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Abstract—Multi-player games with lexicographic cost func-
tions can capture a variety of driving and racing scenarios
and are known to have pure-strategy Nash Equilibria (NE)
under certain conditions. The standard Iterated Best Response
(IBR) procedure for finding such equilibria can be slow because
computing the best response for each agent generally involves
solving a non-convex optimization problem. In this paper, we
introduce a type of game which uses a lexicographic cost
function. We show that for this class of games, the best
responses can be effectively computed through piece-wise linear
approximations. This enables us to approximate the NE using a
linearized version of IBR. We show the gap between the linear
approximations returned by our linearized IBR and the true
best response drops asymptotically. We implement the algorithm
and show that it can find approximate NE for a handful of
agents driving in realistic scenarios in under 10 seconds.

I. INTRODUCTION

Motion planning in multi-agent environments is a chal-
lenging problem with many applications in autonomous
driving, human-robot interactions, and urban air mobility.
Single agent planning algorithms can be ported to multi-agent
problems under restrictive assumptions such as accurate pre-
dictions for agents or no interactions. Treating other agents as
dynamic but known obstacles, a variety of motion strategies
have been used such as sampling-based planners [23, 17, 6],
temporal logic-based planers [16, 5, 1], reach-avoid synthe-
sis [13, 2, 18], and model predictive control [12, 3, 21]. These
can provide safe trajectories for navigation, but typically do
not account for dynamic interaction between agents.

Differential games (DGs) [10] study strategic interactions
between rational agents moving in some workspace. Using
DGs to solve the multi-agent motion planning problem is a
growing area of interest [7, 11, 22, 19]. A special class of
games, called Urban driving games (UDG), were introduced
in [20] to study decision making in autonomous vehicles
around other vehicles and pedestrians. This is different from
typical DGs, as a two-part cost function is used where:
(i) a collision cost is a shared cost which enforces no
collision, and (ii) a personal cost dependent on an individual
agent’s actions, and can encode minimization of distance
traveled, fuel expended, or time. Nash equilibria (NE) [14]
is a standard way for evaluating steady-state behavior in
games. At NE, no agent can improve their cost by unilaterally
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changing their action. Thus, each agent is playing its optimal
response to the action profile of the other agents. In [20], it
is shown that NE exists for UDG.

One limitation of a UDG is that the personal cost function
only depends on each individual agent’s actions. It cannot
be applied in scenarios where one agent’s personal costs
dependents on its opponent’s cost, such as in a race. In this
work, we expand upon the existing notion of a UDG, and
add a zero sum component to the personal cost function and
thus, can be used in a wider variety of scenarios. We show
this revised UDG is still a potential game, and thus has a
pure strategy NE. To find this NE, we propose a linearized
version of an iterative best response algorithm using linear
constraints to minimize the collision cost function, and search
over these actions for the best response. The algorithm returns
the piecewise linear approximation of the agents’ trajectories
that minimize the agent’s personal cost function, giving rise
to the notion of linear NE. We show that for a large enough
number of segments, we can find the asymptotic bound on
the gap between the true NE and returned approximation.
To do this, we use a mixed integer linear program, similar
to [13]. The prototype tool works in a variety of scenarios
and can typically find the approximate NE within seconds.

II. LEXICOGRAPHIC GAMES AND NASH EQUILIBRIA

Sets such as N = {0, . . . , n − 1} index the players in
the game. For i ∈ N , {−i} is used as a shorthand for
N\{i}. The set of real and positive real numbers is denoted
as R,R≥0. The lexicographic ordering on R2 is defined as
(a1, b1) ⪯ (a2, b2) iff (1) a1 < a2 or (2) a1 = a2 and
b1 ≤ b2. If (a1, b1) ⪯ (a2, b2) and (a1, b1) ̸= (a2, b2) then
(a1, b1) ≺ (a2, b2).

