)
e RouteDOC: Routing with Distance, Origin and Category

Constraints (Demonstration Paper)

Thomas Frohwein* Xu Teng Andreas Ziifle

Zachary Garwood’ ESRI
Redlands, California, USA

xteng@esri.com

Dylan Hampton®
Kevin Knack”
Nate Schenck”

Britney Yu"
Joe Zuber*
Goce Trajcevski

Emory University
Atlanta, Georgia, USA
azufle@emory.edu

tfroh,zgarwood,dhampton,kcknack,nschenck,britneyy,zubes,gocet25@iastate.edu

Iowa State University
Ames, Iowa, USA

ABSTRACT

Route planning based on user’s preferences and Points of Interests
(POIs) is one of the most popular applications of Location-Based
Services (LBS). Variants of route planning consider distance con-
straints (e.g., the maximum length of the route), origin constraints
(e.g., a set of possible starting locations of the route), and category
constraints (e.g., a multiset of POI categories that the route must
visit). However, the problem of deciding whether a route exists that
visits all required POI categories under the distance constraint is
known to be NP-hard. Assuming P # NP, this means that there is
no efficient (polynomial time) solution to find such paths. Recently,
approximate algorithms have been proposed for searching for such
a path. This demonstration leverages several of these algorithms
to provide a web-based system with a graphical user interface (UI)
which allows the users to find a path that: (a) satisfies a distance
limit; (b) generates a route to visit a list of POIs, based on the user’s
preferred categories; (c) provides a set of hotels (as possible starting
locations of the path). If the approximate search algorithms are able
to find such a path, it will be displayed on a Mapbox-based map
interface that shows: (1) all POIs on a path and (2) alternative paths
if any were found. The system then allows a user to explore the
returned paths, select a path, or refine their constraints. Moreover,
the system allows the users to select which approximate algorithm
they would prefer to execute.

CCS CONCEPTS

« Information systems — Information systems applications; «
Mathematics of computing — Paths and connectivity prob-
lems.

“These authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

SSTD °23, August 23-25, 2023, Calgary, AB, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0899-2/23/08.

https://doi.org/10.1145/3609956.3609977

KEYWORDS

Pol sequence, Category diversity, Distance constraint, Path origin

ACM Reference Format:

Thomas Frohwein, Zachary Garwood, Dylan Hampton, Kevin Knack, Nate
Schenck, Britney Yu, Joe Zuber, Goce Trajcevski, Xu Teng, and Andreas
Ziifle. 2023. RouteDOC: Routing with Distance, Origin and Category Con-
straints (Demonstration Paper). In Symposium on Spatial and Temporal Data
(SSTD °23), August 23-25, 2023, Calgary, AB, Canada. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3609956.3609977

1 INTRODUCTION

Location-Based Services (LBS) have become ubiquitous in everyday
life [7, 11], e.g., helping us find the shortest path to the nearest
coffee shop using Global Positioning System (GPS) technology or
find places inside a mall using wifi technology [2]. But in many
cases, a user is not only interested in a single point of interest (POI)
but may want to visit a set of POIs. For example, a tourist may
want to visit two museums and one restaurant, or a user surprising
their spouse with a fancy dinner may need to visit one western
supermarket, one eastern supermarket, and one candle store. The
motivation for this work is illustrated by the following:

Example 1.1. Sofia booked her flight to Calgary, Canada to attend
a conference. She has one extra day after the conference to explore
Calgary for her first time. Having only an extra day to spend for
sightseeing and to optimize her tourist experience, Sofia would like
to find a path such that: (1) the length of the path is limited to no
more than 5,000 meters of walking distance; (2) the path includes
at least two museums, at least one park, and at least one coffee shop
to recharge; and (3) she needs to know which hotel would enable
the constraints.

A practical algorithm to solve Sofia’s request would be, starting
at each conference hotel location, to sequentially find the shortest
path to the nearest relevant POL Such a solution, however, may
incur a long travel distance as the nearest museum may be far from
any further relevant POIs. More formally, catering to Sofia’s quest
amounts to answering a query which generates a Path with Distance,
Origins and Category constraints (PaDOC). In addition to tourist
based scenarios, the PaDOC query is important in ride-hailing

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3609956.3609977
https://doi.org/10.1145/3609956.3609977
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609956.3609977&domain=pdf&date_stamp=2023-08-24

SSTD ’23, August 23-25, 2023, Calgary, AB, Canada

and food delivery applications to find (near-) optimal routes for
drivers to minimize traveled distance and thus, minimize emissions
and impact on traffic. In such scenarios, the current location of
candidate drivers corresponds to the origin constraint; a time budget
of how much longer the driver wishes to work constitutes a distance
constraint on the length of route; and the ride-hailing customers or
food-pickup locations (generally denoted as resources) correspond
to visited Pols. There may be additional categorical constraints
such as some drivers preferring food-deliveries or some resources
requiring a high driver-rating. Another application is the selection
of pick-up location for an e-scooter, when an individual is planning
to visit certain types of stores, events, friends, etc. - within limited
distance.

