
Journal of Global Optimization (2024) 88:199–232
https://doi.org/10.1007/s10898-022-01269-2

Finding groups with maximum betweenness centrality via
integer programming with random path sampling

Tomás Lagos1 ·Oleg A. Prokopyev1 · Alexander Veremyev2

Received: 23 November 2021 / Accepted: 26 December 2022 / Published online: 14 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
One popular approach to access the importance/influence of a group of nodes in a network
is based on the notion of centrality. For a given group, its group betweenness centrality is
computed, first, by evaluating a ratio of shortest paths between each node pair in a network
that are “covered” by at least one node in the considered group, and then summing all these
ratios for all node pairs. In this paper we study the problem of finding the most influential
(or central) group of nodes (of some predefined size) in a network based on the concept of
betweenness centrality. One known approach to solve this problem exactly relies on using a
linear mixed-integer programming (linear MIP) model. However, the size of this MIP model
(with respect to the number of variables and constraints) is exponential in the worst case as it
requires computing all (or almost all) shortest paths in the network.We address this limitation
by considering randomized approaches that solve a single linear MIP (or a series of linear
MIPs) of a much smaller size(s) by sampling a sufficiently large number of shortest paths.
Some probabilistic estimates of the solution quality provided by our approaches are also
discussed. Finally, we illustrate the performance of our methods in a computational study.

Keywords Network analysis · Group betweenness centrality · Randomized algorithms ·
Sample average approximation (SAA) · Linear mixed-integer programming

This research was partially supported by NSF grants CBET-1803527 and CMMI-2002681.

B Oleg A. Prokopyev
droleg@pitt.edu

Tomás Lagos
tomaslagos@pitt.edu

Alexander Veremyev
alexander.veremyev@ucf.edu

1 Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

2 Department of Industrial Engineering and Management Systems, University of Central Florida,
Orlando, FL 32816, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-022-01269-2&domain=pdf
http://orcid.org/0000-0003-1457-4665
http://orcid.org/0000-0003-2888-8630

200 Journal of Global Optimization (2024) 88:199–232

1 Introduction

One of the key questions in the network analysis area is centered around identifying impor-
tant (influential) elements (i.e., nodes, edges, subgraphs) of the network [26]. The answer to
this question depends on the underlying application setting, and, in particular, on what roles
the elements play within the considered network. Over the past several decades a number of
more or less sophisticated approaches have been proposed to address this research challenge
in the related network analysis and combinatorial optimization literature [5, 11, 20, 26].

One popular approach to access the importance and influence of a graph node is based
on the notion of centrality, or a centrality index. There exist a number of centrality indices
that “capture complementary aspects of a node’s position” [20] in a network. For example,
the degree centrality of a node is defined as the degree of the node in a network, possibly,
normalized between zero and one. That is, the node is viewed as more influential (or more
“central”; hence, the moniker “centrality”) if it has a larger size of its immediate “one-hop”
neighborhood, e.g., a person is viewed as more important if he/she has more friends (or other
types of social connections/interactions) within a social network.

Another interesting and widely used index is betweenness centrality, which is considered
in this paper. It is defined as follows: to compute betweenness centrality of a given node, for
each node pair in the network we compute a proportion of shortest paths (between the pair)
that traverse through the given node, and then sum these proportions over all node pairs [11,
26]. In communication and transportation networks, the betweenness centrality of a node can
be “interpreted in terms of the potential for controlling flows through the network—that is,
playing a gatekeeping or toll-taking role” [5]. We refer the reader to [26] and the references
therein for other examples of the centrality indices.

Centrality concept allows us to simply rank all nodes according to their significance to the
network structure; see, e.g., [7] for the corresponding polynomial-time approaches. Naturally,
the node centrality can be generalized to capture centrality of a group of nodes instead of a
single node; see [11]. Formally, given simple undirected graph G = (V , E), where |V | = n
and |E | = m, we define the betweenness centrality of a group of nodes S ⊂ V as:

C(S) = 2

n(n − 1)

∑

i, j∈V : i< j, i, j /∈S

σi j (S)

σi j
, (1)

where σi j denotes the number of shortest paths between nodes i and j in G, while σi j (S)

denotes the number of shortest paths between the same node pair that traverse through at
least one node in S.

In (1), we follow the definition similar to the one used in [29] as some of our discussions
are based on the results from this study. In particular, we note that the definition of group
betweenness centrality by (1) does not take into account shortest paths that have the end-
points in S. However, if we assume that G is connected (i.e., consists of a single connected
component), then:

∑

i, j∈V : i< j

σi j (S)

σi j
=

∑

i∈S, j∈V \S : i< j

σi j (S)

σi j
+

∑

i∈V \S, j∈S : i< j

σi j (S)

σi j

+
∑

i, j∈S : i< j

σi j (S)

σi j
+

∑

i, j∈V : i< j, i, j /∈S

σi j (S)

σi j

= |S|(n − |S|) + 1

2
|S|(|S| − 1) + (n − 1)n

2
C(S), (2)

123

Journal of Global Optimization (2024) 88:199–232 201

where the first two terms in (2) are constant whenever the cardinality of S is fixed to some
positive integer s ∈ Z>0, i.e., |S| = s. In a sense, for a connected graph the first two terms
in (2) reflect how many shortest paths are “covered” by any subset of nodes of a given
cardinality. Hence, for connected graphs not taking into account the paths with endpoints in
S is not a limiting assumption. In the remainder of this paper we assume that G is connected,
which, in fact, is a standard assumption in various combinatorial optimization settings; see,
e.g., a related study in [33].

The main focus of this paper is on the following optimization problem:

C∗ = max{C(S) : S ⊂ V , |S| = s}, (3)

where C(S) is given by (1) and s ∈ Z>0 is some given parameter. That is, the decision-maker
aims at identifying the most “central” (important/influential) group of nodes of some given
size (which is typically much smaller than n); see, e.g., [33]. There are several application
settings, where solving problem (3) is of interest. Some interesting examples includemultiple
variations of sensor placement and network design [15, 17, 28, 32] as well as data analysis
[8, 14] problems.

There are two important observations about the problem given by (3), that need to be
pointed out here. First, if one wants to estimate the importance (influence) of a group of
nodes, S ⊂ V , within a network, then simply summing values of the individual importance
of the group members (i.e., their centrality values, C(i), for all i ∈ S) usually does not reflect
the importance of a group as a whole; see, e.g., discussions in [11, 12, 23, 33] on this issue. In
other words, the top s nodes with respect to their individual betweenness centrality rankings
do not provide an optimal solution of (3) in general.

Second, finding an optimal solution to problem (3) is an N P-hard problem; see, e.g.,
[10, 13]. In particular, in [13], the authors show that the variant of problem (3) with the
objective function as in (2) is APX-hard. One intuitive but relatively simple observation that
justifies the computational complexity of (3) from the theoretical perspective is based on the
concept of a vertex cover. We say that S, S ⊆ V , forms a vertex cover in G whenever for
any (i, j) ∈ E , either i ∈ S, or j ∈ S, or both i, j ∈ S. The problem of checking whether
there exits a vertex cover S of cardinality at most s in a given graph G, is known to be
N P-complete [16]; it is typically referred to as the vertex cover problem. Then we observe
that the value in the right-hand side of (2) is maximum possible whenever S forms a vertex
cover. Indeed, if S is not a vertex cover, then there exists (i, j) ∈ E such that {i, j} ∩ S = ∅.
Hence, the shortest path between i and j is not “covered” by S; recall that G is edge un-
weighted. Therefore, by finding a group of size s with maximum betweenness centrality, we
can verify whether G contains a vertex cover of size s. We refer to [13] for some additional
discussion on computational complexity of (3) as well as its weighted generalization and
polynomially-solvable cases.

In view of the above discussion, it is not surprising that several studies in the related
literature explore heuristic and approximate solution algorithms for the optimization problem
given by (3). In particular, we note that computing individual betweenness centrality for
all nodes in a graph can be done in polynomial time; see, e.g., [7]. Also, for very large
graphs there exist randomized polynomial time algorithms that provide estimates of node
betweenness centrality with some provable performance guarantees; see [21, 29] and our
brief overview in Sect. 2.3. Thus, it is not surprising that the top s nodes with respect to their
individual betweenness centrality rankings are often used as a heuristic solution for (3); see
examples in [1, 3, 4, 9, 27, 29]. Another related stream of research is focused on finding
approximate solutions for problem (3) in polynomial time. In particular, Dolev et al. [10]
present a (1 − 1

e)-approximation algorithm. Mahmoody et al. [24] provide a randomized

123

202 Journal of Global Optimization (2024) 88:199–232

approach that guarantees a (1 − 1
e − ε)-approximate solution with high probability, where

ε > 0.
To the best of our knowledge, only the study by Veremyev et al. [33] considers an exact

solution approach for problem (3) based on mixed-integer programming (MIP) techniques;
see our brief overview in Sects. 2.1 and 2.2. The key idea behind their method is to pre-
compute all (or almost all) shortest paths in the graph and then use them for a “set-covering-
like” linear mixed-integer programming (linear MIP) model. The main advantage of this
approach is its relative simplicity as it relies onusing anoff-the-shelfMIP solver. Furthermore,
this approach can be generalized (via simple linear constraints in the MIP model) to require
additional cohesiveness properties for S in (3); for example, the targeted group S should form
a clique or a subgraph with some pre-defined structure (e.g., connected by sufficiently short
paths). However, the size of the resulting MIP model (with respect to the number of variables
and constraints) depends on the the total number of shortest paths in the graph, which can be
prohibitively large even for relatively sparse real-life networks (in fact, it is exponential in the
worst case). As a result, the computational study presented in [33] demonstrates a somewhat
limited applicability of this approach even for moderately sized networks.

The latter observation provides the main motivation behind our study. More specifically,
we propose two approaches that combine the random path sampling idea from [29] with the
MIP-based techniques from [33]. In our first approach (see Sect. 3), we randomly generate a
multi-set (i.e., a bag) of shortest paths to form a reasonably sized linear MIP model, which
is slightly different from the one proposed in [33]. Let ε be some pre-defined parameter
that controls the quality of the required solution. Then we show that if the cardinality of the
generated multi-set is sufficiently large then solving our MIP model provides a solution that
is at most O(ε) away from optimal (with respect to the objective function value) with some
prescribed probability. Note that if the value of ε approaches zero, then the number of shortest
paths that need to be generated to ensure the required (theoretical) solution quality becomes
somewhat too conservative. However, our computational results indicate is that the proposed
randomized approach may provide good quality solutions even when the number of shortest
path sampled is fewer than that required by our theoretical derivations. This computational
observation provides an interesting avenue for future research.

Our second randomized approach (see Sect. 4) relies on the Sample Average Approxima-
tion (SAA) techniques. That is, instead of a single linear MIP model with a large number
of randomly generated shortest paths, we solve a series of smaller linear MIPs (i.e., MIPs
that are constructed using a smaller number of sampled paths than in the previous approach)
until some required solution quality is achieved. The latter is estimated using the arguments
that rely on the Central Limit Theorem. In the second set of computational experiments,
we compare our two approaches for real-life graphs with up to one million nodes. Finally,
in Sect. 5 we provide some concluding remarks and outline promising directions for future
research.

2 Background

2.1 MIPs for finding central groups

Next, we outline theMIP approach proposed in [33] for solving problem (3) and its “bounded-
distance” variations. Let di j be the distance between two distinct nodes i ∈ V and j ∈ V ,
i �= j , that is, the minimum number of edges that need to be traversed in order to move

123

Journal of Global Optimization (2024) 88:199–232 203

from node i to node j in the network. We denote the diameter of G by diam(G), i.e.,
diam(G) = max{di j | i, j ∈ V , i �= j}.

Define the k-bounded-distance group betweenness centrality as follows:

C≤k(S) = 2

n(n − 1)

∑

i, j∈V : i, j /∈S
i< j, di j ≤k

σi j (S)

σi j
, (4)

which is computed by considering shortest paths with at most k edges, where k ≥ 2. Clearly,
if k ≥ diam(G), then C≤k(S) = C(S).

The centrality concept given by (4) is motivated by the fact that in many real-life settings
only sufficiently short paths are practically relevant; see, e.g., brief discussions on this issue
in [6, 33]. Hence, when estimating the corresponding “influence” (importance) of the group,
S, the decision-maker disregards shortest paths longer than some given k. Furthermore, for
2 ≤ k < diam(G), the value of C≤k(S) can be used to approximate C(S); see further details
in Sect. 2.2.

Denote by Pi j a set that contains all shortest paths between two distinct nodes i and j ,
i �= j . Each path pt ∈ Pi j , t ∈ {1, . . . , σi j }, represents an ordered list of nodes on some
shortest path (indexed by t) from i to j ; note that pt includes both end-nodes i and j . That
is, if a shortest path between i and j is given by i–i1–. . .–idi j −1– j , then we denote pt by
pt = 〈i, i1, . . . , idi j −1, j〉 and |pt | = di j + 1. One possible approach for computing sets
Pi j for all node pairs i and j is based on a rather simple modification of Brandes algorithm
[7]; we refer the reader to further details in [33]. Note that whenever all paths in Pi j are
pre-computed in order to formulate our linear MIP model, then the corresponding value of
σi j is also readily available.

