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Abstract
Location-Based Services are often used to find proximal Points of Interest (PoIs)—
e.g., nearby restaurants and museums, police stations, hospitals, etc.—in a plethora 
of applications. An important recently addressed variant of the problem not only 
considers the distance/proximity aspect, but also desires semantically diverse loca-
tions in the answer-set. For instance, rather than picking several close-by attractions 
with similar features—e.g., restaurants with similar menus; museums with similar 
art exhibitions—a tourist may be more interested in a result set that could potentially 
provide more diverse types of experiences, for as long as they are within an accept-
able distance from a given (current) location. Towards that goal, in this work we 
propose a novel approach to efficiently retrieve a path that will maximize the seman-
tic diversity of the visited PoIs that are within distance limits along a given road 
network. Our approach allows to specify both a start and terminal location to return 
a (non-necessarily shortest) path that maximizes diversity rather than only minimiz-
ing travel cost, thus providing ample applications in tourist route recommendation 
systems. We introduce a novel indexing structure—the Diversity Aggregated R-tree, 
based on which we devise efficient algorithms to generate the answer-set—i.e., the 
recommended locations among a set of given PoIs—relying on a greedy searching 
strategy. Our experimental evaluations conducted on real datasets demonstrate the 
benefits of the proposed methodology over the baseline alternative approaches.
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1  Introduction

Since the late 1990s, many applications relying on Location-Based Services (LBS) 
have targeted the search for Points of Interest (PoIs)—e.g., tourist attractions and 
restaurants—in the vicinity of their users. Since traveling cost, in terms of distance 
or travel-time, is an important factor when selecting PoIs, significant amount of 
research efforts have been invested into distance-oriented queries such as range que-
ries and k-Nearest Neighbor (kNN) queries [1–3]. However, in addition to the prox-
imity, the semantics of PoI is often an influential factor when planning one’s motion 
and activities [4].

While modeling and querying of the, so-called, semantic or activity trajectories 
has been a subject of intense research in the past decade [4–6], the semantic aspect 
was typically used to augment the traditional searches used in typical spatial and 
spatio-temporal queries (range, kNN, etc).

In this work we are taking up a novel variant of the problem—namely, coupling 
the proximity constraints (with respect to the the querying user’s location) with the 
diversity of the semantic descriptors of the PoI, in a manner that considers the cost 
of the travel.

Although traveling cost, i.e., distance/time, is a significant factor to choose PoIs, 
people tend to consider incorporating semantically diverse options within accepta-
ble distance. For instance, a tourist might prefer selecting multiple attractions which 
not only are within a given distance range but also exhibit different types of tourist 
experiences. To provide an intuition in the realm of LBS, consider the following:

Example 1  Consider the scenario depicted in Fig. 1, illustrating a user at location Q 
who is searching for three tourist attractions to visit. The user specifies a maximum 
distance, indicated by the dashed circle, that he/she is willing to travel.

Fig. 1   Running example of 
diverse path search
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Processing this query would return the answer set T1 = {S1, S2, S3} , consisting 
of 3 nearest PoIs as the user indicated that k = 3 is a limit of the number of PoIs. 
However, one can readily see that in this case, all three returned PoIs are monu-
ments/statues. If the user would like a more diverse experience, recommending 
these three sites would likely not be satisfactory. To cater to situations described by 
the above example, recent works introduced the concept of diversity in the spatial 
queries [7–9]. We note that due to the hardness of the problem, the works propose 
approximated solutions (with slightly different variations of the constraint). As a 
concrete illustration, in the context of Example 1, the user may have a preference for 
the answer set T2 = {M1,P1, S4} , which includes a statue ( S4 ), a museum ( M1 ) and a 
park ( P1)—within the desired distance bound.

What motivates this work is the observation that the existing approaches assume 
that the user will choose only one of the results, aiming at maximizing the diversity 
of the options of the user. However, no guarantee is provided that there exists a path 
between all the PoIs that satisfies the range constraints as path. In this example, it 
is clear that, while all three PoIs in T2 are within the spatial range, visiting all three 
of them relying on the existing road network (cf. Figure 1) will exceed the distance 
limitation in terms of total travel. Although answers like T2 may be useful to provide 
diverse options such as different types of restaurants, they do not properly consider 
the traveling cost between the PoIs. Moreover, in practice, in addition to the distance 
budget itself, the user may have other preferences that could constrain the answer 
set. For instance, a user does not mind walking 10km, however he/she is a fan of 
in-depth tours of popular venues. Thus, he/she may want to limit the visits to no 
more than 3 attractions (although there might be more PoIs in the surrounding areas) 
because the time plan to be spent in each of them is 1 hour. Another rationale for 
explicitly incorporating a limit on is that the user would like to limit the budget of 
expenses (e.g., for entrance fee). Hence, in our work, we use the maximum number 
of PoIs in the answer to reflect such preferences.

To combine all these considerations, in this paper we introduce a new query type, 
called the k-Diverse Path Query (kDPQ). The goal of kDPQ is to find a path that 
maximizes diversity of PoIs along it, subject to the constraint that the length of the 
whole path is within user-specified limits, and the number of PoIs is k.

We also consider settings in which the user would like to have a very specific 
location as the terminal one for the trip. Such settings would correspond to scenarios 
in which the user wants to have subsequent activities at/near a particular location, 
e.g., have a meeting with a collaborator in a restaurant, after the tour. In an extreme 
case, the scenario would correspond to the user wanting to be back to his/her hotel, 
which is a starting location of the trip. We denote this variant with kTDPQ, to indi-
cate that the terminal point of the trip is fixed.

We note that the proposed approaches can be generalized to different classes of 
problems in which: (a) there exists a collection of states, each specified with a set of 
values from different domains; (b) there exists a limited set of transitions between cer-
tain pairs of states; (c) there is a cost associated with each transition; and (d) the desired 
properties of the states along an “execution path” of a process can be semantically 
specified. One specific example comes from the domain of workflows and Business 
Process Management (BPM) domains, where attempts have been made to semantically 



606	 Distributed and Parallel Databases (2023) 41:603–638

1 3

characterize the enactments [10, 11]. From a broader perspective, the generalized trave-
ling salesman problem also appears in genomic research [12] when considering a graph 
of possible transition among states in which one would like to couple a constraint on 
the types of states and the reaction time, with specific initial conditions/states.

In this work, we focus on the LBS settings and towards processing the above diverse 
path queries, we propose two searching algorithms. While one can always construct a 
straightforward baseline based on Dijkstra algorithm, in this work we propose an index 
structure, called Diversity Aggregated R-tree (DAR-tree), devised to improve the effi-
ciency of the kDPQ processing. Specifically, the DAR-tree enables the two algorithms 
that we propose to navigate the space of possible paths more efficiently, while maxi-
mizing diversity of PoIs. We also introduce adaptations of the criteria for using DAR-
tree structure towards efficient processing of kTDPQ.

Our experimental evaluation, where real-world road network and PoI data from 
OpenStreetMap are used to generate applicable scenarios, demonstrates that our pro-
posed algorithms can provide highly-diverse paths, while being efficient in terms of 
running time. We also provide a discussion, illustrating how each of our algorithms has 
advantages in specific scenarios.

In summary, our main contributions are as follows:

•	 We identify and formalize a novel type of path planning query, kDPQ, enabling the 
users to generate a visit of a sequence of PoIs that are within certain distance bound 
and provide maximal diversity, as well as its variant with a fixed terminal, kTDPQ.

•	 We devise novel data structure and processing algorithms to enable efficient pro-
cessing of the kDPQ and kTDPQ variants. The DAR-tree augments the traditional 
R-tree by embedding aggregated semantic information in its nodes.

•	 We conduct experimental evaluations over real-world datasets to demonstrate the 
benefits of the proposed methodologies and the trade-offs between two comple-
mentary solutions.

We note that an earlier version of this work was presented in [13]. The present arti-
cle extends the prior publication with the kTDPQ variant, along with the correspond-
ing experimental results and analysis.

The remainder of this paper is organized as follows. We survey state-of-the-art 
methods related to diverse nearest PoI search in Sect. 2. After introducing the nec-
essary background, our proposed novel queries—kDPQ and kTDPQ—are formally 
defined in Sect. 3. Section 4 presents our solutions in detail, including the DAR-tree 
and query processing algorithm that leverage this index structure. In Sect. 5 we dis-
cuss in detail the processing of kTDPQ variant. The experimental evaluations are 
presented in Sect. 6, and we conclude this work in Sect. 7.