A. Lexicographic general sum games

In this work, we discuss a class of games called a lex-
icographic general sum game, shown in Definition 1. This
is a generalization of the urban driving game introduced
in [20]. We modify the personal cost component of the
lexicographic cost function so that each agent’s personal cost
is also dependent on its opponent’s actions.

Definition 1. An lexicographic general sum game (LG) is
given by G = ⟨N , {Zi}, {Ji}⟩, where: (i) N = {0, . . . , n −
1} is a set of n agents, (ii) Zi is a compact set of uniformly
continuous curves zi : [0, 1] → Rd, which specifies a
trajectory (action) for agent i. The joint action space for G
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Fig. 1. Examples of general sum driving games at an intersection. Vehicles
must navigate an intersection while avoiding collisions with each other and
a pedestrian. The dotted trajectories are potential NE.

is Z =
∏

i∈N Zi, and a particular joint action z ∈ Z can
be written as z = [z0, . . . , zn−1], each zi ∈ Zi. Finally, (iii)
Ji : Z → R2 is a lexicographic cost function for agent i with
Ji(z) = (Jcol

i (z), Jper
i (z)), with two parts, (a) the collision

cost 1 is defined in terms of a collection of bounded real-
valued symmetric functions, fi,j(zi, zj) = fj,i(zj , zi), i ̸= j,
and (b) the personal cost 2 is defined in terms of individual
costs gi which are continuous and bounded over Zi.

Jcol
i (z) =

∑
j∈{−i}

fi,j(zi, zj), (1)

Jper
i (z) = gi(zi)−

∑
j∈{−i}

gj(zj), (2)

The uniform continuity of each zi implies that Zi is com-
pact by Arzela-Ascoli theorem [4]. The two part definition
of the cost function provides some analytical advantages
seen in Section III, and incentivizes certain outcomes using
a collision cost dependent on action pairs, whereas each
personal cost is dependent on an agent’s action with respect
to every other agents’ actions.

Example: Examples of an LG at a traffic intersection are
shown in Figure 1. Each agent lives in R2 is given a starting
position (rectangles) and goal position (circles). The action
spaces are the reference trajectories that the agents follow to
reach the goal position. The collision cost function is given
in (3), and the definition of a collision is later specified in (6).
Individual costs may minimize the traveled distance or fuel
consumption.

fi,j(zi, zj) =

{
0 if collision
1 else

(3)

B. Best responses and Nash equilibria
Game theory can help us understand social behavior by

predicting how agents will act in a game defined by the costs.
Such predictions are called equilibria. One particular type is
called a Nash equilibrium (NE) which is defined in terms of
an agent’s best response (Definition 2) to other’s choices.

Definition 2 (Best response). Given an agent i ∈ N and an
action profile z−i ∈

∏
j∈{−i} Zj , the best response set of

agent i is the set of actions that minimizes Ji(zi, z−i). That
is, RBR(z−i) = {zi ∈ Zi | Ji(zi, z−i) ⪯ Ji(z

′
i, z−i) ∀z′i ∈

Zi}.

The notion of NE captures the idea that for some joint
action, no agent can unilaterally improve their cost. John
Nash proved in 1951 that all n-player games with finite
action sets have a mixed-strategy NE [14]1 In this work,
NE refers to a pure strategy NE, where agents select one
action fromRBR

i (z−i), whereas for mixed strategy NE, agents
select actions from RBR

i (z−i) according to a probability
distribution.

Definition 3 (Nash equilibrium). A joint action z∗ ∈ Z of
an LG is a pure strategy Nash equilibrium (NE) if ∀i ∈ N ,
∀zi ∈ Zi, Ji(z∗) ⪯ Ji(zi, z

∗
−i) .