Next, we introduce the following sets of decision variables. Let xi be a 0–1 variable
indicating whether i ∈ V belongs to the selected group of nodes S, i.e., xi = 1 if and only
if i ∈ S. For all node pairs i, j ∈ V , i �= j , (i, j) /∈ E and t ∈ {1, . . . , σi j }, we denote by
yt

i j a 0–1 variable indicating whether pt ∈ Pi j traverses through at least one node in S, i.e.,
yt

i j = 1 if and only if there exists q ∈ pt \ {i, j} such that q ∈ S. Recall that in (1) and (4)
we do not take into account the endpoints of the path. Given the above notation, we obtain
the following MIP proposed in [33]:

[F1(k)]: C∗≤k = max
2

n(n − 1)

∑

i, j∈V : i< j
1<di j ≤k

∑
pt ∈Pi j

yt
i j

σi j
(5a)

subject to

yt
i j ≤

∑

q∈pt \{i, j}
xq ∀ i, j ∈ V , (i, j) /∈ E, i < j, di j ≤ k, ∀ pt ∈ Pi j ,

(5b)

yt
i j ≤ 1 − xi ∀ i, j ∈ V , (i, j) /∈ E, i < j, di j ≤ k, ∀ pt ∈ Pi j , (5c)

yt
i j ≤ 1 − x j ∀ i, j ∈ V , (i, j) /∈ E, i < j, di j ≤ k, ∀ pt ∈ Pi j , (5d)
∑

i∈V

xi = s, (5e)

xi ∈ {0, 1} ∀i ∈ V , (5f)

yt
i j ≥ 0 ∀ i, j ∈ V , (i, j) /∈ E, i < j, di j ≤ k, ∀ pt ∈ Pi j , (5g)

where (5b) is a set-covering constraint, which ensures that only the paths “covered” by the
nodes in S can contribute to (5a). Constraints (5c) and (5d) guarantee that the shortest paths

123

204 Journal of Global Optimization (2024) 88:199–232

with endpoints in S do not contribute to the objective function value; recall (1) and (4) as well
as our discussion of (2). Constraint (5e) provides the cardinality restriction for S, i.e., |S| = s.
Constraints (5f) and (5g) represent binary and lower bounding limitations for the decision
variables, respectively. Finally, we note that no integrality restrictions for variables yt

i j are
needed due to the maximization nature of the objective function in (5a), and the right-hand
sides of the constraints in (5c) and (5d).

2.2 Bounded-distance betweenness and betweenness centralities

As the network size increases the total number of all-pairs shortest paths in the network may
grow very fast; in fact, the growth is exponential in the worst case.Moreover, the study in [33]
with real-life graphs demonstrates that even if the total number of shortest paths in a graph
is approximately quadratic (with respect to n), then the number of variables and constraints
in F1(k) may become prohibitively large for an off-the-shelf linear MIP solver, whenever
k = diam(G). Recall that the latter condition ensures that the MIP-based approach outlined
in Sect. 2.1, i.e., model F1(k), provides an exact solution for (3). Therefore, it is natural to
explore whether solving F1(k) with k < diam(G) provides a near-optimal solution of (3)
for reasonably large values of k.

Next, we briefly describe the results and observations from [33], where the posed research
question is considered. Define:

C>k(S) = 2

n(n − 1)

∑

i, j∈V : i, j /∈S
i< j, di j >k

σi j (S)

σi j
, (6)

which is the betweenness centrality of S considering all paths longer than k. Thus, we have:

C(S) = C≤k(S) + C>k(S), where

C(S) = C≤diam(G)(S) and C>k(S) = 0 for all k > diam(G). (7)

Furthermore, denote by S∗ and S∗
k the most influential groups of nodes according to C(S)

and C≤k(S), respectively, for some given k and the group size s, i.e., |S∗| = s and |S∗
k | = s.

Therefore,

S∗ ∈ argmax{C(S) : S ⊂ V , |S| = s} and

S∗
k ∈ argmax{C≤k(S) : S ⊂ V , |S| = s}. (8)

Then it is shown in [33] that:

Proposition 1 Let S∗ and S∗
k be given by (8). Then:

C(S∗) − C(S∗
k) ≤ �k(S∗

k) := 2

n(n − 1)

∑

i, j∈V : i< j

1{di j >k} − C>k(S∗
k), (9)

where 1 denotes the standard indicator function, i.e., in (9) it returns 1, if di j > k, and 0,
otherwise.

The value of �k(S∗
k) in the right-hand side of (9) can be computed rather effectively

whenever sets S∗
k andPi j for all node pairs i, j ∈ V are known, i.e., by explicitly counting the

number of shortest paths of length larger than k that traverse through S∗
k . Hence, by increasing

the value of k and solving F1(k) we can achieve the desired quality of approximation. The
upper bound for the latter is estimated via (9) for an optimal solution of F1(k) given that

123

Journal of Global Optimization (2024) 88:199–232 205

all shortest paths in the graph are pre-computed. This approach is considered in [33] and its
pseudo-code is summarized in Algorithm 1.

Algorithm 1: �-Approximation Algorithm (�-AA); see [33]

1 Input: A graph G = (V , E), the required solution quality guarantee � and the group
size s;
Result: Subset S� ⊆ V such that |S�| = s and �k(S�) ≤ �

2 k ← 1;
3 repeat
4 k ← k + 1;
5 S� ← S∗

k ∈ argmax{C≤k(S) : S ⊆ V , |S| = s} via MIP F1(k) in (5) ;
6 �k(S�) ← 2/(n(n − 1))

∑
i, j∈V , i< j 1k<di j − C>k(S�)

7 until �k(S�) ≤ �;
8 Return: S�

Finally, it should be pointed out that (7) and (9) in Proposition 1 provide an approach for
computing an upper bound for C(S∗). That is:

C(S∗) ≤ U Bk : = 2

n(n − 1)

∑

i, j∈V , i< j

1{di j >k} − C>k(S∗
k) + C(S∗

k)

= 2

n(n − 1)

∑

i, j∈V , i< j

1{di j >k} − C>k(S∗
k) + C≤k(S∗

k) + C>k(S∗
k)

= 2

n(n − 1)

∑

i, j∈V , i< j

1{di j >k} + C∗≤k, (10)

where the second term in (10) is the optimal objective function of F1(k); see (5).

Algorithm 2: Randomized approximation of betweenness centrality for each v ∈ V ;
see [29]
1 Input: Graph G = (V , E), parameter r ;
Result: Multiset of shortest paths X such that r = |X |, and C(v, X) for all v ∈ V

2 Let C(v) ← 0 for all v ∈ V ;
3 Let X ← ∅;
4 for � = 1, . . . , r do
5 Sample uniformly at random two distinct nodes from i, j ∈ V ;
6 Compute all shortest paths Pi j using Brandes subroutine for i, j ;
7 Let p� ← { j};
8 Let t ← j ;
9 while t �= i do

10 Sample z from the predecessors of t in the path from i to t, with probability
σi z
σi t

;

11 p� ← {z} ∪ p�;
12 if z �= i then
13 C(z) ← C(z) + 1

r ;
14 end
15 t ← z;
16 end
17 X ← X ∪ {p�} ;
18 end
19 Return: X and C(v, X):=C(v) for all v ∈ V

123

206 Journal of Global Optimization (2024) 88:199–232

2.3 Randomized (",ı)-approximation of node betweenness centrality

The study in [29] describes a randomized algorithm for approximating betweenness centrality
of nodes in a network. Specifically, the key idea is to randomly sample a multiset (a bag1) X
of shortest paths in a given network and then approximate C(v) for each v ∈ V as:

C(v, X) = 1

|X |
∑

p∈X

1{v∈Int(p)}, (11)

where Int(p) denotes the interior vertices of path p (see Algorithm 2). Formally, given
p = 〈i, i1, . . . , i|p|−2, j〉 ∈ Pi j we define:

Int(p) := {i1, . . . , i|p|−2}, (12)

where |p| = di j + 1. Each path in X is an element of P := ∪i, j∈V Pi j . However, as X is
constructed using a randomized approach, then X may contain multiple copies of the same
shortest path. That is, X is a multiset.

In [29], the authors show that if X is sufficiently large, then it is possible to derive some
probabilistic guarantees on the quality of C(v, X). Formally, given ε, δ ∈ (0, 1) pair, let

r ≥ c

ε2

(
�log2(diam(G) − 2)� + 1 + ln

1

δ

)
, (13)

where c ≈ 0.5. The lower bound for r in (13) is constructed using the arguments based on a
finite upper bound for a particular Vapnik-Chervonenkis (VC) dimension. Loosely speaking,
“a finite bound on the VC-dimension of the class of subsets implies a bound on the number
of random samples required to approximate the probability of each subset in the class with
its empirical average”; see [29]. Then a randomized approach outlined in Algorithm 2 with
|X | ≥ r has the following property:

Proposition 2 [29] If (13) holds, then the approximations of C(v), for all v ∈ V , computed
by Algorithm 2 are within ε from their real values with probability at least 1 − δ, i.e.:

Pr {|C(v) − C(v,X)| ≤ ε, ∀v ∈ V } ≥ 1 − δ. (14)

We refer to C(v, X) as an (ε, δ)-approximation of C(v) whenever (14) holds. Note also, that
in (14) and in the remainder of the paper, we use symbols in bold to indicate randomvariables.
Specifically, X denotes a random variable that corresponds to a randomly generated multiset
(or bag) of shortest paths, and X denotes a realization of X.

Furthermore, it is worth pointing out that the values of σi z and σi t in line 10 of Algorithm
2 are available due to the computations performed in line 6; see further details in [29]. The
pseudo-code outlined in Algorithm 2 is a slightly modified version of the one presented in
[29]. Specifically, our version, in addition to betweenness centrality approximations, also
returns a multiset X of shortest paths; this feature is exploited in our approach discussed in
the next section.

3 Randomized approximation of C∗

Next, we discuss a randomized approximation approach that combines the ideas behind the
methods discussed in Sects. 2.2 and 2.3. Our approach generates at random a multiset of

1 A multiset is a generalization of a set and allows multiple instances of each of its elements.

123

Journal of Global Optimization (2024) 88:199–232 207

shortest paths and then solves a linear MIP to find a group that provides the maximum
betweenness centrality estimate with respect to the considered multiset of shortest paths. It
can be shown that if the cardinality of the generated multiset of shortest paths is sufficiently
large, then there exists some probabilistic guarantees on the quality of the obtained solution.

3.1 Estimator of C(S)

Given a multiset of shortest paths X we estimate the group betweenness centrality of S as

C(S, X) = 1

|X |
∑

p=〈i,..., j〉∈X : i, j /∈S

1{|Int(p)∩S|≥1}, (15)

which is a generalization of (11) for a subset of vertices. That is, if S = {v}, then C(S, X)

reduces to C(v, X) given by (11).
Recall that P is the set of all shortest paths in G, and that for any path p ∈ P , Int(p)

denotes the set that consists of its interior vertices. Then given a group of vertices S ⊆ V ,
we define

TS = {p = 〈i, . . . , j〉 ∈ P : |Int(p) ∩ S| ≥ 1, i, j /∈ S}, (16)

which is simply a subset of shortest paths such that each path within the subset contains at
least one node from S in its interior.

Recall thatX denotes a random variable that corresponds to a randomly generatedmultiset
of shortest paths. Whenever each path in X , r = |X |, is sampled uniformly at random from
P (e.g., based on Algorithm 2) we observe that the expectation of C(S,X) is given by:

E[C(S,X)] = 1

r
E[|X ∩ TS |] = 1

r

∑

p∈P
1{p∈TS}E

[
r∑

�=1

1{p�=p}

]

= 1

r

∑

p∈P
1{p∈TS}

r∑

�=1

Pr{p� = p} = 1

r

∑

p∈P
1{p∈TS}rPr{p1 = p}

=
∑

i, j∈V : i �= j

∑

p∈Pi j

1{p∈TS}
1

n(n − 1)

1

σi j
=

∑

i, j∈V : i �= j

1

n(n − 1)σi j

∑

p∈Pi j

1{p∈TS}

=
∑

i, j∈V : i �= j,i, j /∈S

1

n(n − 1)σi j
σi j (S) = C(S),

(17)

and therefore,C(S,X) provides an unbiased estimator ofC(S). Furthermore, using the same
arguments it can be shown that the variance of this estimator is given by:

Var[C(S,X)] = C(S) − C(S)2

r
, (18)

and we conclude that the quality of the estimator, C(S, X), should improve as r → +∞.

3.2 Finding cardinality of X

Given (17) and (18), it is natural to derive an appropriate lower bound for the value of r , i.e.,
the cardinality of X, to ensure that C(S,X) provides an approximation for C(S), similar to
Proposition 2. We need to exploit the following classical result:

123

208 Journal of Global Optimization (2024) 88:199–232

Lemma 1 (Hoeffding Bound, Theorem 4.12 [25]) Let Y1, . . . ,Yr be independent random
variables such that for all 1 ≤ i ≤ r , E[Yi] = μ and Pr{0 ≤ Yi ≤ 1} = 1. Then

Pr

{∣∣∣∣∣
1

r

r∑

i=1

Yi − μ

∣∣∣∣∣ ≥ ε

}
≤ 2e−2rε2 . (19)

Then we obtain a lower bound for r :

Lemma 2 If Algorithm 2 is used to sample multiset X such that r = |X | and

r ≥ 1

2ε2
ln
2

δ
, (20)

then we have:

Pr{|C(S,X) − C(S)| ≤ ε} ≥ 1 − δ, ∀S ⊂ V . (21)

Proof Given S ⊂ V , we select a shortest path p fromP uniformly at random. Define random
variable Yi to be 1 if one of the interior nodes of p belongs to S and 0, otherwise. Taking
into account (15) and (17), we apply Lemma 1 and obtain the necessary result.