2 � Related work

Coupling motion and semantics has already been considered in the literature, bring-
ing about the concepts of semantic and activity trajectories. Both the modelling 
aspects [5, 6] and the query processing aspects [4, 14] combining spatial, temporal 
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and descriptor contexts of the PoIs, along with transition mode (e.g., walk, drive) 
have been tackled. What separates the present work from the aforementioned ones 
is that we are focusing on constructing a path that will be limited in its length, be it 
travel-time or distance along a road network, and will visit a collection of PoIs with 
the highest diversity in terms of their semantic descriptors.

The concept of incorporating diversity into queries answers has its origins in 
information retrieval—specifically, in similarity search among documents. The 
Maximal Marginal Relevance (MMR) model [15] is one of the earliest proposals 
to consider diversity to re-rank documents in the answer set, where at each step, the 
element with higher marginal relevance is selected. A document has high marginal 
relevance if it is both relevant to the query and has minimal similarity to previously 
selected documents.

Several approaches have been proposed for coupling spatial and diversity con-
texts. Finding the kNNs to a given query point such that the distance between any 
two points is greater than a predefined minimum diversity was introduced in [16], 
and selecting the most diverse set within a predefined radius in Hamming space is 
addressed in [17]. A k-similar diversification set which optimizes a linear function 
combining the similarity (i.e., closeness) and diversity for a given trade-off between 
them has been studied in [18]. Monitoring the most diverse k-sized set over distrib-
uted sets was proposed in [19]. All these works have in common that their goal is to 
find a k-cardinality subset of size k, among a set of candidates PoIs, that maximizes 
diversity. However, these works do not consider the constrained travel along road 
networks, and thus, cannot return any path that allows to visit the resulting PoIs.

Other recent works that have combined the diversity and spatial contexts are pre-
sented in [7] and [9] in the context of NN queries, tackling the settings of optimizing 
the weighted sums of the constraints. Our previous work [8] introduced a k-Diversi-
fied Range Query (kDRQ) on road networks, which maximizes the semantic diver-
sity of the answer set from spatial range queries on road network. While this work 
does consider road networks, it selects a diverse set within a network range regard-
less of the length of the path between the PoIs. The rationalé is to give users merely 
a set of diverse options, from which the user is expected to choose one, however, it 
is restricted within a path from a query location to a single PoI. The main difference 
with the present work is that kDP queries generate a path that connects multiple PoIs 
that, ensuring high diversity. More distantly related approaches to spatial diversifi-
cation include angular diversity [20]—which defines the nearest Surrounder Query 
to find the nearest objects from a query point from different angles; and the angular 
similarity—which have been used for diversified kNN problem in [21].

Relying on the Skyline paradigm [22], finding the set of all optimal solutions for 
a given linear combination of two diversity notions, spatial and categorical, is pre-
sented in [7]. The categorical diversity is modeled by the difference between cat-
egories of data points—e.g., two restaurants are diverse if they are from different 
ethnicities. The idea of using keywords, i.e., a finer granularity in order to distin-
guish categories, to find diverse kNNs has been explored in [23]. In that work, the 
keywords are used for filtering data points, i.e., only points that contain all query 
keywords are considered. More recently, the problem of finding k shortest trajec-
tories that contain the most relevant keywords to the query was addressed in [24], 
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where a hybrid index structure was proposed. Complementary to these works, we 
use the concept of Latent Dirichlet Allocation in order to consider a more sophis-
ticated notion of diversity based on the set of keywords that describe each object. 
To speedup the processing of kDRQs, we propose an indexing structure which aug-
ments the spatial data in a node with aggregated diversity value for the sub-trees.

We note that the kTDPQ version can be perceived as an extended variant of the 
Generalized Traveling Salesman Path (GTSP) [25]. In the original setting, the query 
required at least one node from each semantic category. In [26], a special case of 
GTSP problem was introduced—finding the optimal path with a given set of node 
constraints—and two heuristics were proposed. Another variant of GTSP query 
was recently considered in [27] which, complementary to this work, was ponder-
ing the settings with a numerical preference of each PoI category, without any 
pre-established bound on the starting or terminating locations. Preliminary results 
were presented on solving the variant over real-world dataset by adopting multiple 
benchmarks. In this work, the spatial constraints pertain to the starting and ending/
terminating location—however, what separates it from the above works is that we 
are focusing on concomitantly optimizing the diversity of the PoIs.

We close this section with observations regarding two bodies of related work. 
Recently, Machine Learning (ML) based approaches have been proposed for recom-
mending the (next) PoI to visit, incorporating features such as popularity, prefer-
ences, starting time, etc. [28–32]. Some recent works have also targeted the problem 
of recommending a sequence of PoIs [33]. However, we note that, at present, any 
kind of a ML based approach for kDPQ/kTDPQ variants is hindered by the lack of 
proper training data—for which our work may generate enabling source. Comple-
mentary to this, diversification has been studied in social sciences—e.g., for varia-
tions of economic and racial groups, and mobility across spatial areas (cf. [34, 35]). 
However, those applications—while of societal importance (and subject of future 
work), are outside the scope of the current problem domain.

3 � Background and problem definition

In this section, we introduce the basic terminologies and the settings, after which 
we proceed with the formal definition of the kDPQ and kTDPQ problems. We first 
define the problem of finding the k most-diverse path for an abstract diversity met-
ric, and then introduce the topic-based diversity employed in this article.

3.1 � Preliminaries

Definition 1  (Road Network) A Road Network G = (V ,E,W) is a weighted directed 
graph, where V is a set of vertices and each vertex v ∈ V  is associated with location-
attribute v.L; E ⊆ V × V  represents the set of edges between pairs of vertices (vi, vj) 
(vi, vj ∈ V) ; W ∶ E ↦ ℝ

+ is a function which maps each edge e ∈ E to a positive real 
value representing the cost of traversing e.
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Vertices on a road network may contain Points of Interest (PoIs). Each PoI is 
associated with two attributes: location (such as latitude and longitude) and 
descriptors (such as keywords, categories, and etc.), formally defined as follows:

Definition 2  (PoI Network) Let G = (V ,E,W) be a road network. A PoI p is rep-
resented as a pair p = (L, I) , where p.L ∈ {v.L | v ∈ V} is the spatial location of 
p on the road network, and p.I is the semantic information of p. A PoI Database 
P = {p1, ..., p|P|} is a collection of PoIs and for any vertex v ∈ V  , we let v.P denote 
the (possibly empty) set of PoIs located at vertex v. We denote the road network 
enriched with the PoI information as G = (V ,E,W,P) , and call it a PoI network.

We note that in practice, a particular PoI p may not be directly located at a 
vertex of the road network. In such a case, we apply map-matching to project the 
PoI to the nearest point on an edge of the road network [36]. The projected point 
becomes a new (virtual) vertex of the network that corresponds to the p.L.

The process of constructing a PoI network from a given road network graph 
G and a set of PoIs P is formalized in Algorithm  1. Note that we leverage an 
R-tree [1] to store the road network (Lines 3 ∼ 6) to efficiently retrieve the nearest 
neighbor edge to a PoI (Line 11). The update in Line 13 adds a new vertex to the 
network, and replaces the corresponding edge (i.e., nearest_edge ) with two new 
edges connecting the new (virtual location) vertex to the vertices of nearest_edge , 
and replicating the original weight of the nearest_edge to both new edges.
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To illustrate the concepts, we provide another small-scale example in Fig. 2—
slightly more focused on the terms and their relationship than the intuitive 
motivation in Fig.  1. Specifically, we present a PoI network, having six PoIs 
P = {p1, p2, p3, p4, p5, p6} (shown as purple circles) and a road network hav-
ing |V| = 7 vertices (shown as green rectangles), several bidirectional edges E 
connecting vertices (shown as solid black lines) and a weight function W map-
ping edges to annotated weights. PoIs p3 and p5 are trivially mapped to verti-
ces at the same location. Using Algorithm 1, three new vertices—v8, v9, v10—are 
added into the PoI network, as well as the related edges and the updated cor-
responding weights. Note that Algorithm 1 will also map p6 to v8 , thus yielding 
v8.P = {p1, p6}.