It follows that z∗ is an NE if and only if for every i ∈ N ,
z∗i ∈ RBR

i (z∗−i). The existence of NE for general continuous
games with continuous utility functions can be proven using
a generalization of Kakutani’s fixed point theorem [8]. While
this existence result has been known, there is limited work
on practical algorithms for computing NE. Several special
classes of games have been identified, such as separable
games [15], where the problem becomes tractable. For later
use, we introduce the notion of an ε-NE of an LG for any
ε > 0, which is a joint action zε ∈ Z such that the neither
the collision cost nor the personal cost can be improved by
more than ε. That is, zε is a ε-NE if for all i ∈ N for all
zi ∈ Zi the inequalities in (II-B) hold true.

Ji(z
ε) ⪯ ⟨Jcol

i (zi, z
ε
−i) + ε, Jper

i (zi, z
ε
−i)⟩

Ji(z
ε
i ) ⪯ ⟨Jcol

i (zi, z
ε
−i), J

per
i (zi, z

ε
−i) + ε⟩. (4)

Problem Statement: In this paper, we would like to
develop an algorithm that given an LG G and ε > 0,
computes an ε-Nash equilibrium of G. Computing the NE
can be very difficult, especially in scenarios with a large
(or infinite) action space, or when there are a large number
of agents [20]. We aim to simplify the computation of NE
through a linearized iterative best response. In Section II-C,
we discuss the iterative best response framework for comput-
ing NE, and in Section III we present the linearized version.
We then analyze the algorithm, and show that we can obtain
a reasonable approximation of the NE.

C. Iterated Best Response for Computing NE

Iterated best response (IBR) is a standard method for
finding NE. The procedure starts with an initial guess of
a joint action z ∈ Z to be a candidate NE. Each agent’s
updates its action zi ∈ Zi to be in the best response set
RBR

i (z−i) until and unless there is no better response to the
joint action for any of the agents. The standard procedure is
shown Algorithm 1. The best response computation for each

1A mixed strategy is a probabilistic distribution on the set of actions
of each player such that this distribution is the best response to the other
agent’s distributions. In this paper, we focus on pure Nash equilibria, and
mixed-strategies would be considered in a future work.

5752

Authorized licensed use limited to: University of Illinois. Downloaded on January 29,2024 at 18:36:22 UTC from IEEE Xplore.  Restrictions apply. 



agent involves solving an optimization problem, which can
be challenging for general infinite games. Convergence is not
guaranteed, however, if G is a potential game (Definition 4),
convergence is guaranteed.

Algorithm 1: Iterative best response (IBR)
Input: G, initial guess z ∈ Z
Output: z∗

1 do
2 z∗ ← z
3 for i ∈ N do
4 zi ∈ RBR

i (z−i)
5 end
6 while z∗ ̸= z;
7 return z∗

D. Lexicographic and potential games

We proceed by showing that an LG is an ordinal potential
game2, which are guaranteed to have pure strategy NE.

Definition 4 (Ordinal potential game). An LG G is an ordinal
potential game (OPG) if there exists a function P : Z → X
such that ∀i ∈ N , ∀z−i ∈ Z−i, ∀zi, z′i ∈ Zi, Ji(z′i, z−i) ⪯
Ji(zi, z−i) ⇐⇒ P (z′i, z−i) ⪯ P (zi, z−i). Here (X ,⪯) is
some totally ordered set.

Such a function P is called an ordinal potential function
(OPF) of the game. In Proposition 1, it is shown that any
LG has an OPF. The proof is a modification of Theorem 1
from [20], and is included in the full version.

Proposition 1. Any LG G is an ordinal potential game with
potential function

P (z) = ⟨1
2

∑
j∈N

Jcol
j (z),

∑
j∈N

gj(zj)⟩. (5)

The fact that an LG is an ordinal potential game leads
to some nice properties. First, a global minimum of P
exists [20], and corresponds to a pure strategy Nash equi-
librium [9]. Secondly, an ε-NE can be computed using IBR.
These results are stated as Propositions 2 and 3.

Proposition 2. LGs have a pure strategy NE.