It is important to point out that in both (13) and (20), we have r ≥ O(1
ε2
ln 1

δ
). However,

in contrast to (13), the bound for r in (20) does not depend on the graph diameter. Next, we
exploit Lemma 2 and a modified version of F1(k) to construct our randomized approach.

3.3 Algorithm and its performance bound

We introduce a modified version F1(k) that seeks the most central group with respect to (15)
for a given multiset of shortest paths X . That is, we consider the problem of the form:

C∗
X = max{C(S,X) : S ⊂ V , |S| = s}, (22)

and for a realization of X, the corresponding MIP is given as follows:

[F2(X)]: C∗
X = max

⎡

⎣
∑

i, j∈V , i �= j

∑
pt =〈i,..., j〉∈X yt

i j

|X |

⎤

⎦ (23a)

subject to

yt
i j ≤

∑

q∈pt \{i, j}
xq , ∀ pt = 〈i, i1, . . . , i|pt |−2, j〉 ∈ X , (23b)

yt
i j ≤ 1 − xi , ∀ pt = 〈i, i1, . . . , i|pt |−2, j〉 ∈ X , (23c)

yt
i j ≤ 1 − x j , ∀ pt = 〈i, i1, . . . , i|pt |−2, j〉 ∈ X , (23d)
∑

i∈V

xi = s, (23e)

xi ∈ {0, 1} ∀i ∈ V , (23f)

yt
i j ≥ 0, ∀ pt = 〈i, i1, . . . , i|pt |−2, j〉 ∈ X , (23g)

wherewe also assume that each shortest path p ∈ X contains at least two edges. The key ideas
behind F2(X) are somewhat similar to those behind F1(k). In particular, we use pt to index
shortest paths in X between a node pair i and j ; see (23b), (23c), (23d) and (23g). Hence, the

123

Journal of Global Optimization (2024) 88:199–232 209

feasible regions of F2(X) with X = P and F1(k) with k ≥ diam(G) coincide. To confirm
this observation, it is sufficient to compare the constraints and variables yt

i j corresponding to
each shortest path pt between these two formulations.

However, when comparing the denominators in (5a) and (23a) we observe that F1(k) and
F2(X) differ in their coefficients in the respective objective functions. For the latter MIP
model, the required approximation quality is achieved by appropriate sampling of a suffi-
ciently large number of shortest paths with possibly multiple copies of some paths; recall our
discussion in Sect. 3.1.

Our randomized approach, see its pseudo-code in Algorithm 3, combines MIP F2(X),
Algorithm 2 fromSect. 2.3 and the theoretical observations in Sects. 3.1 and 3.2. In particular,
the latter results, namely, Lemma 2, are exploited to derive the required cardinality of X in
order to provide the probabilistic performance bound.

Proposition 3 If Algorithm 2 is used to sample multiset X such that r = |X | and

r ≥ 1

2ε2

(
ln

(
n

s

)
+ ln

2

δ

)
, (24)

then:

Pr

{
max

S⊂V : |S|=s
|C(S,X) − C(S)| ≤ ε

}
≥ 1 − δ. (25)

Proof Define S := {S ⊂ V : |S| = s}. By the union bound, e.g., see Lemma 1.2 in [25],

Pr

{
max
S∈S |C(S,X) − C(S)| ≤ ε

}
≥ 1 − Pr

{
⋃

S∈S
|C(S,X) − C(S)| ≥ ε

}

≥ 1 −
∑

S∈S
Pr{|C(S,X) − C(S)| ≥ ε}

≥ 1 − |S|2e−2rε2 = 1 − 2

(
n

s

)
e−2rε2 , (26)

where (26) follows from Lemma 1. Next, we apply (24) to obtain the following:

Pr

{
max
S∈S |C(S,X) − C(S)| ≤ ε

}
≥ 1 − 2|S|e−2ε2

(
1

2ε2

(
ln|S|+ln 2

δ

))

= 1 − 2|S|e−
(
ln|S|+ln 2

δ

)

= 1 − δ,

which completes the proof.

Algorithm 3: Probabilistic-Approximation Algorithm [PAA]
1 Input: Graph G = (V , E), the group size s, the number of shortest paths r ;
Result: An estimate of C∗ and the corresponding group of s nodes given by C∗

X and S∗
X , respectively

2 Generate multiset X , where r = |X |, using Algorithm 2 with input (G, r);
3 Solve F2(X); let x∗, C∗

X be an optimal solution and the optimal objective function value of F2(X),
respectively;

4 Let S∗
X = {i ∈ V : x∗

i = 1};
5 Return: C∗

X and S∗
X

123

210 Journal of Global Optimization (2024) 88:199–232

Theorem 1 Let C∗ be given by (3) and C∗
X be computed by Algorithm 3. If r = |X | satisfies

(20) then:

Pr{C∗ − C∗
X ≤ ε} ≥ 1 − δ. (27)

Moreover, if r satisfies (24), then:

Pr{|C∗ − C∗
X| ≤ ε} ≥ 1 − δ, and (28)

Pr
{

C∗ − C(S∗
X) ≤

(
1 +

√√√√ ln 2
δ

ln
(n

s

)+ ln 2
δ

)
ε
}

≥ (1 − δ)2.

Proof Recall that S∗ denotes an optimal solution of (3), i.e., C∗ = C(S∗), and S∗
X is the

solution of (23), i.e., C∗
X = C(S∗

X , X). From the latter we conclude that C(S∗, X) ≤ C∗
X ,

which can be used to obtain (27). Specifically, we apply the condition in (20) and Lemma 2.
Then we observe that:

Pr{C∗ − C∗
X ≤ ε} ≥ Pr{C∗ − C(S∗,X) ≤ ε} ≥ 1 − δ.

which implies that the inequality in (27) holds.
To establish (28), we first observe that if (24) holds, then by Proposition 3:

Pr{|C∗
X − C(S∗

X)| ≤ ε} ≥ 1 − δ. (29)

To prove the left inequality in (28), note that in view of (27), it is sufficient to consider the
case of C∗

X > C∗. Given that C∗ ≥ C(S∗
X), we conclude

C∗
X − C∗ ≤ C∗

X − C(S∗
X) ≤ |C∗

X − C(S∗
X)|,

which, in view of of (29) implies the left inequality in (28).
Furthermore, by Lemma 1 (using the same arguments as in the proof in Lemma 2), we

have:

Pr

⎧
⎨

⎩|C∗ − C(S∗,X)| ≤ ε

√√√√ ln 2
δ

ln
(n

s

)+ ln 2
δ

⎫
⎬

⎭ ≥ 1 − 2e
−2rε2

ln 2
δ

ln(n
s)+ln 2

δ

≥ 1 − 2e
−2 1

2ε2

(
ln(n

s)+ln 2
δ

)
ε2

ln 2
δ

ln(n
s)+ln 2

δ = 1 − δ.

Hence, the right inequality in (28) can be shown to hold using the following sequence of
inequalities:

C∗ − C(S∗
X) = C∗ − C(S∗, X) + C(S∗, X) − C(S∗

X)

≤ C∗ − C(S∗, X) + C(S∗
X , X) − C(S∗

X)

≤ |C∗ − C(S∗, X)| + |C(S∗
X , X) − C(S∗

X)| ≤ ε

√√√√ ln 2
δ

ln
(n

s

)+ ln 2
δ

+ ε,

where the last inequality holds with probability at least (1 − δ)2, whenever r is sufficiently
large. This observation completes the proof.

We should point out that PAA is not a polynomial-time algorithm as it requires solution of
a linear MIP problem. However, if the parameters ε and δ are sufficiently large, then the size
of the correspondingMIP should be smaller than the size of theMIP required to solve in order

123

Journal of Global Optimization (2024) 88:199–232 211

to obtain an exact solution of our problem. Finally, we note that (24) is rather conservative.
Hence, in our computations we explore weaker requirements; see the discussion next.

3.4 Computational Study

In this section we report the results for the first set of our computational experiments; further
experiments are provided in Sect. 4. Our goal is to compare the following three approaches:
(i) �-AA from [33] outlined in Sect. 2.2, (ii) our approach PAA proposed in Sect. 3.3
with different choices of the parameter r , and (iii) the Top-s approach from [4]. The Top-
s approach simply picks s nodes with the largest values of their individual betweenness
centrality estimates using Proposition 2. The primary advantage of the Top-s approach is that
from the theoretical computational complexity perspective, it is a polynomial-time algorithm
[4, 7]; in contrast, recall that (3) is a difficult problem as outlined in Sect. 1.

In view of (24), (13) and (20), for the parameter r in the PAA algorithm we consider:

r (1) =
⌈

1

2ε2

(
ln

(
n

s

)
+ ln

2

δ

)⌉
, (30)

r (2) =
⌈

1

2ε2

(
�log2(diam(G) − 2)� + 1 + ln

2

δ

)⌉
, (31)

r (3) =
⌈

1

2ε2
ln
2

δ

⌉
, (32)

respectively, and we set δ = 10−3 for both PAA and Top-s in our experiments throughout
the paper. We use r := r (2) in the Top-s approach as we use its implementation from [4].
This setting provides guarantees on the estimates of the node betweenness centrality; see
Proposition 2.

Given Theorem 1, by setting r := r (1) in PAA we obtain the strongest solution quality
guarantees, namely, the probabilistic bounds given by (28). In contrast to r (1), by setting
either r := r (2) or r := r (3) we obtain a weaker performance guarantee for PAA; see (27).
However, either r := r (2) or r := r (3) should imply an improved running time performance
of PAA in comparison to r := r (1). Hence, it is of interest to explore the quality of the
corresponding solutions obtained by PAA.

In this section we use PAA only with r := r (1) and r := r (2) as our focus is on the
comparison with �-AA. The setting r := r (3) results in the smallest number of paths that
need to be sampled; we report the results for PAAwith r := r (3) in Sect. 4, where we explore
networks of larger sizes than those in this section.

All experiments were performed on an HP Z220 CMT Workstation with an Intel(R)
Core(TM) i5-3470 CPU 3.20GHz processor, 22GB of RAM and Windows 10 platform. All
algorithms throughout the paper are implemented in C++. All MIPs are solved using Gurobi
9.0.1 [18] with the default parameter settings.

Test instances. Our test bed includes both real-life and randomly generated instances that
are publicly available.2 This set of experiments is based on the following five networks from
[30]:

• ieeebus_118 (|V | = 118, |E | = 179, diam(G) = 14): The IEEE 118-bus test case
serving as an approximation of theAmericanElectric Power system (in theU.S.Midwest)
in 1962;

2 The additional datasets generated during and/or analysed during the current study are available from the
corresponding author on request.

123

212 Journal of Global Optimization (2024) 88:199–232

• 494_bus (|V | = 494, |E | = 586, diam(G) = 26) and 662_bus (|V | = 662, |E | = 906,
diam(G) = 25): power system networks;

• USAir97 (|V | = 332, |E | = 2126,diam(G) = 6): a networkof direct flight connections
between a subset of US airports; fb-pages-food (|V | = 620, |E | = 2096, diam(G) =
17): a social network of mutually liked Facebook pages; each node represents a Facebook
page and edges correspond to mutual likes.

Also, the following networkswere randomly generated usingNetworkX library for Python
[19]:

• Watts-Strogatz graphs (labelled as watts_strogatz in our tables) are constructed based
on the model proposed by Watts and Strogatz [34]; the sampled graphs can be “highly
clustered, like regular lattices, yet have small characteristic path lengths” [34]. We con-
sider two possible sizes |V | = 300, |E | = 600 and |V | = 500, |E | = 1000; the number
of direct neighbors in the original ring topology and the edge rewiring probability are set
to 4 and 0.21, respectively.

• Barabási-Albert graphs (labelled as barabasi_albert in our tables) are constructed
according to Barabási-Albert preferential attachment mechanism [2], which is known to
result in scale-free networks.Weconsider twopossible graph sizes |V | = 300, |E | = 596
and |V | = 500, |E | = 996; the number of edges attached to any new vertex is set to 2.

The parameters for the randomly generated networks are selected to ensure that their
edge densities are similar.

Results and discussion. The results for the considered real-life networks are presented
in Tables 1, 2 and 3. In particular, for the �-AA approach recall from Sect. 2.2, that solving
MIP F1(k) provides an upper bound,�k(S�), on the quality of approximating C∗ by C(S∗

k).
Hence, to have a fair comparison for �-AA we report the results provided by F1(k) for each
k. Then we set

ε = �k(S�) ·
⎛

⎝1 +
√√√√ ln 2

δ

ln
(n

s

)+ ln 2
δ

⎞

⎠
−1

to compute r := r (1) and r := r (2) for PAA, which is executed 15 times. Loosely speaking,
for � := �k(S�) and r := r (1) both algorithms achieve similar approximation quality
guarantees; one should compare Proposition 1 and Theorem 1.

For the considered graphs the number of shortest paths of length at most k grows rapidly
despite the graphs’ sparsity. Hence, as k increases the running time performance of �-AA,
i.e., the time needed for solving F1(k), deteriorates significantly. Similarly, as the values of
r (1) and r (2) increase (and the value of ε decreases), the running time performance of PAA
becomes less competitive, in particular, when comparing to Top-s. This observation is not
surprising given that the required cardinality, r = |X |, and the corresponding number of
variables F2(X), become relatively large.

