

Brain effects of gestating germ-free persist in mouse neonates despite acquisition of a microbiota at birth

1 **Alexandra Castillo-Ruiz^{1*}, Aviva Gars¹, Hannah Sturgeon¹, Nicole M. Ronczkowski², Dhanya
2 N. Pyaram¹, Charlène J.G. Dauriat³, Benoit Chassaing³, Nancy G. Forger¹**

3 ¹Neuroscience Institute, Georgia State University, Atlanta, GA, USA

4 ²Medical College of Georgia, Augusta University, Augusta, GA, USA

5 ³INSERM U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Université Paris
6 Cité, Paris, France

7 *** Correspondence:**

8 Corresponding Author

9 acastilloruzi@gsu.edu

10 **Keywords: Cross-fostering, cell death, microglia, forebrain size, bacterial load, colonic content**

11 **Abstract**

12 At birth, mammals experience a massive colonization by microorganisms. We previously reported
13 that newborn mice gestated and born germ-free (GF) have increased microglial labeling and
14 alterations in developmental neuronal cell death in the hippocampus and hypothalamus, as well as
15 greater forebrain volume and body weight when compared to conventionally colonized (CC) mice.
16 To test whether these effects are solely due to differences in postnatal microbial exposure, or instead
17 may be programmed *in utero*, we cross-fostered GF newborns immediately after birth to CC dams
18 (GF→CC) and compared them to offspring fostered within the same microbiota status (CC→CC,
19 GF→GF). Because key developmental events (including microglial colonization and neuronal cell
20 death) shape the brain during the first postnatal week, we collected brains on postnatal day (P) 7. To
21 track gut bacterial colonization, colonic content was also collected and subjected to 16S rRNA qPCR
22 and Illumina sequencing. In the brains of GF→GF mice, we replicated most of the effects seen
23 previously in GF mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for
24 almost all measures. In contrast, total bacterial load did not differ between the CC→CC and GF→CC
25 groups on P7, and bacterial community composition was also very similar, with a few exceptions.
26 Thus, GF→CC offspring had altered brain development during at least the first seven days after birth
27 despite a largely normal microbiota. This suggests that prenatal influences of gestating in an altered
28 microbial environment programs neonatal brain development.

29

30 **1 Introduction**

31 Microbiota from maternal and environmental sources rapidly colonize all epithelial surfaces of
32 mammalian neonates at birth. Disruptions of the maternal microbiota during pregnancy, such as those
33 resulting from a high fat diet or antibiotic treatment, alter the vertical transmission of microbes from
34 mother to offspring and have long-term effects on offspring physiology and behavior (Bokulich et al.,

35 2016; Chen et al., 2021a; Chen et al., 2021b; Leclercq et al., 2017; O'Connor et al., 2021; Olszak et
36 al., 2012; Schulfer et al., 2018). In addition, several recent studies suggest *in utero* effects of the
37 maternal microbiota on fetal development (Humann et al., 2016; Kim et al., 2017; Pronovost and
38 Hsiao, 2019; Thion et al., 2018; Tochitani et al., 2016; Vuong et al., 2020), due to the presence of
39 bacterial metabolites in maternal circulation that cross the placenta or other signaling mechanisms.

40 By far, the largest population of microbes resides in the distal gastrointestinal tract (i.e., the colon),
41 with bacteria comprising the vast majority of those microorganisms (Sender et al., 2016). The gut
42 microbiota communicates reciprocally with the brain via the gut-microbiota-brain axis (Cryan and
43 Dinan, 2012; Morais et al., 2021), and animals living in the absence of microbes (i.e., germ-free
44 (GF)) have played a crucial role in establishing this link. GF mice have an altered neuroendocrine
45 stress response, changes in hippocampal neurogenesis, reduced anxiety, and altered social behavior in
46 adulthood compared to conventionally colonized (CC) controls (e.g., Clarke et al., 2013; Diaz Heijtz
47 et al., 2011; Ogbonnaya et al., 2015; Sudo et al., 2004). Some of these changes are normalized by
48 introducing a microbiota in adulthood or adolescence, but others persist, suggesting early-life neural
49 programming. However, the specific brain processes affected early in life by microbe exposure is
50 largely unknown.

51 Microglia are the macrophages and primary innate immune cells of the brain, and they respond to the
52 microbiota throughout life. GF adults have increased microglial numbers but decreased microglial
53 responsiveness to immune challenges compared to controls (Erny et al., 2015; Matcovitch-Natan et
54 al., 2016). The co-housing of GF dams and their litters with CC female mice soon after birth reduces
55 microglial numbers in comparison to GF mice when examined in adulthood (Erny et al., 2021),
56 suggesting a normalization of microglia in GF mice by long-term postnatal colonization. How
57 quickly the normalization occurs, however, is unknown. This is an important question because
58 current obstetric practices routinely alter the microbiota of pregnant mothers and their babies. For
59 example, 40% of mothers in the United States are treated peripartum with antibiotics (Ledger and
60 Blaser, 2013; Martinez de Tejada, 2014) that cause a marked depletion of their microbiota and that of
61 their offspring. Even transient alterations in the microbiota during perinatal life could have lasting
62 effects on offspring brain development, given the many important neurodevelopmental events that
63 occur during the early postnatal period. In rodents, a depletion of the maternal/prenatal or postnatal
64 microbiota by antibiotics alters social behaviors and anxiety-like behavior in the offspring in
65 adolescence and adulthood (Leclercq et al., 2017; Lynch et al., 2023; O'Connor et al., 2021;
66 Tochitani et al., 2016).

67 Microglial colonization and naturally-occurring cell death are two of the most salient
68 neurodevelopmental events occurring around the time of birth in mice. We recently showed that,
69 compared to CC mice, those that are gestated and born into a GF environment have increased
70 microglial labeling and altered neuronal cell death in the brain during the newborn period (Castillo-
71 Ruiz et al., 2018a). It is unknown whether these changes are due solely due to the postnatal absence
72 of microbes, or whether the maternal microbiota may program offspring brain development before
73 birth. To test this, mice in the current study were gestated and born to a GF mother and then cross-
74 fostered immediately after birth to CC dams; newborns fostered within microbial status served as
75 controls. Colon contents and brains of offspring were collected seven days later to compare bacterial
76 colonization of the gut and several measures of brain development. Our results suggest that maternal
77 microbial status *in utero* has a prolonged effect on neonatal brain development.

78 **2 Materials and Methods**

79 **2.1 Animals**

80 Adult Swiss Webster GF and CC mice were purchased from Taconic Biosciences (Germantown, NY,
 81 USA). All mice were housed in our GF facility in an isolated, ventilated caging system (Isocage,
 82 Techniplast, Buguggiate VA, Italy). Mice were maintained on a 12:12 light-dark cycle with *ad*
 83 *libitum* access to autoclaved food and water. All animal procedures were approved by Georgia State
 84 University's Institutional Animal Care and Use Committee (protocol #A20013) and followed the
 85 National Institutes of Health Guide for the Care and Use of Laboratory Animals.

86 **2.2 Cross-fostering procedure**

87 Females and males were housed together for 1-4 days. Beginning on the eve of the first possible
 88 embryonic day (E) 19, we performed hourly, around-the-clock checks for births, with checks during
 89 the dark period performed under red light illumination. Immediately upon observing the birth of a
 90 litter, cages were thoroughly sprayed with a sterilizing solution (1 part Expor base: 1 part Expor
 91 activator: 4 parts tap water; Ecolab Inc., Saint Paul, MN, USA) and placed within a biosafety cabinet
 92 that prior to the procedure had been UV treated and sprayed with the sterilizing solution. Offspring
 93 were gently transferred to a sterile container using a sterile set of tweezers before being assigned to a
 94 foster dam that had given birth within the previous 48 h hours. The foster dam's own pups were
 95 removed and experimental pups (whole litters) were then placed in the foster dam's cage under sterile
 96 conditions. We cross-fostered GF pups to CC dams (GF→CC group; n= 34), and, to control for the
 97 cross-fostering procedure, CC and GF pups to dams within the same microbiota status (CC→CC
 98 group, n= 37 and GF→GF group, n= 15) (Figure 1). In two additional cases, foster mothers were not
 99 available for control litters (one CC→CC n= 17 and one GF→GF litter n= 10) and these pups were
 100 sham cross-fostered; that is, they underwent all the procedural steps of cross-fostering (spraying of
 101 cages, placement of pups in sterile holding container) but pups were returned after a delay to the birth
 102 mother. Sham cross-fostered mice did not differ from pups fostered to an unrelated mother for any
 103 dependent variable tested (determined by ANOVA or t-tests within microbial status, as appropriate)
 104 and are therefore included in the analyses below and identified as sham cross-fostered on all figures.
 105 The total number of litters represented in each group was four for CC→CC, two for GF→GF and
 106 three for GF→CC. Note that due to low GF pregnancy rates, it was challenging to foster GF pups
 107 within microbial status; this explains the lower number of litters and subjects for the GF→GF group.

