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Abstract—Preconditioning is a technique widely used to accel-
erate the convergence of optimization algorithms. Recently pro-
posed efficient second-order algorithms (such as KFAC) showed
that preconditioning the gradient using the curvature information
of loss function can help achieve faster convergence. However,
their practicality in large-scale deep learning is still limited due
to the high computational and storage cost. In this work, we
propose a stochastic adaptive gradient algorithm, called Mini-
Block Adaptive Gradient (MBAG), that addresses those com-
putational challenges in computing the preconditioning matrix.
To reduce the per-iteration cost, MBAG analytically computes
the inverse of preconditioning matrix using the matrix inversion
lemma and then approximately finds its square root using an
iterative solver. Further, to mitigate the storage requirement,
MBAG partitions model parameters into subsets of small size
and only computes sub-blocks of preconditioner associated with
each subset of parameters. This greatly improves the scalability of
the proposed algorithm. The performance of MBAG is compared
to that of popular first- and second-order algorithms on auto-
encoder and classification tasks using real datasets.

Index Terms—Stochastic gradient descent, preconditioned gra-
dient, second order optimizer, block-diagonal approximation

I. INTRODUCTION

Stochastic gradient-based optimization methods, such as
stochastic gradient descent (SGD) [1], are most widely used
for training deep neural networks (NNs) on large-scale datasets
due to their computational efficiency. There has been signif-
icant effort to improve the convergence rate of first order
gradient-based methods by incorporating momentum [2], [3],
adaptive learning rates [4]–[6], and variance reduction [7].
Despite the effort, due to the high-dimensional and highly
nonconvex nature of NN training, their convergence in practice
can still be slow, especially when the problem is heavily ill-
conditioned. A typical approach to improving the convergence
rate is to change the geometry of parameter space by precon-
ditioning the SGD update with a matrix Gt:

θt+1 = θt − ηtG
−1
t ∇L(θt) , (1)

where θt ∈ Rd is the model parameter vector at iteration t,
ηt > 0 is a step size, ∇L(θt) denotes the gradient of empirical
loss function evaluated at θt, and Gt ∈ Rd×d is a matrix called
preconditioner. Typically, G is set to a matrix containing the
curvature information of loss function.
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Existing gradient-based methods can be viewed as a pre-
conditioned SGD. The first order adaptive methods (such as
Adam [5] and AdaGrad [4]) restrict G to be a diagonal matrix.
This greatly reduces the computational complexity associated
with computing and inverting G but at the same time limits
the amount of curvature information they can extract. There
has been recent interest in developing efficient second order
methods for deep NNs, e.g., KFAC [8], Shampoo [9], and
K-BFGS [10]. These methods set the preconditioner G to
be an approximate Hessian [10], [11], generalized Gauss-
Newton matrix [12], or FIM [8], [9]. However, the use of
second order information in the context of deep learning poses
many computational challenges. First, exactly computing these
matrices is infeasible as it requires prohibitive amount of
computation and memory space. For example, computing the
inverse of G in general has O(d3) time complexity, where
d is the number of parameters which can be extremely large
for modern deep NN models. Even storing G requires O(d2)
memory space. Hence, some sort of approximations need to be
applied. Based on the empirical observation that curvature ma-
trices are diagonally dominant, existing second order methods
typically use layer-wise block-diagonal approximation (BDA)
to the curvature matrix, i.e., they assume parameters belonging
to different layers are independent and only compute sub-
blocks of G along the diagonal. Second, most second order
methods require performing computationally expensive matrix
inversion. Although many practical methods only perform
the inversion periodically to amortize the cost over several
iterations, it adds another layer of approximation.

In this paper, we propose an adaptive preconditioned SGD
algorithm, called Mini-Block Adaptive Gradient (MBAG), that
efficiently utilizes the curvature information yet can easily
scale to modern large-scale network architectures. To address
the computational challenges in approximating curvature in-
formation, MBAG employs three innovative techniques. First,
MBAG extends the block-diagonal approximation and fur-
ther approximates each diagonal block as a block diagonal
matrix consisting of smaller matrices (which we call mini-
blocks). Specifically, it groups the parameters of a layer and
computes the curvature matrix for each group assuming the
independence between parameters of different groups. Second,
inspired by the observation that the curvature matrix update
can be viewed as a sequence of rank-one updates to an identity



matrix, MBAG directly updates and exactly computes the
inverse of G using the Sherman-Morrison formula [13]. This
eliminates the need for costly matrix inversion. Third, while
the curvature matrix used in MBAG has some superficial
resemblance to empirical FIM, our method is not motivated by
the natural gradient [14] but rather by AdaGrad in which G is