As expected the quality of C(S∗
k) computed by �-AA is better for graphs with smaller

diameters. More importantly, by comparing the values of C(S�) and C(S∗
X) we observe

that PAA provides either the same solution quality or outperforms �-AA. When comparing
these results to those provided by C(s-Top), it is clear that the main advantage of the Top-s
approach is its fast running time. However, the quality of the Top-s solutions is typically
worse than those provided by �-AA and PAA for reasonably large values of k and small
values of ε, respectively, in particular, for graphs with larger diameters.

Furthermore, it is important to highlight the following two observations from our experi-
ments. First, using the sample size r := r (2) for PAA achieves the desired accuracy without

123

Journal of Global Optimization (2024) 88:199–232 213

the computational burden observed for r := r (1). This result suggests that the sample size
outlined in Proposition 2 from [29] can be used to compute reasonably good solutions when
solving (3). Establishing this result theoretically with a stronger result than (27) could be
an interesting avenue for future research. Secondly, the running time gains from using PAA
when comparing to the exact MIP method, increase with respect to the network size. In par-
ticular, note that ieeebus_118 with s = 5 is the only instance where solving the full MIP is
faster than our proposed approach.

The results for the randomly generated networks (Watts-Strogatz and Barabási-Albert
graphs) are given in Table 4. Our observations for these networks are fairly consistent with
those reported for the considered real-life graphs. That is, PAA is very good as long as ε is
relatively large i.e., the value of r is relatively small.

To summarize our discussion, we conclude from Tables 1, 2, 3 and 4 that as the value of
ε decreases the corresponding required cardinality of X , in particular, the value of r (1), may
become relatively large for F2(X) and PAA. In fact, the number of paths, r (1), that need to
be generated in PAA for sufficiently small values of ε may be even larger than the number
of paths generated by �-AA. This observation provides the main motivation for our second
approach outlined in the discussion next.

4 SAA-based approach

The key idea behind our method considered in Sect. 3 is to solve an MIP model given
by F2(X) using a sufficiently large number of shortest paths in a multiset X . Naturally,
this approach is favorable as long as the cardinality of X is not too large. However, in our
computational experiments (see Sect. 3.4) we observe that if the required worst-case solution
quality guarantee is sufficiently small (recall Theorem 1), then the scalability of the approach
may deteriorate due to a rather large number of shortest paths (i.e., the cardinality of X) that
need to be sampled for F2(X).

In this section we outline an alternative solution scheme based on the SAA-based ideas,
and instead of solving one “big” MIP with a large number of shortest paths, we solve a
series of substantially smaller MIPs. Loosely speaking, this approach aims at exploiting the
Central Limit Theorem and the fact that C∗ ≤ E[C∗

X] (see the discussion below). To achieve
the required performance bound, we iteratively increase the cardinality of X that is, the
sizes of the corresponding MIP models, F2(X), solved in each iteration until some required
solution quality is achieved. We note that the quality of the candidate solution is verified
without solving an MIP. Finally, we refer the reader to [22, 31] and the references therein,
which provides a detailed discussion on sample average approximation (SAA) in stochastic
optimization.

4.1 Algorithm description

Recall that C∗
X denotes the optimal objective function value of F2(X) for a given X . Hence,

for any S ⊂ V we haveC(S, X) ≤ C∗
X . By taking expectations in both sides of this inequality

and setting S := S∗, we obtain the following sandwich-like result:

E[C(S∗,X)] = C∗ ≤ E[C∗
X], (33)

where the equality follows from (17).

123

214 Journal of Global Optimization (2024) 88:199–232

Ta
bl
e
1

C
om

pa
ri
ng

�
-A

A
,P

A
A
an
d
To

p-
s
fo
r
ie
ee
bu

s_
11
8
an
d
U
SA

ir
97

w
ith

s
∈{

5,
10

}
�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

ie
ee
bu

s_
11
8:

d
ia

m
(G

)
=

14
,N

um
be
r
of

sh
or
te
st
pa
th
s=

15
60

0,
B
ra
nd

es
al
go

ri
th
m

T
im

e
=

0.
75

s
=

5:
C

∗ =
0.
71

4,
M
IP

T
im

e=
29

.4
,T

op
-s

m
ax

A
vg

T
im

e=
1.
4

A
vg

m
ax

A
vg

m
ax

2
0.
48

1.
31

0.
82

44
0

0.
03

0.
48

1.
04

1.
21

0.
97

0.
89

1.
0

0.
95

0.
06

0.
01

26
5

48
0.
79

0.
85

3
0.
29

1.
23

0.
94

12
46

0.
11

0.
29

0.
99

1.
08

0.
99

0.
94

1.
0

0.
98

0.
24

0.
03

71
7

13
0

0.
86

0.
93

4
0.
23

1.
17

0.
94

23
99

0.
39

0.
23

1.
0

1.
06

0.
99

0.
98

1.
0

1.
0

0.
39

0.
03

12
00

21
7

0.
88

0.
92

5
0.
17

1.
11

0.
94

38
30

1.
07

0.
17

1.
0

1.
03

1.
0

0.
97

1.
0

1.
0

1.
12

0.
07

21
68

39
2

0.
87

0.
92

6
0.
06

1.
06

1.
0

55
41

1.
51

0.
07

†
0.
99

1.
0

1.
0

0.
99

1.
0

1.
0

37
.1

0.
43

12
52

3
22

61
0.
86

0.
89

s
=

10
:C

∗ =
0.
75

9,
M
IP

T
im

e=
18

0.
6,
To

p-
s
m
ax

A
vg

T
im

e=
0.
04

4

A
vg

m
ax

A
vg

m
ax

2
0.
33

1.
24

0.
9

44
0

0.
03

0.
33

1.
02

1.
18

0.
98

0.
89

0.
99

0.
91

0.
1

0.
01

64
2

89
0.
87

0.
88

3
0.
25

1.
19

0.
94

12
46

0.
13

0.
25

1.
02

1.
15

0.
99

0.
92

1.
0

0.
99

0.
37

0.
02

11
89

16
4

0.
87

0.
9

4
0.
16

1.
14

0.
98

23
99

0.
58

0.
16

1.
01

1.
08

0.
99

0.
95

1.
0

0.
97

2.
4

0.
03

28
06

38
6

0.
88

0.
92

5
0.
12

1.
1

0.
99

38
30

2.
5

0.
12

1.
0

1.
03

1.
0

0.
97

1.
0

0.
99

13
.8

0.
08

52
42

72
1

0.
87

0.
88

6
0.
07

1.
07

1.
0

55
41

3.
6

0.
07

0.
99

1.
01

1.
0

0.
99

1.
0

1.
0

79
.9

0.
26

12
88

8
17

72
0.
88

0.
92

7
0.
05

1.
05

1.
0

74
14

11
.3

0.
07

†
0.
99

1.
01

1.
0

0.
99

1.
0

1.
0

14
3.
3

0.
5

16
44

2
22

61
0.
88

0.
88

123

Journal of Global Optimization (2024) 88:199–232 215

Ta
bl
e
1

co
nt
in
ue
d

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

U
SA

ir
97

:d
ia

m
(G

)
=

6,
N
um

be
r
of

sh
or
te
st
pa
th
s=

30
43

56
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

5.
5

s
=

5:
C

∗ =
0.
58

3,
M
IP

T
im

e=
79

3.
7,
To

p-
s
m
ax

A
vg

T
im

e=
0.
11

1

A
vg

m
ax

A
vg

m
ax

2
0.
44

1.
36

0.
92

55
64

6
60

.5
0.
44

1.
02

1.
16

1.
0

0.
9

1.
0

1.
0

0.
04

0.
01

53
5

76
0.
93

1.
0

3
0.
12

1.
06

0.
95

21
94

91
12

67
.9

0.
12

0.
99

1.
01

1.
0

1.
0

1.
0

1.
0

2.
5

0.
06

78
06

10
99

0.
99

1.
0

4
0.
00

6
1.
01

1.
0

28
55

45
20

68
.8

0.
09

†
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

11
.1

0.
14

14
10
3

19
85

1.
0

1.
0

s
=

10
:C

∗ =
0.
77

9,
M
IP

T
im

e=
66

4.
5,
To

p-
s
m
ax

A
vg

T
im

e=
0.
11

6

A
vg

m
ax

A
vg

m
ax

2
0.
13

1.
09

0.
96

55
64

6
51

.5
0.
13

0.
99

1.
0

1.
0

0.
98

1.
0

1.
0

0.
77

0.
02

45
96

47
0

0.
93

0.
98

3
0.
00

9
1.
01

1.
0

21
94

91
12

36
.3

0.
06

†
0.
99

1.
0

1.
0

0.
99

1.
0

1.
0

11
.0

0.
11

19
43

3
19

85
0.
95

0.
97

A
ll
ru
nn
in
g
tim

es
ar
e
in

se
co
nd
s.
A
ll
va
lu
es

of
be
tw
ee
nn
es
s
ce
nt
ra
lit
y

C
(e
xc
ep
tC

∗ i
ts
el
f)
an
d
th
ei
r
ap
pr
ox
im

at
io
ns

as
w
el
la
s
th
e
er
ro
r
bo
un
ds

(i
.e
.,

�
k
(S

�
),

U
B

k
an
d

ε
)
ar
e

sc
al
ed

w
ith

re
sp
ec
t
to

C
∗ .

T
he

va
lu
e
of

C
∗
is
co
m
pu
te
d
us
in
g
an

M
IP

so
lv
er

w
ith

F
1(

k)
,w

he
re

k
=

d
ia

m
(G

).
Fo

r
�
-A

A
w
e
re
po

rt
th
e
M
IP

ru
nn

in
g
tim

e
F
1(

k)
fo
r
ea
ch

k.
PA

A
an
d
To

p-
s
ar
e
ex
ec
ut
ed

15
tim

es
.
T
he

av
er
ag
e
ru
nn

in
g
tim

e
of

th
es
e
ru
ns

is
re
po

rt
ed

fo
r
PA

A
;
fo
r
To

p-
s
w
e
re
po

rt
on

ly
th
e
m
ax
im

um
av
er
ag
e
ru
nn

in
g
tim

es
ov
er

th
e

co
rr
es
po

nd
in
g
ro
w
s.
To

av
oi
d
ou

to
f
m
em

or
y
er
ro
r
fo
r
th
e
M
IP

so
lv
er
,w

e
se
t

ε
=

0.
05

fo
r
th
e
ro
w
s
m
ar
ke
d
w
ith

†

123

216 Journal of Global Optimization (2024) 88:199–232

Ta
bl
e
2

C
om

pa
ri
ng

�
-A

A
,P

A
A

an
d
To

p-
s
fo
r
fb
-p
ag

es
-f
oo

d
an
d
49

4_
bu

s
w
ith

s
∈

{5,
10

};
se
e
th
e
ca
pt
io
ns

of
Ta
bl
e
1
fo
r
th
e
de
ta
ils

of
th
e
co
m
pu

ta
tio

na
l
se
tti
ng

s
an
d
th
e

pa
ra
m
et
er
s
us
ed

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

fb
-p
ag

es
-f
oo

d:
d

ia
m

(G
)
=

17
,N

um
be
r
of

sh
or
te
st
pa
th
s=

17
24

95
1,
B
ra
nd

es
al
go

ri
th
m

T
im

e
=

70
.1

s
=

5:
C

∗ =
0.
65

3,
M
IP

T
im

e=
39

29
9.
1,
To

p-
s
m
ax

A
vg

T
im

e=
0.
12

8

A
vg

m
ax

A
vg

m
ax

2
0.
58

1.
45

0.
87

30
74

3
10

.7
0.
58

1.
02

1.
14

0.
99

0.
82

1.
0

0.
98

0.
03

0.
01

26
6

42
0.
82

0.
88

3
0.
48

1.
35

0.
87

15
07

04
33

1.
3

0.
48

1.
05

1.
17

0.
99

0.
86

1.
0

0.
94

0.
04

0.
01

38
5

60
0.
88

0.
93

4
0.
29

1.
24

0.
95

34
83

13
14

42
.9

0.
29

1.
0

1.
04

0.
99

0.
93

1.
0

0.
98

0.
12

0.
02

10
32

16
0

0.
91

0.
92

5
0.
2

1.
15

0.
95

65
23

26
63

25
.4

0.
2

1.
0

1.
03

1.
0

0.
97

1.
0

1.
0

0.
32

0.
02

21
39

33
1

0.
91

1.
0

6
0.
08

1.
08

1.
0

94
54

79
89

43
.2

0.
08

1.
0

1.
0

1.
0

0.
99

1.
0

1.
0

5.
3

0.
12

13
37

3
20

65
0.
93

1.
0

7
0.
04

1.
04

1.
0

11
89

77
0

94
88

.7
0.
08

†
1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

6.
6

0.
14

15
03

0
23

21
0.
93

1.
0

s
=

10
:C

∗ =
0.
77

1,
M
IP

T
im

e=
31

62
2.
6,
To

p-
s
m
ax

A
vg

T
im

e=
0.
12

6

A
vg

m
ax

A
vg

m
ax

2
0.
36

1.
24

0.
88

30
74

3
11

.3
0.
36

1.
01

1.
19

0.
99

0.
83

1.
0

0.
9

0.
07

0.
01

68
8

76
0.
77

0.
88

3
0.
25

1.
17

0.
92

15
07

04
33

9.
5

0.
25

1.
01

1.
1

0.
99

0.
91

1.
0

0.
96

0.
15

0.
02

13
78

15
1

0.
86

0.
91

4
0.
19

1.
11

0.
92

34
83

13
10

56
.6

0.
19

1.
01

1.
06

1.
0

0.
96

1.
0

0.
99

0.
33

0.
02

24
60

27
0

0.
87

0.
91

5
0.
07

1.
06

0.
99

65
23

26
86

23
.5

0.
07

1.
0

1.
01

1.
0

1.
0

1.
0

1.
0

16
.4

0.
13

21
07

3
23

10
0.
92

0.
95

6
0.
03

1.
03

1.
0

94
54

79
19

59
1.
7

0.
06

†
1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

15
.7

0.
14

21
17

1
23

21
0.
91

0.
95

123

Journal of Global Optimization (2024) 88:199–232 217

Ta
bl
e
2

co
nt
in
ue
d

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

49
4_

bu
s:

