Distributed and Parallel Databases (2023) 41:603-638
https://doi.org/10.1007/s10619-022-07413-x

®

Check for
updates

Searching semantically diverse paths

XuTeng' - Goce Trajcevski' - Andreas Ziifle?

Accepted: 5 May 2022 / Published online: 15 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract

Location-Based Services are often used to find proximal Points of Interest (Pols)—
e.g., nearby restaurants and museums, police stations, hospitals, etc.—in a plethora
of applications. An important recently addressed variant of the problem not only
considers the distance/proximity aspect, but also desires semantically diverse loca-
tions in the answer-set. For instance, rather than picking several close-by attractions
with similar features—e.g., restaurants with similar menus; museums with similar
art exhibitions—a tourist may be more interested in a result set that could potentially
provide more diverse types of experiences, for as long as they are within an accept-
able distance from a given (current) location. Towards that goal, in this work we
propose a novel approach to efficiently retrieve a path that will maximize the seman-
tic diversity of the visited Pols that are within distance limits along a given road
network. Our approach allows to specify both a start and terminal location to return
a (non-necessarily shortest) path that maximizes diversity rather than only minimiz-
ing travel cost, thus providing ample applications in tourist route recommendation
systems. We introduce a novel indexing structure—the Diversity Aggregated R-tree,
based on which we devise efficient algorithms to generate the answer-set—i.e., the
recommended locations among a set of given Pols—relying on a greedy searching
strategy. Our experimental evaluations conducted on real datasets demonstrate the
benefits of the proposed methodology over the baseline alternative approaches.

Keywords Diversity - Trajectories - Road networks - Indexing

P4 Xu Teng
xuteng @iastate.edu

P4 Goce Trajcevski
gocet25 @iastate.edu

P4 Andreas Ziifle
azufle@gmu.edu

Department of Electrical and Computer Engineering, Iowa State University, Ames, lowa 50011,
USA

Department of Geography and Geoinformation Science, George Mason University, Fairfax,
Virginia 22030, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-022-07413-x&domain=pdf

604 Distributed and Parallel Databases (2023) 41:603-638

1 Introduction

Since the late 1990s, many applications relying on Location-Based Services (LBS)
have targeted the search for Points of Interest (Pols)—e.g., tourist attractions and
restaurants—in the vicinity of their users. Since traveling cost, in terms of distance
or travel-time, is an important factor when selecting Pols, significant amount of
research efforts have been invested into distance-oriented queries such as range que-
ries and k-Nearest Neighbor (kNN) queries [1-3]. However, in addition to the prox-
imity, the semantics of Pol is often an influential factor when planning one’s motion
and activities [4].

While modeling and querying of the, so-called, semantic or activity trajectories
has been a subject of intense research in the past decade [4—6], the semantic aspect
was typically used to augment the traditional searches used in typical spatial and
spatio-temporal queries (range, kNN, etc).

In this work we are taking up a novel variant of the problem—namely, coupling
the proximity constraints (with respect to the the querying user’s location) with the
diversity of the semantic descriptors of the Pol, in a manner that considers the cost
of the travel.

Although traveling cost, i.e., distance/time, is a significant factor to choose Pols,
people tend to consider incorporating semantically diverse options within accepta-
ble distance. For instance, a tourist might prefer selecting multiple attractions which
not only are within a given distance range but also exhibit different types of tourist
experiences. To provide an intuition in the realm of LBS, consider the following:

Example 1 Consider the scenario depicted in Fig. 1, illustrating a user at location Q
who is searching for three tourist attractions to visit. The user specifies a maximum
distance, indicated by the dashed circle, that he/she is willing to travel.

Fig. 1 Running example of - ~o

~
/’ ~

diverse path search .
e
M

1

/
1
1

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 605

Processing this query would return the answer set 7| = {S;,5,,53}, consisting
of 3 nearest Pols as the user indicated that kK = 3 is a limit of the number of Pols.
However, one can readily see that in this case, all three returned Pols are monu-
ments/statues. If the user would like a more diverse experience, recommending
these three sites would likely not be satisfactory. To cater to situations described by
the above example, recent works introduced the concept of diversity in the spatial
queries [7-9]. We note that due to the hardness of the problem, the works propose
approximated solutions (with slightly different variations of the constraint). As a
concrete illustration, in the context of Example 1, the user may have a preference for
the answer set 7, = {M,, P,,S,}, which includes a statue (S,), a museum (M) and a
park (P)—within the desired distance bound.

What motivates this work is the observation that the existing approaches assume
that the user will choose only one of the results, aiming at maximizing the diversity
of the options of the user. However, no guarantee is provided that there exists a path
between all the Pols that satisfies the range constraints as path. In this example, it
is clear that, while all three Pols in T, are within the spatial range, visiting all three
of them relying on the existing road network (cf. Figure 1) will exceed the distance
limitation in terms of total travel. Although answers like T, may be useful to provide
diverse options such as different types of restaurants, they do not properly consider
the traveling cost between the Pols. Moreover, in practice, in addition to the distance
budget itself, the user may have other preferences that could constrain the answer
set. For instance, a user does not mind walking 10km, however he/she is a fan of
in-depth tours of popular venues. Thus, he/she may want to limit the visits to no
more than 3 attractions (although there might be more Pols in the surrounding areas)
because the time plan to be spent in each of them is 1 hour. Another rationale for
explicitly incorporating a limit on is that the user would like to limit the budget of
expenses (e.g., for entrance fee). Hence, in our work, we use the maximum number
of Pols in the answer to reflect such preferences.

To combine all these considerations, in this paper we introduce a new query type,
called the k-Diverse Path Query (kDPQ). The goal of kDPQ is to find a path that
maximizes diversity of Pols along it, subject to the constraint that the length of the
whole path is within user-specified limits, and the number of Pols is k.

We also consider settings in which the user would like to have a very specific
location as the terminal one for the trip. Such settings would correspond to scenarios
in which the user wants to have subsequent activities at/near a particular location,
e.g., have a meeting with a collaborator in a restaurant, after the tour. In an extreme
case, the scenario would correspond to the user wanting to be back to his/her hotel,
which is a starting location of the trip. We denote this variant with k;DPQ, to indi-
cate that the terminal point of the trip is fixed.

We note that the proposed approaches can be generalized to different classes of
problems in which: (a) there exists a collection of states, each specified with a set of
values from different domains; (b) there exists a limited set of transitions between cer-
tain pairs of states; (c) there is a cost associated with each transition; and (d) the desired
properties of the states along an “execution path” of a process can be semantically
specified. One specific example comes from the domain of workflows and Business
Process Management (BPM) domains, where attempts have been made to semantically

@ Springer

606 Distributed and Parallel Databases (2023) 41:603-638

characterize the enactments [10, 11]. From a broader perspective, the generalized trave-
ling salesman problem also appears in genomic research [12] when considering a graph
of possible transition among states in which one would like to couple a constraint on
the types of states and the reaction time, with specific initial conditions/states.

In this work, we focus on the LBS settings and towards processing the above diverse
path queries, we propose two searching algorithms. While one can always construct a
straightforward baseline based on Dijkstra algorithm, in this work we propose an index
structure, called Diversity Aggregated R-tree (DAR-tree), devised to improve the effi-
ciency of the kDPQ processing. Specifically, the DAR-tree enables the two algorithms
that we propose to navigate the space of possible paths more efficiently, while maxi-
mizing diversity of Pols. We also introduce adaptations of the criteria for using DAR-
tree structure towards efficient processing of k;DPQ.

Our experimental evaluation, where real-world road network and Pol data from
OpenStreetMap are used to generate applicable scenarios, demonstrates that our pro-
posed algorithms can provide highly-diverse paths, while being efficient in terms of
running time. We also provide a discussion, illustrating how each of our algorithms has
advantages in specific scenarios.

In summary, our main contributions are as follows:

e We identify and formalize a novel type of path planning query, kDPQ, enabling the
users to generate a visit of a sequence of Pols that are within certain distance bound
and provide maximal diversity, as well as its variant with a fixed terminal, k;DPQ.

e We devise novel data structure and processing algorithms to enable efficient pro-
cessing of the kDPQ and k;DPQ variants. The DAR-tree augments the traditional
R-tree by embedding aggregated semantic information in its nodes.

e We conduct experimental evaluations over real-world datasets to demonstrate the
benefits of the proposed methodologies and the trade-offs between two comple-
mentary solutions.

We note that an earlier version of this work was presented in [13]. The present arti-
cle extends the prior publication with the k;DPQ variant, along with the correspond-
ing experimental results and analysis.

The remainder of this paper is organized as follows. We survey state-of-the-art
methods related to diverse nearest Pol search in Sect. 2. After introducing the nec-
essary background, our proposed novel queries—kDPQ and k;DPQ—are formally
defined in Sect. 3. Section 4 presents our solutions in detail, including the DAR-tree
and query processing algorithm that leverage this index structure. In Sect. 5 we dis-
cuss in detail the processing of k;DPQ variant. The experimental evaluations are
presented in Sect. 6, and we conclude this work in Sect. 7.

2 Related work
Coupling motion and semantics has already been considered in the literature, bring-
ing about the concepts of semantic and activity trajectories. Both the modelling

aspects [5, 6] and the query processing aspects [4, 14] combining spatial, temporal

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 607

and descriptor contexts of the Pols, along with transition mode (e.g., walk, drive)
have been tackled. What separates the present work from the aforementioned ones
is that we are focusing on constructing a path that will be limited in its length, be it
travel-time or distance along a road network, and will visit a collection of Pols with
the highest diversity in terms of their semantic descriptors.

The concept of incorporating diversity into queries answers has its origins in
information retrieval—specifically, in similarity search among documents. The
Maximal Marginal Relevance (MMR) model [15] is one of the earliest proposals
to consider diversity to re-rank documents in the answer set, where at each step, the
element with higher marginal relevance is selected. A document has high marginal
relevance if it is both relevant to the query and has minimal similarity to previously
selected documents.

