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Abstract Water stress regulates land-atmosphere carbon dioxide (CO,) exchanges in the tropics;

however, its role remains poorly characterized due to the confounding roles of radiation, temperature and
canopy dynamics. In particular, uncertainty stems from the relative roles of plant-available water (supply)

and atmospheric water vapor deficit (demand) as mechanistic drivers of photosynthetic carbon (C) uptake
variability. Using satellite measurements of gravity, CO, and fluorescence to constrain a mechanistic
carbon-water cycle model from 2001 to 2018, we found that the interannual variability (IAV) of water stress

on photosynthetic C uptake was 52% greater than the combined effects of other factors. Surprisingly, the
dominance of water stress on C uptake IAV was greater in the wet tropics (94%) than in the dry tropics

(26%). Plant-available water supply and atmospheric demand both contributed to the IAV of water stress on
photosynthetic C uptake across the tropics, but the IAV of demand effects was 21% greater than the IAV of
supply effects (33% greater in the wet tropics and 6% greater in the dry tropics). We found that the IAV of water
stress on C uptake was 24% greater than the IAV of the combination of other factors in the net land-atmosphere
C sink in the whole tropics, 26% greater in the wet tropics, and 7% greater in the dry tropics. Given the recent
from both
will likely dominate the climate response of land C sink across tropical ecosystems in

trends in tropical precipitation and atmospheric humidity, our findings indicate that water stress

supply and demand:

the coming decades.

Plain Language Summary The amount of carbon that gets absorbed by land ecosystems in the
Earth's tropics changes from year to year, and dominates the global carbon dioxide growth rate variability.
These changes are related to climate, but it is unclear how much they are driven by water stress relative to other
climatic factors. Here, we showed that water stress is responsible for the majority of this variability, not only in
the dry tropics, where we would have expected water limitations, but also, surprisingly, in the wet tropics. We
found that this variability is driven moderately more by demand from atmospheric aridity than it is by deficits
of water in the soil, particularly in the wet tropics. This indicates that water stress will play an important role in
the net carbon balance of tropical land ecosystems in a changing climate.

1. Introduction

The interannual variability (IAV) of the atmospheric carbon dioxide (CO,) growth rate has been attributed
primarily to the tropical land carbon (C) sink (Jones et al., 2001; Keeling et al., 1995; Rayner et al., 2008; W.
Wang et al., 2013; Worden et al., 2021; Zeng et al., 2005). The tropical land surface stores a substantial fraction
of global C stocks, both as live biomass (Avitabile et al., 2016; Saatchi et al., 2011) and dead organic matter
(Jackson et al., 2017). These ecosystems are highly sensitive to climatic conditions, and year-to-year regional
and pan-tropical climate fluctuations, such as El Nifio-Southern Oscillation, induce a substantial variation in the
net terrestrial CO, flux (Bowman et al., 2017; Cox et al., 2013; Jung et al., 2017; J. Liu et al., 2017; X. Wang
et al., 2014; J. Wang et al., 2016). Understanding IAV in the tropics, therefore, may provide valuable clues
regarding the fate of terrestrial ecosystems in a changing climate, and their ability to serve as sources or sinks of
atmospheric CO,.

However, there is a considerable uncertainty about the role of water stress on CO, flux variability across both wet
and dry tropical ecosystems (Humphrey et al., 2018; Jung et al., 2017; Piao et al., 2020; W. Wang et al., 2013;
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X. Wang et al., 2014; J. Wang et al., 2016; A. Zhang & Jia, 2020). Recent studies indicate that the dry tropics
are substantial contributors to recent global net CO, flux variability (Ahlstrom et al., 2015; Fan et al., 2019;
Piao et al., 2020; Poulter et al., 2014), in part due to the prominent role of water limitations on photosynthetic C
uptake. At the same time, the wet tropics have been found to respond considerably to variable water availability
and climate variability (Bowman et al., 2017; Gatti et al., 2014; Green et al., 2020; Palmer et al., 2019; Yang
et al., 2018). Furthermore, the wet tropics hold a substantially larger carbon stock (Saatchi et al., 2011), which,
if close to a water-induced ecological tipping point (Ahlstrom et al., 2017; Saatchi et al., 2021), could become a
stronger source of atmospheric C under future climate changes. Resolving the sensitivity of tropical ecosystems
to water availability is key to understanding the influence of tropical ecosystems within the context of global
carbon-climate interactions (Barkhordarian et al., 2021).

Gross primary production (GPP), which is the total uptake of atmospheric CO, via photosynthesis, is the domi-
nant component of variability in the net terrestrial carbon balance (Mystakidis et al., 2016; Piao et al., 2020). GPP
is fundamentally limited by a number of biotic and abiotic factors, including radiation, leaf area, temperature, soil
moisture, and atmospheric aridity (Baker et al., 2021; Bonal et al., 2008; Claessen et al., 2019; Jung et al., 2020;
Madani et al., 2020). Specifically, the total impact of water stress on GPP comprises the co-limitations of moisture
supply at the soil-root interface and atmospheric demand for moisture at the leaf-atmosphere interface (Bonan
et al., 2014; Novick et al., 2016, 2019; Sulman et al., 2016). Therefore, it is important to consider both supply
and demand limitations when accounting for the impact of water stress on photosynthetic uptake and, ultimately,
net CO, fluxes.

In addition, the relative importance of supply and demand limitations in the total plant water stress remains a
key uncertainty in predicting the tropical carbon sink in upcoming decades. Strong supply side limitations would
imply that future tropical GPP will be regulated by water availability (precipitation and, ultimately, soil moisture),
while strong limitations due to demand suggest that drivers of evapotranspiration (energy and atmospheric arid-
ity) will play an important role. Under conditions when soil moisture modulates surface atmospheric temperature
and humidity, the feedbacks between supply and demand can become as impactful as the individual components,
particularly in the tropics (Green et al., 2019; Humphrey et al., 2021). These feedbacks may be modulated by
strategies developed by plants to minimize the risk of stress-induced mortality and leaf loss by regulate leaf
stomatal openings—and consequently photosynthetic uptake—to reduce transpiratory water fluxes (Grossiord
et al., 2020; Sperry et al., 2017).