d
ia

m
(G

)
=

26
,N

um
be
r
of

sh
or
te
st
pa
th
s=

27
88

28
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

22
.5

s
=

5:
C

∗ =
0.
73

7,
M
IP

T
im

e=
67

19
.4
,T

op
-s

m
ax

A
vg

T
im

e=
0.
04

2

A
vg

m
ax

A
vg

m
ax

2
0.
91

1.
34

0.
43

12
38

0.
08

0.
91

1.
09

1.
36

0.
96

0.
51

0.
99

0.
73

0.
02

0.
01

83
14

0.
62

0.
8

3
0.
55

1.
32

0.
77

34
74

0.
37

0.
55

1.
06

1.
31

0.
98

0.
83

0.
99

0.
94

0.
04

0.
01

22
2

37
0.
74

0.
89

4
0.
33

1.
3

0.
96

72
48

1.
19

0.
33

1.
01

1.
1

0.
99

0.
9

1.
0

0.
98

0.
13

0.
02

61
6

10
3

0.
72

0.
98

5
0.
3

1.
27

0.
96

13
11

3
3.
6

0.
3

1.
0

1.
1

0.
99

0.
94

1.
0

0.
98

0.
2

0.
03

74
2

12
4

0.
75

0.
92

6
0.
27

1.
23

0.
96

21
99

8
13

.3
0.
27

1.
01

1.
09

0.
99

0.
94

1.
0

0.
98

0.
21

0.
03

94
6

15
8

0.
79

0.
93

7
0.
2

1.
19

0.
99

34
84

4
41

.8
0.
2

1.
0

1.
04

0.
99

0.
97

1.
0

1.
0

0.
47

0.
03

16
84

28
1

0.
84

0.
93

8
0.
16

1.
15

0.
99

52
00

7
98

.8
0.
16

1.
0

1.
02

1.
0

0.
97

1.
0

1.
0

1.
14

0.
04

25
63

42
8

0.
82

0.
93

9
0.
13

1.
12

0.
99

72
99

5
20

8.
3

0.
13

0.
99

1.
02

1.
0

0.
98

1.
0

1.
0

2.
4

0.
06

41
85

69
8

0.
8

0.
93

10
0.
09

1.
09

0.
99

97
00

6
34

9.
8

0.
09

0.
99

0.
99

1.
0

0.
98

1.
0

1.
0

6.
4

0.
13

75
15

12
53

0.
74

0.
93

11
0.
07

1.
06

0.
99

12
30

03
62

2.
4

0.
07

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

28
.3

0.
26

14
69

4
24

50
0.
8

0.
93

s
=

10
:C

∗ =
0.
85

3,
M
IP

T
im

e=
91

3.
4,
To

p-
s
m
ax

A
vg

T
im

e=
0.
08

6

A
vg

m
ax

A
vg

m
ax

2
0.
34

1.
16

0.
81

12
38

0.
09

0.
34

1.
01

1.
15

0.
98

0.
88

0.
99

0.
91

0.
16

0.
02

59
8

72
0.
78

0.
89

3
0.
21

1.
14

0.
93

34
74

0.
47

0.
21

1.
0

1.
08

0.
99

0.
92

1.
0

0.
95

0.
34

0.
02

15
28

18
3

0.
86

0.
91

4
0.
15

1.
13

0.
98

72
48

1.
56

0.
15

1.
0

1.
04

1.
0

0.
95

1.
0

0.
98

0.
79

0.
03

31
59

37
7

0.
87

0.
91

5
0.
13

1.
11

0.
98

13
11

3
5.
0

0.
13

1.
0

1.
03

1.
0

0.
96

1.
0

0.
99

1.
35

0.
04

41
03

49
0

0.
87

0.
9

6
0.
11

1.
09

0.
98

21
99

8
21

.0
0.
11

1.
0

1.
03

1.
0

0.
97

1.
0

0.
99

1.
84

0.
06

57
86

69
0

0.
86

0.
92

7
0.
07

1.
07

1.
0

34
84

4
49

.2
0.
07

1.
0

1.
0

1.
0

0.
99

1.
0

1.
0

11
.9

0.
16

14
44

4
17

22
0.
87

0.
91

8
0.
05

1.
05

1.
0

52
00

7
11

2.
4

0.
06

†
1.
0

1.
0

1.
0

0.
99

1.
0

1.
0

28
.0

0.
21

20
54

3
24

50
0.
86

0.
9

123

218 Journal of Global Optimization (2024) 88:199–232

Ta
bl
e
3

C
om

pa
ri
ng

�
-A

A
,P

A
A
an
d
To

p-
s
fo
r
66

2_
bu

s
w
ith

s
∈{

5,
10

};s
ee

th
e
ca
pt
io
ns

of
Ta
bl
e
1
fo
r
th
e
de
ta
ils

of
th
e
co
m
pu

ta
tio

na
ls
et
tin

gs
an
d
th
e
pa
ra
m
et
er
s
us
ed

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

66
2_

bu
s:

d
ia

m
(G

)
=

25
,N

um
be
r
of

sh
or
te
st
pa
th
s=

53
46

54
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

41
.0

s
=

5:
C

∗ =
0.
60

9,
M
IP

T
im

e=
47

04
8.
3,
To

p-
s
m
ax

A
vg

T
im

e=
0.
06

3

A
vg

m
ax

A
vg

m
ax

2
1.
01

1.
62

0.
61

21
26

0.
14

1.
01

1.
08

1.
64

0.
91

0.
63

0.
95

0.
72

0.
02

0.
01

10
1

17
0.
71

0.
89

3
0.
92

1.
6

0.
68

61
25

0.
64

0.
92

1.
06

1.
46

0.
91

0.
7

0.
97

0.
84

0.
03

0.
01

12
2

20
0.
68

0.
79

4
0.
88

1.
56

0.
68

13
02

0
2.
3

0.
88

1.
05

1.
57

0.
93

0.
68

0.
96

0.
82

0.
04

0.
01

13
1

22
0.
77

0.
8

5
0.
72

1.
52

0.
79

24
10

3
6.
4

0.
72

1.
07

1.
51

0.
98

0.
78

1.
0

0.
85

0.
05

0.
01

19
4

32
0.
7

0.
83

6
0.
56

1.
46

0.
9

41
25

4
31

.6
0.
56

1.
02

1.
24

0.
97

0.
79

0.
99

0.
85

0.
08

0.
01

32
2

52
0.
77

0.
84

7
0.
5

1.
4

0.
9

66
50

7
13

4.
6

0.
5

1.
01

1.
2

0.
97

0.
86

0.
99

0.
94

0.
1

0.
02

41
2

67
0.
79

0.
86

8
0.
4

1.
32

0.
93

10
18

85
45

7.
0

0.
4

0.
99

1.
12

0.
98

0.
86

1.
0

0.
91

0.
2

0.
02

64
1

10
4

0.
8

0.
88

9
0.
32

1.
25

0.
93

14
83

67
50

14
.3

0.
32

1.
01

1.
12

0.
99

0.
94

0.
99

0.
99

0.
35

0.
02

96
6

15
6

0.
82

0.
9

10
0.
19

1.
18

1.
0

20
51

00
95

99
.3

0.
19

1.
01

1.
04

0.
99

0.
97

1.
0

0.
99

1.
66

0.
06

29
14

47
0

0.
83

0.
88

11
0.
13

1.
13

1.
0

26
63

21
15

04
9.
8

0.
13

1.
01

1.
03

1.
0

0.
98

1.
0

1.
0

4.
2

0.
13

58
40

94
1

0.
83

0.
88

12
0.
09

1.
08

0.
99

32
55

61
30

40
8.
9

0.
09

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

22
.6

0.
35

12
47

3
20

10
0.
85

0.
88

13
0.
06

1.
05

0.
99

37
77

13
42

85
0.
8

0.
08

†
1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

33
.5

0.
48

15
12

6
24

38
0.
85

0.
85

123

Journal of Global Optimization (2024) 88:199–232 219

Ta
bl
e
3

co
nt
in
ue
d

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

s
=

10
:C

∗ =
0.
77

,M
IP

T
im

e=
12

95
71

.0
,T

op
-s

m
ax

A
vg

T
im

e=
0.
10

6

A
vg

m
ax

A
vg

m
ax

2
0.
65

1.
28

0.
63

21
26

0.
15

0.
65

1.
08

1.
27

0.
94

0.
67

0.
96

0.
79

0.
04

0.
01

21
1

25
0.
79

0.
83

3
0.
57

1.
27

0.
7

61
25

0.
91

0.
57

1.
04

1.
25

0.
96

0.
6

0.
97

0.
75

0.
07

0.
01

28
2

33
0.
69

0.
79

4
0.
45

1.
24

0.
8

13
02

0
2.
7

0.
45

1.
02

1.
29

0.
97

0.
74

0.
98

0.
83

0.
1

0.
01

45
3

52
0.
79

0.
83

5
0.
32

1.
22

0.
9

24
10

3
11

.1
0.
32

1.
01

1.
16

0.
99

0.
85

1.
0

0.
91

0.
33

0.
02

89
8

10
3

0.
78

0.
85

6
0.
26

1.
18

0.
92

41
25

4
47

.0
0.
26

1.
01

1.
14

0.
99

0.
88

1.
0

0.
95

0.
53

0.
02

13
56

15
5

0.
8

0.
83

7
0.
17

1.
15

0.
98

66
50

7
20

4.
6

0.
17

1.
0

1.
07

1.
0

0.
95

1.
0

0.
99

2.
2

0.
04

32
06

36
6

0.
8

0.
85

8
0.
13

1.
11

0.
98

10
18

85
50

9.
9

0.
13

1.
0

1.
05

1.
0

0.
97

1.
0

1.
0

5.
8

0.
06

50
06

57
2

0.
81

0.
86

9
0.
09

1.
08

1.
0

14
83

67
12

41
8.
5

0.
09

1.
0

1.
02

1.
0

0.
99

1.
0

1.
0

33
.4

0.
23

12
31

0
14

06
0.
81

0.
84

10
0.
06

1.
05

1.
0

20
51

00
26

75
0.
0

0.
06

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

12
7.
4

0.
45

21
35

1
24

38
0.
82

0.
85

123

220 Journal of Global Optimization (2024) 88:199–232

Ta
bl
e
4

C
om

pa
ri
ng

�
-A

A
,P

A
A
an
d
To

p-
s
fo
r
10

ra
nd
om

ly
ge
ne
ra
te
d
ne
tw
or
ks
:W

at
ts
-S
tr
og
at
z
an
d
B
ar
ab
ás
i-
A
lb
er
tg

ra
ph
s
w
ith

|V
|=

30
0
an
d

|V
|=

50
0

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

w
at
ts
_s
tr
og

at
z_
30

0:
d

ia
m

(G
)
=

5.
0,

N
um

be
r
of

sh
or
te
st
pa
th
s=

17
81

45
.3
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

3.
8

s
=

10
:C

∗ =
0.
17

6,
M
IP

T
im

e=
61

0.
0,

To
p-

s
m
ax

A
vg

T
im

e=
0.
28

4

A
vg

m
ax

A
vg

m
ax

2
3.
8

4.
8

0.
96

92
77

0.
78

3.
8

1.
83

5.
5

0.
66

0.
44

0.
77

0.
53

0.
04

0.
01

10
9

11
0.
37

0.
48

3
1.
4

2.
4

0.
99

57
03

9
26

.5
1.
4

1.
15

2.
4

0.
88

0.
59

0.
94

0.
7

0.
13

0.
03

80
6

81
0.
49

0.
64

4
0.
03

1.
03

1.
0

16
83

69
53

6.
5

0.
29

†
1.
0

1.
1

0.
99

0.
91

1.
0

0.
97

18
.8

0.
21

19
14

8
19

21
0.
84

0.
92

w
at
ts
_s
tr
og

at
z_
50

0:
d

ia
m

(G
)
=

5.
4,
N
um

be
r
of

sh
or
te
st
pa
th
s=

51
95

58
.7
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

12
.3

s
=

10
:C

∗ =
0.
12

8,
M
IP

T
im

e=
11

96
.5
,T

op
-s

m
ax

A
vg

T
im

e=
0.
21

6

A
vg

m
ax

A
vg

m
ax

2
6.
1

7.
0

0.
95

15
31
9

1.
29

6.
1

2.
4

7.
6

0.
61

0.
41

0.
72

0.
51

0.
03

0.
01

86
8

0.
36

0.
47

3
3.
4

4.
4

0.
99

98
41

4
29

.3
3.
4

1.
65

5.
5

0.
72

0.
49

0.
81

0.
6

0.
06

0.
01

26
6

25
0.
4

0.
5

4
0.
28

1.
28

1.
0

39
29

83
41

4.
4

0.
39

†
1.
01

1.
17

0.
99

0.
87

1.
0

0.
94

10
.6

0.
19

20
57

7
19

46
0.
8

0.
9

123

Journal of Global Optimization (2024) 88:199–232 221

Ta
bl
e
4

co
nt
in
ue
d

�
-A

A
(A

lg
or
ith

m
1)