3.2 � The k‑most diverse path query

Definition 3  (Semantic Path) Let G = (V ,E,W,P) be a PoI network. A semantic path 
sp = (sp1, ..., sp|sp|) is a sequence of adjacent vertices in G , i.e., ∀i (1 ≤ i ≤ |sp|) ∶ 
spi ∈ V  and ∀i (1 ≤ i < |sp|) ∶ (spi, spi+1) ∈ E . The cost of a given path sp is defined 
as sum of edges weight sp.cost ∶=

∑�sp�−1
i=1

W(spi, spi+1) . The attribute collection of a 
given path sp is defined as sp.collection =

⋃�sp�
i=1

spi.P—i.e., the union of all the PoIs 
contained in the vertices along sp (ones for which spi.P ≠ ∅).

Attractions Types Descriptors
p1 Museum {Historical, Cultural, Art}
p2 Park {Fountain, Forest, Playground}
p3 Aquarium {Seal, Fish, Sea}
p4 Park {Green, Fish, Monument}
p5 Zoo {Turtle, Tiger, Safari}

Fig. 2   Example of poI network



611

1 3

Distributed and Parallel Databases (2023) 41:603–638	

In Fig.  2, sp = (v8, v1, v2, v9, v5, v10) is a semantic path having cost 
sp.cost = 9 + 10 + 8 + 8 + 10 = 45 that includes the set of PoIs 
sp.collection = {p1, p6, p2, p4}.

Definition 4  (Range Path Search Query) Let G = (V ,E,W,P) be a PoI network and 
Q ∈ V  be a query location. Given a positive value � ∈ ℝ

+ , a network range path 
search query RPS(G,Q, �) returns all semantic paths starting at Q having a cost no 
greater than � Formally:

We note that the assumption that Q ∈ V  comes without loss of generality, 
as we can project any query location to a (potentially new) network vertex using 
Algorithm 1.

The concepts introduced so far are illustrated in Fig. 2, showing the query point 
Q (red cross) located at v2 . Given a distance range � = 30 , answers to RPS include 
(Q, v1, v8, v1) , (Q, v9, v5, v10) , (Q, v3, v4, v7, v6) . We note that Definition  3 does not 
require a path to be simple, i.e., it allows a path to have cycles and visit the same 
vertex more than once. This is necessary in order to enable a path to collect PoIs 
located in dead ends—which is, nodes of degree 1—and still continue collecting 
additional PoIs.

In addition to limiting the distance for a user to travel on a path, we further 
assume that a user may have other kinds of constraints (e.g., a limited spending 
budget, or limited stay-time) which, in turn, may impose a limit on the maximum 
number of PoIs along a semantic path and we denoted it by k in this work. For a set 
of PoIs collected by a path, the following definition finds the most diverse subset of 
PoIs of cardinality k:

Definition 5  (k-Diverse Subset of Semantic Path) Let sp be a semantic path, and 
div ∶ P ↦ ℝ

+
0
 be a function that maps a set of PoIs to a non-negative diversity score. 

The k-diverse subset of sp, kDSdiv(sp, k) , is defined as the subset of sp.collection 
with cardinality at most k, maximizing the diversity score, i.e.,

The specification of a diversity function div(P) that maps a set of PoIs P to a 
diversity score is left abstract in Definition 5, and multiple definitions of diversity 
have been used in the literature [7, 8]. In this work, we employ the topic-based prob-
abilistic diversity proposed in [8], which is reviewed in detail in Sect. 3.3.

Example 2  Returning to the scenario in Fig.  2, consider the semantic path 
(v2, v3, v2, v9, v5, v10) , which collects the set of three PoIs {p2, p3, p4} . Assume that 
a user only has time/budget to visit two PoIs, thus setting k = 2 . In this case, we see 
that both PoIs p2 and p4 are a park, having similar textual descriptors. Intuitively, to 

RPS(G,Q, �) = {sp | sp1 = Q ∧ sp.cost ≤ �}

kDSdiv(sp, k) = argmax
P⊆sp.collection,|P|≤k

div(P)
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maximize diversity, p3 should be chosen as the only non-park PoI, and it should be 
chosen together with p2 , as p4 shares keyword similarity (i.e., Fish) with p3.

Given a measure of diversity of a semantic path in Definition 5, we can now pro-
ceed to define our proposed k diverse path query as finding the semantic path that 
starts at a specified query location and maximizes the diversity of collected paths 
subject to a maximum length of the path and a maximum number of PoIs to be col-
lected. This query is formally defined as follows.

Definition 6  (k-Diverse Path Query) Let G = (V ,E,W,P) be a PoI network and 
Q ∈ V  be a query location. Furthermore, let div ∶ P ↦ ℝ

+
0
 be a function that maps 

a set of PoIs to a non-negative diversity score, let k be a positive integer, and let 
� ∈ ℝ

+ be a cost constraint. Then, a k − diversepathquery (kDPQ) is defined as

where RPS(G,Q, �) is the set of all semantic paths starting at Q having a cost no 
greater than � as defined in Definition  4, and kDSdiv(sp, k) returns the k-subset of 
PoIs among all PoIs collected by path sp that maximizes the diversity function div as 
defined in Definition 5.

Example 3  Given the PoI network G in Fig.  2, let � = 35 and k = 2 , two possible 
paths could be sp1 = (Q, v2, v9, v5, v10) with sp1.collection = {p2, p4} and sp2 = (Q, 
v2, v3, v4, v7, v6, v10) with sp2.collection = {p3, p5, p4} . Since both p2 and p4 are parks 
and most textual descriptors are semantically similar, a k-diverse path query returns 
path kDPQ(G,Q, div, 35, 2) = sp2 and recommends to visit PoIs p3 and p4 on this path.

As mentioned, in certain scenarios users may want to impose an additional con-
straint—finishing (i.e., terminating) their trips at a specific terminal, denoted T. To 
cater to such settings, we have the following:

Definition 7  (k-Diverse Path Query With Fixed Terminal) Let G = (V ,E,W,P) 
be a PoI network, Q ∈ V  be a query location and T ∈ V  be a vertex correspond-
ing to the desired end of trip location. As before, let div ∶ P ↦ ℝ

+
0
 be a function 

that maps a set of PoIs to a non-negative diversity score, let k be a positive integer, 
and let � ∈ ℝ

+ be a cost constraint. Then, a k-diverse path query with fixed terminal  
( kTDPQ ) is defined as

where RPS(G,Q,T , �) is the subset of RPS(G,Q, �) , corresponding to all seman-
tic paths starting at Q, terminating at T, and having a cost no greater than � (cf. 
as Definition 4). Similarly to Definition 6, kDSdiv(sp, k) returns the k-subset of PoIs 
among all PoIs collected by path sp that maximizes the diversity function div (cf. 
Definition 5).

kDPQ(G,Q, div, �, k) = argmax
sp∈RPS(G,Q,�)

div(kDSdiv(sp, k))

kTDPQ(G,Q,T , div, �, k) = argmax
sp∈RPS(G,Q,T ,�)

div(kDSdiv(sp, k))
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We observe that for any strictly monotonic diversity function div (cf. Sect. 3.3), 
the following hardness result holds:

Lemma 1  The problem of finding the most diverse path kDPQ(G,Q, div, �, k) is 
NP-hard.

Proof  Let tsp be a solution to the traveling salesman problem (TSP) on an arbitrary 
graph G starting at an arbitrary vertex Q, that is, the shortest path that collects all 
PoIs. Let tsp.cost denote the cost of this path. Let div be any strictly monotonic 
diversity function, that is, adding additional PoIs to a set will increase the diversity 
of the set. Since div is strictly monotonic, the set P, which contains all PoIs, maxi-
mizes div. Then, by Definition 6, kDPQ(G,Q, div, tsp.cost,∞) = tsp . This is evident, 
as a kDPQ query starting at Q, having a range of � = tsp.cost , will return the most 
diverse path (collecting all PoIs due to a strictly monotonic diversity function) hav-
ing a length of at most tsp.cost. By definition, this path exists and is the solution to 
the TSP on G starting at Q. Thus, any instance of TSP can be written as an instance 
of kDPQ, implying that answering kDPQ queries is at least as hard as TSP, which is 
known to be NP-hard [37]. 	�  ◻

Lemma 2  The problem of finding the most diverse path kTDPQ(G,Q,T , div, �, k) is 
NP-hard.