Recent work formally introduced the PaDOC query [12, 13] and
experimentally demonstrated that the popular straightforward ap-
proaches to explore the (graph of the) road network are extremely
inefficient and often cannot guarantee finding a solution within
acceptable running time due to the NP-hardness of the problem.
Two approximate algorithms were devised that explore the space of
possible paths using a branch-and-bound approach. In this demon-
stration paper, we describe and present a system that leverages
these algorithms in the backend and uses a Mapbox-based UI as the
frontend to allow users to find solutions to a PaDOC query, dis-
play the results and all of their required POI categories within the
distance limit. In the following, Section 2 surveys the algorithms em-
ployed by the backend of our RouteDOC system. Then, Section 3
describes the demonstrated system and how users can interact with
it. Section 4 describes the scenario demonstrated at SSTD’ 23.

2 BACKGROUND

The query supported by RouteDOC returns a path that satisfies
distance, origin, and category constraints and is formally defined
as follows [13].

Definition 2.1 (Path with Distance, Origin, and Category Con-
straints). Let G = (V, E) be a road network having POIs located on
vertices and C denote all categories among the Pols in G. Given
a positive value ¢ € R and a vector 8 = (0,..., 9|C|> where
0; (i=1,..,|C|) € N that represents the desired number of Pols in
the ith category, a path 7 is called a Path with Distance Origin and
Category Constraints (PaDOC) if:

m.length < ¢
z[0] € O
P >0; Vi=1,..]|C]|),

where .length is the length of Path 7, 7[0] denotes the first vertex
(the origin) of 7, O C V denotes candidate origins, and 7.P; denotes
the number of POIs of category i on .

The problem of finding a PaDOC path is a (further) general-
ization of the Generalized Traveling Salesman Path (GTSP) [10]
in which the path requires at least one POI from each category —
whereas a PaADOCpath may require more than one POI from a given
category. The GTSP, in turn, is a generalization of the Traveling
Salesman Problem (TSP) [8], where each category corresponds to
exactly one location and deciding if a path of length no more than e
exists, is known to be NP-complete [9]. Since finding a PaDOC path

186

Frohwein Garwood, et al.

is a generalization of finding a TSP path, it is at least as hard as
finding a TSP path, and thus, is NP-hard.

Since finding an optimal solution is not feasible for large graphs
(unless P = NP), RouteDOC supports four approximate algorithms
to find a PaDOC path. These algorithms leverage an index structure
called the k-closest-category matrix [13]. It stores, for each vertex
of the road network v and for each POI category i, the set of k
vertices having the k closest POIs of category i to v as well as the
distance to these vertices. Details on this index structure and its
efficientconstruction can be found in [13].

Random Walk with Research (RWWR). This algorithm starts at
a vertex v randomly selected from the list of origin vertices O
and builds a path by randomly selected adjacent edges while the
distance constraint € is not violated. If the resulting path satisfies
the category constraints, it is returned. Otherwise, the algorithm
restarts. The algorithm is forced to terminate without a result after
ten seconds of unsuccessful search. This algorithm does not utilize
the k-closest-category matrix.

Greedy Dijkstra Search. Using the k-closest-category matrix a
simple Greedy algorithm iteratively selects to extend a partial path
by including (the shortest path to) the closest vertex that contains
a POI of a category that is yet needed by the current path. This is
done for each possible origin location until a PaDOC path is found
or an unsuccessful search is returned.

Origin-First Branch and Bound. This algorithm initializes the
search for a PaDOC path with all the origin locations as incomplete
paths. For each incomplete path, an upper-bound and a lower-bound
distance of the optimal extension of this path are computed. The
upper-bound uses the idea that if a Greedy solution of distance
d exists, then the optimal solution must have a distance of no
more than d. The lower-bound uses the distance maximum of all
the minimum distance to categories that are yet required by the
incomplete path (which can be derived from the k-closest-category
matrix). This lower-bound assumes a best case where all required
POI categories are “on the way” to the furthest POI category. We
iteratively expand the currently active incomplete paths (stored
in a priority queue) having the least upper-bound and prune any
path having a lower-bound greater than the distance budget. This
process is iterated until a path is expanded (and returned) that
contains all required Pol categories or until the queue is empty and
NuLL is returned indicating that no result path is found.

POI-First Branch and Bound. This algorithm is a variant of the
Branch and Bound algorithm described in the previous paragraph.
Instead of initializing the search at the possible origin location, this
algorithm initializes the search at relevant POI locations and builds
paths “from the end”. Like the Origin-First variant, this algorithm
expands incomplete paths by including POI categories required by
the query. Once a path is found that includes all POI categories, this
algorithm checks of the first POI on this path can be reached from
one of the origin locations within the distance constraint. Details
on the algorithms can be found in [13].