Several approaches have been proposed for coupling spatial and diversity con-
texts. Finding the kKNNs to a given query point such that the distance between any
two points is greater than a predefined minimum diversity was introduced in [16],
and selecting the most diverse set within a predefined radius in Hamming space is
addressed in [17]. A k-similar diversification set which optimizes a linear function
combining the similarity (i.e., closeness) and diversity for a given trade-off between
them has been studied in [18]. Monitoring the most diverse k-sized set over distrib-
uted sets was proposed in [19]. All these works have in common that their goal is to
find a k-cardinality subset of size k, among a set of candidates Pols, that maximizes
diversity. However, these works do not consider the constrained travel along road
networks, and thus, cannot return any path that allows to visit the resulting Pols.

Other recent works that have combined the diversity and spatial contexts are pre-
sented in [7] and [9] in the context of NN queries, tackling the settings of optimizing
the weighted sums of the constraints. Our previous work [8] introduced a k-Diversi-
fied Range Query (kDRQ) on road networks, which maximizes the semantic diver-
sity of the answer set from spatial range queries on road network. While this work
does consider road networks, it selects a diverse set within a network range regard-
less of the length of the path between the Pols. The rationalé is to give users merely
a set of diverse options, from which the user is expected to choose one, however, it
is restricted within a path from a query location to a single Pol. The main difference
with the present work is that kDP queries generate a path that connects multiple Pols
that, ensuring high diversity. More distantly related approaches to spatial diversifi-
cation include angular diversity [20]—which defines the nearest Surrounder Query
to find the nearest objects from a query point from different angles; and the angular
similarity—which have been used for diversified kNN problem in [21].

Relying on the Skyline paradigm [22], finding the set of all optimal solutions for
a given linear combination of two diversity notions, spatial and categorical, is pre-
sented in [7]. The categorical diversity is modeled by the difference between cat-
egories of data points—e.g., two restaurants are diverse if they are from different
ethnicities. The idea of using keywords, i.e., a finer granularity in order to distin-
guish categories, to find diverse kNNs has been explored in [23]. In that work, the
keywords are used for filtering data points, i.e., only points that contain all query
keywords are considered. More recently, the problem of finding k shortest trajec-
tories that contain the most relevant keywords to the query was addressed in [24],

@ Springer

608 Distributed and Parallel Databases (2023) 41:603-638

where a hybrid index structure was proposed. Complementary to these works, we
use the concept of Latent Dirichlet Allocation in order to consider a more sophis-
ticated notion of diversity based on the set of keywords that describe each object.
To speedup the processing of kDRQs, we propose an indexing structure which aug-
ments the spatial data in a node with aggregated diversity value for the sub-trees.

We note that the k;DPQ version can be perceived as an extended variant of the
Generalized Traveling Salesman Path (GTSP) [25]. In the original setting, the query
required at least one node from each semantic category. In [26], a special case of
GTSP problem was introduced—finding the optimal path with a given set of node
constraints—and two heuristics were proposed. Another variant of GTSP query
was recently considered in [27] which, complementary to this work, was ponder-
ing the settings with a numerical preference of each Pol category, without any
pre-established bound on the starting or terminating locations. Preliminary results
were presented on solving the variant over real-world dataset by adopting multiple
benchmarks. In this work, the spatial constraints pertain to the starting and ending/
terminating location—however, what separates it from the above works is that we
are focusing on concomitantly optimizing the diversity of the Pols.

We close this section with observations regarding two bodies of related work.
Recently, Machine Learning (ML) based approaches have been proposed for recom-
mending the (next) Pol to visit, incorporating features such as popularity, prefer-
ences, starting time, etc. [28—32]. Some recent works have also targeted the problem
of recommending a sequence of Pols [33]. However, we note that, at present, any
kind of a ML based approach for kDPQ/k;DPQ variants is hindered by the lack of
proper training data—for which our work may generate enabling source. Comple-
mentary to this, diversification has been studied in social sciences—e.g., for varia-
tions of economic and racial groups, and mobility across spatial areas (cf. [34, 35]).
However, those applications—while of societal importance (and subject of future
work), are outside the scope of the current problem domain.

3 Background and problem definition

In this section, we introduce the basic terminologies and the settings, after which
we proceed with the formal definition of the k\DPQ and k;DPQ problems. We first
define the problem of finding the k£ most-diverse path for an abstract diversity met-
ric, and then introduce the topic-based diversity employed in this article.

3.1 Preliminaries

Definition 1 (Road Network) A Road Network G = (V, E, W) is a weighted directed
graph, where V is a set of vertices and each vertex v € V is associated with location-
attribute v.L; E C V X V represents the set of edges between pairs of vertices (v;, v;)
(v;,v; € V); W i E = R*is a function which maps each edge e € E to a positive real
value representing the cost of traversing e.

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 609

Vertices on a road network may contain Points of Interest (Pols). Each Pol is
associated with two attributes: location (such as latitude and longitude) and
descriptors (such as keywords, categories, and etc.), formally defined as follows:

Definition 2 (Pol Network) Let G = (V, E, W) be a road network. A Pol p is rep-
resented as a pair p = (L,I), where p.L € {v.L |v € V} is the spatial location of
p on the road network, and p.I is the semantic information of p. A Pol Database
P={p, s DIp| } is a collection of Pols and for any vertex v € V, we let v.P denote
the (possibly empty) set of Pols located at vertex v. We denote the road network
enriched with the Pol information as G = (V, E, W, P), and call it a Pol network.

We note that in practice, a particular Pol p may not be directly located at a
vertex of the road network. In such a case, we apply map-matching to project the
Pol to the nearest point on an edge of the road network [36]. The projected point
becomes a new (virtual) vertex of the network that corresponds to the p.L.

The process of constructing a Pol network from a given road network graph
G and a set of Pols P is formalized in Algorithm 1. Note that we leverage an
R-tree [1] to store the road network (Lines 3 ~ 6) to efficiently retrieve the nearest
neighbor edge to a Pol (Line 11). The update in Line 13 adds a new vertex to the
network, and replaces the corresponding edge (i.e., nearest_edge) with two new
edges connecting the new (virtual location) vertex to the vertices of nearest_edge,
and replicating the original weight of the nearest_edge to both new edges.

Algorithm 1 Pol Network Construction

Input: Road Network G = (V, E, W), Pol Database P
Output: Pol Network G
Copy G as initial G with v.5 = () for each v in V
tree < R-tree()
for each ¢ in E do
rect < rectangle whose diagonal is e
tree.insert(rect)
end for
for each p in P do
if p.L = v.L where v € G then
v.P.add(p)
else
nearest_edge < tree.nearest_neighbor(p.L)
v.L < Project p onto nearest_edge which minimizes distance to p.L
Update G with new vertex (v.L, {p})
end if
: end for
. return G

o I A R

e e e e e e
A AN A e

@ Springer

610

Distributed and Parallel Databases (2023) 41:603-638

0“ Query Point

Vertex in Road Network

1
Vg ® ol
Pe 10 3 P3g Vs
V1 2 U3
8 8
.Pz
V9 Ps TV7
8
6
10 P4 6
Vs Vio Ve
Attractions Types Descriptors
p1 Museum {Historical, Cultural, Art}
D2 Park {Fountain, Forest, Playground}
p3 Aquarium {Seal, Fish, Sea}
P4 Park {Green, Fish, Monument }
D5 Z00 {Turtle, Tiger, Safari}
D6 Museum {Literature, Art, Painting}

Fig.2 Example of pol network

To illustrate the concepts, we provide another small-scale example in Fig. 2—
slightly more focused on the terms and their relationship than the intuitive
motivation in Fig. 1. Specifically, we present a Pol network, having six Pols
P = {p,,p2,P3,P4-P5-Ps} (shown as purple circles) and a road network hav-
ing |V| =7 vertices (shown as green rectangles), several bidirectional edges E
connecting vertices (shown as solid black lines) and a weight function W map-
ping edges to annotated weights. Pols p; and ps are trivially mapped to verti-
ces at the same location. Using Algorithm 1, three new vertices—uvg, vy, v j—are
added into the Pol network, as well as the related edges and the updated cor-
responding weights. Note that Algorithm 1 will also map pg to vg, thus yielding

P ={py,pe}
3.2 The k-most diverse path query

Deﬁnition 3 (Semantic Path) Let G = (V, E, W, P) be a Pol network. A semantic path
= (spy, - 8P|p)) 18 @ sequence of adjacent vertices in G, i.e., Vi (1 <i < |[sp]) :
;€ VandVi(l <i<|sp]) :(sp;, sp,ﬂ) € E. The cost of a given path sp is defined

as sum of edges weight sp.cost : W(sp;, sp;41)- The attribute collection of a

given path sp is defined as sp. collectton = U'Y” ! ;.P—i.e., the union of all the Pols

contained in the vertices along sp (ones for Wthh sp,.P # 0).

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 611

In Fig. 2, sp=(vg,V,Vy,Vy,Vs5,V;) 1S a semantic path having cost
sp.cost=9+10+8+8+10=45 that includes the set of Pols
sp.collection = {py,pe, P2, P4}

Definition 4 (Range Path Search Query) Let G = (V, E, W, P) be a Pol network and
Q €V be a query location. Given a positive value € € R*, a network range path
search query RPS(G, Q, €) returns all semantic paths starting at Q having a cost no
greater than € Formally:

RPS(G,Q.e)={sp|sp; =Q A sp.cost < €}

We note that the assumption that Q € V comes without loss of generality,
as we can project any query location to a (potentially new) network vertex using
Algorithm 1.

The concepts introduced so far are illustrated in Fig. 2, showing the query point
Q (red cross) located at v,. Given a distance range € = 30, answers to RPS include
(Q,v1,vg, V1), (Q,vg, Vs, V10), (O, V3,V4,V7,V6). We note that Definition 3 does not
require a path to be simple, i.e., it allows a path to have cycles and visit the same
vertex more than once. This is necessary in order to enable a path to collect Pols
located in dead ends—which is, nodes of degree 1—and still continue collecting
additional Pols.