Proof  Analogously to the proof of Lemma  1 we let tsp be the solution to the 
traveling salesman problem (TSP) on an arbitrary graph G starting at an arbi-
trary vertex Q and we additionally let T ′ be the last vertex of tsp. Then we have 
kTDPQ(G,Q,T

�, div, �, k) = tsp . Again, this shows that any instance of TSP can be 
reduced to an instance of kTDPQ . 	�  ◻

Due to the complexity of kDPQ and kTDPQ , we resort to heuristics to find 
(approximate) solutions that return high, but not necessarily optimal, diversity. Next, 
we briefly explain the diversity function div that we employ.

3.3 � Topic‑based diversity

In this work, we leverage the topic-based diversity proposed in [8] which extracts K 
latent topics from textual context of each PoI, where K is a user-specified parameter. 
Based on textual descriptor pi.I of a PoI pi ∈ P , pi is mapped to a topic distribution 
�i that maps each topic to the probability �i,j that pi covers the topic 1 ≤ j ≤ K . Then, 
the diversity of a set P of PoIs is defined as the expected number of topics that is 
covered by any PoI in P.

Based on the attached descriptive items, the semantic description of each PoI pi is 
illustrated by a vector of probability (topic) distribution �i whose length is the num-
ber of latent topics K. �i,j ( 1 ≤ j ≤ n ) represents the probability of pi belonging to 
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topic j. For a set of PoIs P = {p1, ..., p|P|} , we define a vector ProbDiv(P) that stores, 
for each topic j, the probability that it is covered by P as

which is then aggregated into a diversity score via expected number of topics 
covered:

Intuitively, the probability 1 − �i,j is the probability that PoI pi does not cover 
topic j. Exploiting that PoIs are stochastically independent, 

∏
pi∈P

(1 − �i,j) is the 
probability that none of the PoIs in P covers topic j. We define ProbDiv(P)j as the 
counter-probability, i.e., the probability of the complementary event that at least one 
PoI in P covers topic j. Finally, these probabilities are aggregated into the expected 
number of topics covered by P via div(P).

Example 4  Let P = {p1, p2, p3} , and each pi allocated a topic distribution having K = 3 
topics, e.g, �1 = (0.1, 0.0, 0.9), �2 = (0.4, 0.3, 0.3), �3 = (1.0, 0.0, 0.0) , respectively. 
One can observe that p1 is very likely to cover the third category and p3 is guaranteed to 
belong to the first category, while p2 obtains a high uncertainty since its distribution among 
different categories is close to uniform. To compute ProbDiv(P) using above equations, 
we get ProbDiv(P)1 = 1 − (1 − 0.1) × (1 − 0.4) × (1 − 1.0) = 1.0 since p3 is certain 
to cover the first category; ProbDiv(P)2 = 1 − (1 − 0.0) × (1 − 0.3) × (1 − 0.0) = 0.3 
indicating a 30% likelihood that P can cover the second category; and 
ProbDiv(P)3 = 1 − (1 − 0.9) × (1 − 0.3) × (1 − 0.0) = 0.93 showing a high probabil-
ity that the third category is covered due to the probability distribution of p1 . In sum, 
div(P) = 1.0 + 0.3 + 0.93 = 2.23 implies that an expected 2.23 topics are covered by P.

4 � Efficient processing of kDPQ

To efficiently answer kDPQ we adopt the informed search [38] approach which, in 
general, can be considered as a greedy algorithm, whereby a vertex is selected for 
exploration based on the priority from an evaluation function. The evaluation func-
tion for solving kDPQ is constructed as the estimated gain of probabilistic diversity, 
thus the vertex with the greatest evaluation would be explored first. The quality of 
the evaluation function is critical for the searching procedure.

We firstly introduce the heuristic function, which is an important component of 
the evaluation along with the proposed supporting index structure: Diversity Aggre-
gated R-Tree, to efficiently compute the result from a heuristic function. Subse-
quently, the informed search algorithm is presented.

ProbDiv(P)j ∶= 1 −
∏

pi∈P

(1 − �i,j)

div(P) ∶=

K∑

j=1

ProbDiv(P)j



615

1 3

Distributed and Parallel Databases (2023) 41:603–638	

4.1 � Heuristic and evaluation function

For a PoI network G = (V ,E,W,P⇒ , vertex v ∈ V  , and value � ≥ 0 , let P[v, �] 
denote the set of all PoIs in P having a network distance from v of at most � . Fur-
thermore, let PE[v, �] denote the set of all PoIs in P having Euclidean distance 
from v of at most � . To conservatively bound the category-wise diversity vector 
ProbDiv(P[v, �]) , we propose the following heuristic function:

Note that the Euclidean distance, which is used in the heuristic function, is always 
less than or equal to the road-network distance—thus P[v, 𝜀] ⊆ PE[v, 𝜀] holds. We 
can leverage this relation to obtain an upper bound of the diversity div(P[v, �]) using 
the following lemma:

Lemma 3  For any topic 1 ≤ j ≤ K it holds that:

Proof  Because of 0 ≤ �i,j ≤ 1 for any PoI pi and category j, we also have 0 ≤ 1 − �i,j ≤ 1 . 
Due to P[v, 𝜀] ⊆ PE[v, 𝜀] , it holds that 

∏
pi∈PE[v,�]

(1 − �i,j) ≤
∏

pi∈P[v,�]
(1 − �i,j) and 

thus 1 −
∏

pi∈PE[v,�]
(1 − �i,j) ≥ 1 −

∏
pi∈P[v,�]

(1 − �i,j) . Summarizing over all catego-
ries j, this implies that ∑K

i=1
1 −

∏
pi∈PE[v,�]

(1 − �i,j) ≥
∑K

i=1
1 −

∏
pi∈P[v,�]

(1 − �i,j)
 

i.e., 
div(PE[v, �]) ≥ div(P[v, �])

 . 	�  ◻

According to Lemma 3, the Euclidean forward estimation using all PoIs PE[v, �] in 
the Euclidean range allows to derive an upper bound of ProbDiv(P[v, �]) without hav-
ing to consider the network topology of the entire graph G.

(1)
h(v, �) ∶= ProbDiv(PE[v, �]),

where PE[v, �] = {p � ‖v.L, p.L‖2 ≤ �}

div(PE[v, �]) ≥ div(P[v, �])
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4.2 � Informed search

Starting at Q, the idea of our proposed algorithm is to iteratively expand paths that 
yield the highest potential diversity using the heuristic of Equation 1. In a nutshell, if 
we reach a vertex v on a path of cost � , then we have at most a distance of � − � left to 
explore from v. If the path leading to v has already collected the set of PoIs res, then the 
maximum diversity of exploring v can be upper-bounded by computing the maximum 
k-diversity of any k-subset of the set res

⋃
PE(v, � − �)—that is, via extending res by 

all PoIs still reachable from v using Euclidean distance. Our algorithm greedily pro-
cesses vertices using a priority queue sorted by this upper bound. Once the currently 
most diverse result exceeds the diversity of the largest unexplored upper bound, we can 
terminate computation.

Formally, let res ⊆ V be the set of vertices explored by a path and let � be the cost 
of this path. For any adjacent vertex to extend the path, we evaluate the following 
function:

The rationale of f (res, v, � − �, k) is to consider the set of all PoIs 
PE(v, � − �) ⧵ res reachable from v at a Euclidean distance of � − � , except the 
PoIs in res which are already collected. Then, the result of the heuristic func-
tion ProbDiv(PE(v, � − �) ⧵ res) is treated as the topic distribution of a single PoI. 
Because of the limit on cardinality, to estimate the potential gain of following a spe-
cific direction to extend a semantic path, we employ the Swap Algorithm, (cf. Algo-
rithm 2, proposed in [18]) to heuristically find k subset obtaining greatest diversity 
among its k-diverse subset res and PE(v, � − �) ⧵ res . We note that Lemma 3 ensures 
that the diversity of PoIs inside the Euclidean range is no less than the diversity of 
the PoIs in the network range, thus that f (res, v, � − �, k) provides an upper bound of 
the diversity obtainable by extending an existing path by node v. Our algorithm will 
exploit the evaluation function f (res, v, � − �, k) to direct the searching process to 
the node having the highest upper bound diversity.