108 **2.3 Tissue collection**

109 To assess how rapidly gut colonization takes place, we sacrificed half of each litter at P3 and
 110 collected colon contents from a subset of mice (CC→CC n= 16; GF→CC: n= 12; GF→GF n= 14).
 111 To assess brain effects related to bacterial colonization of the gut, we collected brains (CC→CC n= 20;
 112 GF→CC: n= 12; GF→GF n= 10) and colon contents (CC→CC n= 17; GF→CC: n= 10; GF→GF
 113 n= 10) of a subset of offspring at P7. On collection days, mice were weighed and immediately
 114 euthanized via rapid decapitation 8-10 h after lights on. Brains (P7) were fixed in 5% acrolein in 0.1
 115 M phosphate buffer for 24 h at room temperature and then transferred to 30% sucrose at 4°C,
 116 followed by cryoprotection at -20°C until sectioning. Colon contents (P3 and P7) were collected by
 117 excising the colon and gently extruding contents with the flat surface of a curved, sterile tweezer.
 118 Contents were weighed, and stored at -80°C prior to processing.

119 **2.4 Immunohistochemistry**

120 Brains were coronally sectioned on a freezing microtome into four, 40 µm series. Sections were
 121 collected into cryoprotectant solution and stored at -20°C. One series was processed for the

122 immunohistochemical detection of ionized calcium binding adaptor molecule 1 (Iba1) to label
 123 microglia, and two series for the detection of activated caspase-3 (AC3) to identify dying cells.
 124 Unless otherwise stated, tissue was washed between steps in 1X tris buffered saline (TBS) and all
 125 steps were carried out at room temperature. Epitope retrieval was performed with 0.05 M sodium
 126 citrate for 1 h for Iba1 or 30 min for AC3. Then, unreacted aldehyde was blocked via incubation with
 127 0.1 M glycine for 30 min, followed by an incubation in a blocking solution (20% normal goat serum
 128 (NGS), 1% H₂O₂, 0.3% Triton X in TBS), and an overnight incubation with the primary antibody:
 129 rabbit anti-Iba1 (Wako, Chuo-Ku, Osaka, Japan; 1:3,000; 2% NGS, 0.3% Triton X in TBS) or rabbit
 130 anti-AC3 (Cell Signaling, Beverly, MA, USA; 1:5,000; 2% NGS, 0.3% Triton X in TBS). Sections
 131 were washed in a dilute blocking solution (1% NGS, 0.02% Triton X in TBS), incubated for 1 h in a
 132 goat anti-rabbit secondary antibody (Vector Laboratories, Burlingame, CA, USA; 1:1,000 for Iba1 or
 133 1:500 for AC3; 0.32% Triton X in TBS), washed in 1X TBS-0.2% Triton X, and incubated for 1 h in
 134 an avidin-biotin solution (Vector Laboratories; 1:1,000 for Iba1 or 1:500 for AC3 in 1X TBS).
 135 Tissue was washed in acetate buffer and incubated in 0.02% diaminobenzidine tetrahydrochloride,
 136 2% nickel sulfate, and 0.0025% H₂O₂ made in the same buffer. Sections were mounted onto gelatin-
 137 coated slides, counterstained with thionin in the case of AC3-immunoreacted tissue, dehydrated, and
 138 coverslipped.

139 **2.5 Quantification of microglia, dying cells, and forebrain size**

140 All analyses were performed on coded slides by an investigator blind to treatment group. We
 141 analyzed brain regions where we previously observed differences between neonatal GF and CC mice:
 142 the paraventricular nucleus of the hypothalamus (PVN), the CA1 oriens layer of the hippocampus,
 143 and the arcuate nucleus (ARC) (Castillo-Ruiz et al., 2018a). In addition, we included the primary
 144 somatosensory cortex (S1) in our analyses of microglia as microbiota-dependent effects have been
 145 previously reported for microglia in this region (Thion et al., 2018). For the PVN, we analyzed all
 146 available sections, starting when the nucleus has a tubular shape (Plates 127-131 in Paxinos et al.,
 147 2007). For the CA1 oriens, we included sections from the rostral-most appearance of the dentate
 148 gyrus (Plate 128) to the point where the hippocampus starts to tip ventrally (Plate 131). For the ARC,
 149 sampling started at the point where the nucleus has a well-defined triangular shape (Plate 133) and
 150 ended when the nucleus was no longer visible (Plate 142). S1 was analyzed in three consecutive
 151 sections, starting where the dentate gyrus is clearly defined (Plate 128) **and ending when the**
 152 **hippocampus tips ventrally (Plate 131)**, as described in (Strahan et al., 2017).

153 Slides were scanned using a Hamamatsu Nanozoomer (Hamamatsu Photonics K.K. Hamamatsu City,
 154 Japan) and cell quantification was performed using Aperio Image Scope (Leica Biosystems Inc.,
 155 Buffalo Grove, IL, USA). Contours were drawn around the regions of interest and the number of
 156 microglia and dying cells within those contours was recorded. The sum of AC3+ and Iba1 counted
 157 cells across all sections in each animal was divided by total area sampled, and then multiplied by
 158 section thickness to obtain cell density per mm³.

159 To assess forebrain size, we outlined the left side of the forebrain in one series of the AC3 labeled
 160 tissue, using six alternate sections, starting from the section where the medial border of the anterior
 161 commissure lies ventral to the tip of the lateral ventricle (Plate 117) and ending at the section with the
 162 rostral most appearance of the dorsomedial nucleus of the hypothalamus (Plate 133), as previously
 163 described (Castillo-Ruiz et al., 2018a). The sum of areas across all sections was multiplied by two
 164 and then by section thickness to obtain overall forebrain volume in mm³ for each animal

165 **2.6 DNA extraction from colon contents**

166 DNA extraction from colon contents was performed using the QIAamp fast DNA stool mini kit
 167 (Qiagen LLC, Germantown, MD, USA) according to the manufacturer's instructions, with the
 168 addition of a bead beating step at the beginning of the procedure to aid with homogenization: samples
 169 were transferred to PowerBead Pro Tubes (Qiagen) and agitated for 2 min in the Mini-Beadbeater
 170 (Biospec Products, Inc., Bartlesville, OK, USA). The stock DNA was used for polymerase chain
 171 reaction (PCR) and sequencing analysis of the 16S rRNA gene.

172 **2.7 16S rRNA PCR for total bacterial load**

173 PCR was performed in the C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) (2 min at
 174 95°C, followed by 40 cycles of 5 s at 95°C and 10 s at 60°C) using a QuantiNova SYBR green PCR
 175 kit (Qiagen) with universal 16S rRNA primers 8F: 5'-AGAGTTGATCCTGGCTCAG-3' and 338R:
 176 5'-CTGCTGCCTCCCGTAGGAGT-3'. Negative controls were run concurrently and included clean
 177 paper towels used for sample collection and buffer from the DNA extraction kit. The quantitative
 178 cycle (Cq) values for negative control and GF samples were very close to the final cycle of the PCR
 179 run (mean= 38.47; SEM= 0.19; compare these values with the much earlier read outs from CC
 180 groups: mean= 22.51; SEM= 0.31). In order to calculate fold-increase in bacterial load in CC groups,
 181 we used the GF Cq values as reference. Bacterial load was calculated using the formula $2^{-(\Delta Cq)}$, where
 182 ΔCq was obtained by subtracting the Cq average of the GF→GF group from each individual animal's
 183 Cq value. Fold-change values were then obtained by dividing each experimental value by the average
 184 for the GF→GF group.

185 **2.8 16S rRNA gene sequencing and analysis**

186 16S rRNA gene amplification and sequencing were performed using Illumina MiSeq technology
 187 (Illumina Inc., San Diego, CA, USA). The 16S rRNA genes, region V4, were PCR amplified from
 188 each sample using a composite forward primer and a reverse primer containing a unique 12-base
 189 barcode, designed using the Golay error-correcting scheme, which was used to tag PCR products
 190 from respective samples (Caporaso et al., 2012). We used the forward primer 515F 5'-
 191 **AATGATACGGCGACCACCGAGATCTACACGCTXXXXXXXXATGGTAATTGTGTGY**
 192 **CAGCMGCCGCGTAA**-3': the italicized sequence is the 5' Illumina adaptor, the 12 X sequence is
 193 the Golay barcode, the bold sequence is the primer pad, the italicized and bold sequence is the primer
 194 linker, and the underlined sequence is the conserved bacterial primer 515F. The reverse primer 806R
 195 used was 5'-
 196 **CAAGCAGAAGACGGCATACGAGATAGTCAGCCAGCCGGACTACNVGGGTWTCTAAT**-3':
 197 the italicized sequence is the 3' reverse complement sequence of Illumina adaptor, the bold sequence
 198 is the primer pad, the italicized and bold sequence is the primer linker and the underlined sequence is
 199 the conserved bacterial primer 806R. PCR was performed using a Hot Master PCR mix (Quantabio,
 200 Beverly, MA, USA) in the C1000 Touch Thermal Cycler (3 min at 95°C, followed by 30 cycles of 45
 201 s at 95°C, 60 s at 50°C and 90 s at 72°C). PCR products were purified with Ampure magnetic
 202 purification beads (Agencourt, Brea, CA, USA), and visualized by gel electrophoresis. Products were
 203 then quantified (BioTek Fluorescence Spectrophotometer; BioTek Instruments, SAS, France) using
 204 Quant-iT PicoGreen dsDNA assay (Invitrogen, Carlsbad, CA, USA). A master DNA pool was
 205 generated from the purified products in equimolar ratios. The pooled products were quantified using
 206 Quant-iT PicoGreen dsDNA assay and then sequenced using an Illumina MiSeq sequencer (paired-
 207 end reads, 2 x 250 bp) at Cornell University, Ithaca.

