
Special Session: Machine Learning for Embedded System Design

Erika S. Alcorta
Andreas Gerstlauer

The University of Texas at Austin
Austin, TX, USA

{esalcort,gerstl}@utexas.edu

Chenhui Deng
Qi Sun

Zhiru Zhang
Cornell University
Ithaca, NY, USA

{cd574,qs228,zhiruz}@cornell.edu

Ceyu Xu
Lisa Wu Wills
Duke University
Durham, NC, USA

ceyu.xu@duke.edu,lisa@cs.duke.edu

Daniela Sánchez Lopera
Wolfgang Ecker

Infineon Technologies AG
Technical University of Munich

Munich, Germany
{firstname.lastnames}@infineon.com

Siddharth Garg
New York University
New York, NY, USA

siddharth.j.garg@gmail.com

Jiang Hu
Texas A&M University
College Station, TX, USA

jianghu@tamu.edu

ABSTRACT

Embedded systems are becoming increasingly complex, which has

led to a productivity crisis in their design and verification. Although

conventional design automation coupled with IP and platform reuse

techniques have led to leaps in design productivity improvement,

they face fundamental limits given that most design optimization

and verification problems remain NP-hard and that reuse of pre-

designed IP blocks and platforms inherently limits flexibility and

optimality. At the same time, machine learning (ML) has recently

made unprecedented advances and created phenomenal impact in

various computing applications. In particular, application of ML

techniques as a way to extract knowledge and learn from existing

design, optimization and verification data has recently seen a lot

of excitement and promise at lower physical and integrated circuit

levels of abstraction. Using ML has the potential to similarly close

the complexity gap in embedded system design, but correspond-

ing ML-based approaches for embedded system optimization and

verification at higher levels of abstraction are still at their infancy.

This paper presents the current state of the art, along with op-

portunities and open challenges, in the application of ML methods

for embedded system design and optimization. We discuss design

and optimization at different levels of abstraction ranging from

system-level modeling and optimization and high-level synthesis to

RTL and micro-architecture design, bringing together perspectives

from different communities in both academia and industry.

CCS CONCEPTS

· Computer systems organization → Embedded systems; ·

Hardware →Methodologies for EDA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODES/ISSS ’23 Companion, September 17ś22, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0289-1/23/09.
https://doi.org/10.1145/3607888.3608962

KEYWORDS

Machine Learning, Embedded System Design

ACM Reference Format:

Erika S. Alcorta, Andreas Gerstlauer, Chenhui Deng, Qi Sun, Zhiru Zhang,

Ceyu Xu, LisaWuWills, Daniela Sánchez Lopera,Wolfgang Ecker, Siddharth

Garg, and Jiang Hu. 2023. Special Session: Machine Learning for Embed-

ded System Design. In 2023 International Conference on Hardware/Software

Codesign and System Synthesis (CODES/ISSS ’23 Companion), September

17ś22, 2023, Hamburg, Germany. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3607888.3608962

1 INTRODUCTION

With the increasing complexity and heterogeneity of processors

and applications, embedded systems design and runtime manage-

ment have become more challenging than ever before. The vast

design decision space makes it impractical to exhaustively explore

every possibility. Thus, intelligent and fast solution search has been

essential to finding highly optimized designs.

At any level of abstraction in the design process, two main com-

ponents are required: a decision-maker or optimizer, and a predic-

tive model or cost function, as shown in Figure 1. The optimization

can be performed through either constructive or iterative search.

A constructive algorithm starts with a blank solution and makes

one decision at a time until a complete solution is obtained, e.g.,

using greedy heuristics. An iterative approach starts from a com-

plete candidate design that is gradually refined to improve cost

metrics, e.g., using meta-heuristics such as simulated annealing. In

either case, the predictive model evaluates a partial or complete

design candidate and outputs estimations of the metrics that the

designer is optimizing for, i.e., the cost of the design decisions. The

optimizer in turn considers the current design’s cost, the system

input description and constraints to output valid and optimized

system design decisions.

Due to the high design complexity, it is a huge challenge to

achieve high-fidelity yet fast cost and optimization functions. Con-

ventional techniques for obtaining cost estimates, such as analytical

models, often suffer from inaccuracies, while simulations are too

time-consuming for frequent use in optimization processes. Sim-

ilarly, traditional optimization approaches relying on heuristics







CODES/ISSS ’23 Companion, September 17–22, 2023, Hamburg, Germany Alcorta, et al.

approaches have shown promise in various domains, their suitabil-

ity for SLD is still a matter of consideration. SLD requires models

that are not only accurate but also fast and efficient. DL models

can be computationally expensive, and their training and inference

times may exceed the time required for traditional low-level simula-

tions, diminishing their practical utility. Furthermore, DL requires

huge amounts of data for training, which is difficult to obtain at

the system level. In scenarios where hardware is not yet available,

collecting sufficient training data can be difficult. As outlined in

this section, this calls for development of novel simple but effective

learning formulations specifically for SLD.