At a process level, terrestrial ecosystem models have long accounted for water supply and demand limitations
(Bonan et al., 2014; Trugman et al., 2018), but these parameterizations introduce uncertainty at coarser scales,
particularly when based on plant functional types (PFTs) which are unable to account for hydroclimatic and
edaphic conditions that lead to unique, emergent behavior of terrestrial ecosystems (Konings & Gentine, 2017).
Here, we inform these parametric uncertainties with spatially explicit data from multiple Earth observation satel-
lites spanning multiple decades, using the CARbon DAta-MOdel fraMework (CARDAMOM), a model-data
fusion system that constrains a simple ecosystem model with observations terrestrial carbon and water states
and fluxes (Bloom & Williams, 2015; Bloom et al., 2016, 2020; Quetin et al., 2020; Yang et al., 2021; Yin
et al., 2020). Bloom et al. (2020) recently extended the process model within CARDAMOM to include a mech-
anism for water supply to limit GPP. They demonstrated that with this mechanism, their reanalysis was able to
capture the drought response of observationally constrained terrestrial CO, fluxes in the tropics. Furthermore,
the drought response could be further resolved into both the instantaneous effects of water supply limitations on
photosynthesis, and the subsequent effects resulting from shifts in the ecosystem state (Bloom et al., 2020). Here,
for the first time, we assimilate terrestrial water storage anomalies from the Gravity Recovery and Climate Exper-
iment (GRACE) (Wiese et al., 2016) as a constraint on the CARDAMOM model water states (see Section 2.2
for details). In addition to the GPP water supply limitation (as in Bloom et al. (2020) and Yang et al. (2021)),
we extend the process model in CARDAMOM to include an atmospheric water demand limitation on GPP,
specifically via vapor pressure deficit (VPD, see Section 2.1 for details). With these developments, we used
CARDAMOM to obtain a reanalysis of the coupled carbon and water cycles, constrained by satellite observations
of carbon and water states and fluxes, in order to diagnose the IAV of water stress on tropical carbon fluxes in the
first two decades of the 21st century.

Understanding the interannual sensitivities of tropical ecosystems to water stress—namely the co-limitations
of water demand and supply on photosynthetic C uptake—is critical to advancing understanding of (a) soil
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moisture-atmosphere feedbacks in the Earth system, (b) the resilience of tropical C stores in a changing climate,
(c) the role of hydrologic variability (in both supply and demand) relative to other climatic factors (i.e., solar radi-
ation, temperature, and ecosystem memory), and (d) our overall understanding of tropical carbon-water cycling in
the coming decades (Bloom et al., 2020; Qian et al., 2008; W. Wang et al., 2013; J. Wang et al., 2016). To resolve
the role of water stress across tropical land ecosystems, here we pose the following questions:

1. How much does water stress contribute to the IAV of carbon uptake (GPP) at continental and pan-tropical scales?

2. How much do the instantaneous effects of water limitations to GPP contribute to the IAV of the net carbon
balance?

3. How much of the IAV in water stress is the result of limitations from soil water supply versus those from
atmospheric demand?

2. Methods and Data

Section 2.1 describes the ecosystem model used within the CARDAMOM framework, and explains its water
stress parameterizations. Section 2.2 summarizes how we assimilated multiple satellite observations and derived
data products into the CARDAMOM framework, and details our recently developed method for including
GRACE as a constraint on water storage. Section 2.3 describes how we leveraged the observationally constrained
monthly reanalysis to distinguish between (a) water stress and (b) the combination of all other factors driving the
variability of C uptake.

2.1. Modeling Water Stress

CARDAMOM is a model-data fusion system designed to assimilate multiple sources of observational data into
a parsimonious model that represents the states and fluxes of the terrestrial carbon and water cycles. We used
the Data-Assimilation Linked Ecosystem C (DALEC) model (Williams et al., 2005), which has been used exten-
sively within CARDAMOM to diagnose terrestrial C cycle dynamics across a range of site-level and spatially
resolved approaches (Bloom & Williams, 2015; Bloom et al., 2016, 2020; Quetin et al., 2020; Yang et al., 2021;
Yin et al., 2020). The specifics of DALEC have been described extensively by Bloom et al. (2020), to which we
refer the reader for a complete description of the model. The CARDAMOM framework, namely DALEC model
states and processes, observational constraints and forcing data sets are summarized in Figure S1 of the Support-
ing Information S1.

Bloom et al. (2020) introduced a representation of water stress into DALEC—in the form of a commonly used
“p” approach (Trugman et al., 2018)—in which GPP is calculated in two sequential steps: First, the Aggregated
Canopy Model (ACM) (Williams et al., 1997) is used to calculate how much GPP would be expected under
conditions of no water stress, that is, a saturated rooting-zone soil and canopy airspace. This quantity—henceforth
abbreviated as GPP _(#)-is a function of radiation, temperature, leaf area, and atmospheric CO, concentrations at

pot

time 7; therefore GPP

variability in downward radiation or leaf area variability in deciduous ecosystems.

represents time-varying non-water stress limitations on GPP, such as wet-to-dry season

(1) and a water stress scaling factor, §__ (f), which

ot paw

Subsequently, actual GPP is calculated as the product of GPP,
is defined as

o0, if PAW() < PAW,,
ﬁpaw(t) = wp (1)
1, if PAW(t) > PAW,,,

in which PAW() is the prognostic plant-available water (PAW) state and PAW  is a time-invariant,
CARDAMOM-optimized parameter representing a conceptual threshold below which GPP linearly reduces to
zero along with PAW (Figure 1a). Here, we introduced an additional scaling factor, f,,(7), to account directly for
VPD limitations at time ¢ that are independent of PAW as

b
o _ (VV:I)&) ., if VPD(t) < VPDpax
U’,d = max

0, if VPD(#) > VPDya

@
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a) GPP(
A

)

where VPD
designed to approximate the range of hypothesized responses of GPP stress
to VPD (Grossiord et al., 2020; Leuning, 1995), and VPD is calculated using
2-m air temperature and dewpoint temperature from the ERA-Interim forcing

. and b are optimized parameters in a function (Figure 1b)

GPPpot(t) N g > .
o= data. The overall GPP is calculated as
GPP = BpuwPupa GPPpor. 3)
/ﬁpaw(t) =0 R o
F— PA\;pr T PAW(t) 2.2. Data Assimilation
GPF%; Z(tz;;;m(t) Gppﬁgai(tg;;;pm(t) CARDAMOM uses an iterative Bayesian framework to optimize the parame-
ters and initial states of DALEC based on multiple streams of observations and
b) GPP(t) derived data products (Bloom & Williams, 2015; Bloom et al., 2016). Here, we
A conducted a pan-tropical (30°S-30°N) CARDAMOM analysis at a resolution
of 4° latitude X 5° longitude, following the same approach and using the same
Bl =1 b>1 observational data and uncertainties as Bloom et al. (2020), aside from three
GPPpot(f) b=1 exceptions described below. The complete set of observation and associated
b1 uncertainties is shown in Table S1 of the Supporting Information S1; the uncer-
tainty choices and their implications on our results are discussed in Section 3.4.
/ P =0 The first exception is that in place of the solar induced fluorescence (SIF)
---- | > VPD() product from the Greenhouse Gas Observing Satellite (GOSAT) as used in
VP%(V?dE)‘QP o VPDpmay' P'Z(Zjnvf e Bloom et al. (2020), we obtained estimates of SIF from the contiguous SIF
GPP(f) < GPPpot(f) GPP(t)=0 (CSIF) product (Y. Zhang et al., 2018), which is a continuous 2001-2018

Figure 1. Water stress functions in DALEC based on limitations from plant
available water (a) and vapor pressure deficit (b).