4.3 � Diversity aggregated R‑tree

The main point of utilizing the Euclidean distance as a heuristic function is to be able to 
leverage an R-Tree [39] to efficiently obtain the set PE(v, �) of PoIs within a Euclidean 
range around node v. Since the Euclidean distance is a lower bound of the network dis-
tance, it allows us to prune any PoI (or R-Tree node) having a Euclidean distance already 
greater than � while avoiding expensive network exploration to obtain the set P(v, �) 

(2)
f (res, v, � − �, k)

= div(Swap(res
⋃

ProbDiv(PE(v, � − �) ⧵ res), k))
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using, for example, Dijkstra’s algorithm. Although shortest path algorithms can retrieve 
all PoIs whose network distance is within a certain budget, the execution time is prohibi-
tive (e.g., the complexity for Dijkstra algorithm is O(|E| + |V| log |V|) ) and we have to 
run it once whenever we want to explore an vertex in graph. On the opposite, we leverage 
R-Tree and retrieve PE as a candidate set in Euclidean space. The worst-case complexity 
of searching in R-Tree is linear to the number of nodes, which in our case is the number 
of PoIs. In addition, the number of PoIs is always (much) smaller than the number of ver-
tices in the road network. This, along with the linear complexity, enables speeding up the 
query processing, especially in comparison with Dijkstra-based exploration.

To help our search for diverse paths, we introduce a Diversity Aggregated R-Tree (DAR-
Tree) to accelerate the computation of heuristic function div(PE[v, �]) . DAR-Tree is a vari-
ant of aggregated R-Tree (aR-Tree) [40], storing the information related to probabilistic 
diversity of each Minimum Bounding Rectangle (MBR) in both leaf and inner nodes.

Figure 3 presents a example of DAR-Tree with 12 PoIs. Each leaf node stores a 
PoI and its corresponding topic distribution. Every non-leaf node contains: 

1.	 The pointer(s) to the child node(s) and the coordinates of MBR;
2.	 The diversity-related information, which is a vector representing the probability 

of each category not being covered of all its children, i.e., �m,j =
∏

pi∈m
(1 − �i,j) , 

where m is an MBR and 1 ≤ j ≤ K.

Furthermore, each MBR m memorizes the set P of PoIs inside m, e.g., 
P1 = {p1, p2, p3} and P3 = {p7, p8, p9}.

Since the DAR-Tree inherits the structure of an aR-Tree [40], we omit details on 
construction and maintenance of DAR-Tree—however, for reproducibility, we do 
provide the source code (cf. Sect. 6). The benefits of the DAR-Tree in terms of speed-
ing up the computation of the heuristic function, are illustrated by Algorithm  3. 
Broadly speaking, instead of always recursively iterating all the way down to the 
leaf node, we can terminate the search if an MBR of some non-leaf node has already 
been fully contained by the searching region. For a set of approximated PoIs, Line 4 
and Line 6 calculate the probability of each category being uncovered, thus Line 20 
returns the complementary probability.



618	 Distributed and Parallel Databases (2023) 41:603–638

1 3

4.4 � Efficient kDPQ processing—greedy best‑first search

Algorithms  4 and   5 are two searching strategies that we propose, utilizing the 
heuristic function (Equation  1) and DAR-Tree. The main idea is to greedily 
explore the network, while two different variations are introduced to balance the 
efficiency and diversity.
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Specifically, Algorithm  4 prunes the search space by only considering simple 
paths, i.e., paths that do not visit the same node twice. While this constraint yields 
gains in efficiency, it must be noted that the most diverse path may very well be non-
simple, for example if the path visits a PoI located in a dead end (a vertex of degree 
one). Such cases may occur in practice—for example the Field Museum in Chicago 
is located on lake shore. Thus, when continuing the search for other PoIs, the inter-
section immediately leading to the Field Museum will inevitably be visited again (as 
a vertex of a road network). If simple paths are imposed, this search algorithm can 
only visit such a PoI if the path ends there. Algorithm 5, in turn, allows to re-visit 
the vertices but does not allow visiting directed edges more than once.

4.4.1 � Vertex‑constrained searching strategy (VSS‑kDPQ)

Algorithm  4 remembers all the explored vertices to avoid exploring the network 
redundantly. That is to say, newly generated vertices that match previously explored 
ones would be discarded so that each vertex can be visited at most once.

Fig. 3   Example of diversity aggregated R-Tree
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At the beginning, the priority queue that contains all vertices available for explo-
ration (Line  2) is initialized, and a set for remembering every expanded vertex 
(Line 4). For each vertex in the priority queue, we use a data structure composed of 
five components: id—the unique identification of the vertex; priority—the potential/
approximate diversity measured by evaluation function (Equation 1) if choosing this 
vertex to explore; dist—the road-network distance from query point Q to this ver-
tex, res—the k-diversified results among the path so far, path—the path from query 
point Q to this vertex.

Our goal is to find the path with greatest diversity, thus an intuitive way to 
expand first is the vertex with the highest value from evaluation function h(v, �) 
(Equation  1). The priority queue is sorted by the priority of each vertices in 
descending order. When a vertex is popped out for expansion, stop computation 
if the highest diversity result found so far exceeds the upper bound diversity 
in the priority queue (Line 8). If a better solution might still exist, the search-
ing procedure will continue and add the adjacent vertices of the expanded one 
into priority queue. As mentioned, the explored vertices (recorded in explored 
set) are not inserted into priority queue again, to avoid duplication. Line 22 is 
executed when better path is discovered to a vertex currently in the queue pq.

However, while the searching procedure by Algorithm 4 is efficient, as each 
vertex must be visited at most once—the diversity of the result may be low, 
especially in sparse network where an optimal path may need to backtrack to 
previously visited vertices.

Fig. 4   Distance pruning with 
ellipse
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Fig. 5   Distance pruning with 
ellipse

Table 1   Top-10 most probably keywords for 6 latent topics (from TripAdvisor, with Natural Language 
Tookit)

Topic Top-10 most probably Keywords (Probabilities in %)

1 ‘memorial’(1.8), ‘see’(1.7), ‘visit’(1.1), ‘statue’(1.1), ‘walk’(0.9), ‘monument’(0.8), ‘Lin-
coln’(0.8), ‘take’(0.8), ‘war’(0.7), ‘great’(0.7)

2 ‘park’(2.2), ‘beach’(1.9), ‘walk’(1.7), ‘place’(1.6), ‘great’(1.5), ‘nice’(1.4), ‘view’(1.2), ‘beauti-
ful’(1.2), ‘area’(1.0), ‘go’(1.0)

3 ‘great’(1.5), ‘show’(1.4), ‘see’(1.3), ‘go’(1.2), ‘good’(1.2), ‘get’(1.1), ‘seat’(1.0), ‘theater’(1.0), 
‘time’(0.7), ‘would’(0.7)

4 ‘shop’(2.3), ‘place’(2.0), ‘restaurant’(1.9), ‘great’(1.7), ‘food’(1.5), ‘area’(1.4), ‘good’(1.3), 
‘nice’(1.1), ‘lot’(1.1), ‘go’(1.0)

5 ‘dog’(5.7), ‘beer’(4.1), ‘great’(2.0), ‘good’(1.6), ‘brewery’(1.5), ‘place’(1.4),‘friendly’(1.0), 
‘taste’(1.0), ‘food’(0.9), ‘fun’(0.9)

6 ‘museum’(1.7), ‘tour’(1.5), ‘visit’(1.4), ‘see’(1.2), ‘house’(1.1), ‘art’(0.9), ‘history’(0.9), ‘beau-
tiful’(0.9), ‘interest’(0.9), ‘building’(0.8)
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Fig. 6   Experimental result of short distance range

Fig. 7   Experimental result of large distance range

Fig. 8   Comparison result 
regarding of the number of 
explored edges
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Fig. 9   First path example retrieved from baselines and our proposed algorithms

Fig. 10   Second path example retrieved from baselines and our proposed algorithms
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Table 2   Number of 
unsuccessful k

T
DPQ queries 

(out of 300 queries)