For LGs, the action spaces Zi are indeed compact, which
means that for every zi ∈ Zi and every ε > 0, there exists
δ > 0 such that ∥zi(x) − z(y)∥ ≤ ε, and x, y ∈ [0, 1] and
∥x−y∥ ≤ δ (generalized Arzela-Ascoli Thm from [4]). Then,
using similar reasoning to [20], for continuous cost functions,
a pure strategy NE exists.

Proposition 3. For any LG G, and any ε > 0, the IBR
procedure converges to an ε-NE in a finite number of
iterations.

2A potential games is one where and an exact potential function P exists
such that Ji(z′i, z−i) − Ji(zi, z−i) = P (z′i, z−i) − P (zi, z−i)/ We will
see that this condition is too strong and not necessary for analysis of LG.

The proof follows from the fact that on each iteration,
each agent attempts to improve their cost by ε. If there is
no updated action that each agent can take to improve their
cost by ε, then the joint action is an ε-NE, and the algorithm
terminates.

III. LINEAR IBR ALGORITHM

We propose an algorithm called Linear Iterated Best Re-
sponse (L-IBR) that linearly searches for best responses.
To do this, the best responses are approximated piecewise
linear (PWL) functions described by sequences of waypoints
in Rd. Under additional approximations of the collision
cost, the search for optimal waypoints can be formulated
as a mixed integer linear program (MILP). We show that
as the number of waypoints describing a PWL function
increases, the solution found by L-IBR approaches the true
best response, and the gap between the cost of the returned
action and the actual NE can be bounded.

The pseudocode for L-IBR is shown in Algorithm 2. It
takes as input the LG G and an initial guess for the joint
action described by a collection of sequences of waypoints
{P [0]

i }N , each P
[0]
i = {p0, · · · , pm}, and a collision bound

c > 0 . In each iteration, each Pi is updated using linear
constraints. This continues until the each Pi converges to an
equilibrium, and the computed approximate linear equilib-
rium zlin is returned.

Algorithm 2: L-IBR
Input: game G = ⟨N , {Zi}N , {Ji}N ⟩, initial guess

{P [0]
i }N , collision bound c

Output: PWL equilibrium zlin

1 k ← 1
2 while k = 1 or P [k] ̸= P [k−1] do
3 {P [k]

i }N ← {P
[k−1]
i }N

4 for j ∈ N do
5 Q← linUpdate({Pi}−j , J

per
j (·), c)

6 P
[k]
j ←

argmin
Γ∈{Q,P

[k]
j }(J

per
j (Wp2C(Γ), {Wp2C(P [k]

i )}−j))

7 end
8 end
9 for i ∈ N do

10 zlin
i ← Wp2C(P [k]

i )
11 end
12 return zlin

To find a ε-NE, Jj(Wp2C(P [k])) must never increase for
any j ∈ N . This is enforced in Line 6, leading to Invariant 1.
Thus, L-IBR terminates when the no actions can be updated
to improve an agent’s personal cost.

Invariant 1. For every k > 0 and ∀j ∈ N ,
Jj(Wp2C(P [k])) ⪯ Jj(Wp2C(P [k−1]))

First, we discuss the construction of PWL curves and
the bounding boxes to check for collisions. We propose a

5753

Authorized licensed use limited to: University of Illinois. Downloaded on January 29,2024 at 18:36:22 UTC from IEEE Xplore.  Restrictions apply. 



linear formulation for computing the best response of agent
i to z−i by encoding constraints that minimize Jcol

i (zi, z−i),
then choosing zi that minimizes Jper

i (zi, zj) while satisfying
our linear constraints. The set of actions that satisfies the
linear constraints is an under-approximation of the true best
response set, so we show that L-IBR can find the ε-NE, and
find the asymptotic lower bound of ε.

Geometric preliminaries: Given two points p, p′ ∈ Rd,
a line segment is denoted by pp′ ⊂ Rd. A ball of radius
c ≥ 0 centered at the point p ∈ Rd is denoted by Bc(p). The
set of all points within c distance of a curve z : [0, s] →
Rd is given by Bc(z) :=

⋃
s∈[0,1] Bc(z(s)). The set of all

points within c distance of a line segment pp′ is given by
Bc(pp′) :=

⋃
q∈pp′ Bc(q).