set to G = δId+
(∑t

i=1∇θL(θi)∇θL(θi)
⊺
) 1

2

, where δ ≥ 0

is a small constant. Existing algorithms typically compute
the above square root using the singular value decomposition
(SVD) or eigenvalue decomposition whose time complexity is
O(d3). To mitigate the computational cost, we approximately
compute the square root G1/2 by running few iterations of
Newton-Schulz iterations [15] and show that it is sufficient for
our purpose. The Newton-Schulz iterations only involve easily
parallelizable matrix-matrix multiplications and are order-of-
magnitude faster than SVD-based approach. In sum, our main
contributions are as follows:
• We propose a stochastic adaptive gradient algorithm

for large-scale deep NNs that efficiently approximates
full-matrix AdaGrad preconditioner using mini-blocks. It
achieves fast convergence by benefiting from the use of
second order information while being as scalable as first
order algorithms.

• We analyzes the convergence property of the proposed
algorithm and show that it converges to a stationary point.

• We perform extensive experiments on real datasets against
other recently proposed first and second order algorithms.
We empirically show that MBAG enjoys fast convergence
on various datasets.

II. RELATED WORK

Many recent works (including ours) generalized this idea by
considering sub-blocks of smaller sizes [16]–[20]. The works
closest to ours are those of [18] and [19]. Bahamou et al. [18]
proposed an adaptive natural gradient method called MBF. For
a fully connected layer l with weight matrix Wl ∈ Rm×n,
MBF creates a parameter group for each row i ∈ [m] in W,
i.e., decomposing Gl into m matrices of size n×n. However,
for many modern network architectures (e.g., transformers and
autoencoders), this strategy becomes impractical and incurs
prohibitive computational cost as n could be much larger
than m. To address this issue, they proposed to take a single
matrix by taking an average over m sub-block matrices,
which adds another layer of approximation. In contrast, our
algorithm allows groups of arbitrary size. Specifically, MBAG
splits the parameters in W into groups of fixed size τ ,
where τ is a hyperparameter whose value can be chosen
according to the available memory size. AdaBlock [19] is
a BDA-based approximation of full-matrix version of Adam
algorithm. Similar to our algorithm, it also allows an arbitrary
grouping of parameters, but it partitions W column-wise while
our algorithm partitions row-wise. In addition, our algorithm
is different from AdaBlock and MBF in how it computes
the inverse of curvature matrix. Both AdaBlock and MBF
maintain a moving average of Gt and update it whenever

a new mini-batch gradient is received. To compute G−1
t ,

they perform expensive eigenvalue decomposition (or SVD).
Contrastingly, MBAG directly models G−1

t and updates it ex-
actly using the Sherman-Morrison formula. Many prior works
have utilized the idea of using the Sherman-Morrison formula
for approximating the inverse of Hessian (either explicitly or
implicitly) in the context of BFGS optimization [21], natural
gradient descent [22], [23], online convex optimization [24],
and network pruning [25]. To our best knowledge, our work
is the first to combine the matrix inversion lemma with fine-
grained block diagonal approximation in the context of large-
scale deep learning to improve the accuracy and efficiency of
curvature approximation.

MBAG can be viewed as an approximation to full-matrix
version of AdaGrad, and there has been several attempts
to scale up the block-diagonal approximation of AdaGrad
preconditioner. Shampoo [9] approximates the preconditioning
matrix as a Kronecker product of small matrices, each of which
working on a single dimension. However, their algorithm
requires knowledge of model structure. Radagrad [26] ap-
proximates the preconditioning matrix in a lower dimensional
space using random projections. However, the performance
of reconstructed preconditioner can be sensitive to noise and
hence is not well suited for stochastic optimization. GGT [27]
approximates the inverse square root of preconditioning matrix
from a sliding window of gradient history. However, it requires
storing r copies of gradients in memory and computing the
eigenvalue decomposition of r × r matrix at every iteration,
where r in their experiments is as large as several hundred.