Vertex variant Edge variant RWR​ Dijsktra

k = 2, d = 500 181 185 219 175
k = 2, d = 1000 83 88 154 64
k = 2, d = 1500 41 48 107 21
k = 2, d = 3000 8 14 35 0
k = 2, d = 5000 11 7 9 0
k = 4, d = 500 181 185 221 175
k = 4, d = 1000 83 88 152 64
k = 4, d = 1500 41 48 107 21
k = 4, d = 3000 8 14 33 0
k = 4, d = 5000 11 9 9 0
k = 6, d = 500 181 185 224 175
k = 6, d = 1000 83 88 153 64
k = 6, d = 1500 41 48 111 21
k = 6, d = 3000 9 14 37 0
k = 6, d = 5000 11 8 9 0
k = 8, d = 500 181 185 226 175
k = 8, d = 1000 83 88 154 64
k = 8, d = 1500 41 48 97 21
k = 8, d = 3000 9 14 35 0
k = 8, d = 5000 11 8 9 0
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4.4.2 � Edge‑constrained searching strategy (ESS‑kDPQ)

Algorithm 5 is proposed to prioritize diversity rather than efficiency. To achieve 
that, instead of recording the expanded vertex globally, we remember the explored 
directed edges for each path individually. To enforce that capability, a new com-
ponent—explored set—is added for each vertex in priority queue, and a test 
(Line 13) takes place to avoid visiting an directed edge twice. We note that the 
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assumption of visiting each directed edge at most once does not exclude the opti-
mal solution from the search space, as the cost-minimizing path between a set of 
PoIs is a Hamilton cycle, which does not visit any directed edge more than once 
[41, 42]. However, Algorithm 5 is not guaranteed to find this optimal path. While 
it eventually explores all possible paths, and thus the optimal path, the greedy 
Swap algorithm (Algorithm 2) may discard a PoI that is part of the optimal path.

4.4.3 � Analysis

In both algorithms, the searching procedure runs until either termination condi-
tion is satisfied: (1) all the paths have been explored, or (2) no more path with 
greater diversity exists. For Algorithm  4, we can guarantee that all paths have 
been explored after at most |V| iterations—each issuing a �-range query at a ver-
tex v for the informed search forward estimation. Assuming that � is small, and 
assume that an R-Tree can support range queries on two-dimensional data in 

Fig. 11   Experimental results with short distance budget: k
T
DPQ. Each subfigure shows the average 

diversity (y-axis) of 300 queries given the specified (x-axis) processing time (in seconds)
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O(log |V|) in the average case [43], this algorithm has a run-time complexity of 
O(|V| ⋅ log |V|).

For Algorithm 5, we can not guarantee a polynomial run-time. This algorithm 
explores the set of all possible simple paths, which is exponential in the range � . 
In the worst-case, where the network is a single clique connecting all nodes at the 
same cost, the early termination criterion using Equation 1 cannot hold, such that 
all paths must be explored. Despite the exponential worst-case complexity, our 
experiments show that this algorithm terminates early in real-world settings.

Fig. 12   Experimental results with large distance budget: k
T
DPQ. Each subfigure shows the average 

diversity (y-axis) of 300 queries given the specified (x-axis) processing time (in seconds)
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5 � Terminal constraint ( k
T

DPQ)

We now discuss in detail the processing of the kTDPQ variant.
As mentioned, we assume that in addition to the initial location Q, we now 

have a targeted terminal location T. The main observation is that now the (calcu-
lation of the) lower distance bound changes. Namely, instead of considering only 
PoIs which are inside the disk centered at Q and with radius �—now we have an 
ellipse EkTDPQ

 with: 

1.	 Focal points at Q and T;
2.	 Major axis a = �∕2

The reason for the value of the major axis a is that, as is well known from the defini-
tion of an ellipse as a locus of points, the sum of distances d(Q,P) + d(T ,P) ≤ 2a 
for every point in the interior or along the boundary of the ellipse.

Figure 4 illustrates the basic properties and their use in the processing of KTDPQ. 
As shown, the PoI P1 , even if it yields a good semantic diversity, cannot be incorpo-
rated as part of the path, since the it is outside of the ellipse EkTDPQ

 . In contrast, the 
PoI P2 is in its interior—hence, it is feasible to incorporate it in the path, and still 
have a sufficient budget to travel to T. What is also shown in Fig. 4 is that starting 
at P2 , the pruning can be recursively repeated, except now we have another ellipse 
bounding the feasible PoIs on the sequence from P2 towards T. Namely, travelling 
from Q to P2 has already “consumed” d(Q,P2) of the overall � . Thus, the distance 
budget from P2 towards T is �� = � − d(Q,P2) . This defines a new value for the 
major axis of the subsequent ellipse a� = ��∕2 , and the focal points are now P2 and 
T.

In general, the equation of an ellipse [44] which is centered at a point (xc, yc) with 
major axis a and minor axis b, when the axes are rotated for an angle � with respect 
to the main coordinate axes is specified as:

To determine the parameters in Equation 3, we rely on the known (values of the) 
arguments from the kTDPQ, which include the location of the starting point Q, ter-
minal point T, and the distance budget � . We have the following:

One last parameter to determine is the angle � . Towards that, let s denote the slope of 
the line between Q and T (i.e., s = (yT − yQ)∕(xT − xQ) ). Then, � is simply arctan(s).

(3)
[(x − xc) cos � + (y − yc) sin �]

2

a2
+

[(x − xc) sin � + (y − yc) cos �]
2

b2
= 1

(4)

xC = (xQ + xT )∕2, yC = (yQ + yT )∕2

c =
�

(xQ − xT )
2 + (yQ − yT )

2)∕2

a = �∕2, b =
√
a2 − c2
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The main impact of the fixed terminal point is, in a sense, in the flexibility of the 
(execution of) Algorithm  2—more specifically, in the (boundary of the) available 
PoIs and the value of � in Equation 2. Specifically, before conducting the “if—else” 
test (Lines 3 ∼ 9) in Algorithm 2, we need properly update the leftover budget �′ , 
and set the next focal point (note that one focal point is always fixed to be the termi-
nal PoI T).

The way this observation is translated more explicitly in the processing algo-
rithms (cf. Sect. 4) is that instead of simple if test whether adj_d ≤ � (Line 16 in 
Algorithm 4 and Line 15 in Algorithm 5), we need to validate if the candidate vertex 
is actually inside the ellipse with foci in the starting point and terminal, and with 
major axis equal to the half of distance budget.

We now turn the attention to the changes regarding the use of DAR-Tree for 
processing kTDPQ. Its creation (as part of pre-processing) is not affected—what 
is changed is the MBR of the range query (cf. Algorithm 3). Specifically, what we 
need now is an axes-parallel MBR for EkTDPQ

 . Figure  5 shows the corresponding 
modification of the top-portion of Fig. 3 from Sect. 4.3, which illustrates the ellipse 
EkTDPQ

 with the foci Q and T and its corresponding axes-parallel MBR (dashed pur-
ple edges). The construction of that MBR is based on calculating the horizontal and 
vertical tangents (i.e., the extremal points of EkT

DPQ with respect to each of the 
axes) [44, 45]. But one possible approach is to convert Equation 3 for a general (i.e., 
rotated and translated) ellipse into its parametric form:

where t ∈ [−�,�].
Taking the derivatives dx/dt and dy/dt, setting them to 0 and finding the cor-

responding solutions in terms of t will yield the corresponding two values of the 
extreme points that can be used for determining the axes-parallel MBR of EkTDPQ

.
We close this section with a note that when the user would like to have the ter-

minal point coincide with the starting point of the trip (e.g., starting at the hotel 
where the user is staying, and returning there), the initial ellipse EkTDPQ

 degener-
ates to a circle with raduis �∕2 . However, once the first PoI is selected, the subse-
quent k − 2 of them (with the last one being T) will use the iterative construction 
of the ellipses with foci at the most recently selected PoI and T, appropriately 
modifying the residual budget (i.e., the shape of the ellipses).

6 � Experimental evaluation

We now present a comparative study of our proposed algorithms against two 
baseline approaches, using real-world datasets. The datasets used for construct-
ing the PoI Network consist of two main components: (1) Road network obtained 
from OpenStreetMap; (2) Attractions as well the related reviews crawled from 

(5)
x = xc + a × cos(t) cos(�) − b × sin(t) sin(�)

y = yc + b × sin(t) cos(�) + a × cos(t) sin(�)
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TripAdvisor. Obtaining this data for Manhattan, New York City, USA, yields a 
road network having 55,  686 vertices, 140,  983 edges and 622 attractions. We 
note that only the PoIs listed on the first 20 pages at TripAdvisor are utilized in 
our experiment due to further PoIs not having sufficient textual reviews to gen-
erate a latent topic distribution. On average, each PoI is associated with 27.25 
reviews and each reviews contains an average of 29.42 words (Table 1).

