
RouteDOC: Routing with Distance, Origin and Category
Constraints (Demonstration Paper)

Thomas Frohwein
∗

Zachary Garwood
∗

Dylan Hampton
∗

Kevin Knack
∗

Nate Schenck
∗

Britney Yu
∗

Joe Zuber
∗

Goce Trajcevski

tfroh,zgarwood,dhampton,kcknack,nschenck,britneyy,zubes,gocet25@iastate.edu

Iowa State University

Ames, Iowa, USA

Xu Teng

ESRI

Redlands, California, USA

xteng@esri.com

Andreas Züfle

Emory University

Atlanta, Georgia, USA

azufle@emory.edu

ABSTRACT
Route planning based on user’s preferences and Points of Interests

(POIs) is one of the most popular applications of Location-Based

Services (LBS). Variants of route planning consider distance con-

straints (e.g., the maximum length of the route), origin constraints

(e.g., a set of possible starting locations of the route), and category

constraints (e.g., a multiset of POI categories that the route must

visit). However, the problem of deciding whether a route exists that

visits all required POI categories under the distance constraint is

known to be NP-hard. Assuming 𝑃 ≠ 𝑁𝑃 , this means that there is

no efficient (polynomial time) solution to find such paths. Recently,

approximate algorithms have been proposed for searching for such

a path. This demonstration leverages several of these algorithms

to provide a web-based system with a graphical user interface (UI)

which allows the users to find a path that: (a) satisfies a distance

limit; (b) generates a route to visit a list of POIs, based on the user’s

preferred categories; (c) provides a set of hotels (as possible starting

locations of the path). If the approximate search algorithms are able

to find such a path, it will be displayed on a Mapbox-based map

interface that shows: (1) all POIs on a path and (2) alternative paths

if any were found. The system then allows a user to explore the

returned paths, select a path, or refine their constraints. Moreover,

the system allows the users to select which approximate algorithm

they would prefer to execute.

CCS CONCEPTS
• Information systems → Information systems applications; •
Mathematics of computing→ Paths and connectivity prob-
lems.
∗
These authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-NonCommercial

International 4.0 License.

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0899-2/23/08.

https://doi.org/10.1145/3609956.3609977

KEYWORDS
PoI sequence, Category diversity, Distance constraint, Path origin

ACM Reference Format:
Thomas Frohwein, Zachary Garwood, Dylan Hampton, Kevin Knack, Nate

Schenck, Britney Yu, Joe Zuber, Goce Trajcevski, Xu Teng, and Andreas

Züfle. 2023. RouteDOC: Routing with Distance, Origin and Category Con-

straints (Demonstration Paper). In Symposium on Spatial and Temporal Data
(SSTD ’23), August 23–25, 2023, Calgary, AB, Canada. ACM, New York, NY,

USA, 4 pages. https://doi.org/10.1145/3609956.3609977

1 INTRODUCTION
Location-Based Services (LBS) have become ubiquitous in everyday

life [7, 11], e.g., helping us find the shortest path to the nearest

coffee shop using Global Positioning System (GPS) technology or

find places inside a mall using wifi technology [2]. But in many

cases, a user is not only interested in a single point of interest (POI)

but may want to visit a set of POIs. For example, a tourist may

want to visit two museums and one restaurant, or a user surprising

their spouse with a fancy dinner may need to visit one western

supermarket, one eastern supermarket, and one candle store. The

motivation for this work is illustrated by the following:

Example 1.1. Sofia booked her flight to Calgary, Canada to attend
a conference. She has one extra day after the conference to explore

Calgary for her first time. Having only an extra day to spend for

sightseeing and to optimize her tourist experience, Sofia would like

to find a path such that: (1) the length of the path is limited to no

more than 5, 000 meters of walking distance; (2) the path includes

at least two museums, at least one park, and at least one coffee shop

to recharge; and (3) she needs to know which hotel would enable

the constraints.

A practical algorithm to solve Sofia’s request would be, starting

at each conference hotel location, to sequentially find the shortest

path to the nearest relevant POI. Such a solution, however, may

incur a long travel distance as the nearest museum may be far from

any further relevant POIs. More formally, catering to Sofia’s quest

amounts to answering a query which generates a Path with Distance,
Origins and Category constraints (PaDOC). In addition to tourist

based scenarios, the PaDOC query is important in ride-hailing

185

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3609956.3609977
https://doi.org/10.1145/3609956.3609977
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609956.3609977&domain=pdf&date_stamp=2023-08-24

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Frohwein Garwood, et al.

and food delivery applications to find (near-) optimal routes for

drivers to minimize traveled distance and thus, minimize emissions

and impact on traffic. In such scenarios, the current location of

candidate drivers corresponds to the origin constraint; a time budget

of howmuch longer the driver wishes to work constitutes a distance

constraint on the length of route; and the ride-hailing customers or

food-pickup locations (generally denoted as resources) correspond

to visited PoIs. There may be additional categorical constraints

such as some drivers preferring food-deliveries or some resources

requiring a high driver-rating. Another application is the selection

of pick-up location for an e-scooter, when an individual is planning

to visit certain types of stores, events, friends, etc. - within limited

distance.