Within this context, despite the advancements in automated

feature engineering, human expertise still plays a vital role at the

system level. Feature engineering helps reduce model complex-

ity and training costs by identifying and incorporating relevant

features into the learning formulation itself. However, striking a bal-

ance between involving human experts and leveraging automated

feature engineering techniques remains a challenge.

Selecting training sets that adequately represent the diverse and

complex behaviors of real-world workloads is generally a challenge.

Designing training sets that generalize well across different sys-

tem behaviors is crucial but challenging due to the vast design

spaces. Some prior work has proposed generating synthetic data to

overcome this challenge [48], but more research is needed.

Finally, SLD often requires integration of heterogeneous compo-

nents from different vendors into system-on-chip (SoC) or other

platforms. The absence of a centralized marketplace for models

hinders the adoption and dissemination of ML models for SLD.

The lack of a platform or repository where designers can access

and share pre-trained models limits the collaboration and wider

adoption of ML approaches in this field.

3 ML FOR HIGH-LEVEL SYNTHESIS

As modern embedded systems face rising complexity in both ap-

plications and hardware platforms, HSL has become a popular

alternative to traditional RTL methodology to improve design pro-

ductivity [15]. By raising the level of abstraction to untimed or

partially timed design and providing a wide range of configuration

options (e.g., pragmas), HLS facilitates fast exploration of various

design alternatives. It achieves this by quickly generating RTL im-

plementations for different configuration sets. This accelerated de-

sign iteration process empowers the designers to navigate through

a vast design space in a more productive manner. However, the

advantages of HLS come with a trade-off: it lacks detailed and cru-

cial information from downstream implementation steps such as

logic synthesis, placement, and routing. Consequently, HLS tools

often produce resource and timing estimates that significantly devi-

ate from the actual post-implementation quality-of-results (QoRs).

This discrepancy poses a challenge for designers aiming to conduct

effective design space exploration (DSE) in order to achieve de-

sired QoRs. As a result, designers may need to invest a substantial

amount of time in pushing the synthesized designs through subse-

quent stages of RTL synthesis and physical design. This trade-off

offsets the benefits of HLS, despite its notable speed advantage over

later steps in the implementation process [47].

Clearly, there is an inherent tension between speed and accuracy

of QoR estimation in HLS-based design. Addressing this tension

is crucial for achieving rapid design closure. To this end, recent

research focuses on leveraging ML techniques in HLS to improve

the quality of QoR estimation and reduce the need for extensive

human supervision [27]. These efforts can be broadly categorized

into the following two areas: (1) ML-based QoR estimation models:

The primary obstacle to achieving efficient design closure lies in

the correlation across different design stages. ML techniques, such

as regression and classification models, have demonstrated their

ability to narrow the QoR miscorrelation gap by providing faster

and more precise estimation across stages; (2) Intelligent DSE with

ML: Recent advancements in intelligent decision-making frame-

works for DSE in HLS have shown promising results in achieving

design closure. Techniques such as Bayesian optimization or rein-

forcement learning enable more informed decision-making, leading

to improved design outcomes.

In the following, we provide a concise overview of the application

of ML in HLS. We examine representative ML techniques utilized in

the aforementioned research areas of QoR estimation and intelligent

DSE. Additionally, we outline the key challenges associated with

employing ML in HLS.

3.1 ML for High-Level QoR Estimation

Achieving accurate quality of results estimation at the HLS stage

is challenging due to the cumulative effects of complex transfor-

mations across multiple implementation stages. To address the

disparity between HLS estimation and actual QoR, prior studies

in the literature have proposed various approaches, which can be

categorized into three main targets: (1) resource usage estimation,

(2) performance estimation (e.g., timing, latency), and (3) routing

congestion estimation. These studies aim to bridge the gap and

improve the accuracy of QoR estimation in HLS.

The authors in [17, 38] were among the first to utilize MLmodels,

such as gradient boosting and artificial neural networks, to bridge

the gap between resource usage estimated by HLS and the actual

post-implementation results. They achieved this by extracting valu-

able features from the HLS report. While these approaches have

been effective in reducing errors in resource estimation, extending

them to timing estimation is difficult because the underlying ML

models do not consider any structural features from the input de-

sign. To overcome this limitation, Ustun et al. [69] employ graph

neural networks (GNNs) to learn operation mapping patterns for

DSP and carry blocks on FPGAs, by incorporating structural infor-

mation from the HLS intermediate representation (IR) to capture

the relationships among operations. This mapping-awareness delay

estimation, based on GNN predictions, significantly improves the

accuracy of delay estimation in HLS. Subsequent studies, such as

Sohrabizadeh et al. [61], Wu et al. [75], and Bai et al. [11], also lever-

age GNNs to predict timing and/or latency of the HLS design. These

studies either make use of the HLS source code or its corresponding

control data flow graph in the IR to enhance their predictions.

Another research direction focuses on leveraging ML for early

prediction of routing congestion. Accurately detecting congested

regions in HLS can enable effective resolution of potential timing

closure issues during the early design stage. However, the lack of

physical information hinders accurate predictions in HLS. To tackle

this issue, Zhao et al. [83] propose an ML-based method to predict

routing congestion in HLS and identify highly congested regions in



Special Session: Machine Learning for Embedded System Design CODES/ISSS ’23 Companion, September 17–22, 2023, Hamburg, Germany

the source code. In their approach, the authors treat operators in the

HLS IR as training samples and gather various features related to

resource usage, operator types, and connections between operators.