PA
A
(A

lg
or
ith

m
3)

To
p-

s

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

k
�

k
(S

�
)

U
B

k
C

(S
�

)
#p

at
hs

T
im

e
ε

A
vg

C
∗ X

C
(S

∗ X
)

A
vg

tim
e

#p
at
hs

C
(T
op

-s
)

ba
ra
ba

si
_a

lb
er
t_
30

0:
d

ia
m

(G
)
=

4.
0,

N
um

be
r
of

sh
or
te
st
pa
th
s=

19
58

14
.5
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

3.
6

s
=

10
:C

∗ =
0.
53

5,
M
IP

T
im

e=
86

5.
8,
To

p-
s
m
ax

A
vg

T
im

e=
0.
60

8

A
vg

m
ax

A
vg

m
ax

2
0.
43

1.
43

1.
0

22
06

6
9.
9

0.
43

1.
01

1.
17

0.
99

0.
82

1.
0

0.
91

0.
11

0.
02

93
8

90
0.
84

0.
94

3
0.
02

1.
02

1.
0

16
47

10
59

4.
9

0.
09

†
1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

16
.4

0.
14

19
14

8
18

38
0.
99

1.
0

ba
ra
ba

si
_a

lb
er
t_
50

0:
d

ia
m

(G
)
=

4.
3,
N
um

be
r
of

sh
or
te
st
pa
th
s=

58
35

27
.4
,B

ra
nd

es
al
go

ri
th
m

T
im

e
=

11
.0

s
=

10
:C

∗ =
0.
51

3,
M
IP

T
im

e=
59

29
.3
,T

op
-s

m
ax

A
vg

T
im

e=
0.
15

2

A
vg

m
ax

A
vg

m
ax

2
0.
61

1.
6

1.
0

41
13

3
23

.0
0.
61

1.
02

1.
31

0.
98

0.
69

1.
0

0.
82

0.
07

0.
02

54
2

49
0.
71

0.
84

3
0.
05

1.
05

1.
0

39
59

42
14

76
0.
1†

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

17
.8

0.
15

20
57

7
18

62
0.
99

1.
0

A
ll
va
lu
es

of
be
tw
ee
nn
es
s
ce
nt
ra
lit
y
an
d
th
ei
r
ap
pr
ox
im

at
io
ns

ar
e
av
er
ag
ed

ov
er

10
in
st
an
ce
s;
se
e
th
e
ca
pt
io
ns

of
Ta
bl
e
1
fo
r
th
e
de
ta
ils

of
th
e
co
m
pu

ta
tio

na
l
se
tti
ng

s
an
d
th
e

pa
ra
m
et
er
s
us
ed

123

222 Journal of Global Optimization (2024) 88:199–232

Ta
bl
e
5

C
om

pa
ri
ng

PA
A
an
d
SA

A
fo
r
th
e
m
in
im

um
va
lu
e
of

ε
ac
hi
ev
ed

in
Ta
bl
es

1,
2
an
d
3
an
d

δ
=

10
−3

.A
ll
va
lu
es

of
be
tw
ee
nn
es
s
ce
nt
ra
lit
y

C
(e
xc
ep
tf
or

C
∗ i

ts
el
f)
an
d

th
ei
r
ap
pr
ox
im

at
io
ns

ar
e
sc
al
ed

w
ith

re
sp
ec
tt
o

C
∗

SA
A
(A

lg
or
ith

m
4)

PA
A
(A

lg
or
ith

m
3)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

β
#
ite
r

ε
SA

A
μ̄

M
C̃

m
ax

|X
�
|

r̃
=

|X̃
|

T
im

e
A
vg

C
∗ X

C
(S

∗ X
)

A
vg

.t
im

e
#p

at
hs

E
v.

So
l.

A
vg

m
ax

ie
ee
bu

s_
11
8:

ε
=

0.
07

,δ
=

0.
00

1

s
=

5,
C

(T
op

-s
,

X̃
)
=

0.
90

7,
To

p-
s
ru
nn

in
g
tim

e=
0.
02

,C
(S

∗)
=

0.
71

4

0
8

0.
07

1.
03

1.
0

24
9

15
60

0
10

.8
2.
2

0.
99

1.
0

1.
0

0.
99

1.
0

1.
0

27
.5

0.
38

12
52

3
22

61

1
7

0.
07

1.
02

0.
99

34
3

20
62

0.
11

4.
1

ie
ee
bu

s_
11
8:

ε
=

0.
06

6,
δ

=
0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
85

9,
To

p-
s
ru
nn

in
g
tim

e=
0.
04

,C
(S

∗)
=

0.
75

9

0
9

0.
04

1.
02

0.
99

97
0

15
60

0
12

.5
8.
1

0.
99

1.
01

1.
0

0.
99

1.
0

1.
0

14
3.
3

0.
5

16
44

2
22

61

1
9

0.
06

1.
03

1.
02

60
2

20
62

0.
04

7.
2

U
SA

ir
97

:ε
=

0.
08

6,
δ

=
0.
00

1

s
=

5,
C

(T
op

-s
,

X̃
)
=

0.
97

,T
op

-s
ru
nn

in
g
tim

e=
0.
12

,C
(S

∗)
=

0.
58

3

0
7

0.
08

1.
03

1.
0

22
5

30
43

56
11

5.
9

4.
1

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

11
.1

0.
14

14
10

3
19

85

1
6

0.
06

1.
01

1.
02

21
8

20
62

0.
03

3.
5

U
SA

ir
97

:ε
=

0.
06

4,
δ

=
0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
96

,T
op

-s
ru
nn

in
g
tim

e=
0.
13

,C
(S

∗)
=

0.
77

9

0
6

0.
06

1.
02

1.
0

13
2

30
43

56
10

8.
1

2.
9

0.
99

1.
0

1.
0

0.
99

1.
0

1.
0

11
.0

0.
11

19
43

3
19

85

1
5

0.
04

0.
99

1.
01

30
7

20
62

0.
03

3.
3

123

Journal of Global Optimization (2024) 88:199–232 223

Ta
bl
e
5

co
nt
in
ue
d

SA
A
(A

lg
or
ith

m
4)

PA
A
(A

lg
or
ith

m
3)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

r(
1)

r(
2)

49
4_

bu
s:

ε
=

0.
06

8,
δ

=
0.
00

1

s
=

5,
C

(T
op

-s
,

X̃
)
=

0.
94

5,
To

p-
s
ru
nn

in
g
tim

e=
0.
05

,C
(S

∗)
=

0.
73

7

1
7

0.
03

0.
98

1.
0

44
6

20
62

0.
05

6.
0

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

28
.3

0.
26

14
69

4
24

50

49
4_

bu
s:

ε
=

0.
05

9,
δ

=
0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
83

4,
To

p-
s
ru
nn

in
g
tim

e=
0.
09

,C
(S

∗)
=

0.
85

3

1
7

0.
06

1.
01

1.
0

30
4

20
62

0.
06

4.
7

1.
0

1.
0

1.
0

0.
99

1.
0

1.
0

28
.0

0.
21

20
54

3
24

50

fb
-p
ag

es
-f
oo

d:
ε

=
0.
07

7,
δ

=
0.
00

1

s
=

5,
C

(T
op

-s
,

X̃
)
=

0.
95

9,
To

p-
s
ru
nn

in
g
tim

e=
0.
14

,C
(S

∗)
=

0.
65

3

1
6

0.
04

1.
01

1.
03

17
9

20
62

0.
07

3.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

6.
6

0.
14

15
03
0

23
21

fb
-p
ag

es
-f
oo

d:
ε

=
0.
06

5,
δ

=
0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
88

1,
To

p-
s
ru
nn

in
g
tim

e=
0.
13

,C
(S

∗)
=

0.
77

1

1
7

0.
05

1.
01

1.
0

19
6

20
62

0.
06

3.
3

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

15
.7

0.
14

21
17

1
23

21

66
2_

bu
s:

ε
=

0.
08

2,
δ

=
0.
00

1

s
=

5,
C

(T
op

-s
,

X̃
)
=

0.
86

6,
To

p-
s
ru
nn

in
g
tim

e=
0.
06

,C
(S

∗)
=

0.
60

9

1
6

0.
08

1.
0

1.
03

49
9

20
62

0.
06

5.
5

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

33
.5

0.
48

15
12

6
24

38

66
2_

bu
s:

ε
=

0.
06

5,
δ

=
0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
79

2,
To

p-
s
ru
nn

in
g
tim

e=
0.
11

,C
(S

∗)
=

0.
77

1
7

0.
06

1.
03

1.
01

25
9

20
62

0.
07

4.
7

1.
0

1.
01

1.
0

0.
99

1.
0

1.
0

12
7.
4

0.
45

21
35

1
24

38

A
ll
ru
nn

in
g
tim

es
ar
e
in

se
co
nd

s.
PA

A
is
ex
ec
ut
ed

15
tim

es
an
d
th
e
av
er
ag
e
re
su
lts

ar
e
re
po
rt
ed
.F

or
SA

A
,w

e
se
t

M
=

15
an
d
re
po

rt
th
e
to
ta
lt
im

e
us
ed

fo
r
so
lv
in
g
M
IP
s
(i
n

lin
es

5–
8)

ov
er

al
li
te
ra
tio

ns
in

co
lu
m
n
“S
ol
.T

im
e”
;t
he

to
ta
lt
im

e
us
ed

fo
r
es
tim

at
in
g
th
e
so
lu
tio

n
qu
al
ity

(i
n
lin

es
10
–1
8)

ov
er

al
li
te
ra
tio

ns
is
re
po
rt
ed

in
co
lu
m
n
“E

v.
T
im

e”
.

T
he

be
st
to
ta
lr
un
ni
ng

tim
e
re
su
lts

ar
e
in

bo
ld

.T
ha
ti
s,
w
e
ne
ed

to
co
m
pa
re

th
e
tim

es
gi
ve
n
by

th
e
su
m

of
th
os
e
in

co
lu
m
ns

“S
ol
.T

im
e”

an
d
“E

v.
T
im

e”
ag
ai
ns
tt
he

tim
es

gi
ve
n

in
co
lu
m
n
“A

vg
tim

e”

123

224 Journal of Global Optimization (2024) 88:199–232

Ta
bl
e
6

C
om

pa
ri
ng

SA
A
(β

=
1)

an
d
PA

A
fo
r
la
rg
e
gr
ap
hs

SA
A
(A

lg
or
ith

m
4)

PA
A
(A

lg
or
ith

m
3)

r(
2)

r(
3)

r(
2)

r(
3)

r(
2)

r(
3)

r(
2)

r(
3)

r(
2)

r(
3)

#
ite
r

ε
SA

A
μ̄

M
C̃

m
ax

|X
�
|

r̃
T
im

e
A
vg

C
∗ X

C
(S

∗ X
,

X̃
)

A
vg

.t
im

e
#p

at
hs

E
v.

So
l.

A
vg

m
ax

op
sa
hl
-p
ow

er
gr
id
:ε

=
0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
66

3,
To

p-
s
ru
nn

in
g
tim

e=
2.
51

13
0.
00

6
0.
83

0.
84

28
67

51
54

5
12

.4
28

.6
0.
84

0.
84

0.
83

0.
83

0.
83

0.
83

11
6.
8

38
7.
0

67
89

1
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
78

4,
To

p-
s
ru
nn

in
g
tim

e=
2.
5

15
0.
00

6
0.
93

0.
93

13
17

0
51

54
5

15
.1

30
9.
9

0.
93

0.
93

0.
93

0.
93

0.
93

0.
93

13
1.
5

37
6.
3

67
89

1
38

00
5

pg
p:

ε
=

0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
57

6,
To

p-
s
ru
nn

in
g
tim

e =
1.
39

8
0.
00

9
0.
6

0.
6

16
34

51
54

5
4.
4

15
.9

0.
6

0.
6

0.
6

0.
6

0.
6

0.
6

49
.1

12
9.
8

60
62

3
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
80

9,
To

p-
s
ru
nn

in
g
tim

e=
1.
49

13
0.
00

8
0.
84

0.
84

58
37

51
54

5
7.
8

74
.6

0.
83

0.
83

0.
83

0.
83

0.
83

0.
83

70
.6

12
1.
3

60
62

3
38

00
5

ia
-e
nr
on

-l
ar
ge
:ε

=
0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
37

4,
To

p-
s
ru
nn

in
g
tim

e=
2.
88

9
0.
00
5

0.
4

0.
4

25
14

51
54
5

9.
7

39
.0

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

16
.2

24
.1

57
53

9
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
66

,T
op

-s
ru
nn

in
g
tim

e=
2.
98

11
0.
01

0.
66

0.
66

11
77

4
51

54
5

12
.2

10
7.
3

0.
66

0.
66

0.
66

0.
66

0.
66

0.
66

15
.6

25
.9

57
53

9
38

00
5

so
c-
go
w
al
la
:ε

=
0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
76

2,
To

p-
s
ru
nn

in
g
tim

e=
11

.6
2

10
0.
00

9
0.
76

0.
76

92
6

51
54

5
43

.1
16

5.
6

0.
76

0.
76

0.
76

0.
76

0.
76

0.
76

9.
0

11
.8

58
44

2
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
83

6,
To

p-
s
ru
nn

in
g
tim

e=
13

.6

14
0.
00

3
0.
84

0.
84

76
13

51
54

5
60

.7
29

9.
0

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

9.
3

11
.7

58
44

2
38

00
5

123

Journal of Global Optimization (2024) 88:199–232 225

Ta
bl
e
6

co
nt
in
ue
d

SA
A
(A

lg
or
ith

m
4)