Recent work formally introduced the PaDOC query [12, 13] and

experimentally demonstrated that the popular straightforward ap-

proaches to explore the (graph of the) road network are extremely

inefficient and often cannot guarantee finding a solution within

acceptable running time due to the NP-hardness of the problem.

Two approximate algorithms were devised that explore the space of

possible paths using a branch-and-bound approach. In this demon-

stration paper, we describe and present a system that leverages

these algorithms in the backend and uses a Mapbox-based UI as the

frontend to allow users to find solutions to a PaDOC query, dis-

play the results and all of their required POI categories within the

distance limit. In the following, Section 2 surveys the algorithms em-

ployed by the backend of our RouteDOC system. Then, Section 3

describes the demonstrated system and how users can interact with

it. Section 4 describes the scenario demonstrated at SSTD’ 23.

2 BACKGROUND
The query supported by RouteDOC returns a path that satisfies

distance, origin, and category constraints and is formally defined

as follows [13].

Definition 2.1 (Path with Distance, Origin, and Category Con-
straints). Let G = (𝑉 , 𝐸) be a road network having POIs located on

vertices and 𝑪 denote all categories among the PoIs in G. Given
a positive value 𝜀 ∈ R+ and a vector 𝜽 = ⟨𝜃1, ..., 𝜃 |𝑪 | ⟩ where

𝜃𝑖 (𝑖 = 1, ..., |𝑪 |) ∈ N that represents the desired number of PoIs in

the 𝑖𝑡ℎ category, a path 𝜋 is called a Path with Distance Origin and
Category Constraints (PaDOC) if:

𝜋.length ≤ 𝜀

𝜋 [0] ∈ O
𝜋.P𝑖 ≥ 𝜃𝑖 (∀ 𝑖 = 1, ..., |𝑪 |),

where 𝜋.length is the length of Path 𝜋 , 𝜋 [0] denotes the first vertex
(the origin) of 𝜋 , O ⊆ 𝑉 denotes candidate origins, and 𝜋.P𝑖 denotes

the number of POIs of category 𝑖 on 𝜋 .

The problem of finding a PaDOC path is a (further) general-

ization of the Generalized Traveling Salesman Path (GTSP) [10]

in which the path requires at least one POI from each category –

whereas a PaDOCpathmay require more than one POI from a given

category. The GTSP, in turn, is a generalization of the Traveling

Salesman Problem (TSP) [8], where each category corresponds to

exactly one location and deciding if a path of length no more than 𝜖

exists, is known to be NP-complete [9]. Since finding a PaDOC path

is a generalization of finding a TSP path, it is at least as hard as

finding a TSP path, and thus, is NP-hard.

Since finding an optimal solution is not feasible for large graphs

(unless 𝑃 = 𝑁𝑃),RouteDOC supports four approximate algorithms

to find a PaDOC path. These algorithms leverage an index structure

called the 𝑘-closest-category matrix [13]. It stores, for each vertex

of the road network 𝑣 and for each POI category 𝑖 , the set of 𝑘

vertices having the 𝑘 closest POIs of category 𝑖 to 𝑣 as well as the

distance to these vertices. Details on this index structure and its

efficientconstruction can be found in [13].

Random Walk with Research (RWWR). This algorithm starts at

a vertex 𝑣 randomly selected from the list of origin vertices 𝑂

and builds a path by randomly selected adjacent edges while the

distance constraint 𝜖 is not violated. If the resulting path satisfies

the category constraints, it is returned. Otherwise, the algorithm

restarts. The algorithm is forced to terminate without a result after

ten seconds of unsuccessful search. This algorithm does not utilize

the 𝑘-closest-category matrix.

Greedy Dijkstra Search. Using the 𝑘-closest-category matrix a

simple Greedy algorithm iteratively selects to extend a partial path

by including (the shortest path to) the closest vertex that contains

a POI of a category that is yet needed by the current path. This is

done for each possible origin location until a PaDOC path is found

or an unsuccessful search is returned.

