Special Session: Machine Learning for Embedded System Design

Erika S. Alcorta Chenhui Deng Ceyu Xu
Andreas Gerstlauer Qi Sun Lisa Wu Wills
The University of Texas at Austin Zhiru Zhang Duke University

Austin, TX, USA
{esalcort,gerstl}@utexas.edu

Cornell University
Ithaca, NY, USA

Durham, NC, USA
ceyu.xu@duke.edu,lisa@cs.duke.edu

{cd574,qs228,zhiruz}@cornell.edu

Daniela Sanchez Lopera

Wolfgang Ecker
Infineon Technologies AG
Technical University of Munich
Munich, Germany
{firstname.lastnames}@infineon.com

ABSTRACT

Embedded systems are becoming increasingly complex, which has
led to a productivity crisis in their design and verification. Although
conventional design automation coupled with IP and platform reuse
techniques have led to leaps in design productivity improvement,
they face fundamental limits given that most design optimization
and verification problems remain NP-hard and that reuse of pre-
designed IP blocks and platforms inherently limits flexibility and
optimality. At the same time, machine learning (ML) has recently
made unprecedented advances and created phenomenal impact in
various computing applications. In particular, application of ML
techniques as a way to extract knowledge and learn from existing
design, optimization and verification data has recently seen a lot
of excitement and promise at lower physical and integrated circuit
levels of abstraction. Using ML has the potential to similarly close
the complexity gap in embedded system design, but correspond-
ing ML-based approaches for embedded system optimization and
verification at higher levels of abstraction are still at their infancy.

This paper presents the current state of the art, along with op-
portunities and open challenges, in the application of ML methods
for embedded system design and optimization. We discuss design
and optimization at different levels of abstraction ranging from
system-level modeling and optimization and high-level synthesis to
RTL and micro-architecture design, bringing together perspectives
from different communities in both academia and industry.

CCS CONCEPTS

« Computer systems organization — Embedded systems; «
Hardware — Methodologies for EDA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODES/ISSS °23 Companion, September 17-22, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0289-1/23/09.

https://doi.org/10.1145/3607888.3608962

Siddharth Garg

New York University
New York, NY, USA
siddharth.j.garg@gmail.com

Jiang Hu
Texas A&M University
College Station, TX, USA
jlanghu@tamu.edu

KEYWORDS
Machine Learning, Embedded System Design

ACM Reference Format:

Erika S. Alcorta, Andreas Gerstlauer, Chenhui Deng, Qi Sun, Zhiru Zhang,
Ceyu Xu, Lisa Wu Wills, Daniela Sanchez Lopera, Wolfgang Ecker, Siddharth
Garg, and Jiang Hu. 2023. Special Session: Machine Learning for Embed-
ded System Design. In 2023 International Conference on Hardware/Software
Codesign and System Synthesis (CODES/ISSS °23 Companion), September
17-22, 2023, Hamburg, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3607888.3608962

1 INTRODUCTION

With the increasing complexity and heterogeneity of processors
and applications, embedded systems design and runtime manage-
ment have become more challenging than ever before. The vast
design decision space makes it impractical to exhaustively explore
every possibility. Thus, intelligent and fast solution search has been
essential to finding highly optimized designs.

At any level of abstraction in the design process, two main com-
ponents are required: a decision-maker or optimizer, and a predic-
tive model or cost function, as shown in Figure 1. The optimization
can be performed through either constructive or iterative search.
A constructive algorithm starts with a blank solution and makes
one decision at a time until a complete solution is obtained, e.g.,
using greedy heuristics. An iterative approach starts from a com-
plete candidate design that is gradually refined to improve cost
metrics, e.g., using meta-heuristics such as simulated annealing. In
either case, the predictive model evaluates a partial or complete
design candidate and outputs estimations of the metrics that the
designer is optimizing for, i.e., the cost of the design decisions. The
optimizer in turn considers the current design’s cost, the system
input description and constraints to output valid and optimized
system design decisions.

Due to the high design complexity, it is a huge challenge to
achieve high-fidelity yet fast cost and optimization functions. Con-
ventional techniques for obtaining cost estimates, such as analytical
models, often suffer from inaccuracies, while simulations are too
time-consuming for frequent use in optimization processes. Sim-
ilarly, traditional optimization approaches relying on heuristics

CODES/ISSS "23 Companion, September 17-22, 2023, Hamburg, Germany

Input Description
C, Matlab,

Decision-Making, Optimizer —
Constraint Design Space Exploration Predictive Model
onstraints High Level Synthesis Cost Function

Design
Representation

Figure 1: Embedded system design overview.

or meta-heuristics for design space exploration suffer from sub-
optimality or complexity inefficiencies. In contrast, machine learn-
ing (ML) techniques have the potential to overcome these challenges
by leveraging data-driven learning and facilitating knowledge reuse.
Moreover, ML-based knowledge reuse is much more flexible than
IP block-based design reuse.

When applying ML to system design, either one or both of the
decision-making and cost models are replaced with ML approaches.
Supervised learning is commonly used to learn predictive cost mod-
els that replace inaccurate analytical or slow simulation methods.
In terms of optimization, the framework depicted in Figure 1 natu-
rally maps to a reinforcement learning (RL) methodology, with the
decision-making being the RL agent or policy, the design representa-
tion being the state and the predictive model serving as the reward
function, where RL-based optimization can again be constructive or
incremental. Such RL-based optimization approaches have received
a lot of interest at lower, e.g. physical levels of abstraction [41, 52],
but corresponding work at higher abstraction levels is still an active
area of research.

This paper presents a succinct review of the applications of ML
techniques in embedded system design. Section 2 summarizes ML
techniques for system-level modeling and design space exploration.
Section 3 is focused on ML techniques for high-level synthesis
(HLS). A review of ML-based register-transfer level (RTL) and logic
synthesis prediction is provided in Section 4. Industrial perspectives
on ML for embedded system design are introduced in Section 5.
Finally, a summary and conclusions including open challenges and
an outlook are offered in Section 6.

2 ML FOR SYSTEM-LEVEL DESIGN

The productivity of designing embedded systems can be signifi-
cantly improved by raising the level of abstraction to encompass
the entire system. At the system level, the focus is on mapping a
behavioral design description onto a suitable platform made up of
architectural components, such as processors, memories, hardware
accelerators, and the interconnections between them [21]. At this
level, fast yet accurate design and cost models are critical in making
quick decisions and exploring the expansive design space within a
constrained time budget. However, modeling efforts at such a high
level of abstraction are particularly challenging. Analytical models
are inherently limited due to their inability to model the many dy-
namic system effects. As such, system-level design (SLD) typically
relies on simulations. At the same time, detailed simulations will
severely hinder the exploration process due to their computational

Alcorta, et al.

Abstraction level
Source

Arch/cycle-accurate

RTL

Gate-level

Components

Time
Figure 2: System-level predictive modeling axes [3].

cost. To address these limitations, ML models have emerged as a
promising solution to bridge the gap between fast yet inaccurate
analytical models and slow but precise simulators. This section pro-
vides a survey of representative techniques in ML for system-level
modeling. We also discuss various approaches for design space
exploration (DSE) at the system level. Finally, we summarize our
perspectives on open challenges in this field.

2.1 ML for System-Level Modeling

System-level modeling is concerned with delivering fast and ac-
curate models of architectures and applications for system design,
programming and runtime management. The work in applying ML
for system-level modeling is large with diverse prediction targets
and purposes, which can be categorized along three dimensions,
represented in Figure 2 [3]. The dimensions comprise predictions
across abstraction levels, across components, and across time.