The ground truth data for operators is obtained by tracing back

from the routing congestion metrics observed during placement

and routing. Using these features and ground truth data, a gradient

boosted regression tree model is trained to predict the congestion

metrics for operators at the HLS stage.

3.2 ML-Aided High-Level Design Exploration

In the context of HLS, the DSE problem entails finding the opti-

mal configuration of parameters, such as loop unrolling factors,

pipelining initiation intervals (IIs) or the number of array parti-

tions, which are typically specified using pragmas or directives as

part of the high-level specification. The design space encompasses

the complete range of possible design configurations. Tradition-

ally, DSE in HLS has been approached using analytical or genetic

algorithm-based methods [58, 82]. However, these methods often

face scalability and exploration efficiency challenges.

In recent years, ML-based techniques such as active learning and

Bayesian optimization have emerged as promising approaches for

HLS DSE. Active learning [79], focuses on selecting representative

and challenging samples from the design space to maximize the

predictive model’s accuracy using minimal training samples [33].

On the other hand, Gaussian processes and Bayesian optimization

[35, 62] employ probabilistic models to predict the performance of

unseen design points and iteratively refine the model.

Similar to QoR estimation, incorporating structural information

can enhance the efficiency and effectiveness of the DSE process.

Ferretti et al. [19] employ GNNs built on control dataflow graphs an-

notated with HLS directives. These GNNmodels act as performance

predictors, efficiently transferring learned knowledge to new tasks.

By leveraging the structural information captured by GNNs, per-

formance prediction becomes more accurate and efficient. Another

approach, as presented in [74], combines GNNs with reinforcement

learning. Their method, called IronMan, predicts performance using

the original dataflow graph of the input program, encompassing

both regular and irregular data paths. RL is then utilized to explore

optimal resource allocation strategies based on user-specified con-

straints. Transfer learning has also been leveraged to enhance the

efficiency and effectiveness of the HLS DSE process. For instance, in

[28], authors utilize knowledge acquired from related design spaces

to accelerate the exploration of new HLS programs. These more

sophisticated ML methods demonstrate the potential benefits of

utilizing structural information and data-driven techniques in HLS

DSE, leading to improved results.

3.3 Challenges and Potential Solutions

Although significant progress has been made in applying machine

learning to HLS, there are still several challenges that need to be

addressed. Here, we highlight a few of these challenges.

Similar to the system level, ML algorithms for HLS heavily rely

on data to learn patterns and make accurate predictions, where

collecting sufficient and diverse training data can be challenging

due to the complexity and specificity of hardware design tasks. As

a result, models may suffer from poor training or limited transfer-

ability, leading to suboptimal performance on unseen data or new

tasks. In their work, Ustun et al. [69] propose a potential solution to

this challenge by generating synthetic HLS designs to cover a wide

range of data patterns. We believe that similar data augmentation

techniques and new approaches, particularly those leveraging ad-

vancements in large language models, can help alleviate the scarcity

of labeled HLS designs.

In addition, achieving timing closure in HLS designs remains a

significant challenge that hinders productivity. While there have

been several studies focusing on timing and congestion estimation

in HLS designs, accurately predicting critical path delay or clock

frequency is a nontrivial task due to its inherent complexity. More-

over, even if an ML model can accurately estimate the delay of the

critical path, guiding the tool to effectively resolve the timing issue

remains difficult for designers [16, 29]. Recent efforts have shown

promising results in improving the clock frequency of HLS designs

by combining a coarse-grained floorplanning step with pipelining

during the HLS compilation process [23, 24]. We believe that further

enhancements can be achieved by integrating ML predictions into

this strategy to accelerate the design closure process.

4 RTL/LOGIC SYNTHESIS PREDICTION

Modern embedded computing systems employ accelerator-rich

SoCs to meet new computation demands. Unlike general-purpose

processors that are programmable, accelerators sacrifice general-

ity for specificity to offer unmatched performance and efficiency.

However, accelerators face friction when being adopted by indus-

try on a large scale because they are time-consuming to develop

and difficult to program. The only way accelerators can keep up

with the ever-changing computation demands is by having a fast

development process and a relatively short design iteration cycle.

4.1 ML-Aided Modeling of Hardware Costs

To expediently and accurately model the hardware design cost of an

RTL circuit, such as an accelerator’s power, area, and timing, a myr-

iad of ML-aided techniques have been proposed. AutoAx [43] builds

upon traditional synthesis tools and aims to accelerate the entire

synthesis flow by employing libraries of approximate components.