To demonstrate the effectiveness, we use Dijkstra algorithm [46] and Random 
Walk with Restart (RWR) [47] as the alternative baselines. In order to fairly com-
pare the performances of each algorithms, we set the timer for RWR as the maxi-
mum computation time of the other three algorithms under the same experiment 
settings.

The experiments are conducted on a PC with Intel(R) Xeon(R) CPU E3-1240 
v6 @3.70GHz, 32 GB RAM and 512 GB disk storage. Windows 10 Enterprise 
64-bit is the operating system, and all the algorithms are implemented by Python 
3. Both the datasets and code are available at https://​github.​com/​XTRun​ner/k-​
Most-​Diver​se-​Path-​Query.​git.

6.1 � Latent topic model

The dataset used for training latent topic-based diversity model is as well from Tri-
pAdvisor, which includes 1, 626 attractions in four cities across the U.S.—Chicago, 
Miami, Washington D.C. and San Diego. Each of them, on average, is associated 
with 18.54 reviews and each reviews contains 30.68 words. To demonstrate the 
validity of our trained model, Tabble 1 shows the ten largest probability values of 
each topic.

Intuitively, we can observe that the six topics clustered by our learning model are 
reasonable, which, based on the keywords in each topic, correspond to memorial 
building, beach park, theater, shop & restaurant, bar, and museum. Some keywords 
appear in most topics, such as “great” and “see”, but with distinct frequencies. 
Moreover, there are many discriminative and informative keywords, e.g. “memo-
rial”, “theater” and “museum”, appearing with relatively high probability in specific 
topic only. Furthermore, in each topic, all the keywords are holding a close relation-
ship between each others, such like “memorial”, “monument” and “war” in topic 1, 
as well “museum”, “art” and “history” in topic 6.

6.2 � Comparison of searching strategies—kDPQ

To show that our proposed searching strategies are generally applicable, 150 ver-
tices are picked uniformly at random. Figure  6 presents the results when the dis-
tance range � is relatively limited, i.e., 500 and 1000. The x-axis shows the com-
putation time in seconds and the y-axis is the diversity score. For brevity, we show 
the results for k = 2 and k = 5 . As can be clearly observed, RWR (dotted blue line) 
is always able to find some good paths in a short time at the very beginning due 
to its cheap computational complexity. However, our proposed algorithms, either 
VSS-kDPQ (Algorithm 4, black solid line) or ESS-kDPQ (Algorithm 5, red dashed 

https://github.com/XTRunner/k-Most-Diverse-Path-Query.git
https://github.com/XTRunner/k-Most-Diverse-Path-Query.git
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line), outperform RWR in terms of diversity of the result after a few seconds. Dijk-
stra’s algorithm (green dash-dot line), as a breadth-first searching strategy, always 
achieves the lowest diversity, as it explores parts of the network that may have few 
(or not) points of interest. Specifically, for � = 500m , we observe that for both k = 2 
and k = 5 , VSS-kDPQ and ESS-kDPQ terminate in an average of two and three sec-
onds, respectively. Note that in Fig. 6, we discontinue drawing the achieved diversity 
of an algorithm once it has terminated.

We further observe that for the case of � = 500m the random walk approach is 
able to achieve the highest diversity. This is due to relatively low number of possible 
paths having this cost, allowing RWR to converge on any of them. While ESS-kDPQ 
is also guaranteed to find the best path (as it explores all possible paths), the order in 
which it processes PoIs may lead to discard PoIs that are part of the optimal solution 
in the Swap heuristic used to select the k-most diverse subset (Algorithm 2). The 
RWR baseline suffers from the same problem (as it also uses the Swap heuristic to 
select PoIs), but RWR is able to restart to possibly find the same PoIs in a different 
order to correct the Swap heuristic.

For a range of � = 1000m , we see that the much large set of possible paths pre-
vents RWR from finding better solutions than our proposed approaches. In this case, 
we see that VSS-kDPQ finds a solution in about 8 seconds, whereas ESS-kDPQ 
takes about 20 seconds. We also note that in this case, all competitor approaches 
yield the approximately same diversity among the 150 queries.

For large query ranges � , our results are shown in Fig. 7. We observe that our pro-
posed solutions more clearly outperform the baselines when we enlarge the distance 
range to 1, 500m or 3, 000m. Note that when � = 3, 000m and k = 5 , the computa-
tion time for ESS-kDPQ is around 600s. Yet, we observe that the result of the ESS-
kDPQ outperforms all other approaches in terms of result diversity after about 200s, 
yielding even more diversity beyond that.

We further observe that for the case of k = 2 , the RWR approach yields the high-
est diversity (approaching a diversity of 2.0) in the least amount of time. This is 
because there may be many combinations of attractions that are perfectly diverse, 
i.e., have (near-) zero overlap among their topics. RWR is able to randomly find any 
such pair of attractions quickly. However, for k = 5 , we observe that RWR has a 
much harder time, i.e., it requires more time to randomly run into a good combina-
tion of five PoIs. Yet, the random walk does converge such that, given infinite time, 
RWR with almost certainly (i.e., with a probability approach 1) find the optimal 
path, but for large search ranges and k > 2 , this may take a very long time.

In addition to comparing wall-clock time, we analyzed the number of network 
edges explored by each algorithm as a system-independent measure of I/O opera-
tion. Figure  8 shows the number of explored edges for each algorithm, averaged 
for k = 2, 3, 4, 5 . We observe similar behavior as for the run-time experiments: The 
RWR baseline aimlessly explores edges hoping to accidentally find PoIs of comple-
mentary diversity; VSS-kDPQ quickly yields high diversity results, but gets outper-
formed by ESS-kDPQ after a large number of explored edges. Both outperform the 
Dijkstra baseline.

In sum, VSS-kDPQ consistently obtains high-diversity results in just a few sec-
onds in all settings. Although VSS-kDPQ outperforms the competitors during its 
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whole running time, it eventually terminates not finding any more diverse results. 
ESS-kDPQ continues searching and is able to discover more diverse results given 
longer time. Thus, it is fair to state that VSS-kDPQ is our best choice if fast response 
time is required, while ESS-kDPQ retrieves a better path with greater diversity given 
enough time. We note that RWR is a good choice for very small ranges or k ≤ 2 , 
while the Dijkstra baseline is dominated by other solutions.

6.3 � Comparison of searching strategies—k
T

DPQ

We now present the experimental evaluations regarding the processing of KTDPQ. 
As it turns out, adding the terminal location as a constraint has interesting implica-
tions on the behavior of the processing algorithms and their standing with respect 
to the baselines. For this experiment, we have 300 different pairs (Q, T) of initial 
location Q and terminal location T on the Manhattan road network. For additional 
details and reproducibility, details and visualization of initial and terminal loca-
tions can be found at the github, https://​github.​com/​XTRun​ner/k-​Most-​Diver​se-​
Path-​Query.​git. To justify the efficiency and effectiveness of our algorithms, around 
2/3 of (Q, T) pairs are randomly selected from the Manhattan area with high PoI 
density and the rest are distributed in other area. Moreover, recall that we have dis-
tance limit � in our query settings, and thus the distance between Q and T is also 
significant. In our experiment, 126 pairs of (Q, T) have network distances between 
0 and 500 meters and 110 pairs have network distances from 500 meters to 1k 
meters. The remaining 64 pairs have network distances above 1k meters but less 
than 2k meters. For each of the 300 resulting (Q, T)-pairs we demonstrate diversity 
and run-time for kTDPQ(G,Q,T , div, �, k) using the Manhattan PoI-network G , and 
the topic-based diversity function div described in Sect. 3.3. We report our results 
for k = 2, 4, 6, 8 (i.e., diverse PoIs to be returned) and having distance threshold 
� = 500, 1000, 1500, 3000, 5000m.

6.3.1 � Qualitative evaluation of returned paths

In this section, we first present two example paths retrieved from baselines and our 
proposed algorithms to demonstrate the practicality of our proposed query.