SIF product trained on Orbiting Carbon Observatory-2 (OCO-2) data along
with longer-spanning ancillary data sets; because SIF is not a direct measure-
ment of GPP, we follow the approach of MacBean et al. (2018) and Bloom
et al. (2020), in which SIF and GPP are both normalized by their temporal
mean values so that SIF only informs the temporal variability of GPP. The second exception is that we constrain
the temporal mean of CARDAMOM GPP using the FluxCom 2001-2014 GPP product (Jung et al., 2019): for
lack of specific knowledge on decadal time-averaged FluxCom GPP product accuracy, we opted for an uncer-
tainty factor of 1.05 (approximately +5%, see Table S1 in Supporting Information S1), as we found that larger
GPP uncertainty choices led to substantial and systematic inconsistencies in the spatial patterns between the
CARDAMOM and FluxCom time-averaged GPP values.

The third exception is a significant development to the CARDAMOM framework that allows it to assimilate terrestrial
water storage anomalies—available from 2003 to 2016 from GRACE—as a constraint on water storage in DALEC:
the constraint on terrestrial water storage was achieved by (a) adopting the development of Yang et al. (2021), which
appends the Bloom et al. (2020) formulation of PAW to include a second prognostic plant unavailable water (PUW)
pool, and (b) expanding the CARDAMOM cost function of Bloom et al. (2020) to include the GRACE constraint
(Wiese et al., 2016). In contrast to PAW, PUW represents water that is inaccessible to plant roots but still part of
the total water balance. The sum of PAW and PUW pool represents total water storage within the land surface and
subsurface, in mm of equivalent water thickness; as a result, temporal changes in PAW and PUW are directly compa-
rable to the total water storage anomalies (TWSA) provided by GRACE. Specifically, for each monthly GRACE
TWSA observation (TWSA (1)), an equivalent monthly DALEC model TWSA (TWSA (1)) is calculated as follows:

N
TW S An(t) = PAW(f) + PUW(Z) — 2

t=1

PAW(¢) + PUW(¢)
—_— 4
N

where PAW(f) and PUW(¢) are the monthly PAW and PUW water states concurrent with the GRACE observa-
tions in month ¢, and N is the number of months in the observational record. This ensures that the modeled and
observed TWSA are relative to a mean value from the same set of months. We then calculate the likelihood of the
DALEC model TWSA, L1 s4, as follows:

N

_ 2
Coer = eXp(_ % > (TW S An(t) = TW S Ao(1)) ) )

2
=1 o
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We prescribe a +50 mm observation uncertainty (¢ = 50 mm) for TWSA, which conservatively represents
GRACE error estimates (Wiese et al., 2016).

With the previously mentioned exceptions of the SIF product substitution, the mean GPP constraint, and the
addition of the GRACE constraint, we otherwise assimilated the same set of observational data used by Bloom
et al. (2020) (see Data Availability Statement for details on all data sources). This includes data from (a) the
National Aeronautics and Space Administration's Carbon Monitoring System Flux (CMS-Flux), which assimilates
satellite observations of carbon to infer grid-scale net carbon fluxes from 2010 to 2018 (J. Liu et al., 2014, 2021),
(b) mean biomass estimates from the Geoscience Laser Altimeter System (GLAS) (Saatchi et al., 2011), (c)
leaf area index from the Moderate-resolution Imaging Spectroradiometer (MODIS) (Myneni et al., 2015), from
which we assimilated only the mean LAI due to seasonal LAI retrieval biases (Bi et al., 2015), (d) soil organic
carbon (SOC) from the Harmonized World Soil Database (HWSD) for the year 2001 (Kochy et al., 2015), and (e)
mean fire C emissions from 2001 to 2015 from the inversion estimates of Worden et al. (2017) (see Table S1 in
Supporting Information S1 for details).

We forced DALEC with monthly temperature, humidity, radiation, and precipitation from the European Center
for Medium Range Forecasting Interim (ERA-Interim) reanalysis (Berrisford et al., 2011), burned area from the
Global Fire Emissions Database (GFED4) (Randerson et al., 2017), and atmospheric CO, concentrations from
the National Oceanic and Atmospheric Administration's Earth System Research Laboratories (Dlugokencky &
Tans, 2020). Monthly forcing and observational data were regridded to a common resolution of 4° latitude X 5°
longitude from 30°S to 30°N. Parameters and initial conditions were optimized independently at each grid cell
using an adaptive Metropolis Hastings Markov Chain Monte Carlo to sample 4,000 solutions from the posterior
distribution (see Bloom and Williams (2015) and Bloom et al. (2020) for details). As highlighted by Bloom
et al. (2020) and J. Liu et al. (2017), there are substantial spatial error covariances between 4° X 5° pixels due
to the effectively coarser (continental-scale) information content of the inversion-based CO,-flux estimates. To
mitigate the impact of these errors on our analysis, we conduct the analysis of water stress variability (Section
2.3) to (a) 6 hemi-continental regions, (b) the dry tropics and wet tropics, and (c) the pan-tropical study domain.

To quantitatively evaluate the updated DALEC model structure's ability to reproduce and independently predict
seasonal and interannual variations in tropical C fluxes, we (a) evaluate the timing and amplitude of monthly
CARDAMOM GPP, NBP, and TWS anomalies against the corresponding assimilated observations (CSIF,
CMS-Flux, and GRACE, respectively, where and when these are available), and (b) perform a dedicated training/
validation experiment based on the Bloom et al. (2020) approach, where we only use 2001-2015 observation
data and evaluate the CARDAMOM skill in predicting 3 years of withheld 2016-2018 NBP data. The timing and
amplitude comparison provides an evaluation of the model skill in representing the observation timing and ampli-
tude throughout the 2001-2018 time period; for each quantity, we use the standard deviation of the 2001-2018
time series as an integrated measure of observed and modeled variable amplitude, and we use the Pearson's
correlation coefficient (henceforth abbreviated as r) as an integrated measure of timing consistency between the
two signals. The dedicated training/validation experiment provides an evaluation of the process model skill in
representing the integrated land-atmosphere CO, flux in the absence of observational constraints. For both eval-
uation steps, we conduct both full monthly data and de-seasonalized anomaly comparisons (see Section 2.3 for
de-seasonalized anomaly derivation).

2.3. Analysis of Water Stress Variability

To diagnose the relative contribution of water stress to the temporal variability of GPP, we first decompose the
GPP variability into (a) the GPP component attributable to water stress, and (b) the GPP component attributable
to all other drivers of GPP variability. Decomposing GPP into component terms was facilitated by the water stress
formulation of DALEC described in Equation 3, as GPP , already represents all factors affecting GPP other than
water stress. We can then define the GPP “deficit” (GPP,,), in parallel with a similar concept based on evapo-
transpiration (Stephenson, 1998), as

GPPy./(t) = GPP(f) — GPP,u(1). ()

Here, GPPM represents the additional GPP that could be attained instantaneously in the absence of water stress,
but does not account for synchronous or delayed feedbacks to the ecosystem, such as changes to leaf area or plant
mortality. By rearranging Equation 6 as
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GPP(7) = GPPp (1) — GPPaes (1), O]

we have divided GPP into the two component time series, with -GPP,, . representing the contribution of water
stress to GPP variability, and GPP,, representing the contribution of everything else, that is, radiation, temper-
ature, and leaf area.