3 THE ROUTEDOC FRAMEWORK

This section describes the technical details of our RouteDOC frame-
work which are summarized in Figure 1.

RouteDOC: Routing with Distance, Origin and Category Constraints (Demonstration Paper)

‘ Semantic Visit Aware Recommendation of Hotels |

Frontend Backend

Redux Store GUI Web Server Pol Network
Map Route . q
‘ Data ‘ iy E2tesion ‘ REST API ‘ ‘ Pol Data ‘
User Input Pol Category
Data Selection ‘ Middleware ‘ Origin Data ‘
Distance

Selection

Metric
Selection

Algorithm
Selection

Submit

b

—i Mapbox API

Figure 1: Framework Architecture.

3.1 Frontend

The front is implemented using TypeScript as the main language.
React was used as the frontend framework to design reusable com-
ponents to use throughout the application. We believe that our
choice of TypeScript and React helps to make our application fulfill
its needs of code readability, maintainability, and extensibility. We
used Redux with React for the state management in our applica-
tion. One state stores all of the user input for the application. The
other state stores the map, its functions and its data. Different com-
ponents of the application can control the map and the map can
control them. Having Redux for our state management has helped
make it easier to modify, access, and store our application’s state
which helps our application maintain readability and extensibility.
We decided use MapBox as our visualization tool to show routes
generated from our routing algorithm on the backend. MapBox has
an extremely robust API and is very customizable, so we were able
to fit it to our application’s needs. MapBox also has many out-of-
the-box features that fit the usability and visuals we wanted our
application to include.

3.2 Backend

For our implementation of the backend, we decided to use Python
as our primary programming language as the PaDOC path com-
putation algorithms [12, 13] are implemented in Python to allow
seamless integration. In order to develop our REST API, we chose
Flask as our web framework [5]. Flask is a lightweight and flexi-
ble framework that allows developers to create web applications
quickly and easily. Unlike other frameworks, like Django [6], Flask
is less opinionated, which means developers have more control over
their application’s design and architecture. Additionally, Flask is
highly customizable and provides the necessary features needed for
our project, making it ideal. Finally, to deploy our application, we
utilized Apache HTTP Server [3] on our virtual machine. Apache
HTTP Server is a widely used web server that provides a robust and
scalable platform for hosting web applications. To enable Apache
to interact with Flask, we set up WSGI (Web Server Gateway Inter-
face) [4] as our middleware. By setting up WSGI as our middleware,

187

SSTD °23, August 23-25, 2023, Calgary, AB, Canada
Recommended Hotels
Total Distance: 167.8m

@ Times square

Gulliver's Gate

] Foxwoods Theater

— Collapse Route

— Collapse Route

|em
— Collapse All ‘+ Expand All

Figure 2: Visualization of results: Each PaDOC path is identi-
fied by its corresponding origin location (hotels in this sce-
nario). Selecting a PaDOC-path expands the POIs and their
categories (here: 1 Museum, 1 Attraction, 1 Entertainment)
and shows the corresponding path on the map (cf. Figure 3.

we enabled Apache to communicate with Flask and forward re-
quests to it. Implementation details, code, and documentation can
be found at https://github.com/Dylan-Hampton/Semantic- Visit-
Aware-Recommendation-of-Hotels. The repository also contains a
link (https://sdmay23-34.sd.ece.iastate.edu/) to the Senior Design
project where the “Design Documents” tab contains reports detail-
ing the varios design decisions, ideations, testing (unit, interface,
integration, regression), etc.

4 ROUTEDOC DEMONSTRATION SCENARIO

Our demonstration will feature two road networks of New York
City, USA and Chicago, USA. The datasets used for constructing
the POI category enriched network consist of two main resources:
(1) Regular road network from OpenStreetMap; and (2) Attrac-
tions/Pols along with related reviews crawled from TripAdvisor.
We group POIs into six categories using their textual ratings from
TripAdvisor: Attraction, Entertainment, Memorial, Museum, Park,
and Shop. This classification is done using Latent Dirichlet Allo-
cation [1] using the approach detailed in [14]. The user interface
of our demonstration allows users to specify the query constraints
including the number of requires POI categories for each class
and the distance constraint. For the origin constraint, we assume
all the hotels in the selected region. Once the user specifies the
query parameters and presses the “Submit” button, the demonstra-
tor will show the resulting PaDOC paths up to a maximum of
(user specified parameter of) ten results. The backend algorithms

https://github.com/Dylan-Hampton/Semantic-Visit-Aware-Recommendation-of-Hotels
https://github.com/Dylan-Hampton/Semantic-Visit-Aware-Recommendation-of-Hotels
https://sdmay23-34.sd.ece.iastate.edu/

SSTD ’23, August 23-25, 2023, Calgary, AB, Canada

Search Hotels

©

New York City

9 Attraction

I Entertainment
& Museum
& Park

+ o+ o+ +

s,

W ser,
sy

Broagy,,

&
4,

©

w,
0
s

L
a9

(2
b

Frohwein Garwood, et al.