208 Sequences were demultiplexed and quality filtered using the Dada2 method (Callahan et al., 2016)
 209 with QIIME2 default parameters in order to detect and correct Illumina amplicon sequence data, and
 210 a table of QIIME2 artifact was generated. A tree was next generated, using the QIIME fragment-

211 insertion sepp command, for phylogenetic diversity analyses, and alpha and beta diversity analyses
 212 were computed using the core-metrics-phylogenetic command. For taxonomy analysis, features were
 213 assigned to amplicon sequence variants (ASVs) with a 99% threshold of pairwise identity to the
 214 Greengenes reference database 13_8 (McDonald et al., 2012).

215 **2.9 Statistics**

216 We combined the data for males and females in all analyses below. Preliminary analyses did not
 217 identify significant effects of sex for any variable, although some comparisons may have been under-
 218 powered for identifying sex differences. One-way ANOVA was used to evaluate cross-fostering
 219 effects on microglial number, cell death, body weight, forebrain size, colon content weight, and
 220 bacterial diversity. When applicable, ANOVA was followed by Fisher's least significant difference.
 221 Non-parametric tests (Kruskal-Wallis followed by Dunn's test) was performed for bacterial load as
 222 data did not conform to the homogeneity of variance assumption of ANOVA. Two-tailed
 223 independent samples t-tests were used to test the effects of cross-fostering on metrics of alpha
 224 diversity: ASVs and Shannon diversity index. Principal coordinate analysis (PCoA) plots of Bray
 225 Curtis distances were used to assess the variation between the experimental groups (beta diversity),
 226 which was further tested via Permutational analysis of variance (PERMANOVA). Analysis of
 227 composition of microbiomes (ANCOM) was used to identify differentially abundant species between
 228 groups, and one-tailed independent samples t-tests or Mann-Whitney tests were used to confirm
 229 differences. Statistical analyses were performed using GraphPad Prism (GraphPad software LLC,
 230 San Diego, CA, USA) and QIIME2 (Bolyen et al., 2019). Two immunohistochemical runs were
 231 performed per marker (Iba1, AC3), with half of the subjects per group included in each run. The
 232 second run for Iba1, however, was unsuccessful so animal numbers are lower for Iba1 than for AC3
 233 analyses.

234 **3 Results**

235 **3.1 Microglial effects of gestating germ-free persist in some brain regions despite
 236 introduction to a microbiota at birth**

237 We first examined microglia in four brain regions in which we or others have reported effects of GF
 238 status. Specifically, microglial labeling is increased in the PVN, ARC, cortex, and CA1 oriens layer
 239 of the hippocampus in perinatal or adult GF mice (Castillo-Ruiz et al., 2018a; Erny et al., 2015;
 240 Thion et al., 2018). Here, we found significant effects of group in the CA1 oriens ($F_{2,14} = 4.40$, $p =$
 241 0.03), S1 ($F_{2,15} = 4.40$, $p = 0.03$), and PVN ($F_{2,15} = 6.77$, $p = 0.008$) (Figure 2A-D). As seen previously
 242 when comparing GF and CC mice, GF→GF mice had more microglia than CC→CC mice in these
 243 brain regions ($p_s \leq 0.03$). Remarkably, the introduction of a microbiota at birth was not sufficient to
 244 change the GF phenotype in the CA1 oriens or S1, as microglial number in GF→CC mice remained
 245 significantly higher than in CC→CC mice ($p_s \leq 0.03$) and was no different from GF→GF mice at P7
 246 (Figure 2B-C). In contrast, the PVN showed partial normalization of microglial phenotype as the
 247 GF→CC group did not differ from either the GF→GF or CC→CC groups (Figure 2D). For the
 248 ARC, there was no difference between groups in the overall ANOVA ($F_{2,15} = 2.53$, $p = 0.11$) (Figure
 249 2E).

250

251 **3.2 Cell death effects of gestating germ-free persist despite introduction to a microbiota at
 252 birth**

253 Compared to CC mice, we previously observed increased cell death in the CA1 oriens and PVN and
 254 reduced cell death in the ARC of GF mice on P0 and P3 (Castillo-Ruiz et al., 2018a). Here, we again
 255 found an effect in the ARC ($F_{2,36} = 22.28$, $p < 0.0001$) and, as before, the GF→GF group had fewer
 256 dying cells than the CC→CC group (**Figure 3A-B**). Importantly, introduction to a microbiota at birth
 257 was not sufficient to change this phenotype as the GF→CC group did not differ from the GF→GF
 258 group and remained different from the CC→CC group at P7 ($p < 0.0001$). We did not find an effect of
 259 group in the CA1 ($F_{2,38} = 0.30$, $p = 0.74$) or PVN ($F_{2,38} = 1.33$, $p = 0.28$), perhaps because P7 is well
 260 after the peak of cell death in these regions (**Figure 3C-D**) (Mosley et al., 2017).

261 **3.3 Gross measurement effects of gestating germ-free persist in mouse neonates despite
 262 introduction to a microbiota at birth**

263 Our previous study also showed greater body weight and forebrain size in GF neonates compared to
 264 CC controls (Castillo-Ruiz et al., 2018a). Here we again found significant effects of group for both
 265 measures ($F_{2,39} = 16.41$, $p < 0.0001$ and $F_{2,32} = 3.89$, $p = 0.03$, respectively), and similar to what we
 266 observed previously, the GF→GF group weighed more and had a larger overall forebrain size
 267 (**Figure 4A-B**) than the CC→CC group ($p_s \leq 0.04$). The GF→CC mice remained significantly
 268 different from CC→CC mice ($p_s \leq 0.02$) for both measures (**Figure 4A-B**) and were no different from
 269 GF→GF mice on either measure.

270 **3.4 Cross-fostering largely normalizes gut bacterial load and composition**

271 Persistence of the GF phenotype seen above in the GF→CC group could be related to differences in
 272 the amount (load) and/or identity (composition) of gut microbial species. To test these hypotheses,
 273 we first assessed bacterial load in colon contents seven days after birth. Not surprisingly, a non-
 274 parametric one-way ANOVA revealed significant effects of group on bacterial load ($H_2 = 23.38$, $p <$
 275 0.0001), with CC→CC and GF→CC groups having approximately 10^6 -fold greater bacterial load
 276 than the GF→GF group ($p_s \leq 0.0002$). Importantly, the CC→CC and GF→CC groups did not differ
 277 from each other on this measure (**Figure 5A**). This effect is unlikely driven by group differences in
 278 colon content size as there was no effect of group on this measure ($F_{2,34} = 2.84$, $p = 0.07$) (**Figure 5B**).

279 We next assessed bacterial composition through 16S rRNA gene sequencing. Metrics of alpha
 280 diversity showed that there was no difference in ASVs (richness) between GF→CC and CC→CC
 281 groups (**Figure 6A, top**). However, there was a difference between these groups when richness and
 282 abundance (evenness) were considered using the Shannon diversity index: the GF→CC group had
 283 slightly lower diversity ($t_{24} = 2.77$, $p = 0.01$) (**Figure 6A, bottom**). Taxon abundance assessment
 284 revealed that the colonic microbiota of GF→CC and CC→CC groups were remarkably similar but
 285 vastly distinct from negative control samples. The presence of a bacterial signal in 16S rRNA
 286 amplification of negative control samples is expected, as it captures any environmental contamination
 287 as well as the so-called ‘kit-ome,’ (i.e., bacterial presence in buffers and other reagents) (Grahn et al.,
 288 2003; Olomu et al., 2020; van der Horst et al., 2013). Interestingly, the profile observed in negative
 289 controls and GF→GF mice was very similar, further validating the absence of endogenous bacteria in
 290 the GF group (**Figure 6B**). *Lactobacillus*, *Proteus*, and *Staphylococcus* were predominant across
 291 GF→CC and CC→CC samples. In contrast, *Bacteroides* and *Enterobacteriaceae* were the
 292 contaminants that dominated in negative control and GF→GF samples.

293 PCoA of Bray Curtis distances was used to evaluate differences at the level of bacterial community
 294 composition (beta diversity). PCoA plots show that GF→CC and CC→CC samples cluster together
 295 but separately from negative control and GF→GF samples, suggesting that bacterial communities are
 296 similar in composition in the microbiota harboring groups (**Figure 6C**). Nonetheless, PERMANOVA

297 found a significant difference between the GF→CC and CC→CC samples ($p= 0.03$). ANCOM was
 298 used to test for individual species that differed significantly in abundance between the GF→CC and
 299 CC→CC groups. Remarkably, just one species was identified: *Lactobacillus reuteri* (W= 32; U= 45,
 300 $p= 0.003$) was present in half of the GF→CC samples and absent in all CC→CC samples (Figure
 301 6D). We also note that although CC→CC and sham CC→CC offspring overall had similar bacterial
 302 composition, ANCOM revealed that the sham CC→CC group had more *Proteus* (W= 12; also
 303 captured in Figure 6B). However, this comparison did not quite reach significance in a non-
 304 parametric t-test (U= 19, $p= 0.054$).