This strategy is designed to expedite the design space exploration

of approximate circuits. However, it is not general-purpose enough

to predict the cost of any arbitrary RTL circuit design. Others have

proposed utilizing ML models to quickly predict the power of an

RTL design. Apollo [77] utilizes a linear model that can act as an

on-chip power meter and guide the dynamic voltage and frequency

scaling of microprocessors. Both PRIMAL [87] and PowerNet [76]

employ convolutional neural networks (CNNs) as their models, and

GRANNITE [81], on the other hand, utilizes GNNs that operate

directly on the graph representation of RTL circuits. PowerNet

predicts the runtime voltage drop of a hardware design, while PRI-

MAL and GRANNITE predict the runtime power of a given circuit

design using input application execution traces. For example, given

the layout of a particular general-purpose processor, PRIMAL and

GRANNITE can estimate the runtime power consumption of appli-

cations. All three of these models show substantial speedup over

traditional synthesis tools.

However, these machine learning models have limitations. First,

some of them are trained on data from lower abstraction levels than

designs written in RTL or other hardware description languages.





Special Session: Machine Learning for Embedded System Design CODES/ISSS ’23 Companion, September 17–22, 2023, Hamburg, Germany

high-level features extracted from individual circuit paths via the

mini-Transformer model, multi-level perceptrons are used to ag-

gregate path-level inferences to predict the area, power, and timing

of the entire hardware design. For example, the timing prediction

of a hardware design is the maximum of the sampled circuit paths’

timing predictions.

Besides leveraging an effective model to predict hardware costs,

sufficient training data is also necessary to achieve desired pre-

diction accuracy. Unfortunately, good quality open-sourced RTL

designs are scarce. This makes training a deep learning model with

łground truthsž challenging. In addition, successfully synthesiz-

ing these RTL designs often require human effort, and once the

synthesis flow is bug-free, it is computationally expensive and time-

consuming to generate synthesis results.

To create a sufficiently large training dataset, SNS extracts cir-

cuit paths directly from the available hardware designs as well as

generates new, artificial yet realistic circuit paths to combat data

scarcity. Two specific techniques are employed: Markov Chain and

SeqGAN (Generative Adversarial Network for sequences) methods.

The former is based on a transition matrix of conditional proba-

bilities and is used to generate unique, realistic circuit paths. The

latter is adept at creating longer, meaningful paths by learning the

sequence of nodes from actual hardware designs. This combination

ensures that the data generation and augmentation processes pro-

duce diverse, less biased, and yet realistic circuit paths. As the final

step in creating the training dataset, all generated circuit paths are

synthesized using Synopsys DC to obtain real synthesis results as

the training targets. This approach, taking advantage of traditional

synthesis toolchain feedback and ML generative methods, ensures

a robust and accurate model in the presence of limited original data.

4.4 Challenges and Opportunities

Data scarcity remains a critical challenge despite the advances

in using GANs to generate a diverse, unbiased training dataset.

Compromises were made when encoding wires and functional unit

bit-widths to keep the training vocabulary set size reasonable for a

mini-Transformer model to ensure feasible data augmentation and

model scalability. For example, only power-of-two bit-widths are

supported, e.g., a 29-bit adder or a 34-bit adder would be łrounded-

nearž to a 32-bit adder. Future work can address this inaccuracy by

developing a more robust encoding scheme without increasing the

model size significantly.

The limited transferability of the prediction model is another

critical challenge. For example, if the model is trained on a 32nm

technology library, the model can successfully predict the synthesis

results of designs it has never seen before, only if the designs use the

same 32nm technology library. However, the model will need to be

retrained from scratch to predict designs that are implemented in a

different technology node or operating under a different condition

(e.g., different operating corners). Since the process of collecting

and generating the requisite dataset is resource-intensive and time-

consuming, this restricts the practical applicability of these models.

Future research can address this challenge by developing a more

transferable model without requiring complete retraining of the

model for predicting hardware design costs of implementations in

alternate technology libraries or operating conditions.

5 INDUSTRY PERSPECTIVES

At Infineon, we recognize the high potential of ML to accelerate

and improve our industrial design flow. The primary enablers of

ML applications are Electronic Design Automation (EDA) tools and

modern ML techniques. First, EDA tools generate a considerable

amount of objects, reports, and log files that could be used for ML

training. Data availability is especially notorious in the industry,

where each subteam across the design flow develops different IPs

and runs different EDA tools multiple times. Besides, collection sys-

tems for relevant data metrics are available so each run’s results can

be stored, tracked, and analyzed. Second, modern ML techniques

work over different data structures, such as vectors, matrices, and

graphs. The latter represents an excellent chance for research in

the field, as EDA objects and tasks are naturally represented with

graph structures. In addition, we also observe that ML finds its way

more and more through EDA tools to improve their capabilities

and simplify their usage. Nevertheless, there are still many open

additional ML applications, mainly in the area of design flow (i.e.,

involvement of a set of tools) and beyond RTL.

As RTL design is the entry point of the design flow, its quality

impacts the design results after physical synthesis. RTL variants

using different micro-architectures and HDL coding styles have a

different impact on Power, Performance, and Area (PPA) results [60].

Thus, optimizations should be made at RTL.At Infineon, we believe

that providing a right-at-first RTL would reduce iterations of the

digital design flow. However, finding a right-at-first design implies

measuring PPA values from different RTL variants. This measure is

costly and time-consuming, as logical and physical synthesis tools

should be run. To tackle this and enable RTL design exploration,

accurate yet fast estimations of the PPA of a design are needed.