In addition to limiting the distance for a user to travel on a path, we further
assume that a user may have other kinds of constraints (e.g., a limited spending
budget, or limited stay-time) which, in turn, may impose a limit on the maximum
number of Pols along a semantic path and we denoted it by k in this work. For a set
of Pols collected by a path, the following definition finds the most diverse subset of
Pols of cardinality k:

Definition 5 (k-Diverse Subset of Semantic Path) Let sp be a semantic path, and
div:Pr R(J; be a function that maps a set of Pols to a non-negative diversity score.
The k-diverse subset of sp, kDS, (sp, k), is defined as the subset of sp.collection
with cardinality at most k, maximizing the diversity score, i.e.,

kDS, (sp.k)= argmax div(P)

PCsp.collection,|P|<k

The specification of a diversity function div(P) that maps a set of Pols P to a
diversity score is left abstract in Definition 5, and multiple definitions of diversity
have been used in the literature [7, 8]. In this work, we employ the topic-based prob-
abilistic diversity proposed in [8], which is reviewed in detail in Sect. 3.3.

Example 2 Returning to the scenario in Fig. 2, consider the semantic path
(v5, V3, V5, V9, V5, V1), Which collects the set of three Pols {p,, p3,p,}. Assume that
a user only has time/budget to visit two Pols, thus setting k = 2. In this case, we see
that both Pols p, and p, are a park, having similar textual descriptors. Intuitively, to

@ Springer

612 Distributed and Parallel Databases (2023) 41:603-638

maximize diversity, p; should be chosen as the only non-park Pol, and it should be
chosen together with p,, as p, shares keyword similarity (i.e., Fish) with p;.

Given a measure of diversity of a semantic path in Definition 5, we can now pro-
ceed to define our proposed k diverse path query as finding the semantic path that
starts at a specified query location and maximizes the diversity of collected paths
subject to a maximum length of the path and a maximum number of Pols to be col-
lected. This query is formally defined as follows.

Definition 6 (k-Diverse Path Query) Let G = (V,E,W,P) be a Pol network and
Q € V be a query location. Furthermore, let div : P — IR(J)r be a function that maps
a set of Pols to a non-negative diversity score, let k be a positive integer, and let
€ € R* be a cost constraint. Then, a k — diversepathquery (kDPQ) is defined as

kDPQ(G, Q,div,e,k) = argmax div(kDS;, (sp, k))
SPERPS(G,0,¢)

where RPS(G, Q,¢€) is the set of all semantic paths starting at Q having a cost no
greater than € as defined in Definition 4, and kDS, (sp, k) returns the k-subset of
Pols among all Pols collected by path sp that maximizes the diversity function div as
defined in Definition 5.

Example 3 Given the Pol network G in Fig. 2, let € = 35 and k = 2, two possible
paths could be sp, = (Q, v, vy, V5, Vo) With sp,.collection = {p,,p,} and sp, = (O,
Va, V3, Vy, V7, Vs Vo) With sp,.collection = {ps, ps, p, }. Since both p, and p, are parks
and most textual descriptors are semantically similar, a k-diverse path query returns
path kDPQ(G, Q, div, 35, 2) = sp, and recommends to visit Pols p; and p, on this path.

As mentioned, in certain scenarios users may want to impose an additional con-
straint—finishing (i.e., terminating) their trips at a specific terminal, denoted 7. To
cater to such settings, we have the following:

Definition 7 (k-Diverse Path Query With Fixed Terminal) Let G = (V,E,W,P)
be a Pol network, Q € V be a query location and 7 € V be a vertex correspond-
ing to the desired end of trip location. As before, let div : P — IR(J)r be a function
that maps a set of Pols to a non-negative diversity score, let k be a positive integer,
and let e € R* be a cost constraint. Then, a k-diverse path query with fixed terminal
(k;DPQ) is defined as

kyDPQ(G, Q,T,div,e,k) = argmax div(kDS,;,(sp,k))
SpERPS(G,Q.T ¢)

where RPS(G,Q,T,¢) is the subset of RPS(G, Q, €), corresponding to all seman-
tic paths starting at Q, terminating at 7, and having a cost no greater than € (cf.
as Definition 4). Similarly to Definition 6, kDS, (sp, k) returns the k-subset of Pols

among all Pols collected by path sp that maximizes the diversity function div (cf.
Definition 5).

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 613

We observe that for any strictly monotonic diversity function div (cf. Sect. 3.3),
the following hardness result holds:

Lemma 1 The problem of finding the most diverse path kDPQ(G, Q,div,e,k) is
NP-hard.

Proof Let tsp be a solution to the traveling salesman problem (TSP) on an arbitrary
graph G starting at an arbitrary vertex Q, that is, the shortest path that collects all
Pols. Let tsp.cost denote the cost of this path. Let div be any strictly monotonic
diversity function, that is, adding additional Pols to a set will increase the diversity
of the set. Since div is strictly monotonic, the set P, which contains all Pols, maxi-
mizes div. Then, by Definition 6, kDPQ(G, Q, div, tsp.cost, o) = tsp. This is evident,
as a kDPQ query starting at Q, having a range of € = tsp.cost, will return the most
diverse path (collecting all Pols due to a strictly monotonic diversity function) hav-
ing a length of at most tsp.cost. By definition, this path exists and is the solution to
the TSP on G starting at Q. Thus, any instance of TSP can be written as an instance
of kDPQ, implying that answering kDPQ queries is at least as hard as TSP, which is
known to be NP-hard [37]. O

Lemma 2 The problem of finding the most diverse path kyDPQ(G, Q, T, div, €, k) is
NP-hard.

Proof Analogously to the proof of Lemma 1 we let tsp be the solution to the
traveling salesman problem (TSP) on an arbitrary graph G starting at an arbi-
trary vertex Q and we additionally let 77 be the last vertex of tsp. Then we have
krDPQ(G, Q, T’ div, e, k) = tsp. Again, this shows that any instance of TSP can be
reduced to an instance of k;DPQ. O

Due to the complexity of kDPQ and k;DPQ, we resort to heuristics to find
(approximate) solutions that return high, but not necessarily optimal, diversity. Next,
we briefly explain the diversity function div that we employ.

3.3 Topic-based diversity

In this work, we leverage the topic-based diversity proposed in [8] which extracts K
latent topics from textual context of each Pol, where K is a user-specified parameter.
Based on textual descriptor p;.I of a Pol p; € P, p; is mapped to a topic distribution
6, that maps each topic to the probability 6, ; that p; covers the topic 1 <j < K. Then,
the diversity of a set P of Pols is defined as the expected number of topics that is
covered by any Pol in P.

Based on the attached descriptive items, the semantic description of each Pol p; is
illustrated by a vector of probability (topic) distribution §; whose length is the num-
ber of latent topics K. 6;; (1 <j < n) represents the probability of p; belonging to

@ Springer

614 Distributed and Parallel Databases (2023) 41:603-638

topic j. For a set of Pols P = {p,, ..., Pip| }, we define a vector ProbDiv(P) that stores,
for each topic j, the probability that it is covered by P as

ProbDiv(P); :=1-[](1 -6,

p;EP

which is then aggregated into a diversity score via expected number of topics
covered:

K
div(P) 1= Z ProbDiv(P);

J=1

Intuitively, the probability 1 — 6,; is the probability that Pol p; does not cover
topic j. Exploiting that Pols are stochastically independent, H eP(l 0,;) is the
probability that none of the Pols in P covers topic j. We define ProbDlv(P) as the
counter-probability, i.e., the probability of the complementary event that at least one
Pol in P covers topic j. Finally, these probabilities are aggregated into the expected
number of topics covered by P via div(P).

Example 4 Let P = {p,,p,, P}, and each p; allocated a topic distribution having K = 3
topics, e.g, 6, =(0.1,0.0,0.9),0, = (0.4,0.3,0.3),0; = (1.0,0.0,0.0), respectively.
One can observe that p, is very likely to cover the third category and p; is guaranteed to
belong to the first category, while p, obtains a high uncertainty since its distribution among
different categories is close to uniform. To compute ProbDiv(P) using above equations,
we get ProbDiv(P); =1 —(1 —0.1) x (1 —0.4) x (1 —1.0) = 1.0 since pj is certain
to cover the first category; ProbDiv(P), =1 —(1-0.0)x (1 -0.3) X (1 —0.0) =

indicating a 30% likelihood that P can cover the second category; and
ProbDiv(P); =1 —-(1-0.9) X (1 —0.3) X (1 —0.0) = 0.93 showing a high probabil-
ity that the third category is covered due to the probability distribution of p,. In sum,
div(P) = 1.0+ 0.3 + 0.93 = 2.23 implies that an expected 2.23 topics are covered by P.

4 Efficient processing of kDPQ

To efficiently answer kDPQ we adopt the informed search [38] approach which, in
general, can be considered as a greedy algorithm, whereby a vertex is selected for
exploration based on the priority from an evaluation function. The evaluation func-
tion for solving kDPQ is constructed as the estimated gain of probabilistic diversity,
thus the vertex with the greatest evaluation would be explored first. The quality of
the evaluation function is critical for the searching procedure.

We firstly introduce the heuristic function, which is an important component of
the evaluation along with the proposed supporting index structure: Diversity Aggre-
gated R-Tree, to efficiently compute the result from a heuristic function. Subse-
quently, the informed search algorithm is presented.

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 615

4.1 Heuristic and evaluation function

For a Pol network G = (V,E,W,P=, vertex v € V, and value € > 0, let P[v, €]
denote the set of all Pols in P having a network distance from v of at most €. Fur-
thermore, let Pg[v, €] denote the set of all Pols in P having Euclidean distance
from v of at most €. To conservatively bound the category-wise diversity vector
ProbDiv(P[v, €]), we propose the following heuristic function:

h(v,€) := ProbDiv(Pg[v, €]),

where Pg[v,e] = {p | ||v.L,p.L||, < €} M

Note that the Euclidean distance, which is used in the heuristic function, is always
less than or equal to the road-network distance—thus P[v, €] C Pg[v, €] holds. We
can leverage this relation to obtain an upper bound of the diversity div(P[v, €]) using
the following lemma:

Lemma 3 For any topic 1 < j < K it holds that:
div(Pglv, €]) > div(P[v, €])

Proof Because of0 < 6;; < 1forany Pol p;and categoryj, wealsohave0 < 1 —6,;; < 1.
Due to P[v, €] C Pglv, €], it holds that [], cp 1, /(1 = 0;)) < T1, epp (1 — 6;;) and

thus | — I, cr (1=0,)>1- Hp epprer(l = 0, Summarizing over all catego-
EPglv.e i = i V,E i

P

ries j, this imj [lvies that w«k K
ie J. P . Zi:] 1- Hp,EPE[v,EJ(l - 91;1‘) 2 Zi:] 1- Hp,EP[v,sJ(l - 958
2 div(Pglv, €]) > div(P[v, €])

According to Lemma 3, the Euclidean forward estimation using all Pols P[v, €] in
the Euclidean range allows to derive an upper bound of ProbDiv(P[v, €]) without hav-
ing to consider the network topology of the entire graph G.