305 Thus, bacterial load and composition were largely identical between GF→CC and CC→CC mice at
 306 P7, but brain measures were not. Colon contents that were collected at P3 allowed us to test how
 307 quickly bacterial normalization occurs. Similar to what was seen at P7, bacterial load and colon
 308 content size did not differ between GF→CC and CC→CC groups at P3 (Figure 7A-B). However,
 309 colon contents of the CC→CC group had double the number of ASVs (U= 18, $p= 0.0004$) (Figure
 310 8A, top), but similar values of the Shannon diversity index compared to the GF→CC group (Figure
 311 8A, bottom). Taxon abundance assessment revealed that overall CC→CC and GF→CC were similar
 312 (and, again, vastly different from or negative controls of GF→GF samples), although *Streptococcus*
 313 appeared more predominant in CC→CC colons (Figure 8B). CC→CC and GF→CC groups at P3
 314 clustered slightly further apart on PCoA plots than they did at P7 and PERMANOVA confirmed this
 315 difference ($p< 0.002$) (Figure 8C). However, ANCOM analysis again found only a single species
 316 that was significantly different in abundance between the groups: *Streptococcus acidominimus* (W=
 317 44; $t_{26}= 5.18$, $p< 0.0001$) was more predominant in the colons of CC→CC mice than in GF→CC
 318 mice at P3 (Figure 8D). In addition, we did not observe taxa abundance differences between
 319 CC→CC and sham CC→CC offspring at P3. Thus, when exposed to a normal microbiota on the day
 320 of birth, the neonatal gut microbiota was largely similar whether pups were gestated and born CC or
 321 GF, with some subtle differences, especially at the earlier timepoint (P3).

322 4 Discussion

323 We previously identified effects of the microbiota on microglia and neuronal cell death within hours
 324 after birth (Castillo-Ruiz et al., 2018a). In this study, a cross-fostering approach allowed us to test
 325 whether these effects are caused solely by the postnatal microbiota, or whether *in utero* exposure to
 326 the maternal microbiota plays a role. Overall, we find that the GF phenotype persists during the first
 327 postnatal week, despite successful acquisition of a microbiota at birth, suggesting a role for prenatal
 328 programming.

329 4.1 Microglia, cell death, and gross development effects

330 Microglial colonization of the brain and neuronal cell death are two of the most prominent
 331 neurodevelopmental events during the newborn period in mice. The number of microglia increases
 332 rapidly after birth and microglia undergo major morphological and gene expression changes during
 333 this period (Castillo-Ruiz et al., 2022; Christensen et al., 2014; Crain et al., 2013; Dalmau et al.,
 334 2003; Lai et al., 2013; Matcovitch-Natan et al., 2016; Schwarz et al., 2012; Sharaf et al., 2013).
 335 Similarly, developmental neuronal cell death is concentrated during the first postnatal week in mice
 336 (Ahern et al., 2013; Mosley et al., 2017). Microglia are quite sensitive to the microbiota. Erny and
 337 colleagues (2015) demonstrated increased microglial labeling in adult GF mice, and extended that to
 338 mice in which the microbiota was severely depleted in adulthood with antibiotics or which lacked a
 339 complex microbiome by virtue of being colonized by only three bacterial species. These findings
 340 suggest continuous regulation of microglia by the microbiome throughout life.

341 In the CA1 oriens and S1 we found that mice born GF, regardless of microbial status at P7, had more
 342 microglia than CC mice, suggesting persistence of the GF microglial phenotype in the GF→CC
 343 group. The ARC had a similar microglia pattern but we were underpowered to detect an effect. In
 344 contrast, in the PVN we observed partial normalization of the GF phenotype by the cross-fostering
 345 manipulation. The PVN is enriched in blood supply in comparison to neighboring regions (van den
 346 Pol, 1982), and this pattern develops during the first days postnatal in rats and mice (Frahm et al.,
 347 2012; Menendez and Alvarez-Uria, 1987). We speculate that microbial metabolites may be more
 348 accessible to the PVN via its nascent rich blood supply than to the other brain regions examined here.
 349 Consistent with this hypothesis, administration of bacterial metabolites to adult GF mice can rescue
 350 microglial numbers, morphology, and physiology (Erny et al., 2021; Erny et al., 2015). Moreover,
 351 gut-derived bacterial metabolites cross the blood-brain barrier *in vivo* (Frost et al., 2014) and
 352 influence microglia function *in vitro* (Erny et al., 2021).

353 For cell death, we found an effect of group in the ARC, with greater cell death in both GF→CC and
 354 GF→GF than in CC→CC mice. Interestingly, the ARC is involved in food intake, which is increased
 355 in GF mice (Bäckhed et al., 2004). In the CA1 oriens and PVN we did not find an effect of group on
 356 cell death, probably due to the fact that this process has tapered off in these regions by P7 (Ahern et
 357 al., 2013; Mosley et al., 2017). We did not assess the phenotype of the cells undergoing cell death in
 358 this study, however, they are likely to be mainly neurons based on previous reports in the neonatal
 359 brain (Zuloaga et al., 2011) and the neuron-like morphology shown by the cells we quantified.

360 Gross development was also affected by prenatal microbial absence, with GF→CC and GF→GF
 361 mice having greater forebrain size and body weight than CC→CC mice at P7. These measures may
 362 be dependent on mouse strain or diet, as they are found in some studies of GF mice but not others
 363 (Bäckhed et al., 2004; Castillo-Ruiz et al., 2018a; Fleissner et al., 2010; Kawase et al., 2017;
 364 Khosravi et al., 2015; Selwyn et al., 2015; Vuong et al., 2020). It is notable that most of the GF
 365 effects that we identified previously on microglia, cell death, and gross development in Swiss
 366 Webster mice at P0 and P3 (Castillo-Ruiz et al., 2018a) were replicated here at P7. Therefore, the GF
 367 phenotype persists throughout at least the first postnatal week. Because the brain undergoes extensive
 368 development during this time (Reemst et al., 2016), our past and current results could help explain
 369 why exposing GF rodents to microbes beyond the early postnatal window does not normalize some
 370 brain and behavior measures (Clarke et al., 2013; Desbonnet et al., 2014; Sudo et al., 2004).
 371 Similarly, introduction to a wild/more diverse mouse microbiota protects against diet-induced obesity
 372 if introduced to CC mice on P2, but not if the introduction is delayed to P15 (Hild et al., 2021).

373 As mentioned above, the co-housing of GF mice with CC mice at birth reduces microglial numbers
 374 in comparison to GF mice when examined in adulthood. Our results suggest that the normalization of
 375 brain measures is not immediate. Similarly, delayed effects of microbiota colonization have been
 376 reported in adult mouse colon (El Aidy et al., 2012; Johansson et al., 2015). Because microglia
 377 participate in diverse neurodevelopmental processes, including the phagocytosis of dying cells,
 378 neuro/gliogenesis, and synaptic pruning (Caldero et al., 2009; Cunningham et al., 2013; Ferrer et al.,
 379 1990; Lenz and Nelson, 2018; Paolicelli et al., 2011; Schafer et al., 2012; Shigemoto-Mogami et al.,
 380 2014), any deviations from their typical state could have significant effects on brain development.

381 4.2 Bacterial load and composition

382 Bacterial load and composition were largely identical between GF→CC and CC→CC mice at P7,
 383 suggesting rapid colonization of the gut in mice gestated GF and introduced to a microbiota at birth.
 384 In agreement, El Aidy and colleagues (2012) conventionalized adult GF mice and found that bacterial

385 copy number reached its maximum after just one day. Overall, the species diversity observed in our
 386 study concurs with a previous report in neonatal mice showing low diversity at the end of the first
 387 week postnatal followed by a more stable and diverse community by weaning age (Pantoja-Feliciano
 388 et al., 2013). The predominant genera we observed are also in agreement with Pantoja-Feliciano et al.
 389 (2013), with dominance of *Lactobacillus* and *Streptococcus* during the first week postnatal. The
 390 prevalence of *Lactobacillus* may in part be due to its role inhibiting the growth of other bacterial
 391 communities via production of lactic acid from milk (Brownlie et al., 2022; Vandenberghe, 1993).

392 There were slight differences in alpha and beta diversity between CC→CC and GF→CC groups at
 393 P7 and ANCOM found a significant difference in one taxon: *L. reuteri* was greater in GF→CC than
 394 in CC→CC neonates. This finding is interesting given that administration of *L. reuteri* in its biofilm
 395 state normalizes microglia numbers in a mouse model of neonatal necrotizing enterocolitis (Wang et
 396 al., 2021). Therefore, it is tempting to speculate that *L. reuteri* may participate in the partial
 397 normalization of microglia seen in the PVN of GF→CC mice. However, *L. reuteri* was present in
 398 only half of the GF→CC mice at P7 and the presence of this species within the GF→CC group did
 399 not correlate significantly with microglial or cell death measures (not shown). We cannot rule out an
 400 association, however, as we may not have been sufficiently powered, especially for microglial
 401 measurements.

402 The GF→CC and CC→CC groups were already very similar in bacterial load and composition at P3.
 403 Nonetheless, we detected more pronounced differences between the groups at this age than at P7. The
 404 most notable was the predominance of *Streptococcus* in the CC→CC group, and as per the ANCOM
 405 results, this may in part relate to higher abundance of *S. acidominimus*. Interestingly, this species is
 406 sensitive to perinatal manipulations as shown by reduction in its numbers in the P2 mouse colon upon
 407 prenatal maternal stress (Jasarevic et al., 2018).