‘ =)

Recommended Hotels

g

ws,

£

%,
— Collapse Route

“ou
hsy

S5 o

g

i

Figure 3: Screenshot of the demonstrator showing 1) the query parameters including required POI categories and distance
contraints on the left, 2) query results on the right (detailed in Figure 2), and 3) a map-view of the selected query result.

will terminate early once ten paths are found. For each resulting
PaDOC path the name of the origin POI (hotels in this scenario)
are displayed. The user-interface also allows to select between the
four algorithms surveyed in Section 2.

Once the results are displayed, the users may then click on each
results to: (1) expand the list of POIs (and their categories) found
on the path, and (2) display the path on the map. Users may also
interact directly with the map, which highlights the locations of all
origin locations in the query result. Clicking on any origin location
also expands the list of POIs and shows the PaDOC path starting
from that origin location.

For demonstration, we will initially showcase the New York,
USA, map and demonstrate RouteDOC for default settings. Then,
conference participants may interact with the demonstration by
changing query parameters. For example, a user may stress-test
the system by asking for a path that includes nine museums which
will, depending on the specified distance threshold, either return
no results, or return a very lengthy journey across the city. In addi-
tion to showing useful paths for trip planning, this demonstration
will also allow conference participants to observe the fast running
times of the algorithms proposed in [13] despite the theoretical
complexity of the problem. We will explain that this efficiency is to
the underlying index structure which pre-computes distances to
nearest POIs of each category, and we will clarify to participants
that while our algorithms may not be able to find optimal paths
in many cases, they will be able to find practically useful paths in
most cases. A video demonstration of RouteDOC can be found
online at https://www.youtube.com/watch?v=YsJRH95kbng.

Acknowledgment: Research partly supported by NSF SWIFT
2030249 and 2302968.

REFERENCES

[1] David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.

[2

B3

]
]

Journal of machine Learning research 3, Jan (2003), 993-1022.

Muhammad Aamir Cheema. 2018. Indoor location-based services: challenges
and opportunities. SIGSPATIAL Special 10, 2 (2018), 10-17.

Roy T. Fielding and Gail Kaiser. 1997. The Apache HTTP server project. IEEE
Internet Computing 1, 4 (1997), 88-90.

[4] James Gardner. 2009. The web server gateway interface (wsgi). The Definitive

[10

[11

(13

188

oy
=

]

Guide to Pylons (2009), 369-388.

Miguel Grinberg. 2018. Flask web development: developing web applications with
python. " O’Reilly Media, Inc".

Adrian Holovaty and Jacob Kaplan-Moss. 2009. The definitive guide to Django:
Web development done right. Apress.

Haosheng Huang, Georg Gartner, Jukka M Krisp, Martin Raubal, and Nico Van de
Weghe. 2018. Location based services: ongoing evolution and research agenda.
Journal of Location Based Services 12, 2 (2018), 63-93.

Eugene L Lawler. 1985. The traveling salesman problem: a guided tour of combi-
natorial optimization. Wiley-Interscience Series in Discrete Mathematics (1985).
Christos H Papadimitriou. 1977. The Euclidean travelling salesman problem is
NP-complete. Theoretical computer science 4, 3 (1977), 237-244.

Michael N Rice and Vassilis J Tsotras. 2012. Exact graph search algorithms for
generalized traveling salesman path problems. In SEA.

Jochen Schiller and Agneés Voisard. 2004. Location-based services. Elsevier.

Xu Teng, Goce Trajcevski, and Andreas Zifle. 2021. Semantically Diverse Paths
with Range and Origin Constraints. In ACM SIGSPATIAL. 375-378.

Xu Teng, Goce Trajcevski, and Andreas Ziifle. 2023. Distance, Origin and Category
Constrained Paths. ACM Trans. Spatial Algorithms Syst. (May 2023). https:
//doi.org/10.1145/3596601 (Accepted, to appear).

Xu Teng, Jingchao Yang, Joon-Seok Kim, Goce Trajcevski, Andreas Ziifle, and
Mario A Nascimento. 2019. Fine-Grained Diversification of Proximity Con-
strained Queries on Road Networks. In SSTD.

https://www.youtube.com/watch?v=YsJRH95kbng
https://doi.org/10.1145/3596601
https://doi.org/10.1145/3596601

	Abstract
	1 Introduction
	2 Background
	3 The RouteDOC Framework
	3.1 Frontend
	3.2 Backend

	4 RouteDOC Demonstration Scenario
	References