Algorithm 2 Swap Algorithm
Input: Set of Pols P, Integer k
Output: k—Diverse Subset P*
P 0
: for each p € P do
if |P*| < k then
P*+— P*Up
else
C+ P*Up
p~ ¢+ argmax, .o div(C\ p')
P*«— C\p~
end if
: end for
: return P*

© 2N @R Wy

- e
= O

@ Springer

616 Distributed and Parallel Databases (2023) 41:603-638

4.2 Informed search

Starting at Q, the idea of our proposed algorithm is to iteratively expand paths that
yield the highest potential diversity using the heuristic of Equation 1. In a nutshell, if
we reach a vertex v on a path of cost 6, then we have at most a distance of € — 6 left to
explore from v. If the path leading to v has already collected the set of Pols res, then the
maximum diversity of exploring v can be upper-bounded by computing the maximum
k-diversity of any k-subset of the set res | J Pr(v, € — 5)—that is, via extending res by
all Pols still reachable from v using Euclidean distance. Our algorithm greedily pro-
cesses vertices using a priority queue sorted by this upper bound. Once the currently
most diverse result exceeds the diversity of the largest unexplored upper bound, we can
terminate computation.

Formally, let res C V be the set of vertices explored by a path and let 6 be the cost
of this path. For any adjacent vertex to extend the path, we evaluate the following
function:

f(res,v,e — 6,k)
= div(Swap(res U ProbDiv(Pg(v, € — 6) \ res), k)) @

The rationale of f(res,v,e —6,k) is to consider the set of all Pols
Pp(v,e — 6) \ res reachable from v at a Euclidean distance of € — 6, except the
Pols in res which are already collected. Then, the result of the heuristic func-
tion ProbDiv(Pg(v,e — &) \ res) is treated as the topic distribution of a single Pol.
Because of the limit on cardinality, to estimate the potential gain of following a spe-
cific direction to extend a semantic path, we employ the Swap Algorithm, (cf. Algo-
rithm 2, proposed in [18]) to heuristically find k subset obtaining greatest diversity
among its k-diverse subset res and Pp(v,e — &) \ res. We note that Lemma 3 ensures
that the diversity of Pols inside the Euclidean range is no less than the diversity of
the Pols in the network range, thus that f(res, v, e — 6, k) provides an upper bound of
the diversity obtainable by extending an existing path by node v. Our algorithm will
exploit the evaluation function f(res,v,e — 6,k) to direct the searching process to
the node having the highest upper bound diversity.

4.3 Diversity aggregated R-tree

The main point of utilizing the Euclidean distance as a heuristic function is to be able to
leverage an R-Tree [39] to efficiently obtain the set P (v, €) of Pols within a Euclidean
range around node v. Since the Euclidean distance is a lower bound of the network dis-
tance, it allows us to prune any Pol (or R-Tree node) having a Euclidean distance already
greater than £ while avoiding expensive network exploration to obtain the set P(v, €)

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 617

using, for example, Dijkstra’s algorithm. Although shortest path algorithms can retrieve
all Pols whose network distance is within a certain budget, the execution time is prohibi-
tive (e.g., the complexity for Dijkstra algorithm is O(|E| + |V|log |V])) and we have to
run it once whenever we want to explore an vertex in graph. On the opposite, we leverage
R-Tree and retrieve Py, as a candidate set in Euclidean space. The worst-case complexity
of searching in R-Tree is linear to the number of nodes, which in our case is the number
of Pols. In addition, the number of Pols is always (much) smaller than the number of ver-
tices in the road network. This, along with the linear complexity, enables speeding up the
query processing, especially in comparison with Dijkstra-based exploration.

To help our search for diverse paths, we introduce a Diversity Aggregated R-Tree (DAR-
Tree) to accelerate the computation of heuristic function div(Pg[v, €]). DAR-Tree is a vari-
ant of aggregated R-Tree (aR-Tree) [40], storing the information related to probabilistic
diversity of each Minimum Bounding Rectangle (MBR) in both leaf and inner nodes.

Figure 3 presents a example of DAR-Tree with 12 Pols. Each leaf node stores a
Pol and its corresponding topic distribution. Every non-leaf node contains:

1. The pointer(s) to the child node(s) and the coordinates of MBR;
The diversity-related information, which is a vector representing the probability
of each category not being covered of all its children, i.e., ,; =[], c,.(1 = 6;)),
where m is an MBR and1 <j < K.

Furthermore, each MBR m memorizes the set P of Pols inside m, e.g.,
Py ={p\.ps.p3} and P3 = {p;,pg,po}.

Since the DAR-Tree inherits the structure of an aR-Tree [40], we omit details on
construction and maintenance of DAR-Tree—however, for reproducibility, we do
provide the source code (cf. Sect. 6). The benefits of the DAR-Tree in terms of speed-
ing up the computation of the heuristic function, are illustrated by Algorithm 3.
Broadly speaking, instead of always recursively iterating all the way down to the
leaf node, we can terminate the search if an MBR of some non-leaf node has already
been fully contained by the searching region. For a set of approximated Pols, Line 4
and Line 6 calculate the probability of each category being uncovered, thus Line 20
returns the complementary probability.

@ Springer

618 Distributed and Parallel Databases (2023) 41:603-638

Algorithm 3 DAR-Tree Range Query

Input: Pol network G = (V,E,W,P), DAR-Tree R, Vertex v € V|,
Range ¢, k-diverse subset res
Output: Heuristic score h_val

1 howal + (1,...,1) > |h-val| = the number of categories
2: function RANGE-SEARCH(region, child, res)

3: if child is a leaf and P.p;q ¢ Tes then

4: hval + hoval (1 — Ocnita) > () is entrywise product
5: else if region.contains(M BR.pi1q) then

6: h_val <+ h_val @ Cchild

7: dup + res() Pehitd

8: if dup # () then

9: hval < hval @], ¢ g, (1 — 65) > @ is entrywise division
10: end if

11: else

12: for each gchild of child do

13: if region.intersects(M BRgcniia) then

14: RANGE-SEARCH(region, gchild, res)

15: end if

16: end for

17: end if

18: end function
19: RANGE-SEARCH(circle(v,€), R.root, res)
20: return (1,...,1) — hval > Entrywise subtraction

4.4 Efficient kDPQ processing—greedy best-first search

Algorithms 4 and 5 are two searching strategies that we propose, utilizing the
heuristic function (Equation 1) and DAR-Tree. The main idea is to greedily
explore the network, while two different variations are introduced to balance the
efficiency and diversity.

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 619

|E12 EIZ
bll |§11

Fig. 3 Example of diversity aggregated R-Tree

Specifically, Algorithm 4 prunes the search space by only considering simple
paths, i.e., paths that do not visit the same node twice. While this constraint yields
gains in efficiency, it must be noted that the most diverse path may very well be non-
simple, for example if the path visits a Pol located in a dead end (a vertex of degree
one). Such cases may occur in practice—for example the Field Museum in Chicago
is located on lake shore. Thus, when continuing the search for other Pols, the inter-
section immediately leading to the Field Museum will inevitably be visited again (as
a vertex of a road network). If simple paths are imposed, this search algorithm can
only visit such a Pol if the path ends there. Algorithm 5, in turn, allows to re-visit
the vertices but does not allow visiting directed edges more than once.

4.4.1 Vertex-constrained searching strategy (VSS-kDPQ)
Algorithm 4 remembers all the explored vertices to avoid exploring the network

redundantly. That is to say, newly generated vertices that match previously explored
ones would be discarded so that each vertex can be visited at most once.

@ Springer

620

Distributed and Parallel Databases (2023) 41:603-638

Algorithm 4 Vertex Variant of kDPQ Path Searching Strategy

(V]

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

© ® N> TR w

Input: Pol network G = (V, E,W,P), Query point @ € G, Integer k,
Range e
Output: Semantic path sp

. sp,max_div < None, —1
: pq + Max-Heap() > Each element e in pg has 5 components — e.id,

e.priority, e.dist, e.res, e.path

: pq.Insert(Q, Oa 07 QP’ [QD
. explored < ()

: while pq # () do

v, prior, d, res, path < pq.Pop()
div_score <+ div(res)
if prior < max_div then
return sp
else if div_score > max_div then
sp, max_div < path, div_score
end if
explored.Add(v)
for each adj_v adjacent to v do
adj_d < d+ W (v,adj_v)
if adj_d < e then
adj_res < Swap(res|Jadjv.P, k)
adj_prior < f(res,adjv,e — adj_d, k)
adj -path < path.Append(adj-v)
if adj_v is not in explored or pq then
pq.Insert(adj_v, adj_prior, adj_d, adj res, adj_path)
else if adj_v is in pq with lower Priority then
replace that pq element with updated adj v
end if
end if
end for
end while
return sp

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 621

At the beginning, the priority queue that contains all vertices available for explo-
ration (Line 2) is initialized, and a set for remembering every expanded vertex
(Line 4). For each vertex in the priority queue, we use a data structure composed of
five components: id—the unique identification of the vertex; priority—the potential/
approximate diversity measured by evaluation function (Equation 1) if choosing this
vertex to explore; dist—the road-network distance from query point Q to this ver-
tex, res—the k-diversified results among the path so far, path—the path from query
point Q to this vertex.