As timing closure is a crucial aspect of a design, we use ML to

provide a fast estimation of the timing behavior of the components

of a digital circuit at the early stages of the design flow. In particular,

we use ML models inside our in-house RTL generation framework

to estimate pin-to-pin delays of its primitive components. The build-

ing blocks of our ML solution are the data collection flow for getting

training and evaluation circuits and the task and architecture defi-

nition to correctly map the EDA task as an ML problem and choose

a suitable architecture.

5.1 Data Collection Flow

The widespread use of embedded systems implemented in contin-

uous shrinking technologies results in more strict requirements

for the design flow. To cope with this, Infineon has developed an

RTL generation framework called MetaRTL [59]. MetaRTL uses

meta-modeling and applies the Model Driven Architecture (MDA)

principle to RTL generation [68]. This framework provides three lay-

ers of a design: the initial specifications or Model of Things (MoT),

the intermediate representation of the design’s micro-architecture

or Model of Design (MoD), and the mapping to an HDL or Model

of View (MoV). MetaRTL generates different RISC-V-based CPUs,

accelerators, IPs, and SoCs while reusing generators and saving

design and verification efforts [18, 20, 50].

MetaRTL’s generated RTL designs are synthesized to obtain the

QoRs of the design in terms of PPA. To that end, we incorporate

commercial and open-source physical synthesis tools into our de-

sign flow, going from the specification level to the final GDS layout.





Special Session: Machine Learning for Embedded System Design CODES/ISSS ’23 Companion, September 17–22, 2023, Hamburg, Germany

abstractions, it is still not possible to understand what is being

abstracted by an ML model. Thus, ML-based predictions cannot be

fully explained or trusted (also w.r.t. adversarial samples [34]). This

lack of explainability or interpretability lowers the acceptance of

ML-based solutions replacing classical methods in industrial flows.

Additionally, ML models still cannot solve complex EDA tasks

without restricting the problem to a smaller subspace. This solution

space is as limited as the collected training data are, as data can

be biased or suffer from distribution shifts. Even with a proper

data collection flow allowing different RTL variants and collecting

the PPA results of each, no ML model can be trained to cover all

ranges of features, all technology nodes, all possible target clock

frequencies, or all possible design rules and constraints. According

to this, our ML-based timing estimation has provided sufficiently

accurate results when restricting the problem to a specific timing

setup, component types, and technology node and when consid-

ering the underlying physical models of the task, i.e., adding slew

estimation and propagation.

The familiar aphorism "All models are wrong, but some are useful"

from the statistician George E.P. Box [12] alludes to the limitations

of any abstraction model w.r.t. the complexity of real problems and

how these models can still be helpful. In this sense, all ML models

are wrong too. Even though ML is an alternative for mapping EDA

tasks to a space of reduced complexity and still getting significantly

good results, ML models still need to improve on solving complete

complex EDA tasks [53]. However, the aphorism from George Box

also states that somemodels are usefulÐespecially when adequately

handled. In this sense, our ML-based time estimation is an excellent

help to come up with a good architecture early. Furthermore, we ex-

plore using the data to do early trade-off analysis and optimization

tasks automatically.

Future research in ML for embedded system design should focus

on using ML with classical optimization and heuristic algorithms

in a coarse or fine-grain integration, as proposed in [53]. The au-

thors propose solving EDA tasks using ML models and classical

algorithms side by side or one inside the other. This will help to

solve more complex tasks without restricting the solution space and

achieve better performance. Moreover, ML-based solutions should

not be black-box solutions. They should instead be aware of the

physical models of the underlying task to select meaningful features

and patterns from the training data. These two basic directions can

open the door to reliable ML models solving core EDA tasks across

different levels of abstraction.

6 SUMMARY, CONCLUSIONS AND OUTLOOK

The recent efforts summarized in this paper have demonstrated the

high potential of ML techniques in revolutionizing embedded sys-

tem design and overcoming existing challenges. Supervised learn-

ing techniques provide high-fidelity and fast predictive models,

which play a critical role in efficiently guiding solution search in

huge and complicated design space. The reinforcement learning

framework can be directly leveraged for design optimizations.

However, ML for embedded system design is still far from be-

ing sufficiently studied and there are new challenges associated

with the ML techniques. First, the effectiveness of ML techniques

heavily relies on a large volume of well curated data. However, a

common theme across all abstraction levels is that obtaining labeled

training data for embedded system designs is time consuming and

computing intensive process. Within this context, the redundant

nature of each research and development team independently un-

dertaking expensive data preparation efforts leads to significant

computational waste. Moreover, when there are technological or

application changes, reusing existing data is still difficult, necessi-

tating a restart of the data preparation process. Consequently, data

efficiency becomes a crucial challenge and bottleneck impeding the

advancement of ML-based embedded system design.