Origin-First Branch and Bound. This algorithm initializes the

search for a PaDOC path with all the origin locations as incomplete

paths. For each incomplete path, an upper-bound and a lower-bound

distance of the optimal extension of this path are computed. The

upper-bound uses the idea that if a Greedy solution of distance

𝑑 exists, then the optimal solution must have a distance of no

more than 𝑑 . The lower-bound uses the distance maximum of all

the minimum distance to categories that are yet required by the

incomplete path (which can be derived from the 𝑘-closest-category

matrix). This lower-bound assumes a best case where all required

POI categories are “on the way” to the furthest POI category. We

iteratively expand the currently active incomplete paths (stored

in a priority queue) having the least upper-bound and prune any

path having a lower-bound greater than the distance budget. This

process is iterated until a path is expanded (and returned) that

contains all required PoI categories or until the queue is empty and

Null is returned indicating that no result path is found.

POI-First Branch and Bound. This algorithm is a variant of the

Branch and Bound algorithm described in the previous paragraph.

Instead of initializing the search at the possible origin location, this

algorithm initializes the search at relevant POI locations and builds

paths “from the end”. Like the Origin-First variant, this algorithm

expands incomplete paths by including POI categories required by

the query. Once a path is found that includes all POI categories, this

algorithm checks of the first POI on this path can be reached from

one of the origin locations within the distance constraint. Details

on the algorithms can be found in [13].

3 THE ROUTEDOC FRAMEWORK
This section describes the technical details of ourRouteDOC frame-

work which are summarized in Figure 1.

186

RouteDOC: Routing with Distance, Origin and Category Constraints (Demonstration Paper) SSTD ’23, August 23–25, 2023, Calgary, AB, Canada

Figure 1: Framework Architecture.

3.1 Frontend
The front is implemented using TypeScript as the main language.

React was used as the frontend framework to design reusable com-

ponents to use throughout the application. We believe that our

choice of TypeScript and React helps to make our application fulfill

its needs of code readability, maintainability, and extensibility. We

used Redux with React for the state management in our applica-

tion. One state stores all of the user input for the application. The

other state stores the map, its functions and its data. Different com-

ponents of the application can control the map and the map can

control them. Having Redux for our state management has helped

make it easier to modify, access, and store our application’s state

which helps our application maintain readability and extensibility.

We decided use MapBox as our visualization tool to show routes

generated from our routing algorithm on the backend. MapBox has

an extremely robust API and is very customizable, so we were able

to fit it to our application’s needs. MapBox also has many out-of-

the-box features that fit the usability and visuals we wanted our

application to include.

3.2 Backend
For our implementation of the backend, we decided to use Python

as our primary programming language as the PaDOC path com-

putation algorithms [12, 13] are implemented in Python to allow

seamless integration. In order to develop our REST API, we chose

Flask as our web framework [5]. Flask is a lightweight and flexi-

ble framework that allows developers to create web applications

quickly and easily. Unlike other frameworks, like Django [6], Flask

is less opinionated, which means developers have more control over

their application’s design and architecture. Additionally, Flask is

highly customizable and provides the necessary features needed for

our project, making it ideal. Finally, to deploy our application, we

utilized Apache HTTP Server [3] on our virtual machine. Apache

HTTP Server is a widely used web server that provides a robust and

scalable platform for hosting web applications. To enable Apache

to interact with Flask, we set up WSGI (Web Server Gateway Inter-

face) [4] as our middleware. By setting up WSGI as our middleware,

Figure 2: Visualization of results: Each PaDOC path is identi-
fied by its corresponding origin location (hotels in this sce-
nario). Selecting a PaDOC-path expands the POIs and their
categories (here: 1 Museum, 1 Attraction, 1 Entertainment)
and shows the corresponding path on the map (cf. Figure 3.

we enabled Apache to communicate with Flask and forward re-

quests to it. Implementation details, code, and documentation can

be found at https://github.com/Dylan-Hampton/Semantic-Visit-

Aware-Recommendation-of-Hotels. The repository also contains a

link (https://sdmay23-34.sd.ece.iastate.edu/) to the Senior Design

project where the “Design Documents” tab contains reports detail-

ing the varios design decisions, ideations, testing (unit, interface,

integration, regression), etc.

4 ROUTEDOC DEMONSTRATION SCENARIO
Our demonstration will feature two road networks of New York

City, USA and Chicago, USA. The datasets used for constructing

the POI category enriched network consist of two main resources:

(1) Regular road network from OpenStreetMap; and (2) Attrac-
tions/PoIs along with related reviews crawled from TripAdvisor.

We group POIs into six categories using their textual ratings from

TripAdvisor: Attraction, Entertainment, Memorial, Museum, Park,

and Shop. This classification is done using Latent Dirichlet Allo-

cation [1] using the approach detailed in [14]. The user interface

of our demonstration allows users to specify the query constraints

including the number of requires POI categories for each class

and the distance constraint. For the origin constraint, we assume

all the hotels in the selected region. Once the user specifies the

query parameters and presses the “Submit” button, the demonstra-

tor will show the resulting PaDOC paths up to a maximum of

(user specified parameter of) ten results. The backend algorithms

187

https://github.com/Dylan-Hampton/Semantic-Visit-Aware-Recommendation-of-Hotels
https://github.com/Dylan-Hampton/Semantic-Visit-Aware-Recommendation-of-Hotels
https://sdmay23-34.sd.ece.iastate.edu/

SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Frohwein Garwood, et al.