PA
A
(A

lg
or
ith

m
3)

r(
2)

r(
3)

r(
2)

r(
3)

r(
2)

r(
3)

r(
2)

r(
3)

r(
2)

r(
3)

ca
-c
it
es
ee
r:

ε
=

0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
22

9,
To

p-
s
ru
nn

in
g
tim

e=
21

.6
6

5
0.
00

4
0.
23

0.
23

50
99

51
54

5
40

.2
15

0.
7

0.
23

0.
23

0.
24

0.
24

0.
24

0.
24

15
.0

20
.4

64
79

3
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
33

,T
op

-s
ru
nn

in
g
tim

e=
21

.8

9
0.
00

7
0.
34

0.
34

38
02

5
51

54
5

73
.0

74
7.
4

0.
34

0.
34

0.
34

0.
34

0.
34

0.
34

17
.4

23
.6

64
79

3
38

00
5

so
c-
tw

it
te
r-
hi
gg
s:

ε
=

0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
37

,T
op

-s
ru
nn

in
g
tim

e=
32

5.
23

8
0.
00

4
0.
37

0.
38

49
98

51
54

5
10

43
.6

11
48

.3
0.
38

0.
38

0.
38

0.
37

0.
38

0.
38

12
9.
1

15
7.
9

56
50

7
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
62

7,
To

p-
s
ru
nn

in
g
tim

e=
33

6.
03

11
0.
00

1
0.
63

0.
63

26
87

1
51

54
5

14
42

.4
37

26
.4

0.
63

0.
63

0.
62

0.
62

0.
62

0.
62

12
2.
7

14
9.
4

56
50

7
38

00
5

in
f-
ro
ad

N
et
-P
A
:ε

=
0.
01

,δ
=

0.
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
26

6,
To

p-
s
ru
nn

in
g
tim

e=
26

54
.7
2

13
0.
00

5
0.
7

0.
71

37
37

51
54

5
12

76
9.
2

63
17

.2
0.
7

0.
7

0.
7

0.
7

0.
7

0.
7

12
50

.0
16

51
.2

89
04

6
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
39

4,
To

p-
s
ru
nn

in
g
tim

e=
26

45
.5
9

15
0.
00

6
0.
86

0.
86

18
73

6
51

54
5

14
78

4.
8

30
84

6.
7

0.
86

0.
85

0.
85

0.
85

0.
86

0.
86

43
74

.1
70

37
.5

89
04

6
38

00
5

so
c-
yo
ut
ub

e-
sn
ap

:ε
=

0.
01

,δ
=

0 .
00

1

s
=

10
,C

(T
op

-s
,

X̃
)
=

0.
53

4,
To

p-
s
ru
nn

in
g
tim

e=
55

.5
9

11
0.
00

6
0.
53

0.
54

51
37

51
54

5
25

0.
3

14
73

.8
0.
53

0.
53

0.
53

0.
53

0.
53

0.
53

30
.9

37
.7

60
62

3
38

00
5

s
=

30
,C

(T
op

-s
,

X̃
)
=

0.
66

9,
To

p-
s
ru
nn

in
g
tim

e=
59

.5
7

11
0.
00

6
0.
68

0.
68

50
27

51
54

5
25

1.
5

15
25

.8
0.
67

0.
67

0.
67

0.
67

0.
67

0.
67

30
.9

38
.1

60
62

3
38

00
5

T
he

gr
ap
hs

ar
e
to
o
la
rg
e
to

co
m
pu

te
C

ex
ac
tly

an
d
ex
ec
ut
e
PA

A
w
ith

r
:=

r(
1)
.H

en
ce
,n

o
sc
al
in
g
is
us
ed

an
d
w
e
re
po

rt
on

ly
th
ei
r
ap
pr
ox

im
at
io
ns

C̃
fo
r
SA

A
;
fo
r
PA

A
w
e

re
po

rt
th
e
re
su
lts

on
ly

fo
r

r
:=

r(
2)

an
d

r
:=

r(
3)
.T

o
es
tim

at
e
th
e
ac
tu
al
ce
nt
ra
lit
y
of

so
lu
tio

ns
,S

∗ X
,o

bt
ai
ne
d
by

PA
A
w
e
re
po
rt

C
(S

∗ X
,

X̃
),
w
he
re

X̃
is
ra
nd
om

ly
sa
m
pl
ed

w
ith

th
e
sa
m
e
ca
rd
in
al
ity

as
in

SA
A
,i
.e
.,

r̃
=

|X̃
|.W

e
re
fe
r
to

th
e
ca
pt
io
ns

of
Ta
bl
e
5
fo
r
fu
rt
he
r
de
ta
ils

123

226 Journal of Global Optimization (2024) 88:199–232

Algorithm 4: Sample Average Approximation Algorithm (SAA)
1 Input: Graph G = (V , E), the group size s, number of SAA problems to solve M , the numbers of path
to be sampled with the strictly increasing sequence rk and parameter r̃ , parameter β ∈ {0, 1} and error
bound ε > 0;
Result: An estimate of C∗ and the corresponding group of s nodes given by C̃ and S̃, respectively

2 Initialize: k ← 0;
3 repeat
4 k ← k + 1;
5 for � = 1, . . . , M do
6 Generate X�, where |X�| = rk , using Algorithm 2 with input (G, rk);
7 Let S∗

X�
and C∗

X�
be an optimal solution and the optimal objective function value of F2(X) with

X = X�, respectively;
8 end

9 Compute μ̄M ← 1
M
∑M

�=1 C∗
X�

, and ζ̄ 2M ← 1
M(M−1)

∑M
�=1(C

∗
X�

− μ̄M)2;

10 if β = 0 then
// for β = 0 we compute betweenness centrality using all

shortest paths

11 S̃ ∈ argmax
{
C(S) : S ∈ {S∗

X1
, . . . , S∗

X M
}};

12 C̃ ← C(S̃);
13 else

// for β = 1 we estimate betweenness centrality using X̃
14 Generate X̃ , where |X̃ | = r̃ , using Algorithm 2 with input (G, r̃);
15 S̃ ∈ argmax

{
C(S, X̃) : S ∈ {S∗

X1
, . . . , S∗

X M
}};

16 C̃ ← C(S̃, X̃); Compute ζ̃ 2 using (37);
17 end

// Stopping criterion

18 until ε ≥ εSAA = μ̄M − C̃ + zδ

√
ζ̄ 2M + β · ζ̃ 2;

19 Return: C̃ and S̃;

Next, suppose we have M multisets of randomly constructed shortest paths X1, . . . , X M ,
� ∈ {1, . . . , M}. Then we solve M instances of F2(X), see (23), for each X�, and define:

μ̄M = 1

M

M∑

�=1

C∗
X�

, (34)

which is an unbiased estimator of E[C∗
X]. We can also estimate variance of μ̄M by:

ζ̄ 2
M = 1

M(M − 1)

M∑

�=1

(C∗
X�

− μ̄M)2. (35)

By the Central Limit Theorem (CLT) the probability distribution of μ̄M becomes approxi-
mately normal as M increases. The key idea of our approach (its formal pseudo-code is given
in Aglorithm 4) is to exploit this fact.

Specifically, we solve M problems F2(X); see lines 5-8 of Algorithm 4. We assume
that r = |X�|, � ∈ {1, . . . , M}, is not required to satisfy conditions used in Sect. 3; recall
inequality (19). Hence, the value of r can be chosen sufficiently small (at least initially),
which allows us to limit the sizes of the correspondingMIPs F2(X). Note that in Algorithm 4
the value of r = |X�|, � ∈ {1, . . . , M}, is controlled by some pre-defined strictly increasing
sequence rk , where k is the iteration counter; see our brief discussion on this issue in Sect. 4.2.

123

Journal of Global Optimization (2024) 88:199–232 227

By solving these M models F2(X), we also obtain M optimal solutions S1, . . . , SM , and
each of them is also a feasible solution for (3). To estimate the quality of these solutions,
there are two possible options in Algorithm 4 that are controlled by parameter β ∈ {0, 1}:
• If β = 0, then we use all shortest paths in the graph and estimate C∗ using C(S̃), where

S̃ is the best node subset out of M available; see lines 10-12. This option is reasonable
whenever the graph is sufficiently small and/or sparse; hence, we can pre-compute and
store all shortest paths in the memory.

• Otherwise, i.e., β = 1, we sample a sufficiently large subset of paths, denoted as X̃ using
Algorithm 2; see line 14 in Algorithm 4. The number of these paths is controlled by
parameter r̃ , where |X̃ | = r̃ . Consequently, we use these paths in (15) to pick the best
node subset out of M available and estimate C∗; see lines 13-17. One important remark
that needs to be highlighted here is that we do not solve F2(X) with X := X̃ but rather
evaluate the quality of the candidate solutions, which are obtained by solving F2(X) with
X := X�. Hence, to achieve some computational advantage we need |X�| � |X̃ |.
We exploit (34), (35) and the CLT to estimate the quality of the obtained solution via

(33) and verify our stopping criteria in line 18 of Algorithm 4. If the stopping criteria is not
satisfied, then we increase the sizes of randomly sampled path X1, . . . , X M (by increasing k
and hence, the value of r := rk ; see line 4) and the outlined steps are repeated. In view of our
discussion above, we conclude that the following result holds under the appropriate settings
of the algorithm input parameters.

Proposition 4 SAA terminates with probability 1, as k → ∞.

Next, we estimate the quality of the obtained solution given by the condition ε ≥ εSAA
in line 18 of Algorithm 4. Note that in our discussion we follow the notation and the key
concepts behind SAA outlined in [31].

First, suppose β = 1 and define gap(S̃) as follows:

gap(S̃) := C∗ − C(S̃) ≤ E[C∗
X] − C(S̃) = E[μ̄M − C(S̃, X̃)], (36)

where the first inequality follows from (33) and the last equality is due to (17).
Define C̃ = C(S̃, X̃); see line 16 in Algorithm 4. The last equality in (36) implies that

the value of μ̄M − C̃ can be used as an estimator for the upper bound on gap(S̃).
Furthermore, given the definition in (36), observe that the variance of μ̄M − C(S̃, X̃) is

equal to the sum of the variances of μ̄M and C(S̃, X̃). Note that the empirical variance of
μ̄M is ζ̄ 2

M ; recall (34) and (35). Also, recall that paths in X̃ are generated independently and
uniformly at random. Hence, we can estimate the corresponding sample variance as:

ζ̃ 2 := 1

r̃ (̃r − 1)

∑

p∈X̃

(1{p∈TS} − C̃)2 = 1

r̃ − 1
(C̃ − 2C̃2 + C̃2) = C̃ − C̃2

r̃ − 1
, (37)

where we use the fact that r̃ = |X̃ |, i.e., r̃ shortest paths are sampled; see line 16 in
Algorithm 4.

Summarizing the above discussion, by the CLT, for sufficiently large values of M and r̃ ,
we conclude that:

εSAA := μ̄M − C̃ + zδ

√
ζ̄ 2

M + ζ̃ 2

estimates a (1 − δ) · 100% confidence upper bound for gap(S̃) in (36); here, we follow [31]
and use critical value zα from the standard normal distribution.

123

228 Journal of Global Optimization (2024) 88:199–232

Note that there are two cases:

• If C∗ ≥ C̃ , then μ̄M + zδ

√
ζ̄ 2

M + ζ̃ 2 − C∗ ≥ 0 can be estimated to hold with probability
1 − δ by our construction. Hence, with the same probability we estimate:

|C∗ − C̃ | ≤ C∗ − C̃ + μ̄M + zδ

√
ζ̄ 2

M + ζ̃ 2 − C∗

= μ̄M − C̃ + zδ

√
ζ̄ 2

M + ζ̃ 2 = εSAA ≤ ε,

(38)

where the last inequality follows from the stopping criterion in Algorithm 4; see line 18.
• If C∗ < C̃ , then

|C∗ − C̃ | = C̃ − C∗ ≤ C̃ − C∗ + gap(S̃) = C̃ − C(S̃) ≤ |C̃ − C(S̃)| ≤ ε, (39)

where the first inequality holds by the definition of gap(S̃), and the last inequality can be
estimated to hold with probability at least 1− δ as long as we sample a sufficiently large
number of paths, r̃ .
In particular, in our experiment we use

r̃ =
⌈

1

2ε2

(
ln(M) + ln

2

δ

)⌉
, (40)

which can be justified as follows. Recall the proof of Proposition 3 and the derivation of
inequality (26). Then we observe that the required bound in (39) can be shown to hold
by using the similar arguments when replacing |S| by M in (26). Then (24) is replaced
by (40).