Another challenge is the interoperability betweenML techniques

and human manual design. In system-level designs, human manual

intervention remains indispensable due to the inherent value of hu-

man design knowledge and the current limitations of system-level

design automation techniques. However, there is no streamlined ap-

proach to incorporate human design knowledge into ML techniques

other than design specifications, trial-and-error cost functions or

labor-intensive manual feature engineering. Conversely, the limited

interpretability of ML techniques poses a challenge for designers

seeking to integrate ML solutions with human decision-making

processes.

To address the aforementioned challenges, we propose the follow-

ing potential solutions. To overcome the data efficiency challenge,

we advocate for the establishment of shared data and machine

learning models in embedded system designs, taking inspiration

from successful approaches utilized by ImageNet and Kaggle within

the machine learning community. Achieving this goal will require

collaborative efforts from the entire embedded system community.

Additionally, for the challenge of interoperability between human

design and ML techniques, beyond more research into learning for-

mulations, leveraging the recent advancements in large language

models has the potential to significantly advance the seamless in-

corporation of human design knowledge with ML techniques.

ACKNOWLEDGMENTS

This work is partially supported by NSF grants CCF-1763848 and

CCF-2212346, as well as the German Federal Ministry for Economic

Affairs and Energy (BMWi) as part of the research project Progres-

sivKI (19A21006C).

REFERENCES
[1] T. Ajayi et al. 2019. INVITED: Toward an Open-Source Digital Flow: First Learn-

ings from the OpenROAD Project. In DAC.
[2] E. S. Alcorta et al. 2021. Phase-Aware CPU Workload Forecasting. In SAMOS.
[3] E. S. Alcorta et al. 2022. Machine Learning for System-Level Modeling. InMachine

Learning Applications in Electronic Design Automation, Haoxing Ren and Jiang
Hu (Eds.). Springer, 545ś579.

[4] E. S. Alcorta et al. 2023. Lightweight ML-based Runtime Prefetcher Selection on
Many-core Platforms. In MLArchSys.

[5] E. S. Alcorta and A. Gerstlauer. 2021. Learning-Based Workload Phase Classifica-
tion and Prediction Using Performance Monitoring Counters. In MLCAD.

[6] E. S. Alcorta and A. Gerstlauer. 2022. Learning-based Phase-aware Multi-core
CPU Workload Forecasting. ACM TODAES 28, 2 (2022), 23:1ś23:27.

[7] A. K. Ananda Kumar et al. 2022. Machine Learning-Based Microarchitecture-
Level Power Modeling of CPUs. IEEE TC 72, 4 (2022), 941ś961.

[8] A. K. Ananda Kumar and A. Gerstlauer. 2019. Learning-Based CPU Power
Modeling. In MLCAD.

[9] N. Ardalani et al. 2015. Cross-architecture performance prediction (XAPP) using
CPU code to predict GPU performance. In MICRO.

[10] N. Ardalani et al. 2019. A Static Analysis-based Cross-Architecture Performance
Prediction Using Machine Learning. arXiv:1906.07840

[11] Y. Bai et al. 2023. ProgSG: Cross-Modality Representation Learning for Programs
in Electronic Design Automation. arXiv:2305.10838



CODES/ISSS ’23 Companion, September 17–22, 2023, Hamburg, Germany Alcorta, et al.

[12] G. EP Box and N. R Draper. 1987. Empirical model-building and response surfaces.
John Wiley & Sons.

[13] O. Bringmann et al. 2015. The Next Generation of Virtual Prototyping: Ultra-fast
Yet Accurate Simulation of HW/SW Systems. In DATE.

[14] R. Cochran et al. 2011. Pack & Cap: adaptive DVFS and thread packing under
power caps. In MICRO.

[15] J. Cong et al. 2011. High-Level Synthesis for FPGAs: From Prototyping to De-
ployment. IEEE TCAD 30, 4 (2011), 473ś491.

[16] J. Cong et al. 2022. FPGA HLS today: successes, challenges, and opportunities.
ACM TRETS 15, 4 (2022), 1ś42.

[17] S. Dai et al. 2018. Fast and accurate estimation of quality of results in high-level
synthesis with machine learning. In FCCM.

[18] K. Devarajegowda et al. 2019. How to Keep 4-Eyes Principle in a Design and
Property Generation Flow. In MBMV.

[19] L. Ferretti et al. 2022. Graph Neural Networks for High-Level Synthesis Design
Space Exploration. ACM TODAES 28, 2 (2022), 1ś20.

[20] N. Gerlin et al. 2022. Design of a Tightly-Coupled RISC-V Physical Memory
Protection Unit for Online Error Detection. In VLSI-SoC.

[21] A. Gerstlauer et al. 2009. Electronic System-Level Synthesis Methodologies. IEEE
TCAD 28, 10 (2009), 1517ś1530.

[22] A. Gerstlauer et al. 2012. Abstract System-Level Models for Early Performance
and Power Exploration. In ASP-DAC.

[23] L. Guo et al. 2021. AutoBridge: Coupling Coarse-Grained Floorplanning and
Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In FPGA.

[24] L. Guo et al. 2022. RapidStream: Parallel Physical Implementation of FPGA HLS
Designs. In FPGA.