To further assess the variability of water stress within the context of net land-atmosphere CO, fluxes, we exam-
ined the effect of GPP, . on the net biosphere production (NBP), defined as uptake from GPP minus C losses
due to respiration and disturbance (where a positive value represents a net land-atmosphere CO, uptake). We
derived the “potential” NBP (NBP, ) that represents the net CO, flux in the absence of instantaneous GPP water
limitations as NBP,, = NBP + GPP,,, which we then rearrange as

pot

NBP = NBP,,, — GPP,,;. 8)

We further partitioned GPP,; into two terms corresponding to limitations due to insufficient supply of plant
available water (GPP”) and limitations due to excessive demand from atmospheric VPD (GPP“?) so that

def def
GPP,.; = GPP/} + GPP.") ©9)
where we define GPPﬁ‘:;’ as
1 - ﬂ aw
GPP" = GPPy, ( P ) 10
def I\ = Brao) + (1= Bopa) (10

in order to distribute interactions proportionately between the two terms. Note that f,, is large when the deficit
associated with PAW is small; we therefore weight by 1 — j, instead of by f,,,,. We similarly define GPP!” ‘; as

vpd __ 1- ﬁupd )
OFPuey = GPPuer ( T o) + (1= o) ) an

To isolate the inter-annual variations from the seasonal component of each flux term in Equations 7-9, we first
subtract the mean 2001-2018 seasonal cycle as follows:

Z

AF, = F, - Fix (12)

L
N

~
Il
o

where F; is the carbon flux term—namely GPP, GPP,, GPP,,, GPP} [;, GPP}" and NBP, —at month = i
and year = j, and N is the number of years (N = 18), and AF, represents the de-seasonalized anomaly; hence-
forth, for each flux, we denote the de-seasonalized anomalies as AGPP, AGPPM, AGPP . ANBP _ AGPP™

por por def’
and AGPPﬁ’:?, respectively. We derived regional estimates of each de-seasonalized flux by (a) calculating tl{e
mean CARDAMOM flux at each grid cell, (b) regionally aggregating area-weighted fluxes across each region,
and (c) de-seasonalizing regional time-varying fluxes using Equation 12. We then summarize the 2001-2018
inter-annual variability (IAV) as the standard deviation of the monthly de-seasonalized anomalies, and denote

these as GAGPP, 6GAGPP,,, 6AGPP,,,, s AGPP'", cAGPP/"" and cANBP

pot pot®

3. Results and Discussion
3.1. Evaluation of CARDAMOM Carbon-Water Reanalysis

Overall, the CARDAMOM modeled GPP, TWSA and NBP (Figure 2) are in broad agreement with the corre-
sponding observations of SIF, GRACE TWSA and CMS-Flux NBP across the six hemi-continental regions
(Table 1): we find all correlations are positive and significant (with p-value <0.05) between GPP and SIF
(r = 0.32-0.95), terrestrial water storage anomalies (r = 0.82-0.97) and NBP (r = 0.56-0.95). We also find
broad consistency between the amplitudes of 2001-2018 NBP, TWSA and relative amplitudes of GPP, and the
corresponding observation amplitudes (Table 1 and Figure 2): across the six hemi-continental regions, the ratio of
modeled-to-observed amplitudes for the full monthly data timeseries span 0.61-1.38 across all observational data
sets. On a pantropical scale, the FluxCom time-averaged GPP (86.7 PgCly) is within the range of CARDAMOM

LEVINE ET AL.

6 of 17

d ‘T1 ‘€T0T YTTOVF61

:sdpy woiy papeoy;

puo)) pue swid | 3} 238 “[$Z02/10/L] U0 A1eiqr] duiuQ AS[IA “ANSIATUN PIOJUBIS £Q ZOLLOOEDETOT/6ZO1 01/10p/wi0d Kaim Areaqyjout

sdny)

101/w09 Ko Areaquour]

9SULDIT suowto)) aAnear) ajqesrjdde ay £q pauIaA0T a1e sa[OTLIR Y (ASN JO SA[NI 0] AIRIqIT AUIUQ A3[IA\ UO (SUOIIPUOD-PUE-



I Y ed N | . .
A\IV Global Biogeochemical Cycles 10.1029/2023GB007702

ADVANCING EARTH
AND SPACE SCIENCES

NH South America SH South America
g g
o & 154
a a
O O
w w
7} @ 1.0 -
E E
S S
= T T T T T T T T T Z 05 T T T T T T T T T
_ 200 _ 20
£ £
E £
< < 0 -
v v
7 -200 7
—200 T T T T T T T T T
T =
> >
% 01 %
= =
a -1+ a
[} [}
4 4
-2 T T T T T T T T T -5 T T T T T T T T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018
NH Sub-Saharan Africa SH Africa
g g
% 1.5 % 15
& 10 % 10
£ £
Eos 5 05
=4 =4
H T 100
E £
< < 0
£ £
F F -100
T T T T T T T T T T T T T T T T T T
— 5 —
I I
> >
8] 0 - [S)
> >
< <
5 -5 g
4 4
T T T T T T T T T T T T T T T T T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018
Southeast Asia Australia

=
N}

Norm. SIF-GPP (1)
o r
© o

TWSA (mm)

NBP (PgC y~1)

2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018

observational constraint —— CARDAMOM median CARDAMOM interquartile range

Figure 2. Time series of the three time-varying observational constraints used in this study (black) and the corresponding quantity from the CARDAMOM posterior
distribution (red) across the six hemi-continental regions used in the analysis. The top row of each panel shows SIF from CSIF and GPP from CARDAMOM, both
divided by their time mean. The second row of each panel shows the total water storage anomaly (TWSA) from GRACE and CARDAMOM, both with their time mean
removed. The normalizations of SIF and TWSA data (along with the corresponding CARDAMOM quantities in each panel) illustrate the transformations necessary for
the assimilation for CSIF and GRACE (see Section 2.2). The bottom row of each panel shows NBP from CMS-Flux and CARDAMOM. The model-data fit correlation
metrics and standard deviation ratios are reported in Table 1.