Our goal is to find the path with greatest diversity, thus an intuitive way to
expand first is the vertex with the highest value from evaluation function A(v, €)
(Equation 1). The priority queue is sorted by the priority of each vertices in
descending order. When a vertex is popped out for expansion, stop computation
if the highest diversity result found so far exceeds the upper bound diversity
in the priority queue (Line 8). If a better solution might still exist, the search-
ing procedure will continue and add the adjacent vertices of the expanded one
into priority queue. As mentioned, the explored vertices (recorded in explored
set) are not inserted into priority queue again, to avoid duplication. Line 22 is
executed when better path is discovered to a vertex currently in the queue pq.

However, while the searching procedure by Algorithm 4 is efficient, as each
vertex must be visited at most once—the diversity of the result may be low,
especially in sparse network where an optimal path may need to backtrack to
previously visited vertices.

Fig.4 Distance pruning with
ellipse

@ Springer

622 Distributed and Parallel Databases (2023) 41:603-638

Fig.5 Distance pruning with
ellipse

Table 1 Top-10 most probably keywords for 6 latent topics (from TripAdvisor, with Natural Language
Tookit)

Topic Top-10 most probably Keywords (Probabilities in %)

1 ‘memorial’(1.8), ‘see’(1.7), ‘visit’(1.1), ‘statue’(1.1), ‘walk’(0.9), ‘monument’(0.8), ‘Lin-
coln’(0.8), ‘take’(0.8), ‘war’(0.7), ‘great’(0.7)

2 ‘park’(2.2), ‘beach’(1.9), ‘walk’(1.7), ‘place’(1.6), ‘great’(1.5), ‘nice’(1.4), ‘view’(1.2), ‘beauti-
ful’(1.2), ‘area’(1.0), ‘go’(1.0)

3 ‘great’(1.5), ‘show’(1.4), ‘see’(1.3), ‘go’(1.2), ‘good’(1.2), ‘get’(1.1), ‘seat’(1.0), ‘theater’(1.0),
‘time’(0.7), ‘would’(0.7)

4 ‘shop’(2.3), ‘place’(2.0), ‘restaurant’(1.9), ‘great’(1.7), ‘food’(1.5), ‘area’(1.4), ‘good’(1.3),
‘nice’(1.1), ‘lot’(1.1), ‘go’(1.0)

5 ‘dog’(5.7), ‘beer’(4.1), ‘great’(2.0), ‘good’(1.6), ‘brewery’(1.5), ‘place’(1.4), friendly’(1.0),
‘taste’(1.0), “food’(0.9), ‘fun’(0.9)

6 ‘museum’(1.7), ‘tour’(1.5), ‘visit’(1.4), ‘see’(1.2), ‘house’(1.1), ‘art’(0.9), ‘history’(0.9), ‘beau-

tiful’(0.9), ‘interest’(0.9), ‘building’(0.8)

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 623
. . - VSS-kDPQ = = ESS-kDPQ
diversity k = 2, € = 500 k=2,&=1000
2.0
1.6 ;
1.2 f.
0.8
0.4
of
0061 2 3 45 6 7 8 %% a 8 12 16 20 24 28 32
k=25,¢=500 k=5, =1000
1.6
1.2
0.8
0.4 /
0.05 . : : 0.0;
"0 1 2 3 4 5 6 7 8 "0 4 8 12 16 20 24 28 32
Time (sec)
Fig.6 Experimental result of short distance range
—-- Dijkstra Alg --:-- RWR
diversity k = 2, £ = 1500
2.0 —
1.6/ 1.6
1.2 1.2
0.8 0.8
0.4 0.4
0-00 o 18 27 36 45 54 63 72%° 0 20 40 60 80 100 120
k=5, € =3000
3.2 3.6
3.2
2.8 ¥
) 2.4 :
2.0 20l
1.6 16
1.2 1.2
0.8 0.8
0.4 0.4
9% & 16 24 32 40 48 56 64°°0 40 80 120160200240280329
Time (sec)
Fig.7 Experimental result of large distance range
Fig.8 Comparison result diversity ¢ = 1500, Edge Counting
regarding of the number of 2.5/ =
explored edges 2.0 TS
1.5}
- VSS-kDPQ
1.0 - = ESS-kDPQ
0.5 -« Dijkstra Alg
«sss RWR
0.0 = Y
0 500 1000 1500 2000

Number of explored edges

@ Springer

624 Distributed and Parallel Databases (2023) 41:603-638

A
Asna}mety/ & a As
jﬁiMuseuhn e /\

\a:,\ Museum

Chuml{of Samt'
Vmcent Fir:er

Wollman Ice
Skating Rink

(c) VSS result with diversity 1.85 (d) ESS result with diversity 2.67

Fig.9 First path example retrieved from baselines and our proposed algorithms

Er’ahtfﬂaﬁé’[P g - - 'Gréhd/aaza"a’,r -
FleaMarket e e FleaMarket
_~Museum of :
N C-hmese in~

Ameﬂca

i)

(c) VSS result with diversity 1.00 (d) ESS result with diversity 1.80

Fig. 10 Second path example retrieved from baselines and our proposed algorithms

@ Springer

Distributed and Parallel Databases (2023) 41:603-638

Table 2 Number of
unsuccessful k;DPQ queries
(out of 300 queries)

625
Vertex variant Edge variant RWR Dijsktra
k=2,d=500 181 185 219 175
k=2,d=1000 83 88 154 64
k=2,d=1500 41 48 107 21
k=2,d=3000 8 14 35 0
k=2,d=5000 11 7 9 0
k=4,d=500 181 185 221 175
k=4,d=1000 83 88 152 64
k=4,d=1500 41 48 107 21
k=4,d=3000 8 14 33 0
k=4,d=5000 11 9 9 0
k=6,d=500 181 185 224 175
k=6,d=1000 83 88 153 64
k=6,d=1500 41 48 111 21
k=6,d=3000 9 14 37 0
k=6,d=5000 11 8 9 0
k=38,d=500 181 185 226 175
k=28,d=1000 83 88 154 64
k=8,d=1500 41 48 97 21
k=38,d=3000 9 14 35 0
k=28,d=5000 11 8 9 0

@ Springer

626 Distributed and Parallel Databases (2023) 41:603-638

Algorithm 5 Edge variant of kDPQ Path Searching Strategy
Input: Pol network G = (V, E,W,P), Query point @ € G, Integer k,
Range e
Output: Semantic path sp

1: sp, max_div < None, —1
: pq + Max-Heap() > Each element e in pg has 6 components — e.id,
e.priority, e.dist, e.res, e.path, e.explored

(V]

3: pq.Insert(Q,0,0,Q.P, [Q],0)

4: while pq # 0 do

5: v, prior, d, res, path, ex < pq.Pop()

6: div_score < div(res)

7 if prior < max_div then

8: return sp

9: else if div_score > max_div then

10: sp, max_div < path, div_score

11: end if

12: for each adj_v adjacent to v do

13: if (v,adjv) € ex then Skip end if

14: adj-d < d+ W (v, adjv)

15: if adj_d <& then

16: adj_res « Swap(res|Jadj_v.P, k)

17: adj_prior < f(res,adjv,e — adj_d, k)

18: adj_path < path.Append(adj_v)

19: adj_ex + ex.Add(v, adj_v)

20: if adj_v is not in pq then

21 pq.Insert(adj_v, adj_prior, adj_d, adj res, adj_path, adj_ex)
22: else if adj_v is in pg with lower Priority then
23: replace that pq element with updated adj v
24: end if

25: end if

26: end for

27: end while
28: return sp

4.4.2 Edge-constrained searching strategy (ESS-kDPQ)

Algorithm 5 is proposed to prioritize diversity rather than efficiency. To achieve
that, instead of recording the expanded vertex globally, we remember the explored
directed edges for each path individually. To enforce that capability, a new com-
ponent—explored set—is added for each vertex in priority queue, and a test
(Line 13) takes place to avoid visiting an directed edge twice. We note that the

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 627

assumption of visiting each directed edge at most once does not exclude the opti-
mal solution from the search space, as the cost-minimizing path between a set of
Pols is a Hamilton cycle, which does not visit any directed edge more than once
[41, 42]. However, Algorithm 5 is not guaranteed to find this optimal path. While
it eventually explores all possible paths, and thus the optimal path, the greedy
Swap algorithm (Algorithm 2) may discard a Pol that is part of the optimal path.

4.4.3 Analysis

In both algorithms, the searching procedure runs until either termination condi-
tion is satisfied: (1) all the paths have been explored, or (2) no more path with
greater diversity exists. For Algorithm 4, we can guarantee that all paths have
been explored after at most |V| iterations—each issuing a e-range query at a ver-
tex v for the informed search forward estimation. Assuming that € is small, and
assume that an R-Tree can support range queries on two-dimensional data in

- Vertex variant == Edge variant -.... Random Walk with Restart = - Dijkstra
k=2,&=500 k=2, &=1000 k =2, € =1500

10 15 20 25

0.4 0.6

k=6, € =500

10 15 20 25
k=6, € =1500

100 15 20 25
k =8, & =1500

10 15 20 25

Fig. 11 Experimental results with short distance budget: k;DPQ. Each subfigure shows the average
diversity (y-axis) of 300 queries given the specified (x-axis) processing time (in seconds)

@ Springer

628

Distributed and Parallel Databases (2023) 41:603-638

- Vertex variant —=— Edge variant

k =2, &=3000

20 30 40 50 60
k =8, £ = 5000

50 60

+ Random Walk with Restart == -
k =2, £ = 5000

Dijkstra

20 30 40 50 60

k=4, &=5000

2.0

1.5

1.0
0.5

0.0
[} 10 20 30 40 50 60

k =6, € = 5000

30 40 50 60
k = 8, € = 3000

o 10 20 30 40 50 60

Fig. 12 Experimental results with large distance budget: <, DPQ. Each subfigure shows the average
diversity (y-axis) of 300 queries given the specified (x-axis) processing time (in seconds)

O(log |V|) in the average case [43], this algorithm has a run-time complexity of

O(|V| - log|V]).

For Algorithm 5, we can not guarantee a polynomial run-time. This algorithm
explores the set of all possible simple paths, which is exponential in the range €.
In the worst-case, where the network is a single clique connecting all nodes at the
same cost, the early termination criterion using Equation 1 cannot hold, such that
all paths must be explored. Despite the exponential worst-case complexity, our
experiments show that this algorithm terminates early in real-world settings.