[25] Y. Hu et al. 2018. Wavefront-MCTS: Multi-objective Design Space Exploration of
NoC Architectures based on Monte Carlo Tree Search. In ICCAD.

[26] Y. Hu et al. 2020. Machine Learning Approaches for Efficient Design Space
Exploration of Application-Specific NoCs. ACM TODAES 25, 5 (2020), 44:1ś44:27.

[27] G. Huang et al. 2021. Machine learning for electronic design automation: A
survey. ACM TODAES 26, 5 (2021), 1ś46.

[28] J. Kwon and L. P Carloni. 2020. Transfer learning for design-space exploration
with high-level synthesis. In MLCAD.

[29] Y. Lai et al. 2021. Programming and Synthesis for Software-Defined FPGA
Acceleration: Status and Future Prospects. ACM TRETS 14, 4 (2021), 1ś39.

[30] D. Lee et al. 2015. Dynamic Power and Performance Back-Annotation for Fast
and Accurate Functional Hardware Simulation. In DATE.

[31] D. Lee et al. 2015. Learning-Based Power Modeling of System-Level Black-Box
IPs. In ICCAD.

[32] D. Lee and A. Gerstlauer. 2018. Learning-Based, Fine-Grain Power Modeling of
System-Level Hardware IPs. ACM TODAES 23, 3 (2018), 30:1ś30:25.

[33] H. Liu and L. P Carloni. 2013. On learning-based methods for design-space
exploration with high-level synthesis. In DAC.

[34] K. Liu et al. 2021. Can We Trust Machine Learning for Electronic Design Au-
tomation?. In SOCC.

[35] C. Lo and P. Chow. 2018. Multi-fidelity optimization for high-level synthesis
directives. In FPL.

[36] S. Lu et al. 2015. Reinforcement Learning for Thermal-aware Many-core Task
Allocation. In GLSVLSI.

[37] C. Lück et al. 2022. Industrial Experience with Open-Source EDA Tools. In
MLCAD.

[38] H. Makrani et al. 2019. Pyramid: Machine learning framework to estimate the
optimal timing and resource usage of a high-level synthesis design. In FPL.

[39] D. Masouros et al. 2021. Rusty: Runtime Interference-Aware Predictive Monitor-
ing for Modern Multi-Tenant Systems. IEEE TPDS 32, 1 (2021), 184ś198.

[40] C.Mendis et al. 2019. Ithemal: Accurate, Portable and Fast Basic Block Throughput
Estimation using Deep Neural Networks. In ICML.

[41] A. Mirhoseini et al. 2020. Chip Placement with Deep Reinforcement Learning.
arXiv:2004.10746

[42] M. Moghaddam et al. 2018. Dynamic Energy Optimization in Chip Multiproces-
sors Using Deep Neural Networks. IEEE TMSCS 4, 4 (2018), 649ś661.

[43] V. Mrazek et al. 2019. autoax: An automatic design space exploration and circuit
building methodology utilizing libraries of approximate components. In DAC.

[44] K. O’Neal et al. 2018. HLSPredict: cross platform performance prediction for
FPGA high-level synthesis. In ICCAD.

[45] K. O’Neal and P. Brisk. 2018. Predictive Modeling for CPU, GPU, and FPGA
Performance and Power Consumption: A Survey. In ISVLSI.

[46] K. O’Neal et al. 2019. Hardware-Assisted Cross-Generation Prediction of GPUs
Under Design. IEEE TCAD 38, 6 (2019), 1133ś1146.

[47] D. Pal et al. 2022. Machine Learning for Agile FPGA Design. InMachine Learning
Applications in Electronic Design Automation, Haoxing Ren and Jiang Hu (Eds.).
Springer, 471ś504.

[48] R. Panda et al. 2016. Genesys: Automatically Generating Representative Training
Sets for Predictive Benchmarking. In SAMOS.

[49] B. Perozzi et al. 2014. DeepWalk. In SIGKDD.
[50] S. Prebeck et al. 2022. A Scalable, Configurable and Programmable Vector Dot-

Product Unit for Edge AI. In MBMV.

[51] A. Prodromou et al. 2019. Platform-Agnostic Learning-Based Scheduling. In
SAMOS.

[52] M. Rapp et al. 2022. MLCAD: A Survey of Research in Machine Learning for
CAD Keynote Paper. IEEE TCAD 41, 10 (2022), 3162ś3181.

[53] H. Ren et al. 2023. Machine Learning and Algorithms: Let Us Team Up for EDA.
IEEE Design & Test 40, 1 (2023), 70ś76.

[54] H. Ren and J. Hu. 2023. Machine Learning Applications in Electronic Design
Automation. Springer.

[55] M. Sagi et al. 2021. Long Short-Term Memory Neural Network-based Power
Forecasting of Multi-Core Processors. In DATE.

[56] D. Sánchez et al. 2023. A Comprehensive Survey on Electronic Design Automation
and Graph Neural Networks: Theory and Applications. ACM TODAES 28, 2 (2023),
1ś27.