2001-2018 time-averaged GPP (IQR = 74.3-93.8 PgCly), and mean grid-scale CARDAMOM GPP values
(Figure S3 in Supporting Information S1) are in broad agreement with the corresponding FLUXCOM GPP
values (r = 0.94; p-value < 0.05). We find that in the two wetter regions—NH South America and SE Asia—show
the lowest consistency in terms of the timing of GPP and SIF (» = 0.42 and r = 0.32 respectively); we note that
in both regions the observation and model normalized dynamical ranges are relatively lower (normalized SIF
and GPP standard deviation span 7%-11%, see Figure 2) relative to other regions, where the dynamical ranges
of normalized GPP and SIF are considerably larger (normalized SIF and GPP standard deviation >25%). We
speculate that the relatively lower variability could either (a) be a limitation in the sensitivity of CSIF predictors
to relatively small changes in GPP, (b) a limitation in the CARDAMOM structure for representing relatively small
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Table 1

Correlation Coefficients (r) Between Assimilated Observations and CARDAMOM Posterior Mean Across Six Hemi-Continental Regions (Time Series Illustrated
in Figure 2) and the Corresponding Metrics for De-Seasonalized Observations and CARDAMOM Posterior Mean (Time Series Illustrated in Figure S2 of the

Supporting Information S1)

Full monthly data r (6,,/0,,) Deseasonalized anomalies r (c,,/6,,)
SIF/GPP TWSA NBP SIF/GPP TWSA NBP
NH South America 0.42% (0.95) 0.94* (0.91) 0.62* (1.10) 0.29% (1.34) 0.90* (0.87) 0.74* (0.71)
SH South America 0.92%* (1.06) 0.97* (1.08) 0.79%* (1.04) 0.38% (1.16) 0.77* (1.11) 0.43* (0.95)
NH Sub-Saharan Africa 0.88% (0.74) 0.91* (1.03) 0.95%* (0.74) 0.03 (1.26) 0.08 (0.61) 0.45% (0.51)
SH Africa 0.95% (1.04) 0.89% (1.34) 0.92* (1.01) 0.15* (1.07) 0.30* (0.95) 0.29* (0.56)
Southeast Asia 0.32% (0.61) 0.82* (1.03) 0.56* (0.84) 0.57* (1.15) 0.51* (1.28) 0.62* (0.74)
Australia 0.79* (0.98) 0.91* (1.38) 0.91* (1.03) 0.69* (0.71) 0.88* (1.26) 0.70* (0.93)
Tropics 0.34% (1.31) 0.81* (1.14) 0.41* (0.95) 0.23* (0.71) 0.79* (1.13) 0.52* (0.56)
Wet Tropics 0.05 (0.60) 0.81%* (0.91) 0.53% (0.67) 0.15% (0.96) 0.66* (0.90) 0.55% (0.61)
Dry Tropics 0.70* (1.20) 0.74* (1.27) 0.59* (0.95) 0.36* (0.60) 0.84* (1.16) 0.40* (0.51)

Note. The asterisks denote the statistical significance of r with p-value < 0.05. The bracketed numbers denote the ratio of CARDAMOM posterior mean standard
deviation (6,,) versus observation standard deviation (c,)), where and when observations are available (see Figure 2).

wet tropical seasonal variations, and/or (c) a limitation in the CARDAMOM cost function sensitivity to small
relative GPP variations. On a pan-tropical scale, we generally find consistency between observation and model
amplitudes (0.60-1.31), however correlations span lower values (Table 1), and in particular we find no significant
correlation between wet tropical modeled GPP and observed SIF across the entirety of the wet tropics (r = 0.05;
p-value > 0.05); the reduced correlations on pantropical scales are generally expected as the inter-hemisphere and
inter-continental compensation effects of seasonal cycles can amplify model-data inconsistencies from individual
hemi-continental regions.

On a de-seasonalized basis, monthly anomalies modeled by CARDAMOM are broadly in agreement with the
equivalent observations (Figure S2 in Supporting Information S1; Table 1). Relative to the full monthly time-
series, we find lower yet positive and significant correlations for GPP, TWSA, and NBP (against the correspond-
ing de-seasonalized observations) across the six hemi-continental regions, with the exception of NH Sub-Saharan
Africa, were correlations are positive but not significant for GPP and TWSA (see Table 1), and a modestly broader
range of modeled-to-observed ratios in the de-seasonalized variability (0.71-1.34, 0.61-1.28, and 0.51-0.95).
We find a notable model-data mismatch between SIF and GPP in Northern Hemisphere South America region
during the 2015-2016 EI Nifio (Figure S2 in Supporting Information S1); however, we find that the model NBP is
consistent with the CMS-Flux NBP, which in itself represents both GPP and gross land-atmosphere C losses. The
lack of simultaneous model consistency with joint GPP and NBP constraints on an inter-annual basis could be
attributable to (a) limited sensitivity of the CSIF product to wet tropical ecosystem drought, and/or (b) limitations
in the CARDAMOM representations of combined NBP and GPP drought responses. On a pantropical basis, we
find de-seasonalized anomaly amplitudes are broadly consistent with assimilated data sets (de-seasonalized vari-
ability ratios span 0.51-1.13), and correlations are all significant albeit generally lower than the hemi-continental
values (Table 1); similarly to the full monthly data sets, we expect hemispherical and continental compensation
explains the modest degradation of amplitude and correlation skill across pantropical scales.

In the dedicated training/validation experiment, we find broad monthly model-observation consistency during
the 2010-2015 training period for all hemi-continental regions (r = 0.54-0.95; Table 2) with root-mean-square
error values approximately an order of magnitude smaller than the seasonal NBP variability. With the exception
of NH Sub-Saharan Africa, we find a modest degradation of correlation during the 2016-2018 validation period
(r =0.18-0.93); and a modest increase in the corresponding RMSE values.

Overall, the CARDAMOM model structure used in this study can (a) skillfully represent the timing and variabil-
ity of observation-based GPP, TWSA, and NBP estimates (Table 1), and (b) adequately predict NBP variability
during a prediction period (2016-2018), relative to training period performance (2010-2015; Table 2). The limi-
tations of modeled variables, observational constraints and the broader implications of model-data mismatches
are further discussed in Section 3.4.
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Table 2

Validation of CARDAMOM Framework Against Assimilated and Withheld Data for the Assimilation/Prediction Sensitivity
Experiment (See Section 2.2); Observations From CSIF, GRACE, and CMS-Flux Were Withheld for the Prediction Period
(2016-2018) While Retrieving Parameters During the Assimilation Stage (2010-2015)

Full monthly data » (RMSE) Deseasonalized anomalies » (RMSE)

Predicted NBP
(2016-2018)

Assimilated NBP
(2010-2015)

Predicted NBP
(2016-2018)

Assimilated NBP
(2010-2015)

NH South America

SH South America

NH Sub-Saharan Africa
SH Africa

0.73* (0.19)
0.77* (0.27)
0.93* (0.32)
0.95* (0.34)
0.54% (0.24)
0.91% (0.14)
0.68* (0.10)
0.62* (0.15)
0.81% (0.11)

0.33* (0.31)
0.71%* (0.31)
0.96* (0.40)
0.93* (0.45)

0.18 (0.30)
0.87* (0.16)

0.24 (0.14)
0.35% (0.18)
0.55* (0.16)

0.77% (0.12)
0.35% (0.17)
0.42*% (0.23)
0.35* (0.25)
0.68* (0.14)
0.68* (0.13)
0.62* (0.06)
0.59* (0.13)
0.40% (0.06)

0.72% (0.15)

0.14 (0.17)
0.44% (0.16)

0.25 (0.21)
0.63* (0.11)
0.54% (0.11)
0.57* (0.05)
0.48% (0.11)
0.35% (0.05)

Southeast Asia
Australia
Tropics

Wet Tropics
Dry Tropics

Note. We then compared NBP between the observations (CMS-Flux) and the mean of the optimized posterior distribution for
both the assimilation time and prediction time periods. We report correlation coefficients (r; the asterisks denote statistical
significance with p-value < 0.05), and root mean squared error (RMSE, in units of gC m~2 d~") for both the original monthly
data and for annual averages.