408 Overall, we did not find differences between true and sham cross-fostered mice for any of the
 409 variables assessed, with the exception of higher *Proteus* at P7 in the sham CC→CC group.
 410 Differences in gut microbiota composition due to cross-fostering were recently reported by Morais
 411 and colleagues (2020) in weanling and adult mice. However, in that study all non cross-fostered pups
 412 remained undisturbed with the birth mother. Here, both sham and true cross-fostered pups
 413 experienced maternal separation and a disinfection regime, which may have more nearly equalized
 414 stress of the procedure across groups.

415 4.3 Does the maternal microbiota program brain effects?

416 The similarities between GF→CC and CC→CC bacterial communities are not surprising, given that
 417 the fetus develops in a sterile (or nearly sterile) womb and CC and GF offspring are expected to be
 418 on equal footing with respect to direct exposure to intestinal bacteria throughout gestation. Although
 419 we did not assess maternal gut microbiota in our study, this microbiota was likely transferred
 420 promptly to GF→CC newborns via feces in the cage and foster dam behaviors: licking and grooming
 421 of pups after engaging in self-anogenital grooming and coprophagy. If so, our current results suggest
 422 that the maternal microbiota has programming effects on brain development *in utero*. In support, *in*
 423 *utero* effects of the maternal microbiota have been reported for microglia and other
 424 neurodevelopmental events, including axonogenesis and sympathetic nervous system development
 425 (Kimura et al., 2020; Thion et al., 2018; Vuong et al., 2020). In fact, Thion et al. (2018) reported
 426 higher microglial numbers in GF mice as early as E14. We previously observed no differences in
 427 microglia and cell death between GF and CC mice in the hours just before birth (Castillo-Ruiz et al.,

428 2018a) but this discrepancy may be due to the inflammation that occurs around time of parturition
 429 and that extends to the brain (Castillo-Ruiz et al., 2022; Castillo-Ruiz et al., 2018b).

430 Alternatively, it is possible that our cross-fostering manipulation (GF→CC) did not fully mimic the
 431 vertical transmission of microbes that occurs at birth in CC animals, and that the subtle differences
 432 we found in the microbiota could explain the persistence of the GF phenotype for most brain
 433 measures. There are at least two ways that the initial colonization of pups gestated and born GF
 434 versus CC may differ. First, mice born to a GF dam are not exposed to a vaginal microbiota during
 435 parturition. However, the maternal gut microbiota most powerfully shapes the newborn's gut
 436 microbiota, and most maternal vaginal microbes are only very transiently found in the neonate's gut
 437 (Ferretti et al., 2018; Jasarevic et al., 2021; Sakwinska et al., 2017). Nonetheless, the transient
 438 presence of vaginally-derived species could alter subsequent stages of gut colonization and affect
 439 development (Jasarevic et al., 2021). The two species identified as significantly different between
 440 GF→CC and CC→CC mice in our study: *S. acidominimus* at P3 and *L. reuteri* at P7, inhabit the gut
 441 but also may be found in the vagina (Leccese Terraf et al., 2016; Oh et al., 2010; Rabe et al., 1988;
 442 Smith and Sherman, 1939; Tannock, 1995). Thus, it is plausible that initial inoculation by vaginal
 443 microbes could account for differences in the abundance of these species, although this explanation is
 444 difficult to reconcile with the greater presence of *L. reuteri* in GF→CC mice.

445 A second possible reason that colonization during the first seven days postnatal might not be
 446 identical in GF→CC and CC→CC newborns is *in utero* effects of the maternal microbiota on
 447 development of the fetal intestine or immune system. If arriving bacteria encounter a different
 448 environment in the GF→CC versus CC→CC colon, this could affect the persistence of specific
 449 species. Indeed, the maternal microbiota *in utero* plays a role in the development of the immune
 450 system (Gomez de Agüero et al., 2016). Our results suggest that if there are differences, they have
 451 only subtle effects on colonization since bacterial load and composition were remarkably similar in
 452 the GF→CC and CC→CC groups.

453 Finally, we cannot ignore the possibility that the persistence of the GF phenotype in the GF→CC
 454 group may be related to differences in microbial populations that we did not assess (e.g., fungi,
 455 viruses, or protozoans). However, at least for microglia, bacterial normalization may be more
 456 important as bacterial metabolites rescue microglial effects in adult GF mice (Erny et al., 2021; Erny
 457 et al., 2015).

458 5 Conclusions

459 In sum, we find that brain effects of gestating GF persist during the first postnatal week, despite
 460 successful acquisition of a microbiota at birth. These findings argue for an important role of the
 461 maternal microbiota during fetal life on neonatal brain development. Because our results identify
 462 specific neurodevelopmental events that are sensitive to prenatal microbial exposure, this information
 463 could aid in interpretation of future studies that evaluate programming effects of microbiota on brain
 464 physiology and behavior. In addition, our work identifies two potential species: *L. reuteri* and *S.*
 465 *acidominimus*, to target in future experiments examining the role of specific bacteria in orchestrating
 466 neonatal brain development.

467 6 Conflict of Interest

468 The authors declare that the research was conducted in the absence of any commercial or financial
 469 relationships that could be construed as a potential conflict of interest.

470 **7 Author Contributions**

471 A.C.-R., and N.G.F. designed the experiments; A.C.-R., A.G., N.M.R, D.N.P., C.J.G.D, and B.C.
 472 performed the experiments; A.C.-R., H.S., C.J.G.D., and B.C. analyzed data; A.C.-R., and N.G.F.
 473 wrote the paper.

474 **8 Funding**

475 Support provided by NSF IOS-1557451 (N.G.F), NSF IOS-1933264 (A.C.-R., B.C., N.G.F.), a
 476 GSU's Brains and Behavior seed grant (N.G.F.), a Starting Grant from the European Research
 477 Council (ERC) under the European Union's Horizon 2020 research and innovation program ERC-
 478 2018-StG- 804135 INVADERS (B.C.), a Chaire d'Excellence from IdEx Université de Paris - ANR-
 479 18-IDEX-0001 (B.C.), an ANR grant EMULBIONT ANR-21-CE15-0042-01 (B.C.), and the national
 480 program "Microbiote" from INSERM (B.C.).

481 **9 Acknowledgments**

482 We thank Alexis Bretin, Samantha Spencer, Indiara Gonzalez-Ortiz, Kharli M. Major, Abby Cornell,
 483 and Samanyu Gangappa for their technical support.

484 **10 References**

485 Ahern, T.H., Krug, S., Carr, A.V., Murray, E.K., Fitzpatrick, E., Bengston, L., et al. (2013). Cell
 486 death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex. *J
 487 Comp Neurol* 521(11), 2551-2569. doi: 10.1002/cne.23298.

488 Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., et al. (2004). The gut
 489 microbiota as an environmental factor that regulates fat storage. *Proc Natl Acad Sci U S A* 101(44),
 490 15718-15723. doi: 10.1073/pnas.0407076101.

491 Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., et al. (2016). Antibiotics,
 492 birth mode, and diet shape microbiome maturation during early life. *Sci Transl Med* 8(343),
 493 343ra382. doi: 10.1126/scitranslmed.aad7121.

494 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., et al. (2019).
 495 Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. *Nat
 496 Biotechnol* 37(8), 852-857. doi: 10.1038/s41587-019-0209-9.

497 Brownlie, E.J.E., Chaharlangi, D., Wong, E.O., Kim, D., Navarre, W.W. (2022). Acids produced by
 498 lactobacilli inhibit the growth of commensal *Lachnospiraceae* and S24-7 bacteria. *Gut Microbes*
 499 14(1), 2046452. doi: 10.1080/19490976.2022.2046452.

500 Caldero, J., Brunet, N., Ciutat, D., Hereu, M., Esquerda, J.E. (2009). Development of microglia in the
 501 chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. *J
 502 Neurosci Res* 87(11), 2447-2466. doi: 10.1002/jnr.22084.

503 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., Holmes, S.P. (2016).
 504 DADA2: High-resolution sample inference from Illumina amplicon data. *Nat Methods* 13(7), 581-
 505 583. doi: 10.1038/nmeth.3869.

506 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012).
 507 Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.
 508 *ISME J* 6(8), 1621-1624. doi: 10.1038/ismej.2012.8.

509 Castillo-Ruiz, A., Cisternas, C.D., Sturgeon, H., Forger, N.G. (2022). Birth triggers an inflammatory
 510 response in the neonatal periphery and brain. *Brain Behav Immun* 104, 122-136. doi:
 511 10.1016/j.bbi.2022.05.021.

512 Castillo-Ruiz, A., Mosley, M., George, A.J., Mussaji, L.F., Fullerton, E.F., Ruszkowski, E.M., et al.
 513 (2018a). The microbiota influences cell death and microglial colonization in the perinatal mouse
 514 brain. *Brain Behav Immun* 67, 218-229. doi: 10.1016/j.bbi.2017.08.027.