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 629

5 Terminal constraint (k;DPQ)

We now discuss in detail the processing of the k;DPQ variant.

As mentioned, we assume that in addition to the initial location Q, we now
have a targeted terminal location 7. The main observation is that now the (calcu-
lation of the) lower distance bound changes. Namely, instead of considering only
Pols which are inside the disk centered at Q and with radius e—now we have an
ellipse E; ppg With:

1. Focal points at Q and T;
2. Major axisa = ¢/2

The reason for the value of the major axis a is that, as is well known from the defini-
tion of an ellipse as a locus of points, the sum of distances d(Q, P) + d(T, P) < 2a
for every point in the interior or along the boundary of the ellipse.

Figure 4 illustrates the basic properties and their use in the processing of K;DPQ.
As shown, the Pol P, even if it yields a good semantic diversity, cannot be incorpo-
rated as part of the path, since the it is outside of the ellipse Ey ppq. In contrast, the
Pol P, is in its interior—hence, it is feasible to incorporate it in the path, and still
have a sufficient budget to travel to 7. What is also shown in Fig. 4 is that starting
at P,, the pruning can be recursively repeated, except now we have another ellipse
bounding the feasible Pols on the sequence from P, towards 7. Namely, travelling
from Q to P, has already “consumed” d(Q, P,) of the overall €. Thus, the distance
budget from P, towards T is ¢/ = € — d(Q, P,). This defines a new value for the
major axis of the subsequent ellipse a’ = €’/2, and the focal points are now P, and
T.

In general, the equation of an ellipse [44] which is centered at a point (x,, y,) with
major axis a and minor axis b, when the axes are rotated for an angle 8 with respect
to the main coordinate axes is specified as:

[(x —x.)cos O + (y — y,.) sin 6] N [(x —x.)sin@ + (y — y,) cos 0] _
a? b2 -

3)

To determine the parameters in Equation 3, we rely on the known (values of the)
arguments from the k;DPQ, which include the location of the starting point Q, ter-
minal point 7, and the distance budget e. We have the following:

Xe =g +x0)/2, ye =g +yr)/2
c= \/(xQ —xp)% + (vg = yp)?)/2 @

a=¢/2, b=Va*-c2

One last parameter to determine is the angle 8. Towards that, let s denote the slope of
the line between Q and T (i.e., s = (yr — yo)/(x7 — Xp)). Then, € is simply arctan(s).

@ Springer

630 Distributed and Parallel Databases (2023) 41:603-638

The main impact of the fixed terminal point is, in a sense, in the flexibility of the
(execution of) Algorithm 2—more specifically, in the (boundary of the) available
Pols and the value of 6 in Equation 2. Specifically, before conducting the “if—else”
test (Lines 3 ~ 9) in Algorithm 2, we need properly update the leftover budget £/,
and set the next focal point (note that one focal point is always fixed to be the termi-
nal Pol 7).

The way this observation is translated more explicitly in the processing algo-
rithms (cf. Sect. 4) is that instead of simple if test whether adj_d < € (Line 16 in
Algorithm 4 and Line 15 in Algorithm 5), we need to validate if the candidate vertex
is actually inside the ellipse with foci in the starting point and terminal, and with
major axis equal to the half of distance budget.

We now turn the attention to the changes regarding the use of DAR-Tree for
processing k;DPQ. Its creation (as part of pre-processing) is not affected—what
is changed is the MBR of the range query (cf. Algorithm 3). Specifically, what we
need now is an axes-parallel MBR for Ej ppg. Figure 5 shows the corresponding
modification of the top-portion of Fig. 3 from Sect. 4.3, which illustrates the ellipse
E, ppq With the foci Q and T and its corresponding axes-parallel MBR (dashed pur-
ple edges). The construction of that MBR is based on calculating the horizontal and
vertical tangents (i.e., the extremal points of E; DPQ with respect to each of the
axes) [44, 45]. But one possible approach is to convert Equation 3 for a general (i.e.,
rotated and translated) ellipse into its parametric form:

X =X, + a X cos(t) cos(f) — b X sin(¢) sin(0)

y =Y.+ b Xxsin(t) cos(f) + a X cos(¢) sin(§))

where t € [—x, x].

Taking the derivatives dx/dt and dy/dt, setting them to O and finding the cor-
responding solutions in terms of ¢ will yield the corresponding two values of the
extreme points that can be used for determining the axes-parallel MBR of E;_pp(,.

We close this section with a note that when the user would like to have the ter-
minal point coincide with the starting point of the trip (e.g., starting at the hotel
where the user is staying, and returning there), the initial ellipse E} pp, degener-
ates to a circle with raduis £/2. However, once the first Pol is selected, the subse-
quent k — 2 of them (with the last one being 7)) will use the iterative construction
of the ellipses with foci at the most recently selected Pol and 7, appropriately
modifying the residual budget (i.e., the shape of the ellipses).

6 Experimental evaluation

We now present a comparative study of our proposed algorithms against two
baseline approaches, using real-world datasets. The datasets used for construct-
ing the Pol Network consist of two main components: (1) Road network obtained
from OpenStreetMap; (2) Attractions as well the related reviews crawled from

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 631

TripAdvisor. Obtaining this data for Manhattan, New York City, USA, yields a
road network having 55, 686 vertices, 140, 983 edges and 622 attractions. We
note that only the Pols listed on the first 20 pages at TripAdvisor are utilized in
our experiment due to further Pols not having sufficient textual reviews to gen-
erate a latent topic distribution. On average, each Pol is associated with 27.25
reviews and each reviews contains an average of 29.42 words (Table 1).

To demonstrate the effectiveness, we use Dijkstra algorithm [46] and Random
Walk with Restart (RWR) [47] as the alternative baselines. In order to fairly com-
pare the performances of each algorithms, we set the timer for RWR as the maxi-
mum computation time of the other three algorithms under the same experiment
settings.

The experiments are conducted on a PC with Intel(R) Xeon(R) CPU E3-1240
v6 @3.70GHz, 32 GB RAM and 512 GB disk storage. Windows 10 Enterprise
64-bit is the operating system, and all the algorithms are implemented by Python
3. Both the datasets and code are available at https://github.com/XTRunner/k-
Most-Diverse-Path-Query.git.

6.1 Latent topic model

The dataset used for training latent topic-based diversity model is as well from Tri-
pAdvisor, which includes 1, 626 attractions in four cities across the U.S.—Chicago,
Miami, Washington D.C. and San Diego. Each of them, on average, is associated
with 18.54 reviews and each reviews contains 30.68 words. To demonstrate the
validity of our trained model, Tabble 1 shows the ten largest probability values of
each topic.

Intuitively, we can observe that the six topics clustered by our learning model are
reasonable, which, based on the keywords in each topic, correspond to memorial
building, beach park, theater, shop & restaurant, bar, and museum. Some keywords
appear in most topics, such as “great” and “see”, but with distinct frequencies.
Moreover, there are many discriminative and informative keywords, e.g. “memo-
rial”, “theater” and “museum”, appearing with relatively high probability in specific
topic only. Furthermore, in each topic, all the keywords are holding a close relation-
ship between each others, such like “memorial”, “monument” and “war” in topic 1,

ELINT3

as well “museum”, “art” and “history” in topic 6.

6.2 Comparison of searching strategies—kDPQ

To show that our proposed searching strategies are generally applicable, 150 ver-
tices are picked uniformly at random. Figure 6 presents the results when the dis-
tance range € is relatively limited, i.e., 500 and 1000. The x-axis shows the com-
putation time in seconds and the y-axis is the diversity score. For brevity, we show
the results for k = 2 and k = 5. As can be clearly observed, RWR (dotted blue line)
is always able to find some good paths in a short time at the very beginning due
to its cheap computational complexity. However, our proposed algorithms, either
VSS-kDPQ (Algorithm 4, black solid line) or ESS-kDPQ (Algorithm 5, red dashed

@ Springer

https://github.com/XTRunner/k-Most-Diverse-Path-Query.git
https://github.com/XTRunner/k-Most-Diverse-Path-Query.git

632 Distributed and Parallel Databases (2023) 41:603-638

line), outperform RWR in terms of diversity of the result after a few seconds. Dijk-
stra’s algorithm (green dash-dot line), as a breadth-first searching strategy, always
achieves the lowest diversity, as it explores parts of the network that may have few
(or not) points of interest. Specifically, for e = 500m, we observe that for both k = 2
and k = 5, VSS-AkDPQ and ESS-kDPQ terminate in an average of two and three sec-
onds, respectively. Note that in Fig. 6, we discontinue drawing the achieved diversity
of an algorithm once it has terminated.

We further observe that for the case of € = 500m the random walk approach is
able to achieve the highest diversity. This is due to relatively low number of possible
paths having this cost, allowing RWR to converge on any of them. While ESS-kDPQ
is also guaranteed to find the best path (as it explores all possible paths), the order in
which it processes Pols may lead to discard Pols that are part of the optimal solution
in the Swap heuristic used to select the k-most diverse subset (Algorithm 2). The
RWR baseline suffers from the same problem (as it also uses the Swap heuristic to
select Pols), but RWR is able to restart to possibly find the same Pols in a different
order to correct the Swap heuristic.

For a range of € = 1000m, we see that the much large set of possible paths pre-
vents RWR from finding better solutions than our proposed approaches. In this case,
we see that VSS-kDPQ finds a solution in about 8 seconds, whereas ESS-kDPQ
takes about 20 seconds. We also note that in this case, all competitor approaches
yield the approximately same diversity among the 150 queries.

For large query ranges &, our results are shown in Fig. 7. We observe that our pro-
posed solutions more clearly outperform the baselines when we enlarge the distance
range to 1, 500m or 3, 000m. Note that when € = 3,000m and k = 5, the computa-
tion time for ESS-kDPQ is around 600s. Yet, we observe that the result of the ESS-
kDPQ outperforms all other approaches in terms of result diversity after about 200s,
yielding even more diversity beyond that.