3.2. Drivers of Tropical Carbon Flux Variability

On a pan-tropical scale, we find that the IAV of GPP,;,.anomalies (¢AGPP,, ) is 52% greater than the IAV of GPP
anomalies (¢AGPP, ) throughout 20012018 (¢AGPP,, . = 1.98 PgClyr, cAGPP,,, = 1.30 PgCl/yr; see Figure 3
for regional values). The dominance of GPP,,, persists across both the dry tropics (6AGPP,,,is 26% greater than
oAGPP, ), the wet tropics (6AGPP,,is 94% greater than cAGPP ), and four of six hemi-continental regions
(6AGPP,,;is 22% and 11% smaller than 6AGPP,,, in Southern Hemisphere South America and Australia respec-
tively, and 15%-89% larger across other regions). On both a pan-tropical and regional basis, de-seasonalized
anomalies of GPP, and GPP . are positively correlated (r = 0.22-0.53; p < 0.05; see Table S3 in Supporting

Information S1), indicating that conditions of high photosynthetic potential (i.e., more sunlight and/or leaf area)

a . AGPP
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Figure 3. (a) Pan-tropically integrated monthly anomalies from the mean climatology of GPP (AGPP) and its two additive components (AGPP,, and A-GPP,, see

pot

Equation 7). (b) Standard deviation of monthly anomalies of GPP (¢ AGPP) and its two components (¢ AGPP
a), the wet tropics, the dry tropics, and (c) six hemi-continental regions.

por’

and 6 AGPP,,) for the pan-tropics (the time series in
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and A-GPP,,, see
and 6AGPP 4ef) for the pan-tropics (the time series in a),

pot>

the wet tropics, the dry tropics, and (c) six hemi-continental regions.

are associated with more water stress; these compensating interactions allow oAGPP,, . to exceed cAGPP in
some regions. The relative prominence of cAGPP 1er Over cAGPP,  across the tropics—and within most indi-
vidual regions—indicates that hydrologically imposed limitations to photosynthetic CO, uptake (GPP,,) are
more highly variable on an inter-annual basis than the combined effects of radiation, temperature, and leaf area

(GPP,,).

Extending the analysis to the net atmosphere-to-land CO, flux (NBP), the IAV of NBP , (JANBP, ) is generally
greater than cAGPP,, but less than cAGPP . (Figure 4). cAGPP . exceeds cANBP ,, by 24% across the tropics
as a whole, by 26% in the wet tropics, and by 7% in the dry tropics, and by 2%-39% across all hemi-continental
regions. As with 6AGPP, ., 6ANBP  is greater than 6AGPP, . in Southern Hemisphere South America and
Australia (by 15% and 3%, respectively), while sAGPP,,.exceeds sANBP, , in the other regions by 3%-28%. This
indicates that with the exceptions of Southern Hemisphere South America and Australia, the IAV of water stress
on GPP equals or exceeds the IAV of the combination of individual components comprising ANBP
AGPP, and anomalies of fire and respiration fluxes). Furthermore, with the aforementioned regional exceptions,
ocAGPP,,,
mation S1 for full variance-covariance matrices). Despite cGANBP
pan-tropics, and half of the hemi-continental regions, sANBP is always less than cAGPP. The low cANBP reflect
compensating interactions between GPP, . and NBP  (r = 0.49-0.92, p < 0.05), which include the previously
mentioned interactions between GPP,,.and GPP,, in addition to interactions between GPP,, . and respiration (see

Tables S4-S6 in Supporting Information S1).

(namely
is greater than the IAV of individual components of ANBP_ (see Tables S4-S6 in Supporting Infor-
exceeding cAGPP

o1 ACTOSS the wet, dry, and

We find that the IAV of GPP“’ d (cAGPP d) is generally larger than the TAV of GPP/” (UAGPP" “'”) across much

of the tropics, indicating that the effects of atmospheric aridity are somewhat larger than the effects of soil mois-
ture on cAGPP,, (Figure 5). aAGPP”Pd is 21% larger than aAGPPP"“ across the tropics as a whole, 33% larger
in the wet tropics, and 6% larger in the dry tropics. Within the hem1 continental regions, aAGPP” " exceeds
o AGPP.’ i in Southern Hemisphere South America and Southern Hemisphere Africa by 18% and 48% respec-
tively, while aAGPP””d is larger than o-AGPP”““ in the other regions by 7%—45%. From a process standpoint, we
find that the retrieved onset of GPP stress (ﬂpaw < 1, see Figure 1) is typically at <30% of mean plant-available
across hemi-continental regions and on a pantropical basis (Figure S9 in Supporting Information S1). In contrast,
VPD-induced GPP stress (8,
we find that §, , declines in response to relative VPD changes are comparable across both the wet and dry trop-
ics. Anomalies of GPP‘;‘;‘; and GPP:‘:‘; are positively correlated (r = 0.09-0.65, p < 0.05), and the correlation is

< 1) span a broader range of VPD sensitivities; however, on a pantropical scale,

substantially greater in the wet tropics (0.65) than the dry tropics (0.32); this is consistent with previous work
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Figure 5. (a) Pan-tropically integrated monthly anomalies from the mean climatology of GPP,

(AGPP,,) and its two additive components (AGPP,” ! and AGPP"*

def ef def’

see Equation 9). (b) Standard deviation of monthly anomalies of GPP,,. (¢ AGPP,,) and its two components (o AGPP”, and & AGPP!?) for the pan-tropics (the time
series in a), the wet tropics, the dry tropics, and (c) six hemi-continental regions.

def’ ef

diagnosing positive correlations between soil moisture and atmospheric aridity (Green et al., 2019; Humphrey
et al., 2021; Levine et al., 2019).