515 Castillo-Ruiz, A., Mosley, M., Jacobs, A.J., Hoffiz, Y.C., Forger, N.G. (2018b). Birth delivery mode
 516 alters perinatal cell death in the mouse brain. *Proc Natl Acad Sci U S A* 115(46), 11826-11831. doi:
 517 10.1073/pnas.1811962115.

518 Chen, C.M., Chou, H.C., Yang, Y.S.H. (2021a). Maternal antibiotic treatment disrupts the intestinal
 519 microbiota and intestinal development in neonatal mice. *Front Microbiol* 12, 684233. doi:
 520 10.3389/fmicb.2021.684233.

521 Chen, C.M., Yang, Y.S.H., Chou, H.C. (2021b). Maternal antibiotic exposure disrupts microbiota
 522 and exacerbates hyperoxia-induced lung injury in neonatal mice. *Pediatr Res* 90(4), 776-783. doi:
 523 10.1038/s41390-020-01335-z.

524 Christensen, L.B., Woods, T.A., Carmody, A.B., Caughey, B., Peterson, K.E. (2014). Age-related
 525 differences in neuroinflammatory responses associated with a distinct profile of regulatory markers
 526 on neonatal microglia. *J Neuroinflammation* 11, 70. doi: 10.1186/1742-2094-11-70.

527 Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., et al. (2013). The
 528 microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-
 529 dependent manner. *Mol Psychiatry* 18(6), 666-673. doi: 10.1038/mp.2012.77.

530 Crain, J.M., Nikodemova, M., Watters, J.J. (2013). Microglia express distinct M1 and M2 phenotypic
 531 markers in the postnatal and adult central nervous system in male and female mice. *J Neurosci Res*
 532 91(9), 1143-1151. doi: 10.1002/jnr.23242.

533 Cryan, J.F., Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on
 534 brain and behaviour. *Nat Rev Neurosci* 13(10), 701-712. doi: 10.1038/nrn3346.

535 Cunningham, C.L., Martinez-Cerdeno, V., Noctor, S.C. (2013). Microglia regulate the number of
 536 neural precursor cells in the developing cerebral cortex. *J Neurosci* 33(10), 4216-4233. doi:
 537 10.1523/jneurosci.3441-12.2013.

538 Dalmau, I., Vela, J.M., Gonzalez, B., Finsen, B., Castellano, B. (2003). Dynamics of microglia in the
 539 developing rat brain. *J Comp Neurol* 458(2), 144-157. doi: 10.1002/cne.10572.

540 Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F. (2014). Microbiota is essential for
 541 social development in the mouse. *Mol Psychiatry* 19(2), 146-148. doi: 10.1038/mp.2013.65.

542 Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., et al. (2011). Normal
 543 gut microbiota modulates brain development and behavior. *Proc Natl Acad Sci U S A* 108(7), 3047-
 544 3052. doi: 10.1073/pnas.1010529108.

545 El Aidy, S., van Baarlen, P., Derrien, M., Lindenbergh-Kortleve, D.J., Hooiveld, G., Levenez, F., et
 546 al. (2012). Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of
 547 immune homeostasis in conventionalized mice. *Mucosal Immunol* 5(5), 567-579. doi:
 548 10.1038/mi.2012.32.

549 Erny, D., Dokalis, N., Mezo, C., Castoldi, A., Mossad, O., Staszewski, O., et al. (2021). Microbiota-
 550 derived acetate enables the metabolic fitness of the brain innate immune system during health and
 551 disease. *Cell Metab* 33(11), 2260-2276 e2267. doi: 10.1016/j.cmet.2021.10.010.

552 Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., et al. (2015).
 553 Host microbiota constantly control maturation and function of microglia in the CNS. *Nat Neurosci*
 554 18(7), 965-977. doi: 10.1038/nn.4030.

555 Ferrer, I., Bernet, E., Soriano, E., del Rio, T., Fonseca, M. (1990). Naturally occurring cell death in
 556 the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. *Neuroscience* 39(2),
 557 451-458.

558 Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., et al. (2018). Mother-to-infant
 559 microbial transmission from different body sites shapes the developing infant gut microbiome. *Cell*
 560 *Host Microbe* 24(1), 133-145 e135. doi: 10.1016/j.chom.2018.06.005.

561 Fleissner, C.K., Huebel, N., Abd El-Bary, M.M., Loh, G., Klaus, S., Blaut, M. (2010). Absence of
 562 intestinal microbiota does not protect mice from diet-induced obesity. *Br J Nutr* 104(6), 919-929.
 563 doi: 10.1017/S0007114510001303.

564 Frahm, K.A., Schow, M.J., Tobet, S.A. (2012). The vasculature within the paraventricular nucleus of
 565 the hypothalamus in mice varies as a function of development, subnuclear location, and GABA
 566 signaling. *Horm Metab Res* 44(8), 619-624. doi: 10.1055/s-0032-1304624.

567 Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., et al. (2014). The
 568 short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. *Nat Commun* 5,
 569 3611. doi: 10.1038/ncomms4611.

570 Gomez de Agüero, M., Ganal-Vonarburg, S.C., Fuhrer, T., Rupp, S., Uchimura, Y., Li, H., et al.
 571 (2016). The maternal microbiota drives early postnatal innate immune development. *Science*
 572 351(6279), 1296-1302. doi: 10.1126/science.aad2571.

573 Grahn, N., Olofsson, M., Ellnebo-Svedlund, K., Monstein, H.J., Jonasson, J. (2003). Identification of
 574 mixed bacterial DNA contamination in broad-range PCR amplification of 16S rDNA V1 and V3
 575 variable regions by pyrosequencing of cloned amplicons. *FEMS Microbiol Lett* 219(1), 87-91. doi:
 576 10.1016/S0378-1097(02)01190-4.

577 Hild, B., Dreier, M.S., Oh, J.H., McCulloch, J.A., Badger, J.H., Guo, J., et al. (2021). Neonatal
 578 exposure to a wild-derived microbiome protects mice against diet-induced obesity. *Nat Metab* 3(8),
 579 1042-1057. doi: 10.1038/s42255-021-00439-y.

580 Humann, J., Mann, B., Gao, G., Moresco, P., Ramahi, J., Loh, L.N., et al. (2016). Bacterial
 581 peptidoglycan traverses the placenta to induce fetal neuroproliferation and aberrant postnatal
 582 behavior. *Cell Host Microbe* 19(6), 901. doi: 10.1016/j.chom.2016.05.017.

583 Jasarevic, E., Hill, E.M., Kane, P.J., Rutt, L., Gyles, T., Folts, L., et al. (2021). The composition of
 584 human vaginal microbiota transferred at birth affects offspring health in a mouse model. *Nat*
 585 *Commun* 12(1), 6289. doi: 10.1038/s41467-021-26634-9.

586 Jasarevic, E., Howard, C.D., Morrison, K., Misic, A., Weinkopff, T., Scott, P., et al. (2018). The
 587 maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and
 588 hypothalamus. *Nat Neurosci* 21(8), 1061-1071. doi: 10.1038/s41593-018-0182-5.

589 Johansson, M.E., Jakobsson, H.E., Holmen-Larsson, J., Schutte, A., Ermund, A., Rodriguez-Pineiro,
 590 A.M., et al. (2015). Normalization of host intestinal mucus layers requires long-term microbial
 591 colonization. *Cell Host Microbe* 18(5), 582-592. doi: 10.1016/j.chom.2015.10.007.

592 Kawase, T., Nagasawa, M., Ikeda, H., Yasuo, S., Koga, Y., Furuse, M. (2017). Gut microbiota of
 593 mice putatively modifies amino acid metabolism in the host brain. *Br J Nutr* 117(6), 775-783. doi:
 594 10.1017/S0007114517000678.

595 Khosravi, Y., Seow, S.W., Amoyo, A.A., Chiow, K.H., Tan, T.L., Wong, W.Y., et al. (2015).
 596 *Helicobacter pylori* infection can affect energy modulating hormones and body weight in germ free
 597 mice. *Sci Rep* 5, 8731. doi: 10.1038/srep08731.

598 Kim, S., Kim, H., Yim, Y.S., Ha, S., Atarashi, K., Tan, T.G., et al. (2017). Maternal gut bacteria
 599 promote neurodevelopmental abnormalities in mouse offspring. *Nature* 549(7673), 528-532. doi:
 600 10.1038/nature23910.

601 Kimura, I., Miyamoto, J., Ohue-Kitano, R., Watanabe, K., Yamada, T., Onuki, M., et al. (2020).
 602 Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. *Science*
 603 367(6481). doi: 10.1126/science.aaw8429.

604 Lai, A.Y., Dibal, C.D., Armitage, G.A., Winship, I.R., Todd, K.G. (2013). Distinct activation profiles
 605 in microglia of different ages: a systematic study in isolated embryonic to aged microglial cultures.
 606 *Neuroscience* 254, 185-195. doi: 10.1016/j.neuroscience.2013.09.010.

607 Leccese Terraf, M.C., Juarez Tomas, M.S., Rault, L., Le Loir, Y., Even, S., Nader-Macias, M.E.
 608 (2016). Biofilms of vaginal *Lactobacillus reuteri* CRL 1324 and *Lactobacillus rhamnosus* CRL
 609 1332: kinetics of formation and matrix characterization. *Arch Microbiol* 198(7), 689-700. doi:
 610 10.1007/s00203-016-1225-5.