A. Constructing piecewise linear actions from waypoints
Recall from Definition 1 that Zi consists of uniformly

continuous curves zi : [0, 1] → Rd. In L-IBR, we use
piecewise linear (PWL) curves constructed from a sequence
of m + 1 waypoints in Rd as follows: Given sequence of
points Pi = {p0, . . . , pm}, where each pj ∈ Rd, the PWL
function zi is constructed by mapping the domain [0, 1] to the
m line segments p0p1, . . . , pm−1pm. The PWL function is
given by Wp2C(Pi) : [0, 1]→ Rd. The domain is split into m
sections [tj−1, tj ], j ∈ [1,m], and each Wp2C(Pj)(tj) = pj .
For any s ∈ [tj−1, tj ], Wp2C(Pi)(s) ∈ pj−1pj , and for
any s, σ ∈ [tj−1, tj ], σ > s, ∥Wp2C(Pi)(s) − pj−1∥ <
∥Wp2C(Pi)(σ)− pj−1∥. Many different PWL functions can
be constructed with different ∂zi

∂t values (t ∈ [0, 1]), meaning
that the linearity of the functions comes from their con-
struction in Rd. In this paper, we fix any arbitrary mapping
Wp2C. The resulting curve is written as zi = Wp2C(Pi).
The resulting PWL curves are uniformly continuous as stated
in Proposition 4, satisfying the action space assumption in
Definition 1. The curve may possibly be non-differentiable
at each disjunction point.

Proposition 4. For any sequence of waypoints Pi ∈∏m
j=0 Rd, zi = Wp2C(Pi) is uniformly continuous.

The PWL curves can approximate uniformly continuous
zi ∈ Zi. Given zi : [0, 1]→ Rd and a sequence Pi of m+ 1
waypoints in Rd, the approximation error between Wp2C(Pi)
and zi is given by δ = maxs∈[0,1] ∥Wp2C(Pi)(s) − zi(s)∥.
For fixed m, the chosen Pi chosen should ideally minimize
δ. Furthermore, given some δ > 0, we can choose m such
that the approximation error is less than δ.

Lemma 1. For any zi, and δ > 0, there exists m ∈ N and
Pi = {p0, . . . , pm} such that ∥Wp2C(Pi)(s)− zi(s)∥ ≤ δ.

The proof follows from the fact that for any uniformly
continuous zi, and any s, t ∈ [0, 1], s ̸= t, there exists ζ > 0
and ξ > 0 such that ∥s− t∥ < ζ =⇒ ∥zi(s) − zi(t)∥ < ξ.
Assuming Jper

i (zi, {zj}−i) is Lipschitz continuous with con-
stant K in the first argument, we can find a seqence Pi such
that ∥Jper

i (zi, {zj}−i) − Jper
i (Wp2C(Pi), {zj}−i)∥ ≤ Kδ as

stated in Lemma 2.

Lemma 2. For Jper
i (zi, {zj}−i), which are Lipschitz con-

tinuous with respect to the first argument with Lipschitz
constant K, zi ∈ Zi, {zj}−i, and δ > 0, there exists
m ∈ N and Pi = {p0, . . . , pm} such that ∥Jper

i (zi, {zj}−i)−
Jper
i (Wp2C(Pi), {zj}−i)∥ ≤ Kδ.

The proof follows from Lemma 2 and the Lipschitz
continuity of Jper

i .

B. Constructing bounding boxes to avoid collisions
To prevent collisions in autonomous driving and platooning

scenarios, agents typically must remain at least c apart. Two
agents i and j collide if their trajectories zi and zj come
within c of each other. For an agent j ∈ N , Jcol

j (zj , z−j) is
minimized when (6) holds.