[57] R. Sarikaya and A. Buyuktosunoglu. 2007. Predicting Program Behavior Based
On Objective Function Minimization. In IISWC.

[58] B. C. Schafer and K. Wakabayashi. 2012. Divide and Conquer High-Level Synthe-
sis Design Space Exploration. ACM TODAES 17, 3 (2012), 1ś19.

[59] J. Schreiner et al. 2016. Design centric modeling of digital hardware. In HLDVT.
[60] P. Sengupta et al. 2022. How Good Is Your Verilog RTL Code? A Quick Answer

from Machine Learning. In ICCAD.
[61] A. Sohrabizadeh et al. 2022. Automated Accelerator Optimization Aided by Graph

Neural Networks. In DAC.
[62] Q. Sun et al. 2022. Correlated multi-objective multi-fidelity optimization for HLS

directives design. ACM TODAES (2022), 46ś51.
[63] D. Sunwoo et al. 2010. PrEsto: An FPGA-accelerated Power Estimation Method-

ology for Complex Systems. In FPL.
[64] D. Sánchez Lopera et al. 2021. RTL Delay Prediction Using Neural Networks. In

NorCAS.
[65] D. Sánchez Lopera et al. 2022. Early RTL delay prediction using neural networks.

Elsevier MICPRO 94 (2022), 104671.
[66] D. Sánchez Lopera et al. 2022. Using Open-Source EDA Tools in an Industrial

Design Flow. In DVCON.
[67] D. Sánchez Lopera and W. Ecker. 2022. Applying GNNs to Timing Estimation at

RTL. In ICCAD.
[68] F. Truyen. 2006. The fast guide to model driven architecture. Cephas Consulting

Corp (2006).
[69] E. Ustun et al. 2020. Accurate operation delay prediction for FPGA HLS using

graph neural networks. In ICCAD.
[70] F. Vahid and T. Givargis. 2002. Embedded System Design: A Unified Hard-

ware/Software Introduction. Wiley.
[71] A. Vaswani et al. 2017. Attention Is All You Need. arXiv:1706.03762
[72] C. Wolf et al. 2013. Yosys- A free Verilog synthesis suite. In Austrochip.
[73] G. Wu et al. 2015. GPGPU performance and power estimation using machine

learning. In HPCA.
[74] N. Wu et al. 2021. Ironman: GNN-assisted design space exploration in high-level

synthesis via reinforcement learning. In GLSLSI.
[75] N. Wu et al. 2022. High-level synthesis performance prediction using GNNs:

benchmarking, modeling, and advancing. In DAC.
[76] Z. Xie et al. 2020. PowerNet: Transferable dynamic IR drop estimation via

maximum convolutional neural network. In ASP-DAC.
[77] Z. Xie et al. 2021. APOLLO: An Automated Power Modeling Framework for

Runtime Power Introspection in High-Volume Commercial Microprocessors. In
MICRO.

[78] C. Xu et al. 2022. SNS’s Not a Synthesizer: A Deep-Learning-Based Synthesis
Predictor. In ISCA.

[79] K. Yu et al. 2006. Active Learning via Transductive Experimental Design. In
ICML.

[80] L. Yu et al. 2017. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI conference on artificial intelligence.

[81] Y. Zhang et al. 2020. GRANNITE: Graph neural network inference for transferable
power estimation. In DAC.

[82] J. Zhao et al. 2017. COMBA: A comprehensive model-based analysis framework
for high level synthesis of real applications. In ICCAD.

[83] J. Zhao et al. 2019. Machine learning based routing congestion prediction in
FPGA high-level synthesis. In DATE.

[84] Z. Zhao et al. 2017. Source-Level Performance, Energy, Reliability, Power and
Thermal (PERPT) Simulation. IEEE TCAD 36, 2 (2017), 299ś312.

[85] X. Zheng et al. 2017. LACross: Learning-Based Analytical Cross-Platform Perfor-
mance and Power Prediction. IJPP 45, 6 (2017), 1488ś1514.

[86] X. Zheng et al. 2017. Sampling-Based Binary-Level Cross-Platform Performance
Estimation. In DATE.

[87] Y. Zhou et al. 2019. PRIMAL: Power inference using machine learning. In DAC.


	Abstract
	1 Introduction
	2 ML for System-Level Design
	2.1 ML for System-Level Modeling
	2.2 ML for System-Level Exploration
	2.3 Challenges and Opportunities

	3 ML for High-Level Synthesis
	3.1 ML for High-Level QoR Estimation
	3.2 ML-Aided High-Level Design Exploration
	3.3 Challenges and Potential Solutions

	4 RTL/Logic Synthesis Prediction
	4.1 ML-Aided Modeling of Hardware Costs
	4.2 Path-Based Approach Enables Scalable Hardware Cost Prediction
	4.3 Exploiting NLP Model and GAN to Provide More Accurate Hardware Cost Prediction
	4.4 Challenges and Opportunities

	5 Industry Perspectives
	5.1 Data Collection Flow
	5.2 Task and Architecture Definition
	5.3 Open Challenges and Opportunities

	6 Summary, Conclusions and Outlook
	Acknowledgments
	References