III. PRELIMINARIES

A. Notations

We consider a neural network fθ with L layers. Each layer
l ∈ [L] has a weight matrix Wl ∈ Rml×nl , where [L] =
{1, 2, . . . , L} denotes the set of integers between 1 and L.
When it’s clear from the context, we omit the the layer index
l in the superscript to avoid cluttered notation. To construct a
column vector from matrices (or tensors in general), we use the
vectorization operator. For a matrix W ∈ Rm×n, vec(W) ∈
Rmn transforms W into a column vector by stacking its
column vectors below one another. The parameters of fθ are
denoted by θ =

(
(θ1)⊺, . . . , (θL)⊺

)⊺
, where θl = vec(Wl) is

the subset of parameters θ belonging to layer l. Given a train-
ing dataset D = {(xi, yi)}Ni=1 consisting of paired examples
(xi, yi) ∈ X × Y , the parameters are updated to minimize
the empirical risk L(θ;D) = 1

N

∑N
i=1 ℓ(yi, fθ(xi)),where

ℓ : Y × Y → R is a loss function. We regard the
gradient of L w.r.t. θ, i.e., ∇θL(θt) = ∂L(θ)

∂θ

∣∣
θ=θt

as a
column vector. Given a set of matrices {A1, . . . ,AL}, where
Ai ∈ Rni×ni , diag(A1, . . . ,AL) denotes a block diagonal
matrix with L sub-matrices on the diagonal and its size is∑L

i=1 ni ×
∑L

i=1 ni.

IV. MBAG ALGORITHM

In this section, we describe each component of the proposed
MBAG algorithm. At iteration t, MBAG computes the gradient



Algorithm 1: MBAG algorithm
Input: initial parameter vector θ0, parameter grouping

for each layer Πl = (πl
1, . . . , π

l
K), step size ηt,

total number of iterations T , matrix square root
computation interval Tsqrt, number of
Newton-Schulz iterations TNS, momentum β

1 Initialize v0 ← 0, Hl,πi

0 ← 1
λI for ∀l, πi

2 for t = 1 to T do
3 Sample a mini-batch B of size m
4 gt ← 1

m

∑
i∈B ∇ℓ(yi, fθ(xi))

5 foreach parameter group πi ∈ Πl in layer l do
6 Update Hl,πi

t according to (4)
7 if t ≡ 0 (mod Tsqrt) then
8 Compute the matrix square root

(Hl,πi

t )
1
2 ← Newton-Schulz(Hl,πi

t , TNS)
9 else

10 (Hl,πi

t )
1
2 ← (Hl,πi

t−1)
1
2

11 vl,πi

t ← βvl,πi

t−1 + (Hl,π
t )

1
2gl,πi

t

12 θl,πi

t ← θl,πi

t−1 − ηtvt

using a mini-batch and updates the preconditioner as follows:

Gt = Gt−1 + gtg
⊺
t , (2)

θt+1 = θt − ηtG
− 1

2
t gt , (3)

where G0 = λI with λ > 0 and gt = ∇θL(θt) is the
stochastic gradient. The pseudocode of proposed algorithm is
presented in Algorithm 1.

A. Computing the Inverse of Preconditioner

A computational bottleneck in the proposed method is the
computation of matrix inverse square root in (3), i.e., compu-
tation of G− 1

2 . To reduce the computational burden, we take a
two-step approach. Instead of computing and maintaining Gt,
MBAG directly computes and maintains the inverse G−1

t using
the Sherman-Morrison formula. For notational convenience,
we write H to denote the inverse of our curvature matrix G,
i.e., H = G−1. Given Ht, MBAG applies a variant of Newton
iterations to approximately compute its square root. Unrolling
the recurrence equation in (2) shows that the preconditioner
Gt is a sequence of rank-one update to the multiple of identity
matrix. Therefore, it is symmetric and positive definite and has
an inverse. Furthermore, the updated preconditioner Gt in (2)
is a rank-one modification to Gt−1. This means that, given
G−1

t−1 and gt, the inverse of Gt can be analytically obtained
using the Sherman-Morrison formula. Thus, the algorithm
keeps a variable for Ht = G−1

t and iteratively updates it
as follows.

Ht = (Gt−1 + gtg
⊺
t )

−1 = Ht−1 −
Ht−1gtg

⊺
tHt

1 + g⊺
tHtgt

, (4)

where H0 = 1
λI. The above update can be efficiently done as

it only involves GPU friendly matrix-vector operations.