Figure 9 shows the first example with distance limit 3.5k meters and k = 3 , where 
green diamond and purple star indicate initial and terminal location, respectively. 
Dijkstra algorithm (Fig. 9a) happened to meet one PoI along its shortest path, while 
RWR, after randomly searching for long enough time, discovered a great path with 
3 PoIs on it. However, as the names of PoIs in Fig. 9b indicate, “Asia Society and 
Museum” and “China Cultural Center” are semantically similar to each other and 
thus the diversity was lower than the tuple combination collected by VSS-kTDPQ in 
Fig. 9c. Eventually, Fig. 9D presents the path found by ESS-kTDPQ with the great-
est diversity. Compared Fig. 9c and D, we can observe the idea behind our proposed 
Algorithm 5—restrict visiting each vertex no more than once will prune the optimal 
result.

https://github.com/XTRunner/k-Most-Diverse-Path-Query.git
https://github.com/XTRunner/k-Most-Diverse-Path-Query.git
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Figure  10 shows another example where initial and terminal location are geo-
graphically near to each other. We have distance budget 1.5k meters and assume 
the visitor prefers not to visit more than 2 PoIs. In such scenario, we can see from 
Fig. 10a and b that both Dijkstra and RWR did not have luck on finding any PoI at 
this time. Our proposed algorithms was able to further explore the network beyond 
the terminal location (shown as purple star). Due to the restriction of visitng each 
vertex at most once, VSS-kTDPQ was not able to collect “The Drawing Center” as 
ESS-kTDPQ did in Fig. 10d.

6.3.2 � Evaluation of successful searches

Due to the additional constraint of having to terminate at location T, under certain 
settings of k and � it may not be possible to find any path between Q and T, regard-
less of diversity.

For consistency, we use VSS-kTDPQ and ESS-kTDPQ to denote the vertex and 
edge variants (adaptations of Algorithms  4 and  5). Table  2 shows the number of 
unsuccessful kTDPQ queries for the two proposed approaches, as well as for the two 
baseline approaches RWR and Dijkstra. Each experiment was terminated after 60s 
of searching time, and a query was consider successful if any path between Q and T 
(regardless of the diversity) was returned.

First, we observe that Dijkstra algorithm, whose result is only related to the 
given distance budget, is able to succeed in finding a path (regardless of diver-
sity) for all cases having a distance budget � ≥ 3000 m. For � = 1500 m, there are 
21 unsuccessful cases for Dijkstra algorithm to find a path, which is because 21 
of the 300 generated (Q, T) of initial location Q and terminal T have a network 
distance greater than 1500m and there simply exists no path having a distance 
of 1500m or less. While Dijkstra algorithm has the best success in terms find-
ing (any) path between Q and T, it turns out that the returned paths often do not 
exhibit high semantic diversity. For RWR we discover that for a large number 
of (Q,  T)-pairs it is not able to find a path. In particular when � = 1500 m, for 
the cases where the distance between Q and T is large, it become exceedingly 
unlikely that RWR randomly chooses the correct direction to reach T before the 
distance budget � is exceeded and RWR is forced to restart.

For both VSS-kTDPQ and ESS-kTDPQ we observe that the number of unsuc-
cessful searches is higher than the ones for Dijkstra algorithm, but much lower than 
RWR. The reason that less successful searches are achieved by our proposed strate-
gies than using Dijkstra algorithm is that both VSS-kTDPQ and ESS-kTDPQ prior-
itize expanding paths greedily towards area of high diversity, which may not neces-
sary lead into a direction from which the terminal T can still be reached in a manner 
that will retain the total distance bound � . Since VSS-kDPQ and ESS-kDPQ are not 
allowed to reuse the same vertex and directed edge, respectively, more than once, 
choices may lead to explore partial paths from which T can not longer be reached.
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Table 2 only presents how many unsuccessful cases of the 300 generated queries 
any path could not be found, but without assessing the quality in terms of semantic 
diversity. The diversity of the returned paths is evaluated in the following.

6.3.3 � Evaluation of diversity and run‑time

Figures 11 and 12 show the run time in seconds (x-axis) versus the average achieved 
diversity of returned paths (y-axis) for our experiments having k = 2, 4, 6, 8 and 
� = 500, 1000, 1500, 3000, 5000 m. Each individual subfigure can be found at the 
github, https://​github.​com/​XTRun​ner/k-​Most-​Diver​se-​Path-​Query/​tree/​main/​exper​
iment_​relat​ed/​Figur​es. While all algorithms were given a time limit of 60s to find 
diverse paths from Q to T, we limit the x-axis to exclude time intervals where we 
could not observe any major changes in the values of the diversity. For these experi-
ment, we treat any query for which no path between Q and T (see Table  2) was 
returned as a diversity of zero.

We can observe that with limited distance budget � = 500, 1000, 1500 m 
(Fig.  11), the diversity on y-axis is always below 1.0, while the diversity is 
increased above 1.0 with greater � (Fig.  12). One thing that becomes apparent 
is that the edge variant ESS-kTDPQ (red dashed line in both Figs.  11 and 12) 
yields the highest diversity paths across all settings if given sufficient process-
ing time. Particularly, for � = 1000, 1500, 3000 m, the diversity difference between 
ESS-kTDPQ and other algorithms is substantial—after more than 1s of time, 
ESS-kTDPQ outperforms all others in terms of diversity. However, the gap is rel-
atively small when � = 500 m because the searching space is limited and when 
� = 5000 m because RWR is given more flexibility on both budget and running 
time. Another interesting observation is the performance of RWR, which yields 
low diversity for the case of � = 1500 m. But as the distance budget � increases, 
which gives RWR more options to explore the network before it has to restart 
because of exceeding � , the chance of finding random paths between Q and T 
which may have (by chance) high diversity is enlarged. Due to this observation, 
we realize that for � = 5000 m, RWR yields comparable results as ESS-kTDPQ, in 
particular for lower values of k. For VSS-kTDPQ, we discover that the algorithm 
quickly terminates, but the resulting diversity of paths is not very ideal. In our 
experiments, VSS-kTDPQ and Dijkstra algorithm are dominated by ESS-kTDPQ 
for kTDPQ queries, such that there are no settings of distance budget � , number 
of returned PoIs k, and run-time budget (x-axis in Figs. 11 and 12) where these 
approaches perform better.

We conclude this section with the observation that ESS-kTDPQ is consistently 
able to retrieve high diversity paths between starting location Q and terminal T. 
While Dijkstra is always able to find a path (if a path satisfying � exists), the diver-
sity of such a path is generally low, as this approach does not aim at visiting high-
diversity PoIs across the generated path.

https://github.com/XTRunner/k-Most-Diverse-Path-Query/tree/main/experiment_related/Figures
https://github.com/XTRunner/k-Most-Diverse-Path-Query/tree/main/experiment_related/Figures
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7 � Conclusions

We introduced two novel types of queries—kDPQ and kTDPQ—which enable the 
users to generate a path that will ensure a visit of k PoI’s with high diversity, while 
ensuring that the total trip to visit them, from a given starting vertex Q, is within a 
user-specified bound � . The main difference between them is that kTDPQ also pro-
vides the option of specifying a desired terminal location for the trip.

We also introduced algorithmic solutions for their processing which, for effi-
ciency, rely on a novel indexing structure—���-Tree. In addition to the spatial 
component of the R-tree, ���-Tree also stores in each directory node the respective 
upper-bounds of diversity achievable by all PoIs whose spatial locations are inside 
that node.

Our proposed algorithms quickly retrieve high-diversity paths in an A ∗-like way, 
by greedily exploring network vertices that promise the highest potential gain using 
a forward estimation using the maximum possible diversity retrieved from the index. 
Our experimental evaluation using real-world data from OpenStreetMap demon-
strated that the proposed algorithms outperform the baseline based on a breadth-first 
search and random walks, and provide a trade-off between run-time and path diver-
sity. We also observed that for the kTDPQ variant—while enabling the flexibility 
of selecting a terminal—the benefits of the vertex variant (cf. Algorithm 4) are not 
manifested when the distance limit � is close to the distance between the starting 
point and the terminal, while the edge variant is still able to discover great-diversity 
semantic path.

Our future work will focus on three aspects: (1) investigate the impact of dif-
ferent diversity measures; (2) investigate extensions to kDPQ and kTDPQ that will 
enable returning a collection of trajectories that will capture other constraints (e.g., 
price limit for PoI visits), along with different aggregating indexing structures; and 
(3) develop data structures and algorithms which will enable efficient updates to the 
active paths when traffic conditions change or PoI descriptors (e.g., different lunch/
dinner menu; special exhibits) are updated.
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