Next, by feasibility of S̃ for the optimization problem in (3) we have that C∗ ≥ C(S̃).
Therefore, combining the latter with (36), (38) and (39), we can estimate the quality of C(S̃)

as:

Pr{C∗ − C(S̃) ≤ ε} ≥ 1 − δ. (41)

which holds for sufficiently large values rk and M . Similarly, we can estimate the quality of
C̃ with:

Pr{|C∗ − C̃ | ≤ ε} ≥ 1 − δ. (42)

Recall that the above discussion and derivations in (41) and (42) assume that β = 1. On
the other hand, if β = 0, then C̃ = C(S̃); see Algorithm 4. Then (41) and (42) coincide.
Moreover, μ̄M + zδ ζ̄M − C∗ ≥ 0 holds with probability 1− δ by the Central Limit Theorem
and the fact M is sufficiently large (for M < 30 we use a t-distribution with M − 1 degrees
of freedom; see [31]). Thus, we obtain

|C∗ − C̃ | ≤ C∗ − C̃ + μ̄M + zδ ζ̄M − C∗

= μ̄M − C̃ + zδ ζ̄M = εSAA ≤ ε,

where the last inequality follows from the stopping criterion in Algorithm 4.
Finally, we note that the computational performance of Algorithm 4 depends on the appro-

priate choices of its parameters that is, the values of M and the sequence rk , k ≥ 1. In
particular, the right-hand side in the stopping criteria (see line 18) decreases as rk increases
and/or M increases. Therefore, there is an inherent trade-off as for the larger values of rk and
M the sizes of the corresponding MIPs that need to be solved (see line 7) and the number of
these MIPs, respectively, increase.

123

Journal of Global Optimization (2024) 88:199–232 229

4.2 Computational results

In this section we present the second set of our computational experiments. Specifically,
we compare the scalability and performance of PAA (see Algorithm 3) against SAA (see
Algorithm 4). Similar to Sect. 3.4 we also provide the results for the Top-s procedure.

For Algorithm 4 we compute the sequence rk as follows:

ε0 =
(
log
(2

δ

)

10s

)1/2

, εk = εk−1 ·
⎧
⎨

⎩
1 − εk−1

SAA
μ̄M

, if k ≥ 2, εk−2
SAA − εk−1

SAA > 0.01,(
1√
2

)
, otherwise,

r0 = 5s, rk = 1

2ε2k
ln
2

δ
,

which implies that r1 = 10s. The intuition behind our parameter settings is as follows. If
εk−1
SAA is sufficiently large relative to μ̄M , then we scale εk to be considerably smaller than

εk−1. On the other hand, if we observe that increasing rk produces little improvement in εk
SAA

(specifically, εk−2
SAA − εk−1

SAA ≤ 0.1), then we use rk = 2rk−1. Finally, we use δ = 10−3 for
both algorithms.

Additional test instances. In addition to the real-life instances outlined in Sect. 3.4, we
consider several larger real-life networks from [30]:

• opsahl-powergrid (|V | = 4941, |E | = 6594): an energy network representing the
topology of the Western States Power Grid of the United States.

• pgp (|V | = 10681, |E | = 24316): a technological network, where nodes represent users
that communicate via the Pretty-Good-Privacy protocol.

• enron-large (|V | = 33697, |E | = 180811): a social network formed by emails gener-
ated by employees of Enron Corporation.

• citeseer (|V | = 227321, |E | = 814134): a collaboration network from Citeseer reposi-
tory.

• soc-gowalla (|V | = 196591, |E | = 950327): a social network, where users share their
locations.

• soc-twitter-higgs (|V | = 456631, |E | = 12508453): a social network used to study the
spreading processes on Twitter.

• roadNet-PA (|V | = 1087563, |E | = 1541514): a transportation network representing
the roads in Pennsylvania.

• soc-youtube-snap (|V | = 1134890, |E | = 2987624): a social network from a video-
sharing web site.

Results and discussion. Table 5 presents the results for the same instances considered in
Tables 1, 2 and 3. For the stopping criteria in SAA we use the best performance guarantee,
ε, that is achieved by Algorithm 3 in Tables 1, 2 and 3 (i.e., the last row for each network
instance and the specified value of s). For PAA, we need to specify r = |X |, which is
computed using the parameter ε; see (30) and (31), which correspond to r := r (1) and
r := r (2), respectively. In view of (28) and (41), to have a fair comparison (i.e., the same
performance quality guarantees), we compute r (1) and r (2) using ε := εP AA in (30) and (31),
where

εP AA := ε ·
⎛

⎝1 +
√√√√ ln 2

δ

ln
(n

s

)+ ln 2
δ

⎞

⎠
−1

, (43)

123

230 Journal of Global Optimization (2024) 88:199–232

and ε in (43) corresponds to the stopping criteria of SAA.
As in Sect. 3.4, Algorithm PAA is executed 15 times and the average results are reported.

For SAA, we set M = 15 and report the total time used for solving MIPs (in lines 5-8) over
all iterations in column “Sol. Time”; the total time used for estimating the solution quality
(in lines 10-18) over all iterations is reported in column “Ev. Time”. The best total running
time results are in bold; that is, we compare the time given in column “Avg time” for PAA
against the times given by the sum of those in columns “Sol. Time” and “Ev. Time”, i.e., the
total time for SAA. All betweenness centrality values in Table 5 (including the errors ε and
εS AA) are scaled with respect to C∗ (except for C∗ itself). In view of the latter, we note that
some values of C̃ in Table 5 are larger than 1.

From the results in Table 5, we observe that SAA provides good quality solutions faster
than PAA. For example, consider the results for 662_bus with s ∈ {5, 10} in Table 5.
We observe that SAA provides a smaller error estimate (recall that the stopping criteria is
εS AA ≤ ε in Algorithm 4), while its total running time is 0.06+ 5.5 ≈ 5.6 vs. 33.5 seconds
on average for PAA, when s = 5, and 4.8 vs. 127.4, when s = 10. We also observe, when
comparing the results between Tables 3 and 5, that for the same instance (662_bus with
s ∈ {5, 10}), our procedure (ε, δ)-SAA provides better running times and error estimates
than �-AA.

In Table 6we present the results for networks that are larger than those in Table 5. Note that
setting r := r (1) in PAA is too prohibitive for theMIP solver, as the resulting number of paths
is too large. Thus, we consider only r := r (2) and r := r (3); see (31) and (32), respectively.
Recall from our discussion above that ε is set to the value in (43). Also, neither C(S), nor
C∗ can be computed exactly; hence, the reported values of the betweenness centrality are not
scaled in Table 6.

First, we observe that in contrast to the results in Table 5, PAA can be competitive with
respect to its running time performance. This observation is not surprising given that we do
not use r := r (1) in our computations for the instances in Table 6. However, neither r := r (2)

nor r := r (3) provide strong quality performance guarantees; recall Theorem 1. In fact, only
(27) holds, which can be viewed as a relatively weak bound. However, PAA with r := r (2)

and r := r (3) results in very good solutions, and this observation opens an interesting avenue
for future research. That is, it could be of interest to relax the requirement on the cardinality,
r , of the shortest paths that need to be sampled. In particular, in view of the results in [29]
(recall Proposition 2) we conjecture that Theorem 1 could be substantially strengthened.

As a final comment, we note that the MIP solution times within PAA on every instance
from Table 6, are faster for r (2) than for r (3), despite the fact that r (2) > r (3). This behaviour
could be explained by a high degree of symmetry in the feasible regions of the respective
MIPs,when the number of the sampled shortest paths is not sufficiently large.This observation
provides yet another avenue for future research.

5 Concluding remarks

In this paper we describe simple randomized approaches for finding most central group
of nodes based on the notion of betweenness centrality. Our methods combine the ideas
behind randomized path sampling and the exact linear MIP model. We also provide some
probabilistic estimates for the solution quality obtained by our approaches and illustrate their
performance in a computational study. Clearly, our bounds (see Proposition 3 and Theorem 1)

123

Journal of Global Optimization (2024) 88:199–232 231

are very loose and could be strengthened (e.g., by reducing the requirement on the number
of shortest paths needed).

Note that the base MIP model for computing the most central groups can be modified to
capture some pre-specified cohesiveness properties of the group of interest, e.g., it should
form a clique, or a star. Furthermore, the betweenness centrality concept can be generalized
for groups of graph elements, which contain nodes and edges simultaneously; see the cor-
responding discussion and numerical illustrations in [33] for both of these generalizations.
Clearly, our methods can be extended to handle these meaningful generalizations in a rel-
atively straightforward manner as only the corresponding MIP needs to be modified. Also,
it could be of interest to extend our approaches for weighted graphs and other centrality
concepts, in particular, those that involve paths, which are not necessarily shortest. These
research directions provide interesting avenues for future studies.

Acknowledgements The authors are grateful to Dr. Oliver Hinder for pointing out an issue in the early version
of the paper as well as his subsequent comments. Also, we would like to thank the anonymous referees for
the comments and suggestions, which helped us to improve the paper.

References

1. Akgün, M.K., Tural, M.K.: k-step betweenness centrality. Comput. Math. Organ. Theory 26(1), 55–87
(2020)

2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97
(2002)

3. Angriman, E., van der Grinten, A., Bojchevski, A., Zügner, D., Günnemann, S., Meyerhenke, H.: Group
centrality maximization for large-scale graphs. In: 2020 Proceedings of the Twenty-SecondWorkshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, pp. 56–69 (2020)

4. Borassi, M., Natale, E.: Kadabra is an adaptive algorithm for betweenness via random approximation.
ACM J. Exp. Algorithm. 24(1.2), 1–35 (2019)

5. Borgatti, S., Everett, M., Johnson, J.: Analyzing Social Networks. SAGE Publications Limited (2013)
6. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Social Netw. 28(4), 466–484

(2006)
7. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)
8. Chou, C.-H., Sheu, P., Hayakawa, M., Kitazawa, A.: Querying large graphs in biomedicine with colored

graphs and decomposition. J. Biomed. Inform. 108, 103503 (2020)
9. Dinler, D., Tural, M.K.: Faster computation of successive bounds on the group betweenness centrality.

Networks 71(4), 358–380 (2018)
10. Dolev, S., Elovici, Y., Puzis, R., Zilberman, P.: Incremental deployment of network monitors based on

group betweenness centrality. Inf. Process. Lett. 109(20), 1172–1176 (2009)
11. Everett, M., Borgatti, S.: The centrality of groups and classes. J. Math. Sociol. 23(3), 181–201 (1999)
12. Everett, M.G., Borgatti, S.P.: Extending centrality.ModelsMethods Soc. Netw. Anal. 35(1), 57–76 (2005)
13. Fink, M., Spoerhase, J.: Maximum betweenness centrality: approximability and tractable cases. In: Inter-

national Workshop on Algorithms and Computation. Springer, pp. 9–20 (2011)
14. Fronzetti Colladon, A., Guardabascio, B., Innarella, R.: Using social network and semantic analysis to

analyze online travel forums and forecast tourism demand. Decis. Support Syst. 123, 113075 (2019)
15. Ganesana, B., Ramanb, S., Ramalingamb, S., Turanc, M.E., Bacak-Turanc, G.: Vulnerability of sewer

network-graph theoretic approach. Desalination Water Treat. 196, 370–376 (2020)
16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman, New York (2002)
17. Guan, J., Yan, Z., Yao, S., Xu, C., Zhang, H.: GBC-based caching function group selection algorithm for

SINET. J. Netw. Comput. Appl. 85, 56–63 (2017)
18. Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2021)
19. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and function using network.

Technical Report, Los Alamos National Lab. (LANL), Los Alamos (2008)
20. Jackson, M.: Social and Economic Networks. Princeton University Press (2010)

123

232 Journal of Global Optimization (2024) 88:199–232

21. Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for Centrality
Indices, chapter 4, Springer, Berlin, pp. 62–82 (2005)

22. Kleywegt,A.J., Shapiro,A., Homem-deMello, T.: The sample average approximationmethod for stochas-
tic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

23. Kolaczyk, E.D., Chua, D.B., Barthélemy, M.: Group betweenness and co-betweenness: inter-related
notions of coalition centrality. Soc. Netw. 31(3), 190–203 (2009)

24. Mahmoody, A., Tsourakakis, C.E., Upfal, E.: Scalable betweenness centralitymaximization via sampling.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1765–1773 (2016)

25. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and Probabilistic Techniques
in Algorithms and Data Analysis. Cambridge University Press (2017)

26. Newman, M.: Networks: An introduction. Oxford University Press (2010)
27. Puzis,R., Elovici,Y.,Dolev, S.: Fast algorithm for successive computationof groupbetweenness centrality.

Phys. Rev. E 76, 056709 (2007)
28. Puzis, R., Tubi,M., Elovici, Y., Glezer, C., Dolev, S.: A decision support system for placement of intrusion

detection and prevention devices in large-scale networks. ACMTrans.Model. Comput. Simul. 22(1), 1–26
(2011)

29. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling.
Data Min. Knowl. Discov. 30(2), 438–475 (2016)

30. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization.
In: AAAI (2015). http://networkrepository.com. Accessed 2 Nov 2021

31. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming:Modeling andTheory.
SIAM (2014)

32. Tubi, M., Puzis, R., Elovici, Y.: Deployment of DNIDS in social networks. In: 2007 IEEE Intelligence
and Security Informatics. IEEE, pp. 59–65 (2007)

33. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: Finding groups with maximum betweenness centrality.
Optim. Methods Softw. 32(2), 369–399 (2017)

34. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature 393(6684), 440–442
(1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://networkrepository.com

	Finding groups with maximum betweenness centrality via integer programming with random path sampling
	Abstract
	1 Introduction
	2 Background
	2.1 MIPs for finding central groups
	2.2 Bounded-distance betweenness and betweenness centralities
	2.3 Randomized (ε,δ)-approximation of node betweenness centrality

	3 Randomized approximation of C*
	3.1 Estimator of C(S)
	3.2 Finding cardinality of X
	3.3 Algorithm and its performance bound
	3.4 Computational Study

	4 SAA-based approach
	4.1 Algorithm description
	4.2 Computational results

	5 Concluding remarks
	Acknowledgements
	References