B. Computing the Matrix Square Root

To precondition the gradient, MBAG requires computing
the inverse square root G− 1

2 . The square root of matrix
G ∈ Rd×d is defined as any matrix A ∈ Rd×d such that
A2 = G. A common way to compute the square root of G is
through its eigenvalue decomposition whose time complexity
in practice is O(d3). Let G = QΛQ⊺ be the eigenvalue
decomposition of Gt, where Q is orthogonal and Λ is a
diagonal matrix whose diagonal entries are the eigenvalues of
Gt. It is easy to see that A = QΛ1/2Q⊺. The square root A
is uniquely determined when G is positive definite. To reduce
the computation time, we propose to compute the square root
approximately by running a small number of Newton-Schulz
iterations. Specifically, we set X0 = G−1 and Y0 = I and
run the following Newton-Schulz iterations:

Xt =
1

2
Xt−1(3I−Yt−1Xt−1) ,

Yt =
1

2
(3I−Yt−1Xt−1)Yt−1 .

(5)

It is known that Xt and Yt quadratically converges to G− 1
2

and G
1
2 , respectively [15]. The sufficient condition for (5) to

converge is ∥I−G−1∥p < 1 for p = 1, 2, or∞. In our imple-
mentation, to satisfy the condition, we pre-process the input
matrix G−1 by normalizing it by its Frobenius norm. Let A′

denote the normalized input matrix, i.e., A′ = 1
∥G−1∥F

G−1.
Let XN be the value of Xt after N Newton-Schulz iterations
with X0 = A′. To account for the normalization, the resulting

G− 1
2 is adjusted by computing G− 1

2 =
√
∥G−1∥F XN . In the

above, if X0 is initialized to G, Yt in (5) converges to G− 1
2 .

This means that we can compute the inverse square root of G
without using the Sherman-Morrison formula. This variant of
MBAG is shown in Algorithm 2. Another variant is the one
that does not compute the square root and preconditions the
gradient just with G−1. We name this variant as MBAG-N
and empirically evaluate in Section VI.

C. Grouping Parameters

The size of matrix Gt in (2) is quadratic in the number
of parameters, and it becomes computationally intractable to
compute and store Gt even for neural networks of mod-
erate size. A common solution to mitigate this problem is
to approximate Gt with a the block diagonal matrix, i.e.,
Gt ≈ diag(G1

t , . . . ,G
L
t ), where each diagonal block Gl

t

computes the outer product of gradient w.r.t. the parameters of
layer l. That is, Gl

t = Gl
t−1+gl

t(g
l
t)

⊺, where gl
t = ∇θL(θl

t).
MBAG further reduces the cost by decomposing Gl

t into small
matrices. Specifically, given the parameter vector θl ∈ Rdl

of layer l, MBAG partitions θl into K disjoint subsets of
parameters (θl

π1
,θl

π2
, . . . ,θl

πK
), i.e.,

⋃K
i=1 θ

l
πi

= θl and
θπi ∩ θπj = ∅ for i ̸= j. The algorithm assumes the
independence between the parameters belonging to different
groups and separately maintains the second order statistics,
the sum of past gradient outer products, for each group θl

πi
:

Gl,πi

t = Gl,πi

t−1 + gl,πi

t (gl,πi

t )⊺ , for i = 1, . . . ,K . (6)



Algorithm 2: MBAG-EMA algorithm
Input: initial parameter vector θ0, parameter grouping

for each layer Πl, step size ηt, total number of
iterations T , square root compute interval Tsqrt,
number of Newton-Schulz iterations TNS,
momentum β, decay coefficient α

1 Initialize v0 ← 0, Gl,πi

0 ← λI for ∀l, πi

2 for t = 1 to T do
3 Sample a mini-batch B of size m
4 gt ← 1

m

∑
i∈B ∇ℓ(yi, fθ(xi))

5 foreach parameter group πi ∈ Πl in layer l do
6 Gl,πi

t ← αGl,πi

t−1 + (1− α)gl,πi

t (gl,πi

t )⊺

7 if t ≡ 0 (mod Tsqrt) then
8 (Hl,πi

t )
1
2 ← Newton-Schulz(Gl,πi

t , TNS)
9 else

10 (Hl,πi

t )
1
2 ← (Hl,πi

t−1)
1
2

11 vl,πi

t ← βvl,πi

t−1 + (Hl,π
t )

1
2gl,πi

t

12 θl,πi

t ← θl,πi

t−1 − ηtvt

In the above, gl,πi = ∂L(θ)

∂θl
πi

and Gl,πi

t denotes the second order

statistics associated with the subset of parameters θl
πi

. This
group-wise independence assumption results in further decom-
posing Gl

t into K smaller τ × τ matrices and approximating
Gl

t as a block diagonal matrix Gl
t = diag(Gl,π1

t , . . . ,Gl,πK

t ).
A natural question to ask is which grouping strategy achieves
a good balance between the reduction in space and time
complexity and the quality of approximation. We can group
the parameters according to whether they share the same input,
whether they contribute to the same output, or hybrid of them.
We use the following strategy for our implementation.

Fully-connected layers. Let W ∈ Rm×n be the weight matrix
of a fully-connected layer with m outputs and n inputs. Given
the group size τ , our proposed algorithm splits vec(W⊺) into
groups of fixed size τ , assuming τ divides mn. Figure 1
illustrates this parameter grouping strategy when τ = 2. While
being simple, it is general enough to include important cases.
For example, when τ = n, it groups the parameters connected
to the same output neuron. When τ = m and we split vec(W)
(instead of vec(W⊺)), it becomes grouping the parameters
corresponding to the same input neuron. When τ = mn, it is
the same with the layer-wise block diagonal approximation.
We empirically observed that in practice a small group size
(e.g., τ = 16 or 32) provides good performance while using
a small space.

Convolutional layers. Consider a convolutional layer having
Cout output and Cin input filters of size κ × κ, and let W ∈
RCout×Cin×κ×κ denote its weights (i.e., kernel). We reshape
the weights W into a matrix W′ of size (Cout · Cin) × κ2

and split it in the same way as the weights of fully-connected
layers are split while fixing τ = κ2. In other words, we put
the parameters corresponding to a specific input-output filter
combination into the same group and as a result we maintain

Cout ·Cin matrices of size κ2×κ2. We note that the kernel size
κ used in many state-of-the art convolutional neural networks
(CNNs) is small and typically κ = 3 or κ = 5 are used.

V. CONVERGENCE ANALYSIS

This section analyzes the convergence property of the pro-
posed algorithm. To show the convergence of proposed MBAG
algorithm to a stationary point, we follow the framework
of [28]. For simplicity, we assume a fixed step size, i.e.,
ηt = η for t = 1, . . . , T . Let f(θ) = L(θ;D) be our objective
function. We make the following assumptions for the analysis.
A1 Differentiability. The objective function f is continuously

differentiable with respect to θ.
A2 L-smoothness. There exists a constant L > 0 such that
∀θ,θ′ ∈ Θ, ∥∇f(θ)−∇f(θ′)∥ ≤ L∥θ − θ∥.

A3 Bounded gradient. There exists a constant G that satisfies
∥∇f(θ)∥ ≤ G and ∥gt∥ ≤ G for ∀t ≥ 1.

A4 Independent noise. The noisy gradient is expressed as
the sum of gradient and noise with mean zero, i.e.,
gt = ∇f(θt) + ζt, E[ζt] = 0. Further, ζi and ζj are
independent for i ̸= j.

The above assumptions are standard for analyzing the con-
vergence of stochastic optimization algorithms for nonconvex
problems.

Theorem 1. Suppose that Assumptions A1 - A4 are satisfied.
Let Ĝt be the block diagonal matrix constructed by Gl,πi

t

associated with parameter group πi in layer l, for l ∈ [L]

and i ∈ [K], Ĥt = Ĝ
−1

t , and γt = λmin(ηtĤ
1/2

t ). Then
Algorithm 1 with a fixed step size η yields

min
t∈[T ]

E ∥∇f(θt)∥2

≤

Lη2

2

(
E
[
log
|ĜT |
|Ĝ0|

])
+ 2G2η

(
tr(H

1/2
0 ) + 1√

λ

)
+ C∑T

t=0 γt
,

where C = E [f(θ0)− f(θ∗)] and θ∗ ∈ argmin θ∈Θ f(θ).

Theorem 1 shows that the convergence of MBAG algorithm
is related to the eigenvalues of ĜT and it converges to a sta-
tionary point when the log determinant of ĜT is o(

∑T
t=0 γt).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of MBAG on
two tasks: image classification and AutoEncoder.

A. Image Classification Task

We evaluate the performance of MBAG on image classfica-
tion task and compare it to those of other first- and second-
order baselines: Adam [5], AdaGrad [4], KFAC 1 [8], Sham-
poo 2 [9], AdaBlock 3 [19], and MBAG-N (a variant of MBAG
that preconditions gradient using G−1 instead of G− 1

2 ). For
this task, we trained ResNet56 [29] model on the CIFAR10

1https://github.com/alecwangcq/KFAC-Pytorch
2https://github.com/moskomule/shampoo.pytorch
3https://proceedings.mlr.press/v151/yun22a/yun22a-supp.zip

https://github.com/alecwangcq/KFAC-Pytorch
https://github.com/moskomule/shampoo.pytorch
https://proceedings.mlr.press/v151/yun22a/yun22a-supp.zip
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Fig. 1: An example parameter grouping for a fully-connected layers and a 2D convolutional layer. The weights of the same
color indicates that they belong to the same group θπi and their dependencies are modeled by Gl,πi .
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Fig. 2: Performance of ResNet56 on CIFAR10 dataset (Left: training, Right: test)

dataset which contains 50k and 10k 32× 32 RGB images for
training and testing, respectively. The size of mini-batch is set
to 128 for all algorithms. For algorithms that performs periodic
curvature matrix update and inversion, the intervals for update
and inversion are set to T1 = 5 and T2 = 50, respectively.
For fair comparison, MBAG also computes the matrix square
root after every 50 iterations by running 5 Newton-Schulz
iterations. For MBAG and AdaBlock, we fixed the size of
each parameter group to τ = 32. All the performance values
reported in the experiments are averaged value of 5 runs. We
run each algorithm for 200 epochs and decay the step size
by multiplying by 0.1 at epoch 100 and 150. For MBAG,
we set λ = 0.01 and β = 0.9. Figure 2 shows the train
and test performance of algorithm against iterations and wall-
clock time. Among the algorithms, KFAC achieves the highest
test accuracy as expected although the gap between the first
and second-order algorithms is not significant. As shown in
Table I, the test accuracy of MBAG is closer to that of
KFAC while it is as fast as Adam. This shows that MBAG
benefits from both the second-order statistic it maintains and
the efficient computation techniques employed to update the
statistic. AdaBlock achieves similar test accuracy with Adam
but it was approximately 4.13× slower than Adam. The reason
is that it performs eigenvalue decomposition at every iteration.
Like other methods (e.g., KFAC), AdaBlock can be modified
to perform the matrix inversion periodically, but we used the
authors’ implementation as it is.

B. AutoEncoder Task

We also test the performance of MBAG on AutoEn-
coder learning task using two datasets: FACES [30] and
CURVES [31]. We built AutoEncoders using the same archi-
tecture used in [30] and trained using the binary cross-entropy

Test accuracy (%)

Adagrad 83.40± 0.415
Adam 89.93± 0.361
KFAC 90.64± 0.145
Shampoo 83.67± 0.156
AdaBlock-32 89.38± 0.169

MBAG (τ = 32) 90.17± 0.112
MBAG-N (τ = 32) 85.75± 0.327

TABLE I: Test accuracy for ResNet-56 on CIFAR10 dataset

loss. In this experiment, the size of mini-batch was set to 512.
For KFAC and Shampoo, we fixed T1 = 5 and T2 = 50.
For MBAG, we set λ = 0.1, Tsqrt = 50, β = 0.9, TNS = 7.
AdaBlock is not included in this experiment as its running time
is prohibitively long compared to that of other algorithms. The
two graphs on the left in Figure 3 show the change of training
loss over iterations and wall-clock time on FACES dataset. As
seen on image classification experiment, MBAG achieves the
similar performance with KFAC but runs faster. Interestingly,
there exists a noticeable performance gap between MBAG and
MBAG-N in terms of accuracy. This shows the importance of
taking square root of preconditioning matrix in AdaGrad like
algorithms. The two graphs on the right in Figure 3 show
the performance on CURVES dataset. For this dataset, our
algorithm performed poorly than the first-order algorithms
(i.e., Adam and AdaGrad). As shown in the figure, MBAG
(including Shampoo and AdaBlock) decreases the objective
value during the first few iterations and remains the same at
the value around the value 0.158. We conjecture this is because
that the algorithm is stuck at one of local minima and failed
to escape.
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Fig. 3: Performance comparison of algorithms on AutoEncoder task (Left: FACES, Right: CURVES)

VII. CONCLUSION

In this work, we presented MBAG, a stochastic adaptive
gradient algorithm. To reduce computational complexity of
computing and obtaining the inverse square root of precon-
ditioner, MBAG uses the Sherman-Morrison formula along
with the Newton-Schulz iterations. This not only decreases the
cost of preconditioner update but also allows an easy trade-off
between approximation quality and computational efficiency
by controlling the number of iterations. Furthermore, MBAG
approximates the preconditioning matrix using the block-
diagonal approximation in which the size of each diagonal can
be arbitrary. By controlling the sizes of sub-blocks, it allows a
smooth interpolation between the first-order and second-order
algorithms. Therefore, our algorithm is suitable for large-scale
deep learning models and is highly scalable.
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