We further observe that for the case of k = 2, the RWR approach yields the high-
est diversity (approaching a diversity of 2.0) in the least amount of time. This is
because there may be many combinations of attractions that are perfectly diverse,
i.e., have (near-) zero overlap among their topics. RWR is able to randomly find any
such pair of attractions quickly. However, for k = 5, we observe that RWR has a
much harder time, i.e., it requires more time to randomly run into a good combina-
tion of five Pols. Yet, the random walk does converge such that, given infinite time,
RWR with almost certainly (i.e., with a probability approach 1) find the optimal
path, but for large search ranges and k > 2, this may take a very long time.

In addition to comparing wall-clock time, we analyzed the number of network
edges explored by each algorithm as a system-independent measure of I/O opera-
tion. Figure 8 shows the number of explored edges for each algorithm, averaged
for k =2,3,4,5. We observe similar behavior as for the run-time experiments: The
RWR baseline aimlessly explores edges hoping to accidentally find Pols of comple-
mentary diversity; VSS-kDPQ quickly yields high diversity results, but gets outper-
formed by ESS-kDPQ after a large number of explored edges. Both outperform the
Dijkstra baseline.

In sum, VSS-kDPQ consistently obtains high-diversity results in just a few sec-
onds in all settings. Although VSS-kDPQ outperforms the competitors during its

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 633

whole running time, it eventually terminates not finding any more diverse results.
ESS-kDPQ continues searching and is able to discover more diverse results given
longer time. Thus, it is fair to state that VSS-kDPQ is our best choice if fast response
time is required, while ESS-kDPQ retrieves a better path with greater diversity given
enough time. We note that RWR is a good choice for very small ranges or k < 2,
while the Dijkstra baseline is dominated by other solutions.

6.3 Comparison of searching strategies—k;DPQ

We now present the experimental evaluations regarding the processing of K;DPQ.
As it turns out, adding the terminal location as a constraint has interesting implica-
tions on the behavior of the processing algorithms and their standing with respect
to the baselines. For this experiment, we have 300 different pairs (Q, T) of initial
location Q and terminal location 7 on the Manhattan road network. For additional
details and reproducibility, details and visualization of initial and terminal loca-
tions can be found at the github, https://github.com/XTRunner/k-Most-Diverse-
Path-Query.git. To justify the efficiency and effectiveness of our algorithms, around
2/3 of (Q, T) pairs are randomly selected from the Manhattan area with high Pol
density and the rest are distributed in other area. Moreover, recall that we have dis-
tance limit € in our query settings, and thus the distance between Q and T is also
significant. In our experiment, 126 pairs of (Q, T) have network distances between
0 and 500 meters and 110 pairs have network distances from 500 meters to 1k
meters. The remaining 64 pairs have network distances above 1k meters but less
than 2k meters. For each of the 300 resulting (Q, T)-pairs we demonstrate diversity
and run-time for k;DPQ(G, Q, T, div, €, k) using the Manhattan Pol-network G, and
the topic-based diversity function div described in Sect. 3.3. We report our results
for k =2,4,6,8 (i.e., diverse Pols to be returned) and having distance threshold
€ = 500, 1000, 1500, 3000, 5000m.

6.3.1 Qualitative evaluation of returned paths

In this section, we first present two example paths retrieved from baselines and our
proposed algorithms to demonstrate the practicality of our proposed query.

Figure 9 shows the first example with distance limit 3.5k meters and k = 3, where
green diamond and purple star indicate initial and terminal location, respectively.
Dijkstra algorithm (Fig. 9a) happened to meet one Pol along its shortest path, while
RWR, after randomly searching for long enough time, discovered a great path with
3 Pols on it. However, as the names of Pols in Fig. 9b indicate, “Asia Society and
Museum” and “China Cultural Center” are semantically similar to each other and
thus the diversity was lower than the tuple combination collected by VSS-k;DPQ in
Fig. 9c. Eventually, Fig. 9D presents the path found by ESS-k;DPQ with the great-
est diversity. Compared Fig. 9c and D, we can observe the idea behind our proposed
Algorithm 5—restrict visiting each vertex no more than once will prune the optimal
result.

@ Springer

https://github.com/XTRunner/k-Most-Diverse-Path-Query.git
https://github.com/XTRunner/k-Most-Diverse-Path-Query.git

634 Distributed and Parallel Databases (2023) 41:603-638

Figure 10 shows another example where initial and terminal location are geo-
graphically near to each other. We have distance budget 1.5k meters and assume
the visitor prefers not to visit more than 2 Pols. In such scenario, we can see from
Fig. 10a and b that both Dijkstra and RWR did not have luck on finding any Pol at
this time. Our proposed algorithms was able to further explore the network beyond
the terminal location (shown as purple star). Due to the restriction of visitng each
vertex at most once, VSS-k;DPQ was not able to collect “The Drawing Center” as
ESS-k;DPQ did in Fig. 10d.

6.3.2 Evaluation of successful searches

Due to the additional constraint of having to terminate at location 7, under certain
settings of k and € it may not be possible to find any path between Q and 7, regard-
less of diversity.

For consistency, we use VSS-k;DPQ and ESS-k;DPQ to denote the vertex and
edge variants (adaptations of Algorithms 4 and 5). Table 2 shows the number of
unsuccessful k;DPQ queries for the two proposed approaches, as well as for the two
baseline approaches RWR and Dijkstra. Each experiment was terminated after 60s
of searching time, and a query was consider successful if any path between Q and T
(regardless of the diversity) was returned.

First, we observe that Dijkstra algorithm, whose result is only related to the
given distance budget, is able to succeed in finding a path (regardless of diver-
sity) for all cases having a distance budget € > 3000m. For € = 1500m, there are
21 unsuccessful cases for Dijkstra algorithm to find a path, which is because 21
of the 300 generated (Q, T) of initial location Q and terminal 7 have a network
distance greater than 1500m and there simply exists no path having a distance
of 1500m or less. While Dijkstra algorithm has the best success in terms find-
ing (any) path between Q and 7, it turns out that the returned paths often do not
exhibit high semantic diversity. For RWR we discover that for a large number
of (Q, T)-pairs it is not able to find a path. In particular when € = 1500m, for
the cases where the distance between Q and T is large, it become exceedingly
unlikely that RWR randomly chooses the correct direction to reach T before the
distance budget € is exceeded and RWR is forced to restart.

For both VSS-k;DPQ and ESS-k;DPQ we observe that the number of unsuc-
cessful searches is higher than the ones for Dijkstra algorithm, but much lower than
RWR. The reason that less successful searches are achieved by our proposed strate-
gies than using Dijkstra algorithm is that both VSS-k;DPQ and ESS-k;DPQ prior-
itize expanding paths greedily towards area of high diversity, which may not neces-
sary lead into a direction from which the terminal 7 can still be reached in a manner
that will retain the total distance bound e. Since VSS-kDPQ and ESS-kDPQ are not
allowed to reuse the same vertex and directed edge, respectively, more than once,
choices may lead to explore partial paths from which T can not longer be reached.

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 635

Table 2 only presents how many unsuccessful cases of the 300 generated queries
any path could not be found, but without assessing the quality in terms of semantic
diversity. The diversity of the returned paths is evaluated in the following.

6.3.3 Evaluation of diversity and run-time

Figures 11 and 12 show the run time in seconds (x-axis) versus the average achieved
diversity of returned paths (y-axis) for our experiments having k = 2,4,6,8 and
e = 500, 1000, 1500, 3000, 5000m. Each individual subfigure can be found at the
github, https://github.com/XTRunner/k-Most-Diverse-Path-Query/tree/main/exper
iment_related/Figures. While all algorithms were given a time limit of 60s to find
diverse paths from Q to 7, we limit the x-axis to exclude time intervals where we
could not observe any major changes in the values of the diversity. For these experi-
ment, we treat any query for which no path between Q and T (see Table 2) was
returned as a diversity of zero.

We can observe that with limited distance budget & = 500, 1000, 1500m
(Fig. 11), the diversity on y-axis is always below 1.0, while the diversity is
increased above 1.0 with greater £ (Fig. 12). One thing that becomes apparent
is that the edge variant ESS-k;DPQ (red dashed line in both Figs. 11 and 12)
yields the highest diversity paths across all settings if given sufficient process-
ing time. Particularly, for € = 1000, 1500, 3000m, the diversity difference between
ESS-k;DPQ and other algorithms is substantial—after more than Is of time,
ESS-k;DPQ outperforms all others in terms of diversity. However, the gap is rel-
atively small when € = 500m because the searching space is limited and when
€ = 5000m because RWR is given more flexibility on both budget and running
time. Another interesting observation is the performance of RWR, which yields
low diversity for the case of € = 1500m. But as the distance budget € increases,
which gives RWR more options to explore the network before it has to restart
because of exceeding &, the chance of finding random paths between Q and T
which may have (by chance) high diversity is enlarged. Due to this observation,
we realize that for € = 5000m, RWR yields comparable results as ESS-k;DPQ, in
particular for lower values of k. For VSS-k;DPQ, we discover that the algorithm
quickly terminates, but the resulting diversity of paths is not very ideal. In our
experiments, VSS-k;DPQ and Dijkstra algorithm are dominated by ESS-k;DPQ
for k;DPQ queries, such that there are no settings of distance budget €, number
of returned Pols %, and run-time budget (x-axis in Figs. 11 and 12) where these
approaches perform better.

We conclude this section with the observation that ESS-k;DPQ is consistently
able to retrieve high diversity paths between starting location Q and terminal 7.
While Dijkstra is always able to find a path (if a path satisfying € exists), the diver-
sity of such a path is generally low, as this approach does not aim at visiting high-
diversity Pols across the generated path.

@ Springer

https://github.com/XTRunner/k-Most-Diverse-Path-Query/tree/main/experiment_related/Figures
https://github.com/XTRunner/k-Most-Diverse-Path-Query/tree/main/experiment_related/Figures

636 Distributed and Parallel Databases (2023) 41:603-638

7 Conclusions

We introduced two novel types of queries—kDPQ and k;DPQ—which enable the
users to generate a path that will ensure a visit of £ Pol’s with high diversity, while
ensuring that the total trip to visit them, from a given starting vertex Q, is within a
user-specified bound €. The main difference between them is that k;DPQ also pro-
vides the option of specifying a desired terminal location for the trip.