Figure 3: Screenshot of the demonstrator showing 1) the query parameters including required POI categories and distance
contraints on the left, 2) query results on the right (detailed in Figure 2), and 3) a map-view of the selected query result.

will terminate early once ten paths are found. For each resulting

PaDOC path the name of the origin POI (hotels in this scenario)

are displayed. The user-interface also allows to select between the

four algorithms surveyed in Section 2.

Once the results are displayed, the users may then click on each

results to: (1) expand the list of POIs (and their categories) found

on the path, and (2) display the path on the map. Users may also

interact directly with the map, which highlights the locations of all

origin locations in the query result. Clicking on any origin location

also expands the list of POIs and shows the PaDOC path starting

from that origin location.

For demonstration, we will initially showcase the New York,

USA, map and demonstrate RouteDOC for default settings. Then,

conference participants may interact with the demonstration by

changing query parameters. For example, a user may stress-test

the system by asking for a path that includes nine museums which

will, depending on the specified distance threshold, either return

no results, or return a very lengthy journey across the city. In addi-

tion to showing useful paths for trip planning, this demonstration

will also allow conference participants to observe the fast running

times of the algorithms proposed in [13] despite the theoretical

complexity of the problem. We will explain that this efficiency is to

the underlying index structure which pre-computes distances to

nearest POIs of each category, and we will clarify to participants

that while our algorithms may not be able to find optimal paths

in many cases, they will be able to find practically useful paths in

most cases. A video demonstration of RouteDOC can be found

online at https://www.youtube.com/watch?v=YsJRH95kbng.

Acknowledgment: Research partly supported by NSF SWIFT

2030249 and 2302968.

REFERENCES
[1] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993–1022.

[2] Muhammad Aamir Cheema. 2018. Indoor location-based services: challenges

and opportunities. SIGSPATIAL Special 10, 2 (2018), 10–17.
[3] Roy T. Fielding and Gail Kaiser. 1997. The Apache HTTP server project. IEEE

Internet Computing 1, 4 (1997), 88–90.

[4] James Gardner. 2009. The web server gateway interface (wsgi). The Definitive
Guide to Pylons (2009), 369–388.

[5] Miguel Grinberg. 2018. Flask web development: developing web applications with
python. " O’Reilly Media, Inc.".

[6] Adrian Holovaty and Jacob Kaplan-Moss. 2009. The definitive guide to Django:
Web development done right. Apress.

[7] Haosheng Huang, Georg Gartner, Jukka M Krisp, Martin Raubal, and Nico Van de

Weghe. 2018. Location based services: ongoing evolution and research agenda.

Journal of Location Based Services 12, 2 (2018), 63–93.
[8] Eugene L Lawler. 1985. The traveling salesman problem: a guided tour of combi-

natorial optimization. Wiley-Interscience Series in Discrete Mathematics (1985).
[9] Christos H Papadimitriou. 1977. The Euclidean travelling salesman problem is

NP-complete. Theoretical computer science 4, 3 (1977), 237–244.
[10] Michael N Rice and Vassilis J Tsotras. 2012. Exact graph search algorithms for

generalized traveling salesman path problems. In SEA.
[11] Jochen Schiller and Agnès Voisard. 2004. Location-based services. Elsevier.
[12] Xu Teng, Goce Trajcevski, and Andreas Züfle. 2021. Semantically Diverse Paths

with Range and Origin Constraints. In ACM SIGSPATIAL. 375–378.
[13] Xu Teng, Goce Trajcevski, andAndreas Züfle. 2023. Distance, Origin and Category

Constrained Paths. ACM Trans. Spatial Algorithms Syst. (May 2023). https:

//doi.org/10.1145/3596601 (Accepted, to appear).

[14] Xu Teng, Jingchao Yang, Joon-Seok Kim, Goce Trajcevski, Andreas Züfle, and

Mario A Nascimento. 2019. Fine-Grained Diversification of Proximity Con-

strained Queries on Road Networks. In SSTD.

188

https://www.youtube.com/watch?v=YsJRH95kbng
https://doi.org/10.1145/3596601
https://doi.org/10.1145/3596601

	Abstract
	1 Introduction
	2 Background
	3 The RouteDOC Framework
	3.1 Frontend
	3.2 Backend

	4 RouteDOC Demonstration Scenario
	References

