and Implications
The ubiquity of water stress variability in the tropics (Figures 3 and 4) and the nearly equal variability of the 
instantaneous photosynthetic limitations (Figure 5) by PAW and VPD suggest that the tropical carbon cycle will 
respond strongly to future changes in both water supply and demand. In particular, precipitation supply across 
tropical ecosystems has varied considerably over the past two decades, while Earth System models predict that 
precipitation variability will increase throughout the remainder of the century (Pendergrass et al., 2017). Similarly, 
atmospheric water demand via VPD has been increasing over the past few decades (Barkhordarian et al., 2019; 
Yuan et al., 2019). Furthermore, soil moisture-atmosphere feedbacks have been identified as key co-mediating 
processes regulating both PAW and VPD (Green et al., 2019; Humphrey et al., 2021; Levine et al., 2019), suggest-
ing that climate-driven trends of each one could intensify the response of the other.

Given that water supply and atmospheric demand each play a comparable role on water stress, our results further 
highlight the need to characterize the concurrent and lagged interactions between PAW and VPD. While water 
supply variability is fundamentally limited by precipitation and its legacy influence on soil water states, atmos-
pheric water demand variability is an indirect result of concurrent anomalies of air temperature and moisture, 
which are in turn a result of atmospheric transport as well as concurrent evapotranspiration (Green et al., 2019; 
Humphrey et al., 2021; Levine et al., 2019). The feedback between VPD and PAW further highlights that wet 
and dry season climate shifts (Murray-Tortarolo et al., 2017) will exert compound influences on the magnitude 
and seasonality of GPP water stress. Further consideration of ecohydrological processes regulating stomatal 
conductance responses to demand and supply, including hydrologic plant traits (Y. Liu et al., 2020), isohydricity 
(Konings & Gentine, 2017), stomatal responses to elevated CO2 (Swann & Koven, 2017), and rooting depth and 
soil traits (Massoud et al., 2021) will be critical for accurately resolving (a) the competing stresses on contempo-
rary plant carbon uptake, and (b) the subsequent impacts of plant water stress on net land-atmosphere CO2 flux 
in the coming decades. Finally, we speculate that evaluation of integrated GPP water stresses in Earth System 
models against data-constrained water stress mechanisms will be a critical step for benchmarking and improving 
joint water-carbon cycles and their role in the decadal land carbon sink projections.

Data Availability Statement
All data and code used in this work is publicly available. Code is available at the repository https://github.
com/CARDAMOM-framework/CARDAMOM_v2.2. In Forcing data and Assimilation data, we account for all 
of the data we acquired, which would allow a complete replication of this work. In addition, we provide our 
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CARDAMOM input files, in which all of the data has been regridded and aggregated to a common spatial and 
temporal resolution, which would allow our assimilation to be replicated without requiring any data acquisition. 
Finally, we provide the CARDAMOM output files, which would allow our analysis to be replicated without 
requiring the computationally expensive data assimilation. In the event this manuscript is accepted for publi-
cation, CARDAMOM input and output files will be on a public data repository with a digital object identifier. 
While undergoing review, these files will be furnished upon request to editors and external reviewers.

Forcing data: ERA-Interim re-analysis data sets were obtained from https://www.ecmwf.int/en/forecasts/data-
set/ecmwf-reanalysis-interim (Berrisford et  al.,  2011). GFED4 burned area was obtained from https://dx.doi.
org/10.3334/ORNLDAAC/1293 (Randerson et al., 2017). Atmospheric CO2 concentrations were obtained from 
https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html (Dlugokencky & Tans, 2020).

Assimilation data: CMS-Flux data sets are available at http://cmsflux.jpl.nasa.gov. Atmospheric satellite-column 
CO2 retrievals were obtained from the Atmospheric Carbon Observations from Space (ACOS) team for both GOSAT 
(version 7.3) and OCO-2 (version 9) using a common algorithm (Crisp et al., 2012). Prior ecosystem fluxes are 
derived from CARDAMOM (Bloom et al., 2016), ocean fluxes from the ECCO-Darwin Model (Carroll et al., 2020), 
and fossil fuel from the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) 2018 (Oda et al., 2018).

GRACE terrestrial water storage anomalies were obtained from http://dx.doi.org/10.5067/TEMSC-OCL05 
(Wiese et  al.,  2016). CSIF data were acquired from http://dx.doi.org/10.17605/OSF.IO/8XQY6 (Y. Zhang 
et al., 2018). MODIS LAI data were obtained from https://doi.org/10.5067/MODIS/MOD15A2H.006 (Myneni 
et al., 2015). Biomass is available from Sassan Saatchi (sasan.s.saatchi@jpl.nasa.gov) upon reasonable request 
(Saatchi et  al.,  2011). HWSD soil organic carbon data was obtained from https://dx.doi.org/10.2788/13267 
(Hiederer & Köchy, 2012). Biomass burning CO fluxes data was obtained from https://doi.org/10.26024/r1r2-
6620 (Bloom et  al.,  2019). FLUXCOM data sets were obtained from http://www.fluxcom.org/CF-Download/ 
(Jung et al., 2019).
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