611 Leclercq, S., Mian, F.M., Stanisz, A.M., Bindels, L.B., Cambier, E., Ben-Amram, H., et al. (2017).
 612 Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines
 613 and behavior. *Nat Commun* 8, 15062. doi: 10.1038/ncomms15062.

614 Ledger, W.J., Blaser, M.J. (2013). Are we using too many antibiotics during pregnancy? *BJOG*
 615 120(12), 1450-1452. doi: 10.1111/1471-0528.12371.

616 Lenz, K.M., Nelson, L.H. (2018). Microglia and beyond: Innate immune cells as regulators of brain
 617 development and behavioral function. *Front Immunol* 9, 698. doi: 10.3389/fimmu.2018.00698.

618 Lynch, C.M.K., Cowan, C.S.M., Bastiaanssen, T.F.S., Moloney, G.M., Theune, N., van de Wouw,
 619 M., et al. (2023). Critical windows of early-life microbiota disruption on behaviour, neuroimmune
 620 function, and neurodevelopment. *Brain Behav Immun* 108, 309-327. doi: 10.1016/j.bbi.2022.12.008.

621 Martinez de Tejada, B. (2014). Antibiotic use and misuse during pregnancy and delivery: benefits
 622 and risks. *Int J Environ Res Public Health* 11(8), 7993-8009. doi: 10.3390/ijerph110807993.

623 Matcovitch-Natan, O., Winter, D.R., Giladi, A., Vargas Aguilar, S., Spinrad, A., Sarrazin, S., et al.
 624 (2016). Microglia development follows a stepwise program to regulate brain homeostasis. *Science*
 625 353(6301), aad8670. doi: 10.1126/science.aad8670.

626 McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., et al. (2012).
 627 An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of
 628 bacteria and archaea. *ISME J* 6(3), 610-618. doi: 10.1038/ismej.2011.139.

629 Menendez, A., Alvarez-Uria, M. (1987). The development of vascularization in the postnatal rat
 630 paraventricular nucleus: a morphometric analysis. *J Hirnforsch* 28(3), 325-329.

631 Morais, L.H., Golubeva, A.V., Casey, S., Scott, K.A., Ramos Costa, A.P., Moloney, G.M., et al.
 632 (2021). Early-life oxytocin attenuates the social deficits induced by caesarean-section delivery in the
 633 mouse. *Neuropsychopharmacology* 46(11), 1958-1968. doi: 10.1038/s41386-021-01040-3.

634 Morais, L.H., Golubeva, A.V., Moloney, G.M., Moya-Perez, A., Ventura-Silva, A.P., Arboleya, S., et
 635 al. (2020). Enduring behavioral effects induced by birth by caesarean section in the mouse. *Curr Biol*
 636 30(19), 3761-3774 e3766. doi: 10.1016/j.cub.2020.07.044.

637 Mosley, M., Shah, C., Morse, K.A., Miloro, S.A., Holmes, M.M., Ahern, T.H., et al. (2017). Patterns
638 of cell death in the perinatal mouse forebrain. *J Comp Neurol* 525(1), 47-64. doi: 10.1002/cne.24041.

639 O'Connor, R., Moloney, G.M., Fulling, C., O'Riordan, K.J., Fitzgerald, P., Bastiaanssen, T.F.S., et al.
640 (2021). Maternal antibiotic administration during a critical developmental window has enduring
641 neurobehavioural effects in offspring mice. *Behav Brain Res* 404, 113156. doi:
642 10.1016/j.bbr.2021.113156.

643 Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., O'Leary, O.F. (2015). Adult
644 hippocampal neurogenesis is regulated by the microbiome. *Biol Psychiatry* 78(4), e7-9. doi:
645 10.1016/j.biopsych.2014.12.023.

646 Oh, P.L., Benson, A.K., Peterson, D.A., Patil, P.B., Moriyama, E.N., Roos, S., et al. (2010).
647 Diversification of the gut symbiont *Lactobacillus reuteri* as a result of host-driven evolution. *ISME J*
648 4(3), 377-387. doi: 10.1038/ismej.2009.123.

649 Olomu, I.N., Pena-Cortes, L.C., Long, R.A., Vyas, A., Krichevskiy, O., Luellwitz, R., et al. (2020).
650 Elimination of "kitome" and "splashome" contamination results in lack of detection of a unique
651 placental microbiome. *BMC Microbiol* 20(1), 157. doi: 10.1186/s12866-020-01839-y.

652 Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., et al. (2012). Microbial exposure
653 during early life has persistent effects on natural killer T cell function. *Science* 336(6080), 489-493.
654 doi: 10.1126/science.1219328.

655 Pantoja-Feliciano, I.G., Clemente, J.C., Costello, E.K., Perez, M.E., Blaser, M.J., Knight, R., et al.
656 (2013). Biphasic assembly of the murine intestinal microbiota during early development. *ISME J*
657 7(6), 1112-1115. doi: 10.1038/ismej.2013.15.

658 Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., et al. (2011).
659 Synaptic pruning by microglia is necessary for normal brain development. *Science* 333(6048), 1456-
660 1458. doi: 10.1126/science.1202529.

661 Paxinos, G., Halliday, G., Watson, C., Koutcherov, Y., Wang, H.Q. (2007). Atlas of the developing
662 mouse brain at E17.5, P0, and P6. Elsevier, San Diego.

663 Pronovost, G.N., Hsiao, E.Y. (2019). Perinatal interactions between the microbiome, immunity, and
664 neurodevelopment. *Immunity* 50(1), 18-36. doi: 10.1016/j.immuni.2018.11.016.

665 Rabe, L.K., Winterscheid, K.K., Hillier, S.L. (1988). Association of viridans group streptococci from
666 pregnant women with bacterial vaginosis and upper genital tract infection. *J Clin Microbiol* 26(6),
667 1156-1160. doi: 10.1128/jcm.26.6.1156-1160.1988.

668 Reemst, K., Noctor, S.C., Lucassen, P.J., Hol, E.M. (2016). The indispensable roles of microglia and
669 astrocytes during brain development. *Front Hum Neurosci* 10, 566. doi: 10.3389/fnhum.2016.00566.

670 Sakwinska, O., Foata, F., Berger, B., Brussow, H., Combremont, S., Mercenier, A., et al. (2017).
671 Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?
672 *Benef Microbes* 8(5), 763-778. doi: 10.3920/BM2017.0064.

673 Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., et al.
674 (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.
675 *Neuron* 74(4), 691-705. doi: 10.1016/j.neuron.2012.03.026.

676 Schulfer, A.F., Battaglia, T., Alvarez, Y., Bijnens, L., Ruiz, V.E., Ho, M., et al. (2018).
677 Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. *Nat*
678 *Microbiol* 3(2), 234-242. doi: 10.1038/s41564-017-0075-5.

679 Schwarz, J.M., Sholar, P.W., Bilbo, S.D. (2012). Sex differences in microglial colonization of the
680 developing rat brain. *J Neurochem* 120(6), 948-963. doi: 10.1111/j.1471-4159.2011.07630.x.

681 Selwyn, F.P., Csanaky, I.L., Zhang, Y., Klaassen, C.D. (2015). Importance of large intestine in
682 regulating bile acids and glucagon-like peptide-1 in germ-free mice. *Drug Metab Dispos* 43(10),
683 1544-1556. doi: 10.1124/dmd.115.065276.

684 Sender, R., Fuchs, S., Milo, R. (2016). Revised estimates for the number of human and bacteria cells
685 in the body. *PLoS Biol* 14(8), e1002533. doi: 10.1371/journal.pbio.1002533.

686 Sharaf, A., Kriegstein, K., Spittau, B. (2013). Distribution of microglia in the postnatal murine
687 nigrostriatal system. *Cell Tissue Res* 351(3), 373-382. doi: 10.1007/s00441-012-1537-y.

688 Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J.E., Sekino, Y., Sato, K. (2014). Microglia
689 enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. *J Neurosci*
690 34(6), 2231-2243. doi: 10.1523/jneurosci.1619-13.2014.

691 Smith, F.A., Sherman, J.M. (1939). *Streptococcus acidominimus*. *J Infect Dis* 65(3), 301-305. doi:
692 10.1093/infdis/65.3.301.

693 Strahan, J.A., Walker, W.H., 2nd, Montgomery, T.R., Forger, N.G. (2017). Minocycline causes
694 widespread cell death and increases microglial labeling in the neonatal mouse brain. *Dev Neurobiol*
695 77(6), 753-766. doi: 10.1002/dneu.22457.

696 Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., et al. (2004). Postnatal microbial
697 colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. *J
698 Physiol* 558(Pt 1), 263-275. doi: 10.1113/jphysiol.2004.063388.

699 Tannock, G. (1995). "The microecology of lactic acid-producing bacteria in the gastrointestinal
700 tract," in 8. Probiotics: Prospects of use in opportunistic infections, eds. Fuller, R., Heidt, P.J., Rusch,
701 V., van der Waaij, D. Herborn-Dill, Institute for Microbiology and Biochemistry.

702 Thion, M.S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., et al. (2018).
703 Microbiome influences prenatal and adult microglia in a sex-specific manner. *Cell* 172(3), 500-516
704 e516. doi: 10.1016/j.cell.2017.11.042.