We also introduced algorithmic solutions for their processing which, for effi-
ciency, rely on a novel indexing structure—DAR-Tree. In addition to the spatial
component of the R-tree, DAR-Tree also stores in each directory node the respective
upper-bounds of diversity achievable by all Pols whose spatial locations are inside
that node.

Our proposed algorithms quickly retrieve high-diversity paths in an A*-like way,
by greedily exploring network vertices that promise the highest potential gain using
a forward estimation using the maximum possible diversity retrieved from the index.
Our experimental evaluation using real-world data from OpenStreetMap demon-
strated that the proposed algorithms outperform the baseline based on a breadth-first
search and random walks, and provide a trade-off between run-time and path diver-
sity. We also observed that for the k;DPQ variant—while enabling the flexibility
of selecting a terminal—the benefits of the vertex variant (cf. Algorithm 4) are not
manifested when the distance limit € is close to the distance between the starting
point and the terminal, while the edge variant is still able to discover great-diversity
semantic path.

Our future work will focus on three aspects: (1) investigate the impact of dif-
ferent diversity measures; (2) investigate extensions to kDPQ and k;DPQ that will
enable returning a collection of trajectories that will capture other constraints (e.g.,
price limit for Pol visits), along with different aggregating indexing structures; and
(3) develop data structures and algorithms which will enable efficient updates to the
active paths when traffic conditions change or Pol descriptors (e.g., different lunch/
dinner menu; special exhibits) are updated.

Acknowledgements Dr. Ziifle is supported by National Science Foundation AitF Grant CCF-1637541.
Dr. Trajcevski is supported by National Science Foundation Grant SWIFT 203024.

References

1. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. SIGMOD Rec. 24, 71-79
(1995)

2. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest and reverse nearest neighbor queries
for moving objects. VLDB J. 15(3), 229-249 (2006)

3. Bao,J., Chow, C.-Y., Mokbel, M.F., Ku, W.-S.: Efficient evaluation of k-range nearest neighbor que-
ries in road networks. In: 2010 Eleventh International Conference on Mobile Data Management, pp.
115-124 (2010)

4. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In:
2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 230-241 (2013)

@ Springer

Distributed and Parallel Databases (2023) 41:603-638 637

10.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for
enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual
ACM International Symposium on Advances in Geographic Information Systems, pp. 1-8 (2007)
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L.,
Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories mod-
eling and analysis. ACM Comput. Surv. 45(4), 1-32 (2013)

Costa, C.F., Nascimento, M.A.: Towards spatially-and category-wise k-diverse nearest neighbors
queries. In: Advances in Spatial and Temporal Databases, pp. 163-181 (2017)

Teng, X., Yang, J., Kim, J.-S., Trajcevski, G., Ziifle, A., Nascimento, M.A.: Fine-grained diversifica-
tion of proximity constrained queries on road networks. In: Proceedings of the 16th International
Symposium on Spatial and Temporal Databases, pp. 51-60 (2019)

Costa, C.F., Nascimento, M.A., Schubert, M.: Diverse nearest neighbors queries using linear sky-
lines. Geolnformatica 22(4), 815-844 (2018)

Grambow, G., Oberhauser, R., Reichert, M.: Semantically-driven workflow generation using declar-
ative modeling for processes in software engineering. In: 2011 IEEE 15th International Enterprise
Distributed Object Computing Conference Workshops, pp. 164-173 (2011)

Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. Formal Methods Softw Eng 5256, 355—
374 (2008)

Kelci, M., Pratt, R., Galati, M.: The traveling salesman traverses the genome: using sas® optimiza-
tion in jmp® genomics to build genetic maps. In: In SAS Global Forum (2012)

Teng, X., Trajcevski, G., Kim, J., Ziifle, A.: Semantically diverse path search. In: 21st IEEE Interna-
tional Conference on Mobile Data Management (MDM), pp. 69-78 (2020)

Issa, H., Damiani, M.L.: Efficient access to temporally overlaying spatial and textual trajectories. In:
17th IEEE International Conference on Mobile Data Management (MDM), pp. 262-271 (2016)
Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents
and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 335-336 (1998)

Jain, A., Sarda, P., Haritsa, J.R.: Providing diversity in k-nearest neighbor query results. In:
Advances in Knowledge Discovery and Data Mining, pp. 404—413 (2004)

Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S., Varadarajan, K.R.: Diverse near neighbor prob-
lem. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, pp.
207-214 (2013)

Vieira, M.R., Razente, H.L., Barioni, M.C., Hadjieleftheriou, M., Srivastava, D., Traina, C., Tsotras,
V.J.: On query result diversification. In: IEEE 27th International Conference on Data Engineering,
pp. 1163-1174 (2011)

Amagata, D., Hara, T.: Diversified set monitoring over distributed data streams. In: Proceedings of
the 10th ACM International Conference on Distributed and Event-Based Systems, pp. 1-12 (2016)
Lee, K.C.K., Lee, W.-C., Leong, H.V.: Nearest surrounder queries. In: 22nd International Confer-
ence on Data Engineering, p. 85 (2006)

Kucuktunc, O., Ferhatosmanoglu, H.: A-diverse nearest neighbors browsing for multidimensional
data. IEEE Trans. Knowl. Data Eng. 25(3), 481-493 (2013)

Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th International
Conference on Data Engineering, pp. 421-430 (2001)

Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword
search on road networks. In: Advances in Database Technology-EDBT 2014: 17th International
Conference on Extending Database Technology, pp. 367-378 (2014)

Zheng, B., Zheng, K., Scheuermann, P., Zhou, X., Nguyen, Q.V.H., Li, C.: Searching activity trajec-
tory with keywords. World Wide Web 22(3), 967-1000 (2019)

Rice, M.N., Tsotras, V.J.: Exact graph search algorithms for generalized traveling salesman path
problems. In: International Symposium on Experimental Algorithms, pp. 344-355 (2012)

Yang, Y., Li, Z., Wang, X., Hu, Q.: Finding the shortest path with vertex constraint over large
graphs. Complexity 2019, 8728245-1872824513 (2019)

Teng, X., Trajcevski, G., Ziifle, A.: Semantically diverse paths with range and origin constraints. In:
Proceedings of the 29th International Conference on Advances in Geographic Information Systems,
pp- 375-378 (2021)

Gao, R., Li, J., Li, X., Song, C., Zhou, Y.: A personalized point-of-interest recommendation model
via fusion of geo-social information. Neurocomputing 273(C), 159-170 (2018)

@ Springer

638

Distributed and Parallel Databases (2023) 41:603-638

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Han, P, Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized point-of-interest recom-
mendation. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intel-
ligence, pp. 2484-2490 (2020)

Liu, Y., Pham, T.-A.N., Cong, G., Yuan, Q.: An experimental evaluation of point-of-interest recom-
mendation in location-based social networks. Proc. VLDB Endow. 10(10), 1010-1021 (2017)

Zhou, F., Yin, R., Zhang, K., Trajcevski, G., Zhong, T., Wu, J.: Adversarial point-of-interest recom-
mendation. In: The World Wide Web Conference, pp. 3462-34618 (2019)

Zhao, S., King, I., Lyu, M.R.: A survey of point-of-interest recommendation in location-based social
networks. CoRR (2016) 1607.00647

Zhou, F., Wu, H., Trajcevski, G., Khokhar, A., Zhang, K.: Semi-supervised trajectory understanding
with poi attention for end-to-end trip recommendation. ACM Trans. Spatial Algorithms Syst. 6(2),
1-25 (2020)

Schaake, K., Burgers, J., Mulder, C.H.: Ethnicity, education and income, and residential mobility
between neighbourhoods. J. Ethn. Migr. Stud. 40(4), 512-527 (2014)

Yao, J., Wong, D.W.S., Bailey, N., Minton, J.: Spatial segregation measures: a methodological
review. Tijdschr. Econ. Soc. Geogr. 110(3), 235-250 (2019)

Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Pro-
ceedings of the 31st International Conference on Very Large Data Bases, pp. 853-864 (2005)
Papadimitriou, C.H., Steiglitz, K.: Some complexity results for the traveling salesman problem. In:
Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, pp. 1-9 (1976)
Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Longman Publishing Co., Inc, USA (1984)

Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of the 1984
ACM SIGMOD International Conference on Management of Data, pp. 47-57 (1984)

Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses.
In: Advances in Spatial and Temporal Databases, pp. 443-459 (2001)

Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem.
INFOR: Inform. Syst. Operat. Res. 31(1), 39-44 (1993)

Golden, B., Bodin, L., Doyle, T., Stewart, W., Jr.: Approximate traveling salesman algorithms. Oper.
Res. 28(3—part—ii), 694711 (1980)

Hwang, S., Kwon, K., Cha, S.K., Lee, B.S.: Performance evaluation of main-memory r-tree vari-
ants. In: Advances in Spatial and Temporal Databases, pp. 10-27 (2003)

Serdarushich, V.: Analytic Geometry. Nabla Ltd (2014)

Silverman, R.A.: Modern Calculus and Analytic Geometry. Dover (2012)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik, 269—
271 (1959)

Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: Sixth
International Conference on Data Mining, pp. 613-622 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

	Searching semantically diverse paths
	Abstract
	1 Introduction
	2 Related work
	3 Background and problem definition
	3.1 Preliminaries
	3.2 The k-most diverse path query
	3.3 Topic-based diversity

	4 Efficient processing of kDPQ
	4.1 Heuristic and evaluation function
	4.2 Informed search
	4.3 Diversity aggregated R-tree
	4.4 Efficient kDPQ processing—greedy best-first search
	4.4.1 Vertex-constrained searching strategy (VSS-kDPQ)
	4.4.2 Edge-constrained searching strategy (ESS-kDPQ)
	4.4.3 Analysis

	5 Terminal constraint ( DPQ)
	6 Experimental evaluation
	6.1 Latent topic model
	6.2 Comparison of searching strategies—kDPQ
	6.3 Comparison of searching strategies—DPQ
	6.3.1 Qualitative evaluation of returned paths
	6.3.2 Evaluation of successful searches
	6.3.3 Evaluation of diversity and run-time

	7 Conclusions
	Acknowledgements
	References