∀i ∈ {−j}, Bc(zi) ∩ zj = ∅ (6)

This checks for collisions over the entire trajectory, not just
collisions in time, which can be done by splitting each
trajectory into shorter trajectories in time. Collisions are
checked through intersections between boxes that bound
trajectories. We now construct these boxes.

Consider two points p, p′ ∈ Rd. The minimum bounding
box for this segment is given by Oc(p, p

′) = {y ∈ Rd|Ay <
b}, where A ∈ Rd×2d, b ∈ R2d. Additionally, Oc(p, p

′) ⊃
Bc(pp′) and there is no other O′

c(p, p
′) ⊃ Bc(pp′) such that

Oc(p, p
′) ⊃ O′

c(p, p
′). For convenience in this section, we

will make the dependence on p, p′ implicit. To construct Oc,
we compute the vector tangent to pp′, given by −→n 0 = p′−p

∥p′−p∥ ,
and choose any basis that spans Rd and contains −→n 0. The
basis given by {−→n 0, . . . ,

−→n d−1}, each ∥−→n i∥ = 1.
Bounding boxes are defined by half-spaces. Each half-

space is indexed by dP(A) = {0, 0′, . . . , (d − 1), (d − 1)′},
meaning A⊤ = [A⊤

0 A0′ · · · A⊤
(d−1) A⊤

(d−1)′ ]
⊤ and b⊤ =

[b0 b0′ · · · b(d−1) b(d−1)′ ]
⊤. Each Ai ∈ Rd and bi ∈ R.

We now construct the ith half-space. Let Aiy = βi be the
hyperplane spanned by {−→n −i} centered on p′ + c−→n i. The
half-space is either given by Aiy < βi or −Aiy < −βi,
whichever contains pp′. We call this half space {Aiy < bi},
where Ai = ±Ai and bi = ±βi. Similarly, Ai′y = βi′ is the
hyperplane spanned by {−→n −i} centered on p − c−→n i. This
half-space is either given by Ai′y ≤ βi′ or −Ai′y < −βi′ ,
whichever contains pp′. Note that if the ith half-space is
given by ±Aiy ≤ ±βi, then the i′th half-space is given by
∓Ai′y < ∓βi′ , and called {Ai′y < bi′}. The bounding boxes
are defined as Oc = {y ∈ Rd|Ay < b}. Each Aiy = bi,
Ai′y = bi′ are parallel, and any Aiy = bi and Ajy = bj ,
j ∈ {−i}, j ̸= i′ are orthogonal.

Proposition 5. For any c > 0, p, p′ ∈ Rd, q, q′ ∈ Rd we note
the following: (i) if Aiq ≥ bi for some i ∈ [0, d − 1], then
Ai′q < bi′ . (ii) ∃q ∈ Rd such that for some i, j ∈ [0, d − 1]
and j ̸= i′, Aiq ≥ bi and Ajq ≥ bj . (iii) if Aiq ≥ bi and
Aiq

′ ≥ bi for some i ∈ [0, d − 1], then qq′ ∩ Oc = ∅. (iv)
there exists qq′ such that qq′ ∩Oc = ∅ that does not satisfy
(2). (v) for any qq′ described in (3), there exists q′′ ∈ Rd

such that qq′′ and q′′q′ satisfy (2).
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We omit the proofs here for brevity, but they will be
included in the full version of this paper. Note that Proposi-
tion 5 still holds true if i and i′ are switched. Since Oc is
an over-approximation of Bc(pp′), a slight modification on
Lemma 1 is given in Lemma 3.

Lemma 3. For any p, p′ ∈ Rd, bounding box Oc ⊂ Rd,
and action zi ∈ Zi such that Bc(pp′) ∩ zi(s) = ∅ for all
s ∈ [0, 1], and δ > c(

√
d − 1), there exists m ∈ N and

Q = {q0, . . . , qm} such that ∥Wp2C(Q)(s)− zi(s)∥ ≤ δ.