3.3. Water Stress in the Wet Tropics

Our finding that the IAV of GPP,, . is greater than the IAV of GPP,, in both the wet and dry regions (Figure 3)
demonstrate that the IAV of gross terrestrial CO, uptake (GPP) in the tropics is dominated by hydrologically
imposed limitations, with a relatively smaller contribution from downward radiation and ecosystem states. This
dominance of water stress is reduced when considering the net CO, sink, but it still remains a prominent compo-
nent of [AV, particularly in the wet tropics (Figure 4). Water supply (PAW) and demand (VPD) are both substan-
tial drivers of water stress variability throughout the tropics, being roughly comparable in the dry tropics, but in
the wet tropics, VPD limitations to GPP are more variable (Figure 5).

The importance of water stress in the wet tropics is surprising, given that evapotranspiration and photosynthesis
in these areas is often thought to be limited by energy, rather than water (Baker et al., 2021; Claessen et al., 2019).
Our results contrast with previous pan-tropical and global-scale analyses, which suggest semi-arid ecosystems
are the largest contributor to the IAV of GPP (Y. Zhang et al., 2016) and net CO, fluxes (Ahlstrom et al., 2015;
Fan et al., 2019; Piao et al., 2020; Poulter et al., 2014). While these efforts have used an array of models and
observations to resolve water stress impacts on C fluxes, the differences are likely attributable to the absence of
gridded top-down CO, fluxes and water constraints, which are ultimately key for resolving the spatial variability
in ecosystem carbon-water interactions. Because we resolve the contributions of GPP, . in a spatially explicit
manner, we are able to capture the spatial variability of ecosystem response to water stress in a manner that cannot
be accomplished by parameterizations with plant functional types (Bassiouni et al., 2020; Bloom et al., 2016;
Konings & Gentine, 2017). We also capture the spatial variability of the SIF-GPP relationship, which is driven
by water availability (Chen et al., 2020).

The wet tropics in general have been a source of uncertainty among land modeling efforts (Huntzinger
et al., 2017), and yet are increasingly highlighted as a key term in the interannual atmospheric CO, budget
(Humphrey et al., 2018; J. Liu et al., 2017). Our assessment of water stress on NBP demonstrates that the instan-
taneous wet tropical water variability impacts on carbon cycling alone (0.75 PgCly; see Figure 4; Table S2
in Supporting Information S1) amount to a substantial portion of the pantropical net carbon flux variability
(0.95 PgCly). Independent estimates of land carbon sink variations in wet tropical ecosystem responses to dry
events (Bowman et al., 2017; Gatti et al., 2014) also support the inherent role of water stress in the wet tropics
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as a key regulator of the global land carbon sink. We note that the lagged impacts on NBP—mediated by decline
in leaf area due to prolonged GPP decline, additional respiration due to increased leaf turnover/mortality and
subsequent decomposition, and increased vulnerability to fire—may further enlarge the relative contribution of
water stress on NBP. Querying the full spectrum of concurrent and lagged ecosystem responses to single water
stress disturbances (Frank et al., 2015) or cumulative impacts of water stress events on aggregate lagged effects
(Bloom et al., 2020) is therefore a necessary step to resolve the cumulative impact of water stress of the tropical
land carbon sink.

3.4. Limitations and Future Directions

The magnitude of GPP,, (Section 2.1) accounts for all non-water stress terms; in addition to temperature and
radiation forcing, GPP, comprises of leaf-area phenology as well as host of underlying processes regulating
photosynthesis, including species distribution and their phenological prominence, leaf-level photosynthetic effi-
ciency, seasonal senescence in deciduous ecosystems, and mortality impacts on leaf area. We highlight that the
perennial state of GPP, —which represent GPP values under non-arid conditions and are invariably not fully
represented in the meteorological forcing record—is ultimately uncertain. However, as our analysis hinges on the

or’

variability (rather than the absolute values) of GPP ., we expect uncertainties on mean GPP values to bear a

secondary influence on our results.

temporal varia-

The role of time-varying leaf area, however, is specifically a considerable source of GPP,,

bility; across both wet and dry tropical ecosystems, we find that temporal GPP,, variability is highly corre-
lated with leaf area (5th-95th percentile of r values across all pixels span 0.41-0.95; p < 0.05; Figure S10 in
Supporting Information S1). Given the important regional roles of GPP, —particularly in Southern Hemisphere

pot
South America and Australia where cAGPP,, IAV is greater than UA]GPPM (Figure 3)—we identify the need
to advance understanding of leaf area temporal dynamics, the associated process controls, and their impact on
GPP. We note that while deciduous leaf area dynamics are represented in DALEC (Bloom & Williams, 2015),
there are no explicit process representations of stress-induced leaf area senescence, which could ultimately lead
to ambiguous or inaccurate attribution of GPP anomalies to GPP,, and GPP,, . where and when substantial leaf
area changes take place. Ultimately, leveraging recent efforts resolving leaf area sensitivity to climate variability
and soil water (Norton et al., 2023) provides a quantitative path forward for improving GPP , estimates and the

subsequent attribution of GPP anomalies to GPP,, and GPP,, .

We highlight that the results presented in Section 3.2 may ultimately bear a substantial sensitivity to uncer-
tainty choices prescribed for each observational data sets (see Data Availability Statement). Although uncertainty
choices used in this study are broadly based on fundamental understanding of uncertainty for each observation
type (Data Availability Statement; Table S1 in Supporting Information S1), we acknowledge that additional
error characterizations, such as (a) unknown roles of error co-variances within or across observation types, (b)
systematic errors in model-data consistency (Bloom et al., 2020), and (c) model structure and its impact on skill
(Famiglietti et al., 2021), may ultimately benefit from more formal treatment or further exploration. In addition,
while the model evaluation approach presented in Section 3.1 provides a broad assessment of hemi-continental
and pantropical model skill (Tables 1 and 2)—where the model-data consistency in both assimilated and withheld
carbon fluxes provides partial support for prescribed observation uncertainties (Famiglietti et al., 2021)—we
nonetheless advocate for further and more systematic exploration on the role of uncertainty choices on future
CARDAMOM carbon and water cycle inferences.

A limitation of our analysis is that we cannot fully account for the interactions between VPD and PAW resulting
from land—atmosphere coupling (Green et al., 2019; Humphrey et al., 2021; Levine et al., 2019). Because VPD
is part of the atmospheric forcing, it is unable to respond to variability in the prognostic PAW state. However,
because PAW is constrained by observations from GRACE, the actual co-variability of PAW and VPD should
be captured in our reanalysis. On the scale of individual plants, the limiting factor is hydraulic failure incurred
when the water potential in xylem and leaf tissue becomes too low, which is a function of the water potential
at both the roots and stomata. If plants do not sufficiently close stomata before atmospheric demand exceeds
supply, they risk extremely negative leaf and xylem water potential, resulting in tissue damage. It has been
hypothesized that individual plant species have evolved strategies for regulating the increased cost of PAW use
due to increased VPD by decreasing stomatal conductance, thereby conserving water but limiting photosynthesis
(Konings & Gentine, 2017; Massmann et al., 2019; Novick et al., 2019; Sperry et al., 2017). This has prompted
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suggestions that land surface models should incorporate hydraulic traits in parameterizations of plant responses to
soil moisture and VPD in place of the simpler formulations most models have been using (Anderegg et al., 2019;
Novick et al., 2019; Trugman et al., 2018). Our results suggest that plant responses to water supply and demand
are likely both key processes in regulating tropical plant hydraulics. To advance process-level understanding of
the role of plant hydraulics on the evolution of the tropical C balance, we therefore advocate for the advance of
Bayesian model-data integration methods representing plant hydraulics explicitly (Y. Liu et al., 2020; Massoud
et al., 2021) to include a comprehensive ensemble of satellite measurements including terrestrial water storage,
fluorescence and CO, fluxes, and vegetation optical depth, among other ancillary ecosystem observations.