705 Tochitani, S., Ikeno, T., Ito, T., Sakurai, A., Yamauchi, T., Matsuzaki, H. (2016). Administration of
706 non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with
707 alterations in offspring behavior. *PLoS One* 11(1), e0138293. doi: 10.1371/journal.pone.0138293.

708 van den Pol, A.N. (1982). The magnocellular and parvocellular paraventricular nucleus of rat:
709 intrinsic organization. *J Comp Neurol* 206(4), 317-345. doi: 10.1002/cne.902060402.

710 van der Horst, J., Buijs, M.J., Laine, M.L., Wismeijer, D., Loos, B.G., Crielaard, W., et al. (2013).
711 Sterile paper points as a bacterial DNA-contamination source in microbiome profiles of clinical
712 samples. *J Dent* 41(12), 1297-1301. doi: 10.1016/j.jdent.2013.10.008.

713 Vandenberghe, P.A. (1993). Lactic acid bacteria, their metabolic products and interference with
714 microbial growth. *FEMS Microbiol Rev* 12(1-3), 221-237. doi: 10.1111/j.1574-6976.1993.tb00020.x.

715 Vuong, H.E., Pronovost, G.N., Williams, D.W., Coley, E.J.L., Siegler, E.L., Qiu, A., et al. (2020).
716 The maternal microbiome modulates fetal neurodevelopment in mice. *Nature* 586(7828), 281-286.
717 doi: 10.1038/s41586-020-2745-3.

718 Wang, Y., Jaggers, R.M., Mar, P., Galley, J.D., Shaffer, T., Rajab, A., et al. (2021). *Lactobacillus
719 reuteri* in its biofilm state promotes neurodevelopment after experimental necrotizing enterocolitis in
720 rats. *Brain Behav Immun Health* 14. doi: 10.1016/j.bbih.2021.100256.

721 Zuloaga, D.G., Carbone, D.L., Hiroi, R., Chong, D.L., Handa, R.J. (2011). Dexamethasone induces
722 apoptosis in the developing rat amygdala in an age-, region-, and sex-specific manner. *Neuroscience*
723 199, 535-547. doi: 10.1016/j.neuroscience.2011.09.052.

724

725 **Figures legends**

726 **Figure 1.** Experimental design. GF newborns were cross-fostered immediately after birth to CC
 727 dams (GF→CC group) and compared to offspring fostered within the same microbiota status
 728 (CC→CC, GF→GF groups).

729 **Figure 2.** Microglial effects of gestating germ-free persist in mouse neonates despite introduction to
 730 a microbiota at birth. **(A)** Photomicrographs of Iba1+ stained tissue in representative CC→CC,
 731 GF→GF, and GF→CC mice, showing the brain regions analyzed: CA1 oriens, S1, PVN, and ARC
 732 (regions smaller than field of view indicated with black lines). 3V, third ventricle. Scale bar= 100
 733 μm^2 . **(B-C)** Microglial density was higher in groups gestated GF in the CA1 oriens **(B)** and S1 **(C)**,
 734 regardless of introduction to a microbiota at birth in the GF→CC group. **(D)** In contrast, microglial
 735 density in the PVN was no different between GF→CC and either control group, suggesting partial
 736 normalization of the microglial phenotype by microbiota introduction at birth. **(E)** No differences
 737 between groups were seen in the ARC. Group means with different letters are significantly different
 738 from each other. Mean + SEM and individual data points are depicted, with gray symbols
 739 representing sham cross-fostered mice in control groups.

740 **Figure 3.** Cell death effects of gestating germ-free persist in the ARC of mouse neonates despite
 741 introduction to a microbiota at birth. **(A)** Photomicrographs of AC3+ stained tissue (counterstained
 742 with thionin) in representative CC→CC, GF→GF, and GF→CC mice, showing the brain regions
 743 analyzed: ARC, CA1 oriens, and PVN (all regions indicated with black lines). Arrowheads point to
 744 cells shown at higher magnification in the insets. 3V, third ventricle. Scale bar= 100 μm (main
 745 photomicrograph) and 20 μm (insets). **(B)** Cell death density was lower in groups gestated GF in the
 746 ARC, regardless of introduction to a microbiota at birth in the GF→CC group. **(C-D)** Cell death
 747 density did not differ between groups in the CA1 oriens **(C)** or PVN **(D)**. Group means with different
 748 letters are significantly different from each other. Mean + SEM and individual data points are
 749 depicted, with gray symbols representing sham cross-fostered mice in control groups.

750 **Figure 4.** Effects of gestating germ-free on body weight and forebrain size persist in mouse neonates
 751 despite introduction to a microbiota at birth. Body weight **(A)** and forebrain size **(B)** were greater in
 752 GF→GF and GF→CC mice, in comparison to the CC→CC group. Group means with different
 753 letters are significantly different from each other. Mean + SEM and individual data points are
 754 depicted, with gray symbols representing sham cross-fostered mice in control groups.

755 **Figure 5.** Introduction to a microbiota at birth normalizes the bacterial load of mice gestated germ-
 756 free at P7. **(A)** Relative quantification of the 16S rRNA gene from colon content showed similar
 757 levels of bacterial DNA in the groups harboring microbiota. The GF→GF group was used as
 758 reference group for fold change calculations. **(B)** Size of the colon content sample was unlikely to
 759 affect the assessment of bacterial load as there were no differences in this measure between groups.
 760 Group means with different letters are significantly different from each other. Mean + SEM and
 761 individual data points are depicted, with gray symbols representing sham cross-fostered mice in
 762 control groups.

763 **Figure 6.** Introduction to a microbiota at birth largely normalizes bacterial composition of mice
 764 gestated germ-free by P7. **(A)** Measures of alpha-diversity revealed no difference between CC→CC
 765 and GF→CC groups in the number (richness) of ASVs (top). In contrast, when richness and
 766 abundance were considered by using the Shannon diversity index, the GF→CC group showed
 767 slightly lower diversity (bottom). Mean + SEM and individual data points are depicted, with gray
 768 symbols representing sham cross-fostered mice in control groups. **(B)** Relative abundance of bacterial
 769 groups per sample (columns), showing that overall bacterial composition was normalized in the
 770 GF→CC group as this group was similar to the CC→CC controls but markedly different from
 771 negative control samples and GF→GF controls. Asterisks identify the sham cross-fostered mice in
 772 control groups. The 12 most abundant taxa are shown in the color key. Sequences were classified to
 773 the lowest taxonomic level that could confidently be identified. f, family; g, genus. **(C)** PCoA plots
 774 based on Bray-Curtis dissimilarity, showing that GF→CC and CC→CC groups were similar in
 775 bacterial community composition as individual samples (symbols) clustered together but separate
 776 from controls (clustering indicated with ellipses). Note that most samples for negative control and
 777 GF→GF groups overlap due to tight clustering; n = 6 and 10 for those groups, respectively. Percent
 778 of variance explained by principal coordinates is indicated on the axes. **(D)** Boxplots of the number
 779 of reads per sample of the ASV identified as *Lactobacillus reuteri*. While the CC→CC group did not
 780 return positive *L. reuteri* reads, half of the samples in the GF→CC group did.

781 **Figure 7.** Introduction to a microbiota at birth normalizes the bacterial load of mice gestated germ-
 782 free at P3. **(A)** Relative quantification of the 16S rRNA gene from colon content showed similar
 783 levels of bacterial DNA in the groups harboring microbiota. GF→GF group was used as reference
 784 group for fold change calculations. **(B)** There were no differences in weight of the colonic content
 785 between groups. Group means with different letters are significantly different from each other. Mean
 786 + SEM and individual data points are depicted, with gray symbols representing sham cross-fostered
 787 mice in control groups.

788 **Figure 8.** Introduction to a microbiota at birth largely normalizes bacterial composition of mice
 789 gestated germ-free by P3. **(A)** Measures of alpha-diversity revealed a difference between CC→CC
 790 and GF→CC groups in the number (richness) of ASVs: the CC→CC group showed doubled the
 791 number of ASVs (top). In contrast, when richness and abundance were considered by using the
 792 Shannon diversity index, there was no difference between groups (bottom). Mean + SEM and
 793 individual data points are depicted, with gray symbols representing sham cross-fostered mice in
 794 control groups. **(B)** Relative abundance of bacterial groups per sample (columns), showing that
 795 overall bacterial composition was similar between GF→CC and CC→CC groups, with the exception
 796 of higher abundance of *Streptococcus* in the CC→CC group. These two groups, however, were
 797 markedly different from negative and GF→GF groups. Asterisks indicate the sham cross-fostered
 798 mice in control groups. The 12 most abundant taxa are shown in the color key. Sequences were
 799 classified to the lowest taxonomic level they could confidently be identified. f, family; g, genus. **(C)**
 800 PCoA plots based on Bray-Curtis dissimilarity, showing that GF→CC and CC→CC individual
 801 samples (symbols) clustered somewhat further apart than at P7 but markedly separate from controls
 802 (clustering indicated with ellipses). Note that most samples for negative control and GF→GF groups
 803 overlap due to tight clustering; n = 6 and 14 in those groups, respectively. Percent of variance

804 explained by principal coordinates is indicated on the axes. (D) Boxplots of the number of reads per
805 sample of the ASV identified as *Streptococcus acidominimus*. Gray symbols represent sham, cross-
806 fostering in control mice.