The proof follows from the fact that for any q ∈ Rd that
lies on the boundary of Bc(pp′), there exists q′ ∈ Rd on the
corresponding Oc such that ∥q′ − q∥ ≤ c(

√
d− 1).

C. Linear formulation for approximating RBR

In Line 5 of Algorithm 2, a candidate sequence of
waypoints Q for agent j is computed given the cur-
rent guess of {Pi}−j . We present a MILP formula-
tion that minimizes Jcol

j (Wp2C(Pj), {Wp2C(Pi}−j) via en-
coded constraints. For PWL curves, the collision condition
in (6) can be rewritten as in (7), and if true, minimizes
Jcol
j (Wp2C(Pj), {Wp2C(Pi)}−j).

∀i ∈ {−j}, Bc(Wp2C(Pi)) ∩ Wp2C(Pj) = ∅ (7)

We now check that individual segments do not collide.
Consider some p, p′, q, q′ ∈ Rd, and constant c > 0.
Then, pp′ and qq′ are at least c away from each other if
Bc(pp′) ∩ qq′ = ∅. The naive formulation to check for
this is nonlinear, so we use the minimum bounding boxes
from Section III-B. The linear, disjunction free formulation
is called SafeSegment(p, p′, c) and shown in (8). Here,
α is an array of binary variables that determine if q, q′ lie
outside the same face of Oc(p, p

′), and Λ >> 0 is used to
encode disjunctions.∧

r∈dP(A)

(
br −Arq < Λ(1− αr)∧

br −Arq
′ < Λ(1− αr)

)
∧

∑
r∈dP(A)

αr ≥ 1 (8)

Lemma 4. Given c > 0 and p, p′ ∈ Rd, for any q, q′ |=
SafeSegment(p, p′, c), Bc(pp′) ∩ qq′ = ∅.

Proof: If q, q′ lie outside the same half-space of
Oc(p, p

′), then qq′∩Oc(p, p
′) = ∅ by Proposition 5. By con-

struction, Bc(pp′) ⊂ Oc(pp′), meaning Bc(pp′) ∩ qq′ = ∅.
We now show that q, q′ lie outside the same half-space of
Oc(p, p

′). Choose some p ∈ Rd such that Arq ≥ br for
some r ∈ dP(A). Then, br − Arq ≤ 0, and αr ∈ {0, 1}.
Now choose q′ ∈ Rd. If Arq

′ ≥ br, then br −Arq
′ ≤ 0, and

αr = 1. However, if Arq
′ < br, then br − Arq

′ > 0, and
αr = 0. By

∑
r∈dP(A) αr ≥ 1, at least one αr = 1, and thus

Arq
′ ≥ br and Arq ≥ br. Therefore, Bc(pp′) ∩ qq′ = ∅.

Given P = {p0, . . . , pm} and Q = {q0, . . . , qn}, we check
that Wp2C(Q) is at least c away from Wp2C(P ). We use
the fact that if qi−1, qi |=

∧m
j=1 SafeSegment(pj−1, pj , c)

for every i = 1, · · · , n, then Q |= SafeSequence(P, c),
shown in (9).

n∧
i=1

(qi−1, qi) |=
m∧
j=1

SafeSegment(pj−1, pj , c) (9)

Corollary 1. For any c > 0, any sequence of m+1 waypoints
P , and any sequence of n + 1 waypoints Q, if for all i =
1, . . . , n Q |= SafeSequence(P, c) then Bc(Wp2C(P )) ∩
Wp2C(Q) = ∅

The proof follows from Lemma 4 and the construction of
Wp2C(·). If (qi−1, qi) |=

∧m
j=1 SafeSegment(pj−1, pj) is

true for every i = 1, . . . ,m, then
⋃

i∈{0,...,m−1} Bc(pipi+1)∩
qjqj+1 = ∅. If this is true for every i = 1, . . . ,m,⋃

i∈{0,...,m−1} Bc(pipi+1) ∩
⋃

j∈{0,...,n−1} qjqj+1 = ∅,
leading to Corollary 1. The MILP forumlation for
linUpdate({Pj}−i, J

per
i (·), c) is given in (10). In Corol-

lary 2. we show that the resulting trajectories do not collide,
minimizing Jcol

i (·).