Linear scaling factors like #,, and §, ,

in photosynthesis and transpiration due to water stress (Trugman et al., 2018; Verhoef & Egea, 2014), although

have been widely used in land surface models to parameterize reductions

the simplicity of this approach has been criticized in recent literature, which argues that plant hydraulic traits are
better predictors of response to water stress (Trugman et al., 2019). In the work presented here, the parsimony
of this formulation was a strength, as it minimized the number of parameters that we needed to constrain with
our observational data. Furthermore, many of the criticisms of the approach are related to the limitations of PFT
parameterizations. Instead, we optimized parameters independently for each grid cell, which would be imprac-
tical in a more complex trait-based model, and which allows us to capture the spatial variability of water use
efficiency (Lin et al., 2015; J. Liu et al., 2021) and water stress thresholds (Bassiouni et al., 2020). To augment
insight on the role of process representation on inferred GPP sensitivity, we advocate for further exploration of
optimized CARDAMOM model parameters, their covariance, principal components of variability (Famiglietti
et al., 2021) and the sensitivity of emergent GPP variability—and its attribution to individual process controls—to
underlying parameter combinations and their associated uncertainties.

4. Summary and Implications

The ubiquity of water stress variability in the tropics (Figures 3 and 4) and the nearly equal variability of the
instantaneous photosynthetic limitations (Figure 5) by PAW and VPD suggest that the tropical carbon cycle will
respond strongly to future changes in both water supply and demand. In particular, precipitation supply across
tropical ecosystems has varied considerably over the past two decades, while Earth System models predict that
precipitation variability will increase throughout the remainder of the century (Pendergrass et al., 2017). Similarly,
atmospheric water demand via VPD has been increasing over the past few decades (Barkhordarian et al., 2019;
Yuan et al., 2019). Furthermore, soil moisture-atmosphere feedbacks have been identified as key co-mediating
processes regulating both PAW and VPD (Green et al., 2019; Humphrey et al., 2021; Levine et al., 2019), suggest-
ing that climate-driven trends of each one could intensify the response of the other.

Given that water supply and atmospheric demand each play a comparable role on water stress, our results further
highlight the need to characterize the concurrent and lagged interactions between PAW and VPD. While water
supply variability is fundamentally limited by precipitation and its legacy influence on soil water states, atmos-
pheric water demand variability is an indirect result of concurrent anomalies of air temperature and moisture,
which are in turn a result of atmospheric transport as well as concurrent evapotranspiration (Green et al., 2019;
Humphrey et al., 2021; Levine et al., 2019). The feedback between VPD and PAW further highlights that wet
and dry season climate shifts (Murray-Tortarolo et al., 2017) will exert compound influences on the magnitude
and seasonality of GPP water stress. Further consideration of ecohydrological processes regulating stomatal
conductance responses to demand and supply, including hydrologic plant traits (Y. Liu et al., 2020), isohydricity
(Konings & Gentine, 2017), stomatal responses to elevated CO, (Swann & Koven, 2017), and rooting depth and
soil traits (Massoud et al., 2021) will be critical for accurately resolving (a) the competing stresses on contempo-
rary plant carbon uptake, and (b) the subsequent impacts of plant water stress on net land-atmosphere CO, flux
in the coming decades. Finally, we speculate that evaluation of integrated GPP water stresses in Earth System
models against data-constrained water stress mechanisms will be a critical step for benchmarking and improving
joint water-carbon cycles and their role in the decadal land carbon sink projections.

Data Availability Statement

All data and code used in this work is publicly available. Code is available at the repository https://github.
com/CARDAMOM-framework/CARDAMOM_v2.2. In Forcing data and Assimilation data, we account for all
of the data we acquired, which would allow a complete replication of this work. In addition, we provide our
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CARDAMOM input files, in which all of the data has been regridded and aggregated to a common spatial and
temporal resolution, which would allow our assimilation to be replicated without requiring any data acquisition.
Finally, we provide the CARDAMOM output files, which would allow our analysis to be replicated without
requiring the computationally expensive data assimilation. In the event this manuscript is accepted for publi-
cation, CARDAMOM input and output files will be on a public data repository with a digital object identifier.
While undergoing review, these files will be furnished upon request to editors and external reviewers.

Forcing data: ERA-Interim re-analysis data sets were obtained from https://www.ecmwf.int/en/forecasts/data-
set/ecmwf-reanalysis-interim (Berrisford et al., 2011). GFED4 burned area was obtained from https://dx.doi.
org/10.3334/ORNLDAAC/1293 (Randerson et al., 2017). Atmospheric CO, concentrations were obtained from
https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html (Dlugokencky & Tans, 2020).

Assimilation data: CMS-Flux data sets are available at http://cmsflux.jpl.nasa.gov. Atmospheric satellite-column
CO, retrievals were obtained from the Atmospheric Carbon Observations from Space (ACOS) team for both GOSAT
(version 7.3) and OCO-2 (version 9) using a common algorithm (Crisp et al., 2012). Prior ecosystem fluxes are
derived from CARDAMOM (Bloom et al., 2016), ocean fluxes from the ECCO-Darwin Model (Carroll et al., 2020),
and fossil fuel from the Open-source Data Inventory for Anthropogenic CO, (ODIAC) 2018 (Oda et al., 2018).

GRACE terrestrial water storage anomalies were obtained from http://dx.doi.org/10.5067/TEMSC-OCLO05
(Wiese et al., 2016). CSIF data were acquired from http://dx.doi.org/10.17605/OSF.I0/8XQY6 (Y. Zhang
et al., 2018). MODIS LAI data were obtained from https://doi.org/10.5067/MODIS/MOD15A2H.006 (Myneni
et al., 2015). Biomass is available from Sassan Saatchi (sasan.s.saatchi@jpl.nasa.gov) upon reasonable request
(Saatchi et al., 2011). HWSD soil organic carbon data was obtained from https://dx.doi.org/10.2788/13267
(Hiederer & Kochy, 2012). Biomass burning CO fluxes data was obtained from https://doi.org/10.26024/r1r2-
6620 (Bloom et al., 2019). FLUXCOM data sets were obtained from http://www.fluxcom.org/CEF-Download/
(Jung et al., 2019).
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