Models that make cross-layer predictions learn the relation-
ship between high-level features and low-level implementation
properties such as performance, energy, reliability, power, thermal
(PERPT), and others. Finding effective abstractions for high-level
system modeling has received a lot of attention in the past [13, 22].
Traditionally, this involves back-annotating a fast functional high-
level simulation with low-level PERPT estimates in a manual or
automated fashion [84]. In cross-layer ML methods, the need to
manually construct appropriately abstracted models is replaced
with learning them instead. This can be done to learn high-level
functional surrogate as well as non-functional PERPT models, but
in this paper we focus on the latter. Figure 3 depicts an overview of
the predictive PERPT modeling process with ML. In a supervised
learning formulation, a high-level functional simulation is used to
extract features that are correlated with low-level reference metrics
to train a prediction model on selected micro-benchmarks. During
inference, the learned model is attached to the high-level simulation
to predict target metrics for previously unseen applications.

The design of predictive PERPT modeling techniques is an ongo-
ing area of research [45]. Learning-based performance models have
been successfully applied at higher levels without the need for any
structural information [40]. Power modeling, on the other hand, re-
lies on low-level details that are challenging to abstract in high-level
models. Early works focused on simple regressions [63, 73], but
suffer from capturing the inherently non-linear and data-dependent
power characteristics at higher levels of abstraction. At the RTL
deep learning (DL) approaches have been applied to predict power
from an unfiltered union of all possible inputs [87] (see Section 4).

Special Session: Machine Learning for Embedded System Design

;' ________________________ '
1
' High-level Feature !
1_model (host) extraction 1 l
1
I 1
I v 1
! 1
! ML i ML
1 training | § inference
' 1
1 ! l
: Reference Execution :
1 _Umodel (target) PERPT metrics :
1
L 1 .
e ___ Training _ __ ___ ________ 1 Prediction

Figure 3: ML for system-level modeling overview.

However, DL incurs large training and inference overheads that
negate the benefits of high-level modeling. At higher levels, ap-
proaches are needed that allow for much simpler learning formula-
tions by leveraging and encoding a-priori knowledge, e.g., through
feature selection that captures the known relationship between tar-
get metrics and functional activity instead of costly rediscovering
it. The studies in [7, 8] proposed such an approach for learning-
based power modeling of complex CPUs at the micro-architecture
level. Similarly, at the source level, prior work extended functional
simulations with the ability to predict power of hardware accelera-
tors at cycle, basic block, or whole function granularity [30-32]. In
all cases, results show that low-complex decision tree models can
predict power with more than 95% accuracy requiring less than 30k
training samples even for large designs.

When actual hardware components are available, we can re-
place reference models in Figure 3 with execution on a real target
platform to effectively make cross-platform predictions. Such
models learn and predict the relationship of program executions
on different hardware platforms, typically using unintrusive hard-
ware counter measurements obtained from running an unmodified
application on a host as features to predict PERPT metrics on a
different target. Some of the earliest work applied the concept
of cross-platform prediction to develop approaches for accurate
power and performance prediction across host and target CPUs
with vastly different architectures [85, 86]. They use a locally con-
strained piecewise linear regression to predict the performance
and power consumption of single-threaded programs executing
on a single target core both at the whole program and program
phase granularity (defined as a fixed number of basic blocks) with
more than 95% accuracy. Similar cross-platform models have been
constructed to make predictions between different graphic process-
ing units (GPUs) as host and target [46], as well as CPU-to-GPU
predictions [9, 10], and from CPU to FPGA [44]. Note that cross-
layer predictions at the source level, CPU-to-FPGA cross-platform
predictions and HLS cost predictions (see Section 3.1) share similar
problem statements. The differences lie in the amount of feature
extraction and target-specific design analysis used for predictions.
Cross-platform models rely only on host-specific hardware coun-
ters as features. In general, they enable designers, programmers as
well as runtime and operating systems to rapidly guide decisions
about offloading and refactoring to partition and map applications
across heterogeneous architectures [51].

Finally, cross-temporal predictions are aimed at allowing run-
time systems to dynamically manage resources by exploiting fine-
grained optimization opportunities that static runtime management

CODES/ISSS 23 Companion, September 17-22, 2023, Hamburg, Germany

would miss. It is known that workloads exhibit dynamic behaviors,
where cross-temporal models learn and characterize dynamic work-
load patterns to predict future workload behavior. They enable
systems to behave proactively by anticipating workload changes,
adding the capability to pro-actively adapt to upcoming rather
than only react to past behaviors. Predicting workload behaviors
can be cast as a time series forecasting problem, where regression
models are a typical solution. ML-based methods include linear
predictors [57] to, more recently, DL [42] and recurrent neural net-
works [39, 55]. Their objective is to minimize the forecasting error
of periodically measured metrics such as cycles per instruction
(CPI). These models excel at predicting short-term upcoming work-
load behaviors, but struggle to predict abrupt long-term workload
changes [2]. Such changes occur because workloads go through
phases, where phase classification and prediction solutions have
been extensively studied [5]. Predicting phases is a cross-temporal
modeling approach that characterizes and forecasts long-term work-
load behaviors. However, it overlooks sample-by-sample variability.
Recent studies proposed a phase-aware mechanism that combines
long-term and short-term predictions to provide more accurate
cross-temporal predictions [6], achieving up to 22% accuracy im-
provement over phase-unaware setups.

2.2 ML for System-Level Exploration

Predictive cost models are at the core of any SLD process. How-
ever, intelligently searching the system design space is another
important requirement for finding optimal design solutions within
a practical exploration time budget. This has led to the develop-
ment of various methods. While early studies proposed simple, e.g.
greedy heuristics [70], meta-heuristics such as multi-objective evo-
lutionary algorithms coupled with simulation-based cost models
are predominantly used for system-level DSE today [21].

More recently, RL approaches have demonstrated superiority
against traditional meta-heuristics such as evolutionary algorithms.
One of the advantages of RL models is that they are capable of gen-
eralizing their decisions, i.e. can learn from previous designs and
apply such learned knowledge to new problem instances with simi-
lar characteristics. This makes RL an attractive option for system-
level DSE. Recent examples include the use of Monte Carlo tree
search (MCTS) to explore application-specific NoC design [25, 26]
or Q-learning to optimize task allocation in MPSoCs [36].

Such RL formulations are capable of exploring the design space
by themselves. Supervised learning can instead be applied to op-
timization problems, but relies on the designer to provide labeled
ground truth, i.e. examples of optimal designs for a sufficient set
of design instances and inputs. When the ground truth is readily
available and design spaces are sufficiently easy to explore manu-
ally, supervised learning can be a powerful tool to generalize from
unseen samples. Such scenarios typically arise when decisions are
constrained to a single domain, e.g., voltage/frequency pair selec-
tion [14] or composite prefetcher throttling [4] in runtime systems.

2.3 Challenges and Opportunities

The application of ML methods for SLD presents several open
challenges. A key challenge is the choice of appropriate learning
formulations, with naive application of existing ML models often
being a poor fit for system design problems. In particular, while DL

CODES/ISSS "23 Companion, September 17-22, 2023, Hamburg, Germany

approaches have shown promise in various domains, their suitabil-
ity for SLD is still a matter of consideration. SLD requires models
that are not only accurate but also fast and efficient. DL models
can be computationally expensive, and their training and inference
times may exceed the time required for traditional low-level simula-
tions, diminishing their practical utility. Furthermore, DL requires
huge amounts of data for training, which is difficult to obtain at
the system level. In scenarios where hardware is not yet available,
collecting sufficient training data can be difficult. As outlined in
this section, this calls for development of novel simple but effective
learning formulations specifically for SLD.

Within this context, despite the advancements in automated
feature engineering, human expertise still plays a vital role at the
system level. Feature engineering helps reduce model complex-
ity and training costs by identifying and incorporating relevant
features into the learning formulation itself. However, striking a bal-
ance between involving human experts and leveraging automated
feature engineering techniques remains a challenge.

Selecting training sets that adequately represent the diverse and
complex behaviors of real-world workloads is generally a challenge.
Designing training sets that generalize well across different sys-
tem behaviors is crucial but challenging due to the vast design
spaces. Some prior work has proposed generating synthetic data to
overcome this challenge [48], but more research is needed.

Finally, SLD often requires integration of heterogeneous compo-
nents from different vendors into system-on-chip (SoC) or other
platforms. The absence of a centralized marketplace for models
hinders the adoption and dissemination of ML models for SLD.
The lack of a platform or repository where designers can access
and share pre-trained models limits the collaboration and wider
adoption of ML approaches in this field.

3 ML FOR HIGH-LEVEL SYNTHESIS

As modern embedded systems face rising complexity in both ap-
plications and hardware platforms, HSL has become a popular
alternative to traditional RTL methodology to improve design pro-
ductivity [15]. By raising the level of abstraction to untimed or
partially timed design and providing a wide range of configuration
options (e.g., pragmas), HLS facilitates fast exploration of various
design alternatives. It achieves this by quickly generating RTL im-
plementations for different configuration sets. This accelerated de-
sign iteration process empowers the designers to navigate through
a vast design space in a more productive manner. However, the
advantages of HLS come with a trade-off: it lacks detailed and cru-
cial information from downstream implementation steps such as
logic synthesis, placement, and routing. Consequently, HLS tools
often produce resource and timing estimates that significantly devi-
ate from the actual post-implementation quality-of-results (QoRs).
This discrepancy poses a challenge for designers aiming to conduct
effective design space exploration (DSE) in order to achieve de-
sired QoRs. As a result, designers may need to invest a substantial
amount of time in pushing the synthesized designs through subse-
quent stages of RTL synthesis and physical design. This trade-off
offsets the benefits of HLS, despite its notable speed advantage over
later steps in the implementation process [47].

Clearly, there is an inherent tension between speed and accuracy
of QoR estimation in HLS-based design. Addressing this tension

Alcorta, et al.

is crucial for achieving rapid design closure. To this end, recent
research focuses on leveraging ML techniques in HLS to improve
the quality of QoR estimation and reduce the need for extensive
human supervision [27]. These efforts can be broadly categorized
into the following two areas: (1) ML-based QoR estimation models:
The primary obstacle to achieving efficient design closure lies in
the correlation across different design stages. ML techniques, such
as regression and classification models, have demonstrated their
ability to narrow the QoR miscorrelation gap by providing faster
and more precise estimation across stages; (2) Intelligent DSE with
ML: Recent advancements in intelligent decision-making frame-
works for DSE in HLS have shown promising results in achieving
design closure. Techniques such as Bayesian optimization or rein-
forcement learning enable more informed decision-making, leading
to improved design outcomes.

In the following, we provide a concise overview of the application
of ML in HLS. We examine representative ML techniques utilized in
the aforementioned research areas of QoR estimation and intelligent
DSE. Additionally, we outline the key challenges associated with
employing ML in HLS.

3.1 ML for High-Level QoR Estimation

Achieving accurate quality of results estimation at the HLS stage
is challenging due to the cumulative effects of complex transfor-
mations across multiple implementation stages. To address the
disparity between HLS estimation and actual QoR, prior studies
in the literature have proposed various approaches, which can be
categorized into three main targets: (1) resource usage estimation,
(2) performance estimation (e.g., timing, latency), and (3) routing
congestion estimation. These studies aim to bridge the gap and
improve the accuracy of QoR estimation in HLS.

The authors in [17, 38] were among the first to utilize ML models,
such as gradient boosting and artificial neural networks, to bridge
the gap between resource usage estimated by HLS and the actual
post-implementation results. They achieved this by extracting valu-
able features from the HLS report. While these approaches have
been effective in reducing errors in resource estimation, extending
them to timing estimation is difficult because the underlying ML
models do not consider any structural features from the input de-
sign. To overcome this limitation, Ustun et al. [69] employ graph
neural networks (GNNs) to learn operation mapping patterns for
DSP and carry blocks on FPGAs, by incorporating structural infor-
mation from the HLS intermediate representation (IR) to capture
the relationships among operations. This mapping-awareness delay
estimation, based on GNN predictions, significantly improves the
accuracy of delay estimation in HLS. Subsequent studies, such as
Sohrabizadeh et al. [61], Wu et al. [75], and Bai et al. [11], also lever-
age GNNs to predict timing and/or latency of the HLS design. These
studies either make use of the HLS source code or its corresponding
control data flow graph in the IR to enhance their predictions.

Another research direction focuses on leveraging ML for early
prediction of routing congestion. Accurately detecting congested
regions in HLS can enable effective resolution of potential timing
closure issues during the early design stage. However, the lack of
physical information hinders accurate predictions in HLS. To tackle
this issue, Zhao et al. [83] propose an ML-based method to predict
routing congestion in HLS and identify highly congested regions in

Special Session: Machine Learning for Embedded System Design

the source code. In their approach, the authors treat operators in the
HLS IR as training samples and gather various features related to
resource usage, operator types, and connections between operators.
The ground truth data for operators is obtained by tracing back
from the routing congestion metrics observed during placement
and routing. Using these features and ground truth data, a gradient
boosted regression tree model is trained to predict the congestion
metrics for operators at the HLS stage.

3.2 ML-Aided High-Level Design Exploration

In the context of HLS, the DSE problem entails finding the opti-
mal configuration of parameters, such as loop unrolling factors,
pipelining initiation intervals (Ils) or the number of array parti-
tions, which are typically specified using pragmas or directives as
part of the high-level specification. The design space encompasses
the complete range of possible design configurations. Tradition-
ally, DSE in HLS has been approached using analytical or genetic
algorithm-based methods [58, 82]. However, these methods often
face scalability and exploration efficiency challenges.

In recent years, ML-based techniques such as active learning and
Bayesian optimization have emerged as promising approaches for
HLS DSE. Active learning [79], focuses on selecting representative
and challenging samples from the design space to maximize the
predictive model’s accuracy using minimal training samples [33].
On the other hand, Gaussian processes and Bayesian optimization
[35, 62] employ probabilistic models to predict the performance of
unseen design points and iteratively refine the model.

Similar to QoR estimation, incorporating structural information
can enhance the efficiency and effectiveness of the DSE process.
Ferretti et al. [19] employ GNNs built on control dataflow graphs an-
notated with HLS directives. These GNN models act as performance
predictors, efficiently transferring learned knowledge to new tasks.
By leveraging the structural information captured by GNNs, per-
formance prediction becomes more accurate and efficient. Another
approach, as presented in [74], combines GNNs with reinforcement
learning. Their method, called IronMan, predicts performance using
the original dataflow graph of the input program, encompassing
both regular and irregular data paths. RL is then utilized to explore
optimal resource allocation strategies based on user-specified con-
straints. Transfer learning has also been leveraged to enhance the
efficiency and effectiveness of the HLS DSE process. For instance, in
[28], authors utilize knowledge acquired from related design spaces
to accelerate the exploration of new HLS programs. These more
sophisticated ML methods demonstrate the potential benefits of
utilizing structural information and data-driven techniques in HLS
DSE, leading to improved results.

3.3 Challenges and Potential Solutions

Although significant progress has been made in applying machine
learning to HLS, there are still several challenges that need to be
addressed. Here, we highlight a few of these challenges.

Similar to the system level, ML algorithms for HLS heavily rely
on data to learn patterns and make accurate predictions, where
collecting sufficient and diverse training data can be challenging
due to the complexity and specificity of hardware design tasks. As
a result, models may suffer from poor training or limited transfer-
ability, leading to suboptimal performance on unseen data or new

CODES/ISSS *23 Companion, September 17-22, 2023, Hamburg, Germany

tasks. In their work, Ustun et al. [69] propose a potential solution to
this challenge by generating synthetic HLS designs to cover a wide
range of data patterns. We believe that similar data augmentation
techniques and new approaches, particularly those leveraging ad-
vancements in large language models, can help alleviate the scarcity
of labeled HLS designs.

In addition, achieving timing closure in HLS designs remains a
significant challenge that hinders productivity. While there have
been several studies focusing on timing and congestion estimation
in HLS designs, accurately predicting critical path delay or clock
frequency is a nontrivial task due to its inherent complexity. More-
over, even if an ML model can accurately estimate the delay of the
critical path, guiding the tool to effectively resolve the timing issue
remains difficult for designers [16, 29]. Recent efforts have shown
promising results in improving the clock frequency of HLS designs
by combining a coarse-grained floorplanning step with pipelining
during the HLS compilation process [23, 24]. We believe that further
enhancements can be achieved by integrating ML predictions into
this strategy to accelerate the design closure process.

4 RTL/LOGIC SYNTHESIS PREDICTION

Modern embedded computing systems employ accelerator-rich
SoCs to meet new computation demands. Unlike general-purpose
processors that are programmable, accelerators sacrifice general-
ity for specificity to offer unmatched performance and efficiency.
However, accelerators face friction when being adopted by indus-
try on a large scale because they are time-consuming to develop
and difficult to program. The only way accelerators can keep up
with the ever-changing computation demands is by having a fast
development process and a relatively short design iteration cycle.

4.1 ML-Aided Modeling of Hardware Costs

To expediently and accurately model the hardware design cost of an
RTL circuit, such as an accelerator’s power, area, and timing, a myr-
iad of ML-aided techniques have been proposed. AutoAx [43] builds
upon traditional synthesis tools and aims to accelerate the entire
synthesis flow by employing libraries of approximate components.
This strategy is designed to expedite the design space exploration
of approximate circuits. However, it is not general-purpose enough
to predict the cost of any arbitrary RTL circuit design. Others have
proposed utilizing ML models to quickly predict the power of an
RTL design. Apollo [77] utilizes a linear model that can act as an
on-chip power meter and guide the dynamic voltage and frequency
scaling of microprocessors. Both PRIMAL [87] and PowerNet [76]
employ convolutional neural networks (CNNs) as their models, and
GRANNITE [81], on the other hand, utilizes GNNs that operate
directly on the graph representation of RTL circuits. PowerNet
predicts the runtime voltage drop of a hardware design, while PRI-
MAL and GRANNITE predict the runtime power of a given circuit
design using input application execution traces. For example, given
the layout of a particular general-purpose processor, PRIMAL and
GRANNITE can estimate the runtime power consumption of appli-
cations. All three of these models show substantial speedup over
traditional synthesis tools.

However, these machine learning models have limitations. First,
some of them are trained on data from lower abstraction levels than
designs written in RTL or other hardware description languages.

CODES/ISSS "23 Companion, September 17-22, 2023, Hamburg, Germany

5-O-8-%-

Circuit
Paths

Verilog/

RTL GraphIR

CircuitFormer MLP

Figure 4: SNS takes Verilog/RTL codes of a hardware design
as input, turns the RTL codes into a graph intermediate repre-
sentation (GraphIR), samples circuit paths from the GraphlIR,
uses an augmented super light-weight Transformer model
called CircuitFormer to predict path-based attributes, and fi-
nally aggregates path-based information into predicted phys-
ical characteristics (i.e., area, power, timing) of the hardware
design in its entirety.

For example, PRIMAL and PowerNet operate at the layout level,
and GRANNITE operates at the logic gate level. The process of
translating RTL circuit designs from HDL-level abstraction to lower-
level abstractions such as layout is time-consuming since synthesis
and place-and-route need to be performed. These ML models are
better suited for estimating application power consumption of a
handful of designs but not suitable to perform hardware design
space explorations where hundreds and thousands or more designs
are explored. Second, most models only predict hardware costs
for a limited set of designs or only predict a particular hardware
design cost. For example, Apollo only functions with a few select
microprocessor core implementations. PowerNet, PRIMAL, and
GRANNITE are only capable of predicting the power consumption
of RTL circuit designs, which is only a component of the hardware
design costs. Finally, some models do not scale well with large
input designs or simply cannot predict the hardware cost of large
input designs. For example, PRIMAL and GRANNITE encounter a
significant slowdown when predicting larger designs compared to
predicting smaller ones. The largest input design demonstrated is
only a small RISC-V core (<1 mm? without caches). The capacity to
scale to large designs is crucial in the realm of modern embedded
systems modeling. This is particularly significant as the scale and
complexity of modern embedded systems continue to rise, with a
single SoC now housing dozens of heterogeneous cores.

4.2 Path-Based Approach Enables Scalable
Hardware Cost Prediction

Recent work SNS [78] leverages advances in artificial intelligence
and graph analytics to turn input hardware designs into graph rep-
resentations for synthesis predictions. Figure 4 shows the flow. SNS
takes a novel circuit-path-based approach to predict the physical
characteristics of individual circuit paths and aggregating the paths’
characteristics to predict the area, power, and timing of the entire
input design. By exploiting sequence processing techniques that
learn the order and the placement of words in relation to a sentence
such as in natural language processing (NLP) [71], SNS learns the
order and the placement of functional units in a circuit path to pro-
vide more accurate synthesis result predictions. With a very limited
number of open-source hardware designs available as training data,
SNS utilizes generative models [80] to generate training datasets,
providing accurate predictions even when training data is scarce.
Rather than working on the graph representation of the entire
design, the path-based approach provides several advantages over

Alcorta, et al.

in1 in2

Multiplier

Paths [node1, node2, ...]
[i08, mul16, add16, dff16]

[dff16, out16]

Graph Statistics (node: count)
i08:2 mul16:1 dff16: 1
io16:1 addi16: 1

clk out

(a)

()
Figure 5: Extracting path-based physical characteristics.

prior work. First, circuit paths are less compute-intensive to syn-
thesize for “ground truths” when generating training data. Second,
circuit paths are easier to process and faster to infer compared to en-
tire design graphs, providing a scalable solution for predicting large
input designs. Third, the path-based approach allows ML models to
infer “local properties” in the design with high accuracies, such as
utilizing critical paths of a design to infer timing. This prevents in-
terference from adjacent, unrelated hardware modules. In addition,
the ability to pinpoint the exact path that contributes to the critical
path, for example, allows for specific optimization of the design that
is otherwise unattainable. Last but not least, circuit paths can be
generated using a GAN-base method as described below, combating
ML model training data scarcity. Figure 5 shows pictorially how
SNS turns an 8-bit multiply-add unit in (a) into the circuit graph in
(b) and extracts the circuit paths and graph statistics such as the
counts of each distinct node name as shown in (c).

Predicting the physical characteristics of an input design using
all circuit paths of the design, or exhaustively sampling all circuit
paths, is unnecessary because lots of circuit paths are similar and do
not give us additional information. Recent work [49] demonstrates
that performing random path sampling over the entire network
graph and analyzing these sampled paths provide sufficient graph
information to perform graph analysis. SNS takes a similar ap-
proach and uses a depth-first-search-based algorithm to randomly
sample circuit paths across the entire design. Instead of randomly
sampling any circuit paths, hardware design domain knowledge
is incorporated so that only circuit paths beginning and ending
with flip-flops are sampled, vastly reducing the search space. These
sampled paths essentially capture the “one-cycle behavior” of the
design, making it possible to predict timing (i.e., the critical path)
of the circuit paths and therefore timing of the entire design.

4.3 Exploiting NLP Model and GAN to Provide
More Accurate Hardware Cost Prediction

Traditional synthesis tools such as the Synopsys Design Compiler
(DC) employ optimizations to create a synthesized design that ex-
hibits smaller area, power, and better timing whenever possible.
For example, an adder followed by a multiplier will be inferred
as a multiply-accumulate unit. This example illustrates the im-
portance of the ordering and placement of nodes that represent
functional units, registers, and flip-flops on a circuit path. To im-
prove the accuracy of hardware cost predictions, a stripped-down
and augmented Transformer model [71], the most popular NLP
model, is used. This model takes into account the ordering and
the placement of the tokens (nodes) to predict the circuit path’s
physical characteristics with exceptional speed and accuracy. With

Special Session: Machine Learning for Embedded System Design

high-level features extracted from individual circuit paths via the
mini-Transformer model, multi-level perceptrons are used to ag-
gregate path-level inferences to predict the area, power, and timing
of the entire hardware design. For example, the timing prediction
of a hardware design is the maximum of the sampled circuit paths’
timing predictions.

Besides leveraging an effective model to predict hardware costs,
sufficient training data is also necessary to achieve desired pre-
diction accuracy. Unfortunately, good quality open-sourced RTL
designs are scarce. This makes training a deep learning model with
“ground truths” challenging. In addition, successfully synthesiz-
ing these RTL designs often require human effort, and once the
synthesis flow is bug-free, it is computationally expensive and time-
consuming to generate synthesis results.

To create a sufficiently large training dataset, SNS extracts cir-
cuit paths directly from the available hardware designs as well as
generates new;, artificial yet realistic circuit paths to combat data
scarcity. Two specific techniques are employed: Markov Chain and
SeqGAN (Generative Adversarial Network for sequences) methods.
The former is based on a transition matrix of conditional proba-
bilities and is used to generate unique, realistic circuit paths. The
latter is adept at creating longer, meaningful paths by learning the
sequence of nodes from actual hardware designs. This combination
ensures that the data generation and augmentation processes pro-
duce diverse, less biased, and yet realistic circuit paths. As the final
step in creating the training dataset, all generated circuit paths are
synthesized using Synopsys DC to obtain real synthesis results as
the training targets. This approach, taking advantage of traditional
synthesis toolchain feedback and ML generative methods, ensures
a robust and accurate model in the presence of limited original data.

4.4 Challenges and Opportunities

Data scarcity remains a critical challenge despite the advances
in using GANSs to generate a diverse, unbiased training dataset.
Compromises were made when encoding wires and functional unit
bit-widths to keep the training vocabulary set size reasonable for a
mini-Transformer model to ensure feasible data augmentation and
model scalability. For example, only power-of-two bit-widths are
supported, e.g., a 29-bit adder or a 34-bit adder would be “rounded-
near” to a 32-bit adder. Future work can address this inaccuracy by
developing a more robust encoding scheme without increasing the
model size significantly.

The limited transferability of the prediction model is another
critical challenge. For example, if the model is trained on a 32nm
technology library, the model can successfully predict the synthesis
results of designs it has never seen before, only if the designs use the
same 32nm technology library. However, the model will need to be
retrained from scratch to predict designs that are implemented in a
different technology node or operating under a different condition
(e.g., different operating corners). Since the process of collecting
and generating the requisite dataset is resource-intensive and time-
consuming, this restricts the practical applicability of these models.
Future research can address this challenge by developing a more
transferable model without requiring complete retraining of the
model for predicting hardware design costs of implementations in
alternate technology libraries or operating conditions.

CODES/ISSS *23 Companion, September 17-22, 2023, Hamburg, Germany

5 INDUSTRY PERSPECTIVES

At Infineon, we recognize the high potential of ML to accelerate
and improve our industrial design flow. The primary enablers of
ML applications are Electronic Design Automation (EDA) tools and
modern ML techniques. First, EDA tools generate a considerable
amount of objects, reports, and log files that could be used for ML
training. Data availability is especially notorious in the industry,
where each subteam across the design flow develops different IPs
and runs different EDA tools multiple times. Besides, collection sys-
tems for relevant data metrics are available so each run’s results can
be stored, tracked, and analyzed. Second, modern ML techniques
work over different data structures, such as vectors, matrices, and
graphs. The latter represents an excellent chance for research in
the field, as EDA objects and tasks are naturally represented with
graph structures. In addition, we also observe that ML finds its way
more and more through EDA tools to improve their capabilities
and simplify their usage. Nevertheless, there are still many open
additional ML applications, mainly in the area of design flow (i.e.,
involvement of a set of tools) and beyond RTL.

As RTL design is the entry point of the design flow, its quality
impacts the design results after physical synthesis. RTL variants
using different micro-architectures and HDL coding styles have a
different impact on Power, Performance, and Area (PPA) results [60].
Thus, optimizations should be made at RTL.At Infineon, we believe
that providing a right-at-first RTL would reduce iterations of the
digital design flow. However, finding a right-at-first design implies
measuring PPA values from different RTL variants. This measure is
costly and time-consuming, as logical and physical synthesis tools
should be run. To tackle this and enable RTL design exploration,
accurate yet fast estimations of the PPA of a design are needed.

As timing closure is a crucial aspect of a design, we use ML to
provide a fast estimation of the timing behavior of the components
of a digital circuit at the early stages of the design flow. In particular,
we use ML models inside our in-house RTL generation framework
to estimate pin-to-pin delays of its primitive components. The build-
ing blocks of our ML solution are the data collection flow for getting
training and evaluation circuits and the task and architecture defi-
nition to correctly map the EDA task as an ML problem and choose
a suitable architecture.

5.1 Data Collection Flow

The widespread use of embedded systems implemented in contin-
uous shrinking technologies results in more strict requirements
for the design flow. To cope with this, Infineon has developed an
RTL generation framework called MetaRTL [59]. MetaRTL uses
meta-modeling and applies the Model Driven Architecture (MDA)
principle to RTL generation [68]. This framework provides three lay-
ers of a design: the initial specifications or Model of Things (MoT),
the intermediate representation of the design’s micro-architecture
or Model of Design (MoD), and the mapping to an HDL or Model
of View (MoV). MetaRTL generates different RISC-V-based CPUs,
accelerators, IPs, and SoCs while reusing generators and saving
design and verification efforts [18, 20, 50].

MetaRTL’s generated RTL designs are synthesized to obtain the
QoRs of the design in terms of PPA. To that end, we incorporate
commercial and open-source physical synthesis tools into our de-
sign flow, going from the specification level to the final GDS layout.

CODES/ISSS "23 Companion, September 17-22, 2023, Hamburg, Germany

Random
Configurations |
(i) Specification-to-RTL Flow (fnfineon

MoD
Intermediate
Design

(ii) RTL-to-GDS Flow
Yosys/ABC
OpenROAD

Gate-Level |
Netlist

OpenSTA
OpenROAD

(019

(iii) Dataset Collector

Feature Parser & Label
Extractor Extractor

Figure 6: Industrial data collection flow.

Specifically, we use Yosys [72] for logic synthesis, and the Open-
ROAD [1] toolchain for physical synthesis and timing analysis.
In [37], we present the challenges, solutions, and opportunities of
using OpenROAD in our industrial flow and with our proprietary
technologies. In [66], PPA results derived from OpenROAD are com-
pared w.r.t. commercial tool results over different RISC-V-based
CPU cores generated by MetaRTL. Even though commercial tools
outperform OpenROAD results for the same design configuration
and constraints, our data collection flow in Figure 6 leverages open-
source tools for transparency on the synthesis flow, saving license
costs and promoting research in the field.

The advantages of our data collection flow are threefold. First,
training and evaluation designs can be easily generated by chang-
ing the specifications or the implemented micro-architecture at
RTL. Second, formal properties are generated, and it is possible to
verify MetaRTL designs following a four-eyes principle [18]. Finally,
Python is used as the programming language for both tasks, hard-
ware generation, and ML applications. Nevertheless, MetaRTL’s
resulting micro-architectures are not optimal since the RTL abstrac-
tion does not regard timing. Instead, MetaRTL relies entirely on
the engineer coding the generator to implement timing-efficient
micro-architectures. To tackle this, MetaRTL would require early
knowledge about the timing characteristics of the generated designs.
However, this timing information is computationally expensive to
gather, as runs of synthesis and timing analysis tools are required.

5.2 Task and Architecture Definition

As timing is the most crucial design aspect, ML models are being
used to estimate timing-related design metrics at different stages
of the design flow [54]. However, most works train ML models
using features from gate-level netlists, losing the mapping to the
design at RTL. Other works, such as [60], map the Verilog code
to an abstract syntax tree representation and train ML models to
predict a design’s post-placement total negative slack and power
consumption. Similarly, we aim to predict timing metrics from
the RTL design phase. We incorporate ML models into the RTL
generation framework used at Infineon. The ML solution should
be accurate, fast, and generalizable to any circuit. Thus, we aim to
learn the timing behavior of each primitive component in the MoD
or intermediate layer of the generation framework. Finally, the ML
solution should be aware of the problem, i.e., features and model
architecture must match the nature of the task.

Alcorta, et al.

In [64], we train vector-based ML models to predict the pin-to-
pin delay of components within an intermediate RTL representation.
The training data are collected following the flow in Figure 6. Small
designs are generated using random configurations of primitive
components such as logic gates, in a bitwise, logical, and reduced
fashion. These designs are hierarchically synthesized, and timing
analysis is run to collect timing reports. The latter are parsed to
extract pin-to-pin delays and slew values. The features give infor-
mation about the design configuration and are selected based on
the physical models for delay calculation. Specifically, non-linear
delay models are described in technology libraries and defined as
lookup tables indexed by the output slew or transition time and
the load capacitance. Similarly, the output slew is a function of
the load capacitance and the propagated input slew. Thus, selected
features include the component type, number of inputs, current
pin, bit widths, and fan out. Deep ML models are trained to predict
the pin-to-pin delay of logic components. Results show how results
improve when considering the input slew as a feature and the out-
put slew as an objective. Moreover, the model inference on larger
evaluation circuits is made sequentially to consider that the slew
is propagated along the paths of the timing graph, i.e., the output
slew of a component is the input slew of the next component in
the timing graph.

As circuits are built not only from logic components, the dataset
is enlarged to cover more component types, such as arithmetic,
branch, and multiplexer operators [65]. Even though more com-
plex circuits could be evaluated, considering one model to predict
the timing behavior of all component types decreases the model
performance, even when considering slews as a feature. Further
analysis shows that training one model to cover all training data is
inappropriate, as different component types have different struc-
tural features and timing behaviors. Finally, inspired by the recent
advances in GNNs and their numerous applications to the digital
design flow [56], we employ GNNss to solve the pin-to-pin delay
prediction task [67]. The same data collection flow in Figure 6 is
used, but instead of building tabular datasets, we build a set of
graphs representing the design at the intermediate RTL representa-
tion layer. Using GNNs for logic components provides better results
than vector-based ML models, as graphs better represent our de-
signs than the tabular pin-to-pin dataset. Moreover, timing analysis
uses a timing graph to propagate delay and slews along the paths.

We have seen that ML provides a fast yet accurate estimation of
component delays without running synthesis tools. Experimental
results show that GNN-based models are promising. In future work,
they can be employed to generalize to more component types sup-
ported by MetaRTL. Finally, ML-estimated delays could be used to
detect critical blocks of the design so that timing violations can be
identified earlier and better RTL micro-architectures can be found.

5.3 Open Challenges and Opportunities

EDA tools have been developed to cover the design flow from
different levels of abstraction, from lumped-element models to the
system specification. ML approaches allow abstracting EDA tasks
even more. By learning from pattern distributions in a massive
training data set, ML models reduce the complexity of the EDA
tasks representing waveforms, circuits, and layouts in higher or
lower-dimensionality vectors. However, in contrast to classical

Special Session: Machine Learning for Embedded System Design

abstractions, it is still not possible to understand what is being
abstracted by an ML model. Thus, ML-based predictions cannot be
fully explained or trusted (also w.r.t. adversarial samples [34]). This
lack of explainability or interpretability lowers the acceptance of
ML-based solutions replacing classical methods in industrial flows.

Additionally, ML models still cannot solve complex EDA tasks
without restricting the problem to a smaller subspace. This solution
space is as limited as the collected training data are, as data can
be biased or suffer from distribution shifts. Even with a proper
data collection flow allowing different RTL variants and collecting
the PPA results of each, no ML model can be trained to cover all
ranges of features, all technology nodes, all possible target clock
frequencies, or all possible design rules and constraints. According
to this, our ML-based timing estimation has provided sufficiently
accurate results when restricting the problem to a specific timing
setup, component types, and technology node and when consid-
ering the underlying physical models of the task, i.e., adding slew
estimation and propagation.

The familiar aphorism "All models are wrong, but some are useful”
from the statistician George E.P. Box [12] alludes to the limitations
of any abstraction model w.r.t. the complexity of real problems and
how these models can still be helpful. In this sense, all ML models
are wrong too. Even though ML is an alternative for mapping EDA
tasks to a space of reduced complexity and still getting significantly
good results, ML models still need to improve on solving complete
complex EDA tasks [53]. However, the aphorism from George Box
also states that some models are useful—especially when adequately
handled. In this sense, our ML-based time estimation is an excellent
help to come up with a good architecture early. Furthermore, we ex-
plore using the data to do early trade-off analysis and optimization
tasks automatically.

Future research in ML for embedded system design should focus
on using ML with classical optimization and heuristic algorithms
in a coarse or fine-grain integration, as proposed in [53]. The au-
thors propose solving EDA tasks using ML models and classical
algorithms side by side or one inside the other. This will help to
solve more complex tasks without restricting the solution space and
achieve better performance. Moreover, ML-based solutions should
not be black-box solutions. They should instead be aware of the
physical models of the underlying task to select meaningful features
and patterns from the training data. These two basic directions can
open the door to reliable ML models solving core EDA tasks across
different levels of abstraction.

6 SUMMARY, CONCLUSIONS AND OUTLOOK

The recent efforts summarized in this paper have demonstrated the
high potential of ML techniques in revolutionizing embedded sys-
tem design and overcoming existing challenges. Supervised learn-
ing techniques provide high-fidelity and fast predictive models,
which play a critical role in efficiently guiding solution search in
huge and complicated design space. The reinforcement learning
framework can be directly leveraged for design optimizations.
However, ML for embedded system design is still far from be-
ing sufficiently studied and there are new challenges associated
with the ML techniques. First, the effectiveness of ML techniques
heavily relies on a large volume of well curated data. However, a
common theme across all abstraction levels is that obtaining labeled

CODES/ISSS *23 Companion, September 17-22, 2023, Hamburg, Germany

training data for embedded system designs is time consuming and
computing intensive process. Within this context, the redundant
nature of each research and development team independently un-
dertaking expensive data preparation efforts leads to significant
computational waste. Moreover, when there are technological or
application changes, reusing existing data is still difficult, necessi-
tating a restart of the data preparation process. Consequently, data
efficiency becomes a crucial challenge and bottleneck impeding the
advancement of ML-based embedded system design.

Another challenge is the interoperability between ML techniques
and human manual design. In system-level designs, human manual
intervention remains indispensable due to the inherent value of hu-
man design knowledge and the current limitations of system-level
design automation techniques. However, there is no streamlined ap-
proach to incorporate human design knowledge into ML techniques
other than design specifications, trial-and-error cost functions or
labor-intensive manual feature engineering. Conversely, the limited
interpretability of ML techniques poses a challenge for designers
seeking to integrate ML solutions with human decision-making
processes.

To address the aforementioned challenges, we propose the follow-
ing potential solutions. To overcome the data efficiency challenge,
we advocate for the establishment of shared data and machine
learning models in embedded system designs, taking inspiration
from successful approaches utilized by ImageNet and Kaggle within
the machine learning community. Achieving this goal will require
collaborative efforts from the entire embedded system community.
Additionally, for the challenge of interoperability between human
design and ML techniques, beyond more research into learning for-
mulations, leveraging the recent advancements in large language
models has the potential to significantly advance the seamless in-
corporation of human design knowledge with ML techniques.

ACKNOWLEDGMENTS

This work is partially supported by NSF grants CCF-1763848 and
CCF-2212346, as well as the German Federal Ministry for Economic
Affairs and Energy (BMWi) as part of the research project Progres-
sivKI (19A21006C).

REFERENCES

[1] T. Ajayi et al. 2019. INVITED: Toward an Open-Source Digital Flow: First Learn-
ings from the OpenROAD Project. In DAC.

[2] E.S. Alcorta et al. 2021. Phase-Aware CPU Workload Forecasting. In SAMOS.

[3] E.S. Alcorta et al. 2022. Machine Learning for System-Level Modeling. In Machine
Learning Applications in Electronic Design Automation, Haoxing Ren and Jiang
Hu (Eds.). Springer, 545-579.

[4] E.S. Alcorta et al. 2023. Lightweight ML-based Runtime Prefetcher Selection on
Many-core Platforms. In MLArchSys.

[5] E.S. Alcorta and A. Gerstlauer. 2021. Learning-Based Workload Phase Classifica-
tion and Prediction Using Performance Monitoring Counters. In MLCAD.

[6] E.S. Alcorta and A. Gerstlauer. 2022. Learning-based Phase-aware Multi-core
CPU Workload Forecasting. ACM TODAES 28, 2 (2022), 23:1-23:27.

[7] A. K. Ananda Kumar et al. 2022. Machine Learning-Based Microarchitecture-
Level Power Modeling of CPUs. IEEE TC 72, 4 (2022), 941-961.

[8] A. K. Ananda Kumar and A. Gerstlauer. 2019. Learning-Based CPU Power
Modeling. In MLCAD.

[9] N. Ardalani et al. 2015. Cross-architecture performance prediction (XAPP) using
CPU code to predict GPU performance. In MICRO.

[10] N. Ardalani et al. 2019. A Static Analysis-based Cross-Architecture Performance
Prediction Using Machine Learning. arXiv:1906.07840
[11] Y. Bai et al. 2023. ProgSG: Cross-Modality Representation Learning for Programs

in Electronic Design Automation. arXiv:2305.10838

CODES/ISSS "23 Companion, September 17-22, 2023, Hamburg, Germany

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]

[35

[36]
[37]
[38]
[39]
[40]
[41]

[42

[43]

[44]

G. EP Box and N. R Draper. 1987. Empirical model-building and response surfaces.
John Wiley & Sons.

O. Bringmann et al. 2015. The Next Generation of Virtual Prototyping: Ultra-fast
Yet Accurate Simulation of HW/SW Systems. In DATE.

R. Cochran et al. 2011. Pack & Cap: adaptive DVFS and thread packing under
power caps. In MICRO.

J. Cong et al. 2011. High-Level Synthesis for FPGAs: From Prototyping to De-
ployment. IEEE TCAD 30, 4 (2011), 473-491.

J. Cong et al. 2022. FPGA HLS today: successes, challenges, and opportunities.
ACM TRETS 15, 4 (2022), 1-42.

S. Dai et al. 2018. Fast and accurate estimation of quality of results in high-level
synthesis with machine learning. In FCCM.

K. Devarajegowda et al. 2019. How to Keep 4-Eyes Principle in a Design and
Property Generation Flow. In MBMV.

L. Ferretti et al. 2022. Graph Neural Networks for High-Level Synthesis Design
Space Exploration. ACM TODAES 28, 2 (2022), 1-20.

N. Gerlin et al. 2022. Design of a Tightly-Coupled RISC-V Physical Memory
Protection Unit for Online Error Detection. In VLSI-SoC.

A. Gerstlauer et al. 2009. Electronic System-Level Synthesis Methodologies. IEEE
TCAD 28, 10 (2009), 1517-1530.

A. Gerstlauer et al. 2012. Abstract System-Level Models for Early Performance
and Power Exploration. In ASP-DAC.

L. Guo et al. 2021. AutoBridge: Coupling Coarse-Grained Floorplanning and
Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In FPGA.

L. Guo et al. 2022. RapidStream: Parallel Physical Implementation of FPGA HLS
Designs. In FPGA.

Y. Hu et al. 2018. Wavefront-MCTS: Multi-objective Design Space Exploration of
NoC Architectures based on Monte Carlo Tree Search. In ICCAD.

Y. Hu et al. 2020. Machine Learning Approaches for Efficient Design Space
Exploration of Application-Specific NoCs. ACM TODAES 25,5 (2020), 44:1-44:27.
G. Huang et al. 2021. Machine learning for electronic design automation: A
survey. ACM TODAES 26, 5 (2021), 1-46.

J. Kwon and L. P Carloni. 2020. Transfer learning for design-space exploration
with high-level synthesis. In MLCAD.

Y. Lai et al. 2021. Programming and Synthesis for Software-Defined FPGA
Acceleration: Status and Future Prospects. ACM TRETS 14, 4 (2021), 1-39.

D. Lee et al. 2015. Dynamic Power and Performance Back-Annotation for Fast
and Accurate Functional Hardware Simulation. In DATE.

D. Lee et al. 2015. Learning-Based Power Modeling of System-Level Black-Box
IPs. In ICCAD.

D. Lee and A. Gerstlauer. 2018. Learning-Based, Fine-Grain Power Modeling of
System-Level Hardware IPs. ACM TODAES 23, 3 (2018), 30:1-30:25.

H. Liu and L. P Carloni. 2013. On learning-based methods for design-space
exploration with high-level synthesis. In DAC.

K. Liu et al. 2021. Can We Trust Machine Learning for Electronic Design Au-
tomation?. In SOCC.

C. Lo and P. Chow. 2018. Multi-fidelity optimization for high-level synthesis
directives. In FPL.

S. Lu et al. 2015. Reinforcement Learning for Thermal-aware Many-core Task
Allocation. In GLSVLSL

C. Luck et al. 2022. Industrial Experience with Open-Source EDA Tools. In
MLCAD.

H. Makrani et al. 2019. Pyramid: Machine learning framework to estimate the
optimal timing and resource usage of a high-level synthesis design. In FPL.

D. Masouros et al. 2021. Rusty: Runtime Interference-Aware Predictive Monitor-
ing for Modern Multi-Tenant Systems. IEEE TPDS 32, 1 (2021), 184-198.

C. Mendis et al. 2019. Ithemal: Accurate, Portable and Fast Basic Block Throughput
Estimation using Deep Neural Networks. In ICML.

A. Mirhoseini et al. 2020. Chip Placement with Deep Reinforcement Learning.
arXiv:2004.10746

M. Moghaddam et al. 2018. Dynamic Energy Optimization in Chip Multiproces-
sors Using Deep Neural Networks. IEEE TMSCS 4, 4 (2018), 649-661.

V. Mrazek et al. 2019. autoax: An automatic design space exploration and circuit
building methodology utilizing libraries of approximate components. In DAC.
K. O’Neal et al. 2018. HLSPredict: cross platform performance prediction for
FPGA high-level synthesis. In ICCAD.

K. O’Neal and P. Brisk. 2018. Predictive Modeling for CPU, GPU, and FPGA
Performance and Power Consumption: A Survey. In ISVLSL

K. O'Neal et al. 2019. Hardware-Assisted Cross-Generation Prediction of GPUs
Under Design. IEEE TCAD 38, 6 (2019), 1133-1146.

D. Pal et al. 2022. Machine Learning for Agile FPGA Design. In Machine Learning
Applications in Electronic Design Automation, Haoxing Ren and Jiang Hu (Eds.).
Springer, 471-504.

R. Panda et al. 2016. Genesys: Automatically Generating Representative Training
Sets for Predictive Benchmarking. In SAMOS.

B. Perozzi et al. 2014. DeepWalk. In SIGKDD.

S. Prebeck et al. 2022. A Scalable, Configurable and Programmable Vector Dot-
Product Unit for Edge AL In MBMV.

)
ot

Alcorta, et al.

A. Prodromou et al. 2019. Platform-Agnostic Learning-Based Scheduling. In
SAMOS.

M. Rapp et al. 2022. MLCAD: A Survey of Research in Machine Learning for
CAD Keynote Paper. IEEE TCAD 41, 10 (2022), 3162-3181.

H. Ren et al. 2023. Machine Learning and Algorithms: Let Us Team Up for EDA.
IEEE Design & Test 40, 1 (2023), 70-76.

H. Ren and J. Hu. 2023. Machine Learning Applications in Electronic Design
Automation. Springer.

M. Sagi et al. 2021. Long Short-Term Memory Neural Network-based Power
Forecasting of Multi-Core Processors. In DATE.

D. Sanchez et al. 2023. A Comprehensive Survey on Electronic Design Automation
and Graph Neural Networks: Theory and Applications. ACM TODAES 28, 2 (2023),
1-27.

R. Sarikaya and A. Buyuktosunoglu. 2007. Predicting Program Behavior Based
On Objective Function Minimization. In IISWC.

B. C. Schafer and K. Wakabayashi. 2012. Divide and Conquer High-Level Synthe-
sis Design Space Exploration. ACM TODAES 17, 3 (2012), 1-19.

J. Schreiner et al. 2016. Design centric modeling of digital hardware. In HLDVT.
P. Sengupta et al. 2022. How Good Is Your Verilog RTL Code? A Quick Answer
from Machine Learning. In ICCAD.

A. Sohrabizadeh et al. 2022. Automated Accelerator Optimization Aided by Graph
Neural Networks. In DAC.

Q. Sun et al. 2022. Correlated multi-objective multi-fidelity optimization for HLS
directives design. ACM TODAES (2022), 46-51.

D. Sunwoo et al. 2010. PrEsto: An FPGA-accelerated Power Estimation Method-
ology for Complex Systems. In FPL.

D. Sanchez Lopera et al. 2021. RTL Delay Prediction Using Neural Networks. In
NorCAS.

D. Sanchez Lopera et al. 2022. Early RTL delay prediction using neural networks.
Elsevier MICPRO 94 (2022), 104671.

D. Sanchez Lopera et al. 2022. Using Open-Source EDA Tools in an Industrial
Design Flow. In DVCON.

D. Sanchez Lopera and W. Ecker. 2022. Applying GNNs to Timing Estimation at
RTL. In ICCAD.

F. Truyen. 2006. The fast guide to model driven architecture. Cephas Consulting
Corp (2006).

E. Ustun et al. 2020. Accurate operation delay prediction for FPGA HLS using
graph neural networks. In ICCAD.
F. Vahid and T. Givargis. 2002.
ware/Software Introduction. Wiley.
A. Vaswani et al. 2017. Attention Is All You Need. arXiv:1706.03762

C. Wolf et al. 2013. Yosys- A free Verilog synthesis suite. In Austrochip.

G. Wu et al. 2015. GPGPU performance and power estimation using machine
learning. In HPCA.

N. Wu et al. 2021. Ironman: GNN-assisted design space exploration in high-level
synthesis via reinforcement learning. In GLSLSL.

N. Wu et al. 2022. High-level synthesis performance prediction using GNN:
benchmarking, modeling, and advancing. In DAC.

Z. Xie et al. 2020. PowerNet: Transferable dynamic IR drop estimation via
maximum convolutional neural network. In ASP-DAC.

Z. Xie et al. 2021. APOLLO: An Automated Power Modeling Framework for
Runtime Power Introspection in High-Volume Commercial Microprocessors. In
MICRO.

C. Xu et al. 2022. SNS’s Not a Synthesizer: A Deep-Learning-Based Synthesis
Predictor. In ISCA.

K. Yu et al. 2006. Active Learning via Transductive Experimental Design. In
ICML.

L. Yu et al. 2017. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI conference on artificial intelligence.

Y. Zhang et al. 2020. GRANNITE: Graph neural network inference for transferable
power estimation. In DAC.

J. Zhao et al. 2017. COMBA: A comprehensive model-based analysis framework
for high level synthesis of real applications. In ICCAD.

J. Zhao et al. 2019. Machine learning based routing congestion prediction in
FPGA high-level synthesis. In DATE.

Z. Zhao et al. 2017. Source-Level Performance, Energy, Reliability, Power and
Thermal (PERPT) Simulation. IEEE TCAD 36, 2 (2017), 299-312.

X. Zheng et al. 2017. LACross: Learning-Based Analytical Cross-Platform Perfor-
mance and Power Prediction. IJPP 45, 6 (2017), 1488-1514.

X. Zheng et al. 2017. Sampling-Based Binary-Level Cross-Platform Performance
Estimation. In DATE.

Y. Zhou et al. 2019. PRIMAL: Power inference using machine learning. In DAC.

Embedded System Design: A Unified Hard-

	Abstract
	1 Introduction
	2 ML for System-Level Design
	2.1 ML for System-Level Modeling
	2.2 ML for System-Level Exploration
	2.3 Challenges and Opportunities

	3 ML for High-Level Synthesis
	3.1 ML for High-Level QoR Estimation
	3.2 ML-Aided High-Level Design Exploration
	3.3 Challenges and Potential Solutions

	4 RTL/Logic Synthesis Prediction
	4.1 ML-Aided Modeling of Hardware Costs
	4.2 Path-Based Approach Enables Scalable Hardware Cost Prediction
	4.3 Exploiting NLP Model and GAN to Provide More Accurate Hardware Cost Prediction
	4.4 Challenges and Opportunities

	5 Industry Perspectives
	5.1 Data Collection Flow
	5.2 Task and Architecture Definition
	5.3 Open Challenges and Opportunities

	6 Summary, Conclusions and Outlook
	Acknowledgments
	References