argmin
Q

Jper
i (Wp2C(Q), {Wp2C(Pj)}−i)

Q |=
∧

j∈{−i}

SafeSequence(Pj , c) (10)

Corollary 2. For any c > 0, any {Pj}−j , and any
Q |=

∧
j∈{−i} SafeSequence(Pj , c), Bc(Wp2C(Pj)) ∩

Wp2C(Q) = ∅ for every j ∈ {−i}.

The proof follows from Corollary 1 and the fact that
SafeSequence(Pj , c) is satisfied for every j = {−i}.
Thus Jcol

j is minimized. The Q found using linUpdate
is not necessarily the Q that minimizes Jper

i (·) while satis-
fying (7) due to the approximation. We can find a bound on
the ε error in L-IBR, stated in Theorem 1.

Theorem 1. For some agent i ∈ N with personal cost func-
tion Jper

i (zi, {zj}−i), which is Lipschitz continuous with re-
spect to the first argument with Lipschitz constant K, {Pj}−i,
and constant c > 0 such that for any ε > Kc(

√
d − 1)

there exists m ∈ N and Q = {q0, . . . , Qmi
} found using

linUpdate({Pj}−i, J
per
i (·), c) such that

Jper
i (Wp2C(Q), {Wp2C(Pj}−i) ≤

Jper
i (z∗i , {Wp2C(Pj)}−i) + ε

where z∗i is the best response to {Wp2C(Pj)}−i.

The proof follows from Lemmas 2 and 3, where
the smallest error between any Wp2C(Pi) and zi is
c(
√
d − 1), and thus ∥Jper

i (Wp2C(Q), {Wp2C(Pj}−i) −
Jper
i (Wp2C(Q∗), {Wp2C(Pj}−i)∥ ≤ Kc(

√
d − 1). As the

number of segments to approximate the agent trajectories
increases, L-IBR returns a joint action closer to the NE.

IV. EXPERIMENTAL RESULTS

L-IBR is implemented using Python 3 and Gurobi, and run
in the examples in Figure 2. The collision cost function is
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Fig. 2. Example results. Across varying numbers of segments used to
approximate PWL paths, the actual paths taken remains the same.

Scenario Num segments Total cost Comp time
2 car, 1 ped 20 2.268 1.277
2 car, 1 ped 10 4.584 0.578
2 car, 1 ped 6 7.684 0.427
5 car, 1 ped 30 3.395 65.16
5 car, 1 ped 15 6.730 3.567
5 car, 1 ped 7 14.981 7.168

TABLE I
RESULTS OF L-IBR FOR AN INTERSECTION SCENARIO.

that in (1) and the indivicual cost function is the distance
traveled.

In Table I, we compare the computational time in seconds
and total cost the agents’ individual costs. Computational
time increases with the number of agents and the number
of segments used to approximate the trajectories. The total
cost decreases as the number of segments increases, which
is in line with our main result from Theorem 1. We see a
tradeoff between computation time and how closely we can
achieve the true NE. The computation time is lower in the
5 car, 1 ped scenario with 15 segments than the one with 7
segments due to the number of iterations run to find the NE.

V. CONCLUSION

We presented a formulation for a lexicographic general
sum game, and show that it is a potential game possesing a
pure strategy Nash equilibrium. We proposed an iterative best
response algorithm that searches for actions that minimize
the second part of the lexicographic cost function using
linear constraints to minimize the first part We ran some
experiments and showed we can find solutions to the game.

In the future, we can relax the type of collision costs
to explore a larger variety of games. We can also use this
problem set up to study the equilibria found in a long single
shot game versus a sequence of shorter multi-stage games.
We can also explore equilibria selection to help with the
design of cost functions.
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