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Abstract

We study the learnability of English filler–gap dependencies and the “island” con-

straints on them by assessing the generalizations made by autoregressive (incremental)

language models that use deep learning to predict the next word given preceding con-

text. Using factorial tests inspired by experimental psycholinguistics, we find that

models acquire not only the basic contingency between fillers and gaps, but also the

unboundedness and hierarchical constraints implicated in the dependency. We evalu-

ate a model’s acquisition of island constraints by demonstrating that its expectation

for a filler–gap contingency is attenuated within an island environment. Our results

provide empirical evidence against the Argument from the Poverty of the Stimulus for

this particular structure.

Keywords: Syntactic Islands, Neural Networks, Learnability, Deep Learning, Filler–Gap

Dependency

1 Introduction

The English filler–gap dependency is the co-variation between a wh-word or phrase (a filler)

and an empty syntactic position (a gap).1 It is special in that it can span over a potentially

unbounded number of nodes in a syntactic tree, yet it is subject to a subtle set of constraints

1This phenomenon has been referred to by multiple names, including wh-dependencies, wh-movement

and the filler—gap dependency. We elect to use the filler—gap terminology because it is relatively theory-

neutral, and it highlights the entities that play the biggest role in our behavioral tests, the filler and the gap.
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known as island constraints (Ross, 1967). For example, in the grammatical sentence in (1-a),

the dependency between the filler and the gap spans two sentential embeddings. However,

a similar sentence, (1-b), is rendered ungrammatical when the gap site resides within a

syntactic ‘island’, in this case a Complex Noun Phrase.

(1) a. I know what the guide said his friend saw the lion devour last night.

b. *I know what the guide saw the lion that devoured last night.

A successful theory of the filler–gap dependency and its associated constraints must deal

with two interrelated facts: First, despite some inter-language variability, the same set of

structures arise as syntactic islands in language after language. Second, despite noisy and

primarily only indirect negative evidence from caregivers, children within an individual lan-

guage community tend to coordinate on the same set of islands. This second issue, that of

learnability, will be the main focus of this paper.

There are two approaches around which theories about syntactic islands have developed—

linguistic nativism and empiricism. Nativism refers to the hypothesis that innate, language-

specific constraints aid the child language-learner by reducing their hypothesis space during

the acquisition process. Under this approach the ungrammaticality of (1-b) in adult gram-

mars arises from the fact that learners never hypothesize Complex NPs such as [NP the

lion [CP that ...]] as host sites for gaps when they are learning the syntax of their

language. Historically playing a contrastive role to the nativist theories are a cluster of

theories—variously characterized as functionalist or empiricist—which posit that language

structure is an emergent property of language use. Central to this approach is the hypothesis

that some aspects of syntax are acquired due to domain general (i.e. non-linguistic) cognitive

learning abilities (Clark and Lappin, 2010; Yang and Piantadosi, 2022). Contributions to

this debate have been made in a number of ways: There are language learning experiments

in adults and children (Otsu, 1981; Goodluck et al., 1992; Culbertson et al., 2012); cross

linguistic analysis of phenomena (Richards, 2001); analytic arguments about learnability

(Gold, 1967; Chomsky, 1975); corpus analyses (Pullum and Scholz, 2002); and statistical

and computational modeling (Perfors et al., 2006; Pearl and Sprouse, 2013a). Here, we gain

‘Island constraints’ were first articulated from within theories that view the filler—gap dependency as one

of syntactic movement, but have since been used to describe restrictions on the dependency even by those

who do not subscribe to the ‘movement’ analysis (Pollard and Sag, 1994a)
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traction on this question through computational modeling. Our approach is to study what

syntactic generalizations are acquired by state-of-the-art algorithms developed to process

natural language text and trained on a childhood’s worth of data or more. By asking what

can be acquired by data-driven learning algorithms without any obvious domain-specific bi-

ases, we map out a lower-bound for learnability and clarify what (if anything) remains as a

good candidate for top-down innate constraints.

Our learning algorithms are all Language Models (LMs), models that define joint proba-

bilities over word sequences (Chen and Goodman, 1999). We present learning outcomes for

a variety of LMs that have two key properties: First, they are domain general (Clark and

Lappin, 2010) insofar as their architecture does not limit them to learning generalizations

about human languages, and have been successfully deployed to model data as disparate as

handwriting recognition, the stock market (Graves and Schmidhuber, 2009), roadside signs

(Arcos-Garćıa et al., 2018) and the structure of proteins (Rives et al., 2021). Second, they

are weakly biased (Lappin and Shieber, 2007) insofar as their initial states are chosen at

random, their inputs are all vectors of uniform length, and their internal states consist of

large matrices which are capable of approximating arbitrary functions.

In order to demonstrate acquisition of the filler–gap dependency, we present a general

computational method that could be deployed to test the learnability of many syntactic

structures. This method follows the approach of Elman (1990), whose basic insight is to treat

statistical models of language like human subjects in a psycholinguistics study. Following

Elman (and more recently Linzen et al. (2016) and Futrell et al. (2018, 2019)), we inspect the

word-by-word predictions of language models in controlled, factorized tests that are designed

to draw out what generalizations they have made about individual structural phenomena.

For this work, we base all of our tests on an experimental design common in psycholinguistics,

where test sentences take on structural properties based on two ‘crossed’ factors, which are

inspired by two separate predictions made by the grammar about the filler–gap dependency.

The first prediction stems from the fact that gaps require fillers to be properly licensed. If we

take a sentences such as (2-a) below, which includes both a filler and a gap, and change the

filler into a non-wh complementizer like “that”, the sentence is rendered ungrammatical, as

in (2-b). (In this and subsequent examples the underscores are for presentational purposes

only, and are not included in test items.) This grammaticality contrast holds only if the

matrix verb is obligatorily transitive: “I know that the lion ate yesterday” is grammatical.
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(2) a. I know what the lion devoured yesterday .

b. *I know that the lion devoured yesterday .

In order to assess whether the models have learned this first prediction, we inspect the

model’s predictions in the adverbial phrase modifier which occurs after the matrix verb,

such as “yesterday” in (2). If the models have learned that gaps are licensed only in the

presence of an upstream filler, than the transition devoured → yesterday which skips over an

overt NP object should have a higher probability in the context of a filler than in its absence.

That is, “yesterday” should be have a lower probability in (2-b) than in (2-a). Because this

prediction is about the effect of an upstream wh-word when a gap is present, we call it the

wh-effect in a +gap context.

The second prediction made by the grammar is that upstream fillers require downstream

gaps. If we take the grammatical sentence (3-a) and replace the that-complementizer with a

wh-complementizer as in (3-b), then the rule is violated and the sentence becomes ungram-

matical.

(3) a. I know that the lion devoured the gazelle yesterday.

b. *I know what the lion devoured the gazelle yesterday.

If models have learned that fillers require gaps, then after encountering a filler near the start

of the sentence, models should expect an empty argument structure position downstream,

and the filled object “the gazelle” should be more surprising in (3-b) than in (3-a). This

effect has been observed in humans and is called the filled-gap effect (Crain, 1985; Stowe,

1986). We call this difference the wh-effect in a −gap context.2 In order to test that the

model has learned both of these constraints simultaneously, we combine these two predictions

and look at the interaction between fillers and gaps, a schematic of which is given in Figure

2Strictly speaking, this behavioral trace is not necessitated by the grammar, but rather by grammatical

constraints combined with statistical knowledge that an object is likely to be gapped for an upstream filler

for which a gap has not already been encountered. Unlike in the +gap condition, where the sentence becomes

ungrammatical at the word yesterday, in the −gap condition sentence only becomes ungrammatical at the

period, when the expectation for gaps set up by the filler is not discharged. For an incremental statistical

processing model, lack of wh-effects in the −gap condition does not mean that the model has failed to

learn the proper generalization. However, strong wh-effects are evidence that the model has learned the

generalization that gaps follow fillers and is expecting a gap in that location.
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What (+filler) That (−filler)
. . .

NPdevoured

NP

what

✓

. . .

NPdevoured

NP

that

✗

+gap I know what the lion devoured

yesterday.

*I know that the lion devoured

yesterday.
. . .

NP

the gazelle

devoured

NP

what

✗

. . .

NP

the gazelle

devoured

NP

that

✓

−gap *I know what the lion devoured

the gazelle yesterday.

I know that the lion devoured

the gazelle yesterday.

Figure 1: Schematic demonstrating our 2× 2 interaction design for measuring the filler–gap

dependency. The portion of the sentence in which we measure surprisal is underlined.

1. If the correct generalization about filler–gap dependencies has been made, we predict

that there should be interaction between the presence of a filler and the presence of a gap,

whereby target sentence regions (either filled argument structure or post-gap material) are

less surprising when both are present than when just one is present.

So far we have focused on measuring the filler–gap dependency in structural positions

where it is licensed by the grammar. But more important for our theoretical objective

is whether language models learn the restrictions on this dependency, the so-called island

constraints. If models are learning that the co-variation between fillers and gaps does not

hold when gaps are in island positions, then two things should be true: First, when a gap
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is inside an island construction, the presence or absence of an upstream filler should have

no effect on its relative likelihood. Second, the presence of absence of an upstream filler

should not affect the relative surprisal of a filled argument structure position located inside

an island, either. Put another way, the wh-effects exemplified by the contrasts (2) and (3)

should disappear, and we would not expect an interactive relationship between the presence

of a filler and the presence of a gap. In practice, we use two metrics to determine whether

a model is showing sensitivity to island constraints: an absolute metric, that asks whether

wh-effects are at or very close to zero inside island configurations, and a relative metric, that

inspects the three-way interaction between fillers, gaps, and islands to test whether models

are more surprised at gaps inside islands compared to non island-violating minimal-pair

sentences.

We focus on seven of the most well-studied islands associated with syntactic constraints,

identified either by Ross (1967) or Huang (1982). They are:

(4) a. Adjunct Islands

*I know what the patron got mad after the librarian placed on the wrong shelf.

b. Complex NP Islands

*I know what the actress bought the painting that depicted yesterday.

c. Adjunct Islands

*I know what the man bought and at the antique shop.

d. Left Branch Islands

*I know how expensive you bought car last week.

e. Sentential Subject Islands

*I know who for the seniors to defeat will be trivial.

f. Subject Islands

*I know who the painting by fetched a high price.

g. Wh Islands

*I know who Alex said whether your friend insulted yesterday.

The rest of the paper will proceed as follows: In Section 2 we outline previous computa-

tional models of syntactic island acquisition. In Section 3 we present the general methods

employed, and introduce our three classes of learning algorithms: Simple n-gram models,

which serve as a baseline, and two machine learning architectures, Recurrent Neural Net-
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works and Transformers. In section 4 and 5 we present empirical findings demonstrating

that the models tested can learn many aspects of the filler–gap dependency, including its

hierarchical restrictions, potential unboundedness, as well as many of the related island con-

straints. Section 6 discusses implications from our modeling results, including for the most

influential analytic argument for linguistic nativism, the Argument from the Poverty of the

Stimulus (Chomsky, 1965). Section 7 concludes.

2 Background: Modeling Syntactic Islands

Island constraints were first introduced by Ross (1967), who analyzed them as a grammatical

phenomenon, specifically barriers to syntactic movement (“islands” being places from which

it is difficult to move).3 Although syntactic islands refer to a series of structural positions

that block multiple forms of movement (or, under non-movement approaches, multiple types

of dependencies), our focus here is on the filler–gap dependency, although we discuss impli-

cations for a broader range of dependencies in Section 6.2. Since their identification, islands

have “been regarded as excellent candidates for innate domain-specific constraints [because]

they are hard to learn, and they appear to apply in similar ways across languages.” (Phillips,

2013). Indeed, there are about a dozen different island constraints in English and they target

a seemingly arbitrary set of syntactic structures. Within syntactic theory, many of the most

influential proposals for innate, universal constraints have been developed to explain island

effects (Chomsky, 1964, 1973; Huang, 1982; Chomsky, 1986). For example, Chomsky (2005)

outlines five candidate constraints that were, in his view, the most successful attempts to

formulate various aspects of Universal Grammar from 1955–1977: “the A-over-A Principle,

conditions on wh-extraction from wh-phrases (relatives and interrogatives), simplification of

T-markers to base recursion [...] and cyclicity [...], later John Robert Ross’s (1967) classic

study of taxonomy of islands...” Of these, four (all but T-markers) were recruited to ex-

plain the distribution of the filler–gap dependency, a strong indication of its central role in

3There are a group of islands that arise due to semantic considerations (e.g. “How many miles didn’t

you run yesterday?”) (Dayal, 2016), which we do not address. Furthermore, competing with the gram-

matical analysis are “reductionist” accounts (Sprouse and Hornstein, 2013) such as the processing account

(Hofmeister and Sag, 2010; Hofmeister et al., 2013) and discourse-structural accounts (Ambridge and Gold-

berg, 2008; Ambridge et al., 2014). While these approaches are typically associated with empiricist positions,

grammatical and reductionist accounts could be articulated from both empiricist and nativist perspectives.
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Generative Linguistics.

The filler–gap dependency and its constraints have been studied extensively as a process-

ing phenomenon, as well. One key finding, here, is that after processing a filler, comprehen-

ders expect to find gaps subsequently and are surprised if they encounter filled argument

structures instead (the so-called “filled gap” effect). The filled-gap effect was initially iden-

tified with increased reading times at NPs and pronouns in English (Crain, 1985; Stowe,

1986), and has since been replicated in experiments using different modalities and process-

ing measures (Phillips, 2006; Garnsey et al., 1989; Kaan et al., 2000; Phillips et al., 2005;

Traxler and Pickering, 1996), and in different languages (Frazier, 1987; Aoshima et al., 2004;

Sekerina, 2003; Schlesewsky et al., 2000). The filled-gap effect is the inspiration behind

our wh-effect in the -gap condition. As far as we are aware, this paper is the first to

propose an analogous effect in +gap conditions, although we do not test it experimentally

with human subjects. A number of studies have investigated filled-gap effects inside islands,

beginning with Stowe (1986) (Experiment 2), who found no increased reading times for

pronouns within Complex NPs. Similar studies have shown that subject-verb plausibility

relations can affect the Filler–Gap dependency, but that these, too, are attenuated inside

island constructions (Traxler and Pickering, 1996; Phillips and Wagers, 2007) (although see

Pickering et al. (1994) and Clifton and Frazier (1989) for data that complicates this picture).

Because islands have long been considered one prime example of linguistic behavior

that could stem from innate, language-specific constraints, multiple researchers have asked

whether their distribution can be learned by computational models. Below we present an

overview of previous models of island acquisition. While these models represent a useful step

forward both methodologically and empirically, we argue that no work to-date has demon-

strated that the filler–gap dependency and island constraints can be acquired by a model

that is both domain general and weakly biased (in the sense introduced above). We start

with the model presented in Pearl and Sprouse (2013b). This model identifies islands by

tracking the syntactic container nodes, which are all the phrasal category nodes that dom-

inate a given gap site. An example of a syntactic parse and its container-node sequence is

given in (5).

(5) [CPWho did [IP she [V P think [CP [IP [NP the gift] [V P was [PP from ]]]]]]]?

start-IP-VP-CP-IP-VP-PP-end
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Pearl and Sprouse propose that children keep track of the linear order of container nodes,

and estimate the relative probability of a gap by multiplying the probabilities of individual

trigrams along the container node spine.4 Using this procedure, they estimate these probabil-

ities for gap sites from a portion of the CHILDES corpus, and demonstrate that they broadly

track human judgements. Pearl and Sprouse argue that the components of their algorithm

are either domain-general but innate (identify trigrams; calculate utterance probability) or

domain-specific but learned (parse utterances; use container-node sequence).5 Because ar-

guments for linguistic nativism must rely on both domain-specific and innate constraints,

they argue that their model provides evidence for a shift in the learnability status of island

constraints.

There has been some debate, however, about whether this model really constitutes a

domain-general learning algorithm (see especially Phillips, 2013). First, the ontological sta-

tus of its output is unclear: By comparing the probabilities assigned to sentences to human

acceptability judgements, Pearl and Sprouse (2013b) imply that the model assigns a score

something akin to grammaticality. However, the relationship between probability and gram-

maticality is not straightforward (Chomsky, 1957) and, as as pointed out in Phillips (2013),

the model will fail to generalize properly to sentences which are grammatical but very un-

likely, such as sententially-embedded gap sites of sufficient depth.6 One additional point

of criticism is that the model requires that language learners be able to parse sentences

into Penn-Treebank style parses in order to track container nodes. Their model, therefore,

does not answer the question about whether islands can be learned via a domain-general

algorithm, but rather whether island constraints can be learned by a parsing algorithm (or

an algorithm that employs a parser) without any further domain-specific stipulations. The

result of their study is a resounding yes, but instead of resolving the learnability status of

islands, it shuttles the debate from island constraints to one particular parse schema, and

whether or not it can be learned using only domain-general assumptions.

Other modeling approaches have used connectionist networks, as we do here. Chowdhury

4Under their model the relative probability of the gap in (5) is P (Start, IP,VP)× P (IP,VP,CP)× · · · ×
P (VP,PP, end).

5See the careful discussion in Section 6 of Pearl and Sprouse (2013a) for a item-by-item analysis of the

components of their model.
6Within their modeling setup, Pearl and Sprouse (2013b) avoid this concern by comparing the log-odds

of island violating sentences with minimal-pair counterparts of similar length.
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and Zamparelli (2018) assess how well the probabilities assigned to strings by a Recurrent

Neural Network language model compare to human acceptability judgements, including for

some island phenomena. Instead of looking at sentence regions, they look at whole sen-

tence probabilities, comparing target island sentences to non-island control sentences. They

demonstrate that models assign less total-sentence probability to sentences that violate is-

lands, like (6-a) compared to non-question affirmative sentences like (6-b), suggesting that

models might have acquired some sensitivity to islands. However, they complicate the story

by reporting total-level probability on yes-no question sentences such as (6-c). Even though

these sentences have no wh-movement and cannot violate islands, the model assigns them

probability in between the island-violating sentences and the assertion control sentences.

Chowdhury and Zamparelli conclude that the models have not learned generalized rules, but

are sensitive to the “cumulative effect of increasing syntactic complexity, plus position.” A

follow-up study (Chowdhury and Zamparelli, 2019) finds similar apparent island sensitivity

in relative clauses, but again complicates the story by showing similar sensitivity in control

conditions, where none would be expected under the hypothesis that they had learned island

constraints.

(6) a. What did you see the lion that caught ? [assertion ]

b. You saw the lion that caught the gazelle. [wh-question ]

c. Did you see the lion that caught the gazelle ? [y/n-question ]

While these results are interesting and demand further investigation, we believe that the

equation of whole-sentence probability and grammaticality has led the authors to too hasty

a conclusion. Just because models show sentence-level probability for yes/no questions that

is closer to island-violating sentences than assertions, does not mean that they have not

made accurate generalizations about syntactic islands. It may be the case that models

have learned the correct generalization for syntactic islands, and a different set of (perhaps

erroneous) generalizations pertaining to polar questions. More fine-grained experimentation,

which we present here, suggests that connectionist models can differentiate between different

types of syntactic complexity and different orderings of tokens, much like human sentence

processors.
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3 Methods

In this section, we will present the paradigm which we will use to assess the learning outcomes

of our models. Because our methodology is inspired by widely-used psycholinguistic methods,

we call this the “psycholinguistics paradigm” for model assessment. Below, we explain how

we deploy it on filler–gap dependency sentences and introduce our five models.7

3.1 Psycholinguistic Assessment of Language Models

Our learning models are all incremental Language Models, which have been trained to pro-

duce the probability of a token xi given its context x1 . . . xi−1 by providing a distribution

over P (xi | x1 . . . xi−1).
8 In order to uncover the models’ learning outcomes via behavioral

analysis, we follow a simple training/testing setup. Language models are trained on a large

corpus, and then tested on a suite of test items designed to test a particular grammatical

phenomenon. Models assign probabilities to each word in the test sentences, and these prob-

abilities are used to assess whether the model has successfully learned the phenomenon. Test

suite items have three crucial components: First, items in a test suite items are hand-crafted

7For a lucid introduction to neural network (a.k.a “deep learning”) models of language, as well as an

insightful overview into the decades-long relationship between generative and computational linguistics, see

Pater (2019).
8One possible concern for addressing issues of learnability with language models is that maximizing the

accuracy of conditional word predictions is a far cry from both parsing and assigning meaning to utterances.

We believe the language-modeling objective function is compelling for three reasons. First, it is clear that

humans are sensitive to the statistical regularities of their language and use them to make incremental

predictions during language learning and online comprehension (Levy, 2008; Hale, 2001). Infants as young

as eight months old pay attention to the statistical regularities in short spans of non-linguistic input (Saffran

et al., 1996), and in adults, gaze fixation on a token during reading is correlated to its conditional probability

(Smith and Levy, 2013; Wilcox et al., 2020). Second, selecting models that produce probabilities over

sentence parses or joint distributions over parses and strings would require committing to some syntactic

formalism during training. Because language models are supervised solely by surface strings, they can be

deployed more effectively in studies where it is important to remain theoretically neutral. Finally, because a

well-tuned language model is in principle compatible with multiple structural generalizations, some of them

non-hierarchical, language modeling offers a more distant form of supervision for syntactic generalization

than direct learning of grammatical structures or alternations themselves. Therefore, if models do display

humanlike behavior, this is stronger evidence that the proper structural generalizations can be learned from

the data.
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and carefully controlled to test for the same grammatical phenomenon, and include differ-

ent content words, so that model behavior can be abstract away from semantics. Second,

instead of looking at whole-sentence probabilities we look at probabilities of critical regions.

Third, we use balanced pairs of grammatical and ungrammatical sentences, and assess the

model’s relative probabilities between grammatical / ungrammatical conditions critical re-

gions, which itself is the same in both conditions. While some studies using this methodology

have elected to report accuracy scores (i.e. the proportion of the time the grammatical vari-

ant is more probable (Marvin and Linzen, 2018; Hu et al., 2020), we examine differences

in effect sizes between conditions. This means that models’ predictions must not only be

in the right direction, but they must be substantially different in magnitude. That is, a

model cannot appear to be ‘right’ if it assigns a probability of .4999 to the ungrammatical

continuation and .5001 to the grammatical continuation.

One reason why we believe that the psycholinguistic assessment of grammar presents a

productive step forward for theoretical linguists is that it is a way to assess the grammat-

ical generalizations made by contemporary Artificial Neural Network (ANN) models while

avoiding previous debates about what function, if any, relates probability to grammaticality.

By constructing carefully controlled items, we create tests where certain patterns of proba-

bility can only be produced if models have in some sense learned the relevant grammatical

generalizations. For a technical explanation of this intuition, as well as to explain how we

measure our target grammatical phenomenon, we turn to the filler–gap dependency in the

next section.

3.2 Measuring the Filler–Gap Dependency

Our goal is to understand the generalization that the models have made about latent struc-

tural properties, namely whether a sentence contains a gap or not. The particular generaliza-

tion of interest is whether or not the model has learned that gaps are grammatical in contexts

with fillers, and ungrammatical in contexts without fillers (exemplified by the contrast be-

tween (7-a) and (7-b), below); and likewise, that sentences without gaps are ungrammatical

in the presence of fillers (exemplified by the contrast between (7-c) and (7-d)).

(7) a. I know what the lion devoured yesterday .

b. *I know that the lion devoured yesterday .
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c. I know that the lion devoured the gazelle yesterday.

d. *I know what the lion devoured the gazelle yesterday.

If the model is following grammatical generalizations as humans presumably do, then it

should assign higher probability to a word or phrase when that word or phrase is gram-

matically licensed than when it is not. For example, the adverb “yesterday” should be less

surprising in the context of (7-a) where the object of “devoured” may be reasonably expected

to have been extracted, compared with (7-b), where the word “yesterday” seems to indi-

cate that the mandatory object of “devoured” is missing even though there is no filler–gap

construction to license this.

We can formalize this idea in terms of the ratio of two conditional probabilities: the

conditional probability of a word w+ given a context that licenses a gap, which we notate

as P (w+ | Cwhat), and the probability of that same word w+ given a context that does not

license a gap, notated as P (w+ | Cthat). Here w+ is what we call a gap-requiring word : its

presence is only grammatically possible in this context if there is a filler–gap construction.

In (7-a)–(7-b), the gap-requiring word is “yesterday” which indicates a gap in the the object

position of “devoured”. Under reasonable conditions,9 the ratio of these two probabilities

should be approximately equal to the probability ratio of the filler–gap structure itself given

the two contexts:

P (x+ | Cwhat)

P (x+ | Cthat)
≈ P (w+ | Cwhat)

P (w+ | Cthat)
, (1)

where x+ represents the existence of a filler–gap construction, so that P (x+ | Cwhat) can be

interpreted as the probability assigned by the model to the presence of a filler–gap construc-

tion given the preceding context Cwhat.

What this approximate equality means is that the grammatical generalizations that the

network has learned should be reflected in word-level probabilities. Specifically, because

P (x+ | Cwhat) ≫ P (x+ | Cthat) in our materials, the probability ratio for any specific gap-

requiring word in the two contexts should be much larger than one. Indeed, one might argue

that for truly human-like linguistic generalization, we should have P (x+ | Cthat) ≈ 0 so the

larger this ratio, the more human-like the model’s behavior.

9The approximation is exact iff (1) the probability of the gap-requiring word w+ is zero when no filler–gap

construction is present, and (2) the probability of the gap-requiring word is the same across the two contexts

when assuming that a filler–gap construction is present. For the full technical argument, see Appendix A.
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A simple transformation of this probability ratio of Eq. (1) deepens its interpretability,

namely taking its negative log:

− log2
P (x+ | Cwhat)

P (x+ | Cthat)
≈ − log2

P (w+ | Cwhat)

P (w+ | Cthat)
= − log2 P (w+ | Cwhat) + log2 P (w+ | Cthat).

(2)

A negative log probability is also known as a surprisal value, and lies in the range range

[0,∞). A probability 1 event has zero surprisal; as probability decreases, surprisal increases

asymptotically toward infinity as probability approaches zero. Introducing the notation

S(y | C) ≡ − log2 P (y | C), we can rewrite the right-hand side of Eq. (2) as simply:

S(w+ | Cwhat)− S(w+ | Cthat). (3)

The difference in Equation 3 lies in the range (−∞,∞). This value should be negative for

human-like generalization: the gap-requiring word w+ should be low-surprisal in the context

Cwhat reflecting the fact that the negative log transformation is a monotonically decreasing

function.

In fact, we can go further and say that for a well-designed example stimulus where

omitting the phrase in the gap position is ungrammatical without an appropriately positioned

filler in the context, the smaller this value (i.e., the closer to −∞) the more human-like the

generalization, because we should have P (x+ | Cthat) ≈ 0 and P (x+ | Cwhat) > 0.

Conversely, for material w− that indicates there is no gap (such as the gazelle), equivalent

logic implies that a positive value for the quantity

S(w− | Cwhat)− S(w− | Cthat). (4)

would be indicative of human-like sensitivity to filler–gap structural relationships, because

we should have P (w−|Cwhat) < P (w−|Cthat) . Here, however, the logic of “the larger the

more human-like” does not go through: there are generally multiple possible locations for a

gap given a filler, so we do not necessarily expect P (w−|Cwhat) ≈ 0 in any particular position.

In the introduction, we informally introduced the notion of wh-effects, which are mea-

sures of how well models have learned the target structural generalizations. These differences

in surprisal values in Equations (3) and (4) are the technical definitions of wh-effects that
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will be used throughout the paper. In general, we expect large positive wh-effects in cases

where there is no gap, and large negative wh-effects in cases where there is a gap.

The formulation in terms of surprisal also offers a link to psycholinguistic theory and

data, where surprisal is well established to influence both reading times and brain responses

(Hale, 2001; Levy, 2008; Smith and Levy, 2013; Frank et al., 2015; Goodkind and Bicknell,

2018; Wilcox et al., 2020; Heilbron et al., 2021). Although it is not the focus of the present

contribution, we also believe this link also facilitates direct quantitative comparisons of model

predictions and human responses, such as those described in van Schijndel and Linzen (2018)

and Wilcox et al. (2021).

To test that models have learned both wh-effects simultaneously, we predict that, for the

full 2× 2 crossed contrast given in (7) there should be an interaction between the presence

of a filler and the presence of a gap, whereby the models should display superadditively less

surprisal when both are present than when just one is present. To test for this interaction,

we run mixed-effects linear regression models, fit on raw surprisal values with sum-coded

conditions and by-item random slopes (Barr et al., 2013), and look for significantly negative

interaction terms.10 When presenting materials in this paper, we will give examples of the

+filler/+gap variant, even though all four will have been produced to measure two wh-effects.

For visualizations, we present the two wh-effects described above, as collapsing across all four

conditions may obfuscate important model behavior.

3.3 Models Tested

We assess three types of model classes: n-grams, Recurrent Neural Networks and Transform-

ers. As argued in Pearl and Sprouse (2013a), for a model to be relevant for debates about

linguistic nativism it must be both domain general and weakly biased ; we discuss each below:

Following Clark and Lappin (2010), we take domain general to mean that the model’s archi-

tecture does not limit it to making generalizations about just human language. Although we

train and test our models on linguistic data, they are capable of representing relationships

between arbitrary types of vectorized input, and therefore domain general learners. Follow-

ing, Lappin and Shieber (2007), we take weakly biased models to be “uncomplicated, uniform

[and] task-general” while strongly biased models are “highly articulated, non-uniform and

10An example of a basic R command: lmer(surprisal ∼ wh * gap + (gap + wh | item-number))
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task-specific.” Because our neural networks’ internal states are randomly initialized, their

input data are all treated the same and their representations consist of large matrices of

numbers, we take them as instances of weakly-biased as opposed to strongly-biased models.

Consistent with this view, training and testing these architectures on synthetic languages

has indicated that their inductive bias does not particularly favor natural language-like gen-

eralizations (Ravfogel et al., 2019; White and Cotterell, 2021).

n-gram models are statistical models that assign a probability to a string by taking the

product of probabilities of n-token substrings. An n-gram language model has no “memory”

outside of its n-gram window, so models can only represent local dependencies between

words. We use a 5-gram model with Kneser-Ney smoothing trained on the British National

Corpus using the SRILM language modeling toolkit (Stolcke, 2002). We present the n-gram

model primarily as a baseline.

Artificial Neural Network (ANN) models, or Connectionist Networks, are a class

of learning algorithms that map input into one or many intermediate layers of continuous

valued vector representation. Neural networks of sufficient depth are universal function

approximators, capable of representing arbitrarily complex relationships between input and

output given large enough vector representations (Hornik et al., 1989). They can learn a

class of logical relationships impossible for simpler learning algorithms, such as ‘exclusive or’

(Rumelhart et al., 1986). While ANNs have typically been described as ‘black box’ models,

much is now known about their formal representational capabilities, and we touch on these

briefly below.

Recurrent Neural Networks (RNNs) (JRNN, GRNN) are a type of ANN that

was introduced in Elman (1990). RNNs consume multiple fixed-size inputs sequentially,

an architectural choice that permits them to make generalizations about series that may

vary in length, like sentences of human language. Elman (1991) showed that simple recur-

rent networks (SRNs) are able to model linguistic phenomena from data generated by toy

grammar fragments. However, in practice, SRNs have difficulty learning and maintaining

dependencies that involve long linear distances (Rodriguez, 2001).11 More contemporary

Long Short-Term Memory (LSTM) models (Hochreiter and Schmidhuber, 1997) are better

at maintaining dependencies between distant items (Schmidhuber et al., 2002), and may be

particularly suitable for modeling human language because they can implement counters,

11In theory, even SRNs can recognize hierarchical languages with reasonable efficiency (Hewitt et al., 2020).
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which they can deploy to process context free expressions (Weiss et al., 2018). We use two

LSTM models. The first, originally presented as the BIGLSTM+CNN in Jozefowicz et al.

(2016) which we thus refer to here as JRNN, was trained on the training portion of the One

Billion Word Benchmark of newswire text (Chelba et al., 2013) and has two hidden layers

with 8196 units each. It uses the output of a character-level Convolutional Neural Network

as input to the LSTM. The second model, originally presented by Gulordava et al. (2018),

which we thus we refer to as GRNN, was selected for its previous success at learning number

dependencies between subjects and verbs, and does not include a CNN embedding network.

It was trained on 90 million tokens of English Wikipedia, and has two 650-unit hidden layers.

Transformers (GPT-2, GPT-3) are a type of neural network that have produced many

of the most recent state-of-the-art performances on Natural Language Processing tasks. They

encode the positional relationships between elements directly into the input representation

itself. Information is propagated through the network via self-attention—each input token i

is connected to every other token at the next layer, with the relative weights of the connection

corresponding to its importance for predicting the token the next layer up. These models

have often have large numbers of parameters (some, in the hundreds of billions) and must

be trained on large datasets. Theoretical results about the capabilities of transformers

paint a mixed picture. Hahn (2020) proves that they are not able to recognize unbounded

hierarchical structure, nor even all of the regular languages. Although transformers are able

to recognize languages up to a bounded depth, this raises questions about these models’

ability to represent the underlying mathematical formalism assumed by theoretical linguists

(Shieber, 1985). We use two Transformer models: GPT-2, which was trained on ∼ 8 billion

tokens of internet text (Radford et al., 2019),12 and its successor GPT-3, which was trained

on ∼ 114 billion words broken into ∼ 500 billion subword tokens (Brown et al., 2020).13

12We used the version of GPT-2 available through the Language Modeling Zoo distribution (https:

//cpllab.github.io/lm-zoo/index.html#welcome-to-lm-zoo)
13This is an estimate derived from the ∼ 1, 000, 00words/5.2MB WSJ portion of the Penn Treebank and

the reported size of the GPT models’ training dataset, which was 40GB (GPT-2) and 570GB (GPT-3).
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4 Modeling Results: Base Experiments

4.1 Basic Licensing & Flexibility

One unique feature of the filler–gap dependency is that it is highly flexible. Fillers can

license gaps in subject, object and indirect object positions. In order to test these basic

properties we created 63 sentences following the three conditions outlined in Example (8).

Short adverbial phrases were added after the filler which, otherwise, would be adjacent to the

gap site in the subject condition. For this and subsequent experiments we use obligatorily

transitive verbs and balance filler type (who vs. what) across the items. Bolded text indicates

critical regions.

(8) a. I know who without thinking showed the slides to the guests after lunch. [subject]

b. I know what without thinking the businessman showed to the guests after lunch.

[object]

c. I know who without thinking the businessman showed the slides to after lunch. [prep.

phrase]

We will walk through these results in detail, and present summary figures for the re-

mainder of the experiments. Our models output probabilities, which we turn into surprisal

values (negative log probabilities, or equivalently log inverse-probabilities). Figure 2 shows

these raw surprisal values for the JRNN model. Higher values mean the tokens are less likely

under the language model’s distribution. Average surprisal starts off at around 10 bits/token

in the first region, with surprisal in the +filler condition greater than in the −filler condi-

tion (that is, the purple lines are higher than the green lines). This is because ‘that’ is a

much more common complementizer than wh-words. The average by-word surprisal is even

higher in the second region (e.g. ‘...without thinking...’), as adverbial phrases rarely come

before subject position in embedded sentences. For the remainder of the phrase, we see the

following behavior: When gaps are absent (left column) +filler conditions are higher in filled

argument structure positions (e.g. the CEO, the slides, the guests) than −filler conditions.

Crucially, this pattern is reversed when gaps are present. In the −gap conditions (right

column) the −filler is higher surprisal than the +filler condition, in the critical regions im-

mediately following a gap site. This reversal corresponds to the interactive effect we expect

to find if models had successfully learned the dependency between fillers and gaps.
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Figure 2: Filler–Gap Licensing: Mean by-word surprisal by sentence region for the JRNN

model, with critical regions highlighted in teal. In the absence of a gap (left column) +filler

conditions hare more surprising. When gaps are present (right column) this trend is reversed,

corresponding to our predicted interaction. Slight differences in the first region between tests

are due to the different proportion of who and what in the test materials.
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Figure 4: Basic Licensing: The various experiments are on the x-axis, and the wh-effect

is on the y-axis. Error bars represent 95% confidence intervals. Negative wh-effect in the

+gap condition (blue bars) and a positive wh-effect in the -gap condition (red bars) shows

that all models are learning the basic filler–gap dependency.

Now, instead of reporting raw surprisal values, we will focus of the difference between the

+filler and −filler conditions (the differences between the purple and green lines in Figure

2), the so-called wh-effect. We zoom in on this in Figure 3, still for JRNN. Here, the red

lines are the wh-effect in the −gap condition, and the dotted blue lines are the wh-effect in

the +gap condition (the blue line skips over sentence regions that are gapped in that test).

In this figure there are two patterns to note: First, the blue dashed lines are all negative

in the critical region immediately following a gap. This corresponds to the contrast in (2),

namely that the presence of a gap is less surprising when it is licensed by an upstream filler.

Second, the solid red lines are all positive in the critical regions that correspond to argument

structure slots (the CEO, the slides, the guests). This corresponds to the contrast in (3),

namely that filled argument structure positions should be more surprising in the presence of

a filler.

For the remainder of this paper, we will zoom in even further, showing just the wh-effects

in the critical regions, which correspond to the differences highlighted by the blue arrows in

Figure 3. These can be seen as bar charts for each of the models tested in Figure 4, which is

the presentational paradigm that will be used from here on out. Roughly speaking, if the blue

bars are well below the zero line and the red bars are well above it, we can expect a significant
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interaction from our regression model. As expected, in statistical tests we found a significant

interaction term for all four of our neural models (p < 0.001 in all conditions; except for the

n-gram model), indicating that they have learned the basic co-variation between fillers and

gaps.

Turning to effect size, in the +gap condition for the subject test, the wh-effect is about

4 bits, which corresponds to ≈25% of the average by-word surprisal in the preceding region

(Region 2, in Figure 2) and ≈40% of the average by-word surprisal in the following region

(Region 5, or “the slides”, in Figure 2). That is to say, in +gap conditions, the wh-effect

is a large percentage of the average by-word surprisal for a baseline grammatical sentence.

However, in the −gap conditions, the wh-effect size is smaller. This pattern is true generally

across all of our tests, and not necessarily unexpected. As mentioned in Section 3.2, the

presence of a filler sets up an expectation for a gap, but not in a particular argument

structure position. Therefore, when encountering a filled subject (e.g. “the CEO” in Figure

2), the sentence is not rendered ungrammatical as a gap could occur in downstream object

or indirect object positions.

Comparing, the models’ licensing strength to the distribution of gaps in English written

text suggests that models have made generalizations beyond the statistics encountered in

their training data. An analysis of the Wall Street Journal portion of the Penn Treebank

(Marcus et al., 1993) reveals that in written English text there are about two times the

number of gaps in subject position compared to object position, and two times the number

of gaps in object position compared to prepositional phrases inside the VP.14 But contrary

to the distribution of gaps in written English, GPT-2, JRNN and GRNN show the strongest

expectation for filler–gap dependencies in object position, with slightly less, but about equal

expectation for filler–gaps in subject and PP conditions. GPT-3’s licensing pattern more

14We find 21,041 Subject Gaps, 11,657 object gaps and 5,179 PP gaps. Corpus data was collected using

Tregex (Levy and Andrew, 2006), with the following commands. For gaps in subject position: NP-SBJ

< (-NONE- < ( @* ) ). This command searches for an NP subject node that dominates a trace. For

gaps in object position: VBD|VBG|VBN|BVP|VBZ $++ (@NP (< (-NONE- < @*))). This command searches

for NP nodes that dominate a trace and are the immediate right sister of a V node. For gaps in VP-

internal prepositional phrases or indirect objects (which the PTB parse schema treats as prepositions): @PP

<+(!@VP) (@NP < (-NONE- < @*) ). This command searches for a PP node that dominates an NP node,

which dominates a trace. The chain between the PP and NP node must not include a VP node. This was

done to exclude gaps that are inside relative clauses whose head is dominated by a preposition.
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Figure 5: Sensitivity to syntactic hierarchy. All models show reduction (or inversion) of

wh-effects in the matrix condition.

closely matches the distribution of gaps we would expect to find in a large corpus. These

results suggest that, at least for the former models, behavior is a result of learned general-

izations that goes beyond rote recapitulation of training-corpus statistics.

4.2 Hierarchy

The experiments presented above are compatible with a strictly linear relationship between

fillers and gaps. A model with a simple linear heuristic—“If I see a filler, expect a gap

downstream where an NP is likely to occur”—would perform well. In reality there are

a number of hierarchical constraints implicated in the filler–gap dependency. To a first

approximation these state that the filler must c-command the gap (although the precise

relationship is more complex; see Pollard and Sag, 1994b). Example (9) demonstrates this

relationship with a filler–gap sentence, where the portion of the sentence c-commanded by

the filler who is demarcated with brackets. The sentence (9-b) is ungrammatical because the

gap site is not in this region. (One other difference between these sentences is the distance

between the filler and the gap, an issue we will address in the next section.)

(9) a. The fact that the reporter knows who [the witness surprised with his testimony]

surprised the jury during the trial. [subject gap]

b. *The fact that the reporter knows who [the witness shocked the jury with his testimony ]
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surprised during the trial. [matrix gap]

If models have learned these tree-structural restrictions, we should expect two things:

First, when the filler does not c-command the gap, its presence should not affect the likelihood

of a gap. That is, the wh-effect in the +gap condition should be close to zero. Second, the

presence of an upstream filler should not make the filled argument structure position more

or less surprising. That is, the wh-effect in the −gap condition should also be close to zero.

Putting this all together, we predict that if the models are learning the structural restrictions

on the filler–gap dependency, wh-effects should be strong in grammatical conditions like

(9-a), but close to zero in the ungrammatical conditions like (9-b). In practice we test

this expected reduction in two ways: First, we test the relative reduction by inspecting the

three-way interaction between filler, gaps and structural position, looking for a significantly

positive interaction term which indicates increased surprisal in the matrix gap condition.

Second, we test the absolute reduction by inspecting whether the 95% confidence intervals

(CIs) of the wh-effects in the matrix gap condition cross the zero line (or if there is an

inversion of wh-effects between conditions).

In order to test this prediction we created 45 sentences following the template in (9). We

matched the verbs across the two conditions to control for spurious lexical frequency effects

(i.e. surprised is in both subject and matrix conditions in the example). The results from this

experiment can be seen in Figure 5. All neural models show proper wh-effects in the subject

condition, where the gap is properly licensed. Crucially, many show a reduciton of wh-effects

in the matrix condition. For our relative metric, we find significant reduction in wh-effects

when the gap is no longer c-commanded by the filler for all neural models (p < 0.001 for

JRNN and GPT-2, and p < 0.05 for GRNN and GPT-3). However, for GPT-3, this is largely

due to reduction in wh-effects in the -gap condition, and behavior in the +gap condition is not

consistent with it having learned the correct hierarchical generalizations. For our absolute

metric, we find that the 95% CIs cross zero for GPT-2 and JRNN (+gap conditions), and

GPT-3 and GRNN (-gap conditions). For GRNN, the 95% CIs do not cross zero, but the

effect is in the wrong direction. The n-gram model show no variation between conditions.
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4.3 Unboundedness

One worry is that the previous experiment doesn’t test sensitivity to hierarchy per se, but

merely sensitivity to distance: models demonstrate wh-effects in the subject condition be-

cause the gap site is closer to the filler. The filler–gap dependency, however, is unbounded

insofar as the location of the filler and the gap can be separated by any number of nodes in

a parse tree, as in (10), where the final sentence may be difficult to process, but (arguably)

remains grammatical despite the intervening material. Importantly, the grammaticality of

sentences like (10-c) demonstrates the types of generalizations that language learners make

about the filler–gap dependency. An analysis of the constituency parses of the CHILDES

Treebank (Pearl and Sprouse, 2019) reveals that of the ∼100,000 sentences in the dataset,

396 contain 2 layers of sentential embedding, 44 contain 3 layers of sentential embedding

and 9 contain 4 layers of sentential embedding.15

(10) a. I know who the countess offended at the ball. [1-layer]

b. I know who the footman believed the countess offended at the ball. [2-layers]

c. I know who the count remembered the lady reported the guard said the czar thought the

footman believed the countess offended at the ball. [5-layers]

15Searches were conducted on Tregex (Levy and Andrew, 2006) and commands were formulated using the

following pattern, which matches sentences that contain four layers of sentential embedding: S << (S <<

(S << (S << (S << S))))
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In order to test potential unboundedness, and to provide a control for the hierarchy tests,

we created 54 sentences following (10) with between 2 and 5 layers of sentential embedding.16

The results for this experiment can be seen in Figure 6. All of the neural models demonstrate

proper wh-effects for all conditions (p < 0.001 for all models and all layers of embedding). In

order to test whether models show a significant reduction in licensing between layers, we fit a

linear model with number of layers as an additional predictor and inspect for a significantly

positive three-way interaction between the presence of a filler, the presence of a gap and the

number of layers. For GPT-2 and GPT-3, we find that there is a significant interaction after

one additional layer (p < 0.01 for all contrasts); for GRNN the reduction is significant after

two additional layers (p < 0.001); and for the JRNN the reduction is significant after three

additional layers (p < 0.01), largely driven by reduction in wh-effects in the +gap conditions.

As far as absolute licensing, the CIs cross zero only three cases—+gap conditions for GPT-2

at 5 layers of embedding and GPT-3 at 4 and 5 layers of embedding.

Next, in order to be sure that the reduction in our Hierarchy experiment is greater than

the reduction observed across multiple layers of embedding, we combine data from both

experiments and fit a regression model with two additional predictors: test type (heirarchy

vs. unboundedness) and whether the distance between the filler and the gap is proximal or

distal (subject and embed2/3 conditions are proximal, whereas matrix and embed4/5 are

distal). We treat the filler-to-gap distance as a categorical variable due to the categorical

structure of the hierarchy test suites, essentially asking if the prepositional phrase and tensed

verb that delineate the end of the relative clause in the hierarchy test is a stronger “blocker”

for the filler–gap dependency than a third layer of sentential embedding in the hierarchy

test. Here, a negative four-way interaction between filler, gap, distal and test type provides

a ‘yes’ answer: We find significant interactions for JRNN (p < 0.0.001), GRNN (p < 0.05),

GPT-2 (p < 0.05), but not for GPT-3, which generally shows the weakest results for this

test.

There are two takeaways from this experiment: These results indicate that models can

thread wh-expectations through complex syntactic environments, providing the controls

needed to conclude that the reduction of wh-effects observed in the hierarchy experiment

are not due merely to distance, but to a restriction based on their structural relationship.17.

16We do not include sentences with a single layer of sentential embedding in these tests, as sentences would

have the same structural configuration as the object tests in Section 4.1.
17For a secondary length control that addresses non-hierarchical interveners see Section 3.2 of Wilcox et al.
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Second, given the fact that models are likely to have seen very few sentences with four layers

of embedding or more, and yet show significant wh-effects in these conditions indicates that

they are making some generalization beyond their training data. Even though GRNN did

show some reduction with additional layers of embedding, RNN models tended to perform

better than Transformers, despite their smaller training vocabularies. This suggests that

their architecture makes them better models of human linguistic competence, at least for

this phenomenon.18

5 Island Effects

5.1 Methodology

In this section, we investigate seven of the most studied island phenomena (Ross, 1967;

Huang, 1982). If models are learning that the co-variation between fillers and gaps does

not hold when gaps are in island positions, then two things should be true: First, when a

gap is inside an island construction, the presence or absence of an upstream filler should

have no effect on its relative likelihood. Second, the presence of absence of an upstream

filler should not affect the relative surprisal of a filled argument structure position located

inside an island. To test these predictions we deploy both a relative assessment metric and

an absolute assessment metric. For our relative metric, we inspect the three-way interaction

between +/−island, +/−filler and +/−gap looking for a supperadditive increase in surprisal.

For our absolute metric, we inspect whether the 95% confidence intervals for the across-

item wh-licensing cross the zero line in the island conditions (or invert between island/non-

island conditions). This is the same logic that we used to make predictions about model

acquisition of hierarchical generalizations in Section 4.2, above. Following the setup in that

experiment, here, we contrast the wh-effects in an island condition with a non-island minimal

pair counterpart, typically with gaps in object position.19

(2018).
18See also Da Costa and Chaves (2020) who found similar limitations for another Transformer language

model, Transformer-XL (Dai et al., 2019).
19In our hierarchy experiments, we intentionally use the same verb in multiple structural positions to

control for potential frequency confounds. We do the same here, except for Complex NP and Subject

Islands, for matters of coherence in the testing materials. In these cases, we confirm that the average log

frequency of the verbs are not significantly different from each other via a t-test (p > 0.5 for both tests;
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There is, however, a potential confound with this approach. It may be the case that re-

duced wh-effects are not due to generalizations learned about the filler–gap dependency, but

rather that any information flow is blocked by sufficiently complex material. In that case,

apparent island-like behavior would be an epiphenomenon of a larger inability to thread in-

formation through syntactically complex environments. To account this confound we employ

controls that utilize expectations for gendered pronouns, set up by morphologically gendered

nouns, such as baron and baroness. We measure the noun’s masculine expectation by taking

the difference between the masculine pronoun his and the feminine pronoun her, following

(11), below.20 If models have learned the gender dependency, then we expect a strong mas-

culine expectation when the head noun is morphologically masculine and a strongly negative

masculine expectation when the head noun is feminine. We set up this 2 × 2 interaction to

mimic the experimental design of our island tests.

(11) a. The baron said they brushed her hair. [masc, fem]

b. The baron said they brushed his hair. [masc, masc]

c. The baroness said they brushed her hair. [fem, fem]

d. The baroness said they brushed his hair. [fem, masc]

In addition to these basic licensing conditions, we construct examples where the gendered

pronoun is inside an island structure, relative to the head noun. Examples for the Wh Island

and Complex NP Island variants are given in (12), below.

(12) a. The baron/baroness said whether they brushed his/her hair. [Wh Island]

b. The baron/baroness said they liked the attendant who brushed his/her hair. [Complex

NP Island]

If models had learned that complex syntactic structures block all information flow, then

frequency data from Franz and Brants (2006)). Tests are largely adapted from Wilcox et al. (2019a) and

Wilcox et al. (2018), although additional items have been added.
20Unlike the filler–gap dependencies, these do not constitute grammatical/ungrammatical contrasts, as

her in (11-b) could refer to a sentence-external discourse referent. However, because we needed to find a

dependency that could cover the same distribution as the islands–i.e. it could extend into relative clauses and

across sentential embeddings—grammatically-determined anaphoric dependencies were not available to us.

To counteract the potential confound of exophoricity, we use verbs that are likely to refer to the sentence’s

subject, like brushed in (11); all of our models demonstrate strong gendered expectations effects.
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Figure 7: Adjunct Islands

we would expect a reduction of gender expectations inside of island configurations. If, how-

ever, the models have learned island constraints as a unique feature of the filler–gap depen-

dency, then we should expect no reduction of gender expectations in sentences like (12). We

test for significant reduction between the control conditions, like (11) and island conditions

using the same statistical procedures as for the filler–gap sentences. What we look for in

this section, then, is a reduction of wh-effects between island/non-island conditions, but a

lack of reduction in gender expectation.

5.2 Island Experiments

Adjunct Islands: Gaps cannot be licensed inside an adjunct clause, as demonstrated by

the contrast between (13-a) vs. (13-b).

(13) a. I know what the librarian placed on the wrong shelf.[control, filler–gap]

b. *I know what the patron got mad after the librarian placed on the wrong shelf.

[island, filler–gap]

c. The actress thinks they insulted {his/her} performance [control, gender exp.]

d. The actress got mad after they insulted {his/her} performance. [island, gender exp.]
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Figure 8: Complex NP Islands

To test for sensitivity to adjunct islands we created 54 items following the template in

(13). The results for this experiment can be seen in Figure 7. For the gender dependency,

we see the neural models performing exactly the same in the control conditions as in the

island conditions. Turning to the filler–gap dependency, we find a relative reduction of wh-

licensing interaction between the control and island conditions for all neural models models

(p < 0.001), but not for the n-gram model. In terms of absolute metrics, we find that wh-

effects are not different from zero for three models in the +gap condition (GPT-2, GRNN

and JRNN), but are slightly above zero in the −gap condition for all models.

Complex NP Islands: Gaps are not licensed inside S-nodes that are dominated by a

lexical head noun, as demonstrated by the contrast between (14-c) compared to (14-a).

(14) a. I know what the actress bought yesterday. [control, filler–gap]

b. *I know what the actress bought the painting that depicted yesterday. [island, filler–

gap, that-comp]

c. *I know what the actress bought the painting which depicted yesterday. [island,

filler–gap, wh-comp]

d. The actress said they saw her {his/her} performance. [control, gender exp.]
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Figure 9: Coordination Islands

e. The actress said they saw the exhibit {that/which} featured {his/her} performance. [is-

land, gender exp.]

We created items following the examples in (14), with two island conditions: one in

which the complex NP is headed by a wh-complementizer and one in which it is headed

by a that-complementizer. The results from this experiment can be found in Figure 8. We

find a relative reduction in wh-effects for all neural models (p < 0.001 for both that and wh

conditions for JRNN, GPT-2 and GPT-3, p < 0.01 for GRNN). For our absolute metric, we

find that 95% CIs cross zero in the +gap condition for JRNN and GPT2 (wh-comp), and for

JRNN (that-comp). For the −gap condition, 95% CIs cross zero for all models (wh-comp)

and for JRNN (that-comp). We found no reduction in gender expectation between control

and island conditions for any model.

Coordination Islands: The coordination constraint states that a gap cannot occur in

one half of a coordinate structure, as demonstrated by the difference in acceptability between

(15-b)/(15-c) and (15-a), in which the whole object has been gapped. From an incremental

model, however we would only expect a reduction in wh-licensing when the gap is in the

second conjunct. This is because when the gap is in the first conjunct the continuation may
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Figure 10: Left Branch Islands

end grammatically, such as I know what the man bought and the painting later depicted

(an example of Across the Board movement). This is not the case when the gap occurs

in the second conjunct, which cannot be rescued through ATB movement and is rendered

ungrammatical at the gap site.

(15) a. I know what the man bought at the antique shop. [control, filler–gap]

b. *I know what the man bought and the painting at the antique shop. [island, filler–

gap]

c. *I know what the man bought the painting and at the antique shop. [island, filler–

gap]

d. The fireman knows they talked about {his/her} performance. [control, gender exp.]

e. The fireman knows they talked about {his/her} performance and the football game.

[island, gender exp., 1st conj.]

f. The fireman knows they talked about the football game and {his/her} performance.

[island, gender exp., 2nd conj.]

We created experimental items following the examples in (15). In the -gap conditions,

for the control sentences, we sum over a whole conjoined NP (e.g. “the painting and the

chair”). In addition, we add extra material to the beginnings of the control and first conjunct

sentences, to maintain similar linear distance between the filler and the gapsite between all

three tests. Results can be seen in Figure 9. We find a significant reduction in wh-effects

(p < 0.001 for all four neural models), but no such reduction in the gender expectation. In

absolute terms, 95% CIs cross the zero line for all neural models as well. The effects here

were the largest effect sizes out of all the island configurations tested.

Left Branch Islands: The left-branch constraint states that modifiers which appear
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on the left branch under an NP cannot be gapped, accounting for the relative ungrammati-

cality of (17-d) compared to (16-d). We created 20 items following the examples below and

measured the wh-licensing interaction in the post-gap material. Because in the island case

the moved material consists of an adjective phrase like how expensive, we were unable to

create minimal pair gender controls for this island and present this test without them. As

the no-gap variants of these tests are harder to reconstruct than those of the other island

experiments we present them below.

(16) a. I know that you bought an expensive a car last week.

b. I know that you bought last week.

c. I know how expensive a car you bought a car last week.

d. I know how expensive a car you bought last week. [whole object]

(17) a. I know that you bought an expensive a car last week.

b. I know that you bought last week.

c. I know how expensive you bought a car last week.

d. *I know how expensive you bought a car last week. [left branch]

The results can be seen in Figure 10. We find that the JRNN, GRNN and GPT-3 models

show a reduction of wh-effects inside the island (p < 0.01 with p < 0.05 for JRNN). While

the effect is in the right direction for GPT2, the interaction is not significant (p = 0.12). In

terms of absolute licensing, wh-effects are not different from zero for all models in the +gap

condition, and all below zero in the −gap condition.

Sentential Subject Islands: The sentential subject constraint states that gaps are not

licensed within an S-node that plays the role of a sentential subject. To assess whether the

models had learned this constraint we created items following the variants in (18).

(18) a. I know who the seniors defeated last week. [control, filler–gap]

b. *I know who for the seniors to defeat will be trivial. [island, filler–gap]

c. The fireman knows they will save {his/her} friend. [control, gender exp.]

d. The fireman knows for them to save {his/her} friend will be difficult. [island, gender

exp.]

The results for this experiment can be seen in Figure 11. We find a significant reduction
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Figure 11: Sentential Subject Islands

of wh-effects between the island and non-island conditions for JRNN and GPT-3 (p < 0.05)

but not for GRNN or GPT-2. In absolute terms, no model shows wh-effects that are not

different from zero in either +gap or −gap conditions. No model shows reduction in gender

expectations inside island configurations.

Subject Islands: Gaps are generally licensed in prepositional phrases, except when they

occur attached to subjects. We created experimental items following the examples in (19).

(19) a. I know what fetched a high price. [control, filler-gap]

b. *I know who the painting by fetched a high price. [island, filler–gap]

c. The actress said they sold the painting by {his/her} friend. [control, gender exp.]

d. The actress said the painting by {his/her} friend sold for a lot of money. [island, gender

exp.]

The results from this experiment can be seen in Figure 12. We find a significant reduction

of wh-effects for JRNN (p < 0.05), GPT-2 and GPT-3 (p < 0.01) but not for GRNN. The

failure of GRNN in this case is because it does not produce robust wh-effects in the non-island

controls, at least relative to the island conditions. In absolute terms, we find wh-effects that

are not different from zero for all models in the −gap island condition, but are different from
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Figure 12: Subject Islands

zero for all models but GRNN in the +gap island condition.

Wh-Islands: The wh-constraint states that the filler–gap dependency is blocked by S-

nodes introduced by a wh-complementizer, as demonstrated in the unacceptability of (20-b)

compared to (20-a). We created experimental items following the examples in (20) and

measured their wh-effects.

(20) a. I know who Alex said your friend insulted yesterday.[control, filler–gap]

b. *I know who Alex said whether your friend insulted yesterday. [island, filler–gap]

c. The actress said they insulted {his/her} friends. [control, gender exp.]

d. The actress said whether they insulted {his/her} friends. [island, gender exp.]

The results for this experiment can be seen in Figure 13. We find a relative reduction

in licensing effects for all four neural models (p < 0.001), with no reduction for the n-gram

model. 95% CIs cross zero in the +gap condition for all models, as well as for all models

except JRNN in the −gap condition. We find no difference between the island and non-island

conditions in the gender controls.
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Figure 13: Wh-Island Effects

5.3 Discussion

Figures 14 and 15 show summary results for our island tests. Figure 14 highlights model

performance on our absolute metric by showing the percent reduction in wh-effects between

island and non-island conditions. Figure 15 highlights model performance on our relative

metric, by reporting significance of the three-way interaction term from our statistical tests.

For both summary figures, we compare model behavior on island tests to behavior on argu-

ment structure tests reported in section 4. As with island tests, gaps in matrix-level object

position are controls while gaps in subject position and in prepositional phrases are targets.

If models are learning the correct generalizations, we expect these tests to pattern differently

from islands.

Looking first at Figure 14, we find that our absolute criteria for island effects is met in

42/64 islands (and 1/8 argument structure controls), with some variance between models,

experimental conditions and island structures themselves. At the model level, JRNN matches

expectations in the most cases (its 95% CIs are within zero for 12/16 island tests, including

both +gap and −gap conditions), followed by GRNN (11/16 island conditions), GPT-2

(10/16), and finally GPT-3 (9/16). Interestingly, by this metric, both of the recurrent models

outperform the transformers, even though the latter were trained on orders of magnitude
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Figure 14: Summary of results for island tests: Bars with black 95% CIs are wh-effects

for control conditions, bars with red 95% CIs are wh-effects for island conditions. Color

indicates the percent reduction in wh-effect between island/non-island conditions. If models

are learning islands, we expect substantial reduction, and wh-effects that are not different

from zero for islands (i.e. red CIs cross the zero line). To the right of the vertical blue line,

we show effects for argument-structure controls, where we expect no decrease in wh-effects

between conditions.
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Figure 15: Reduction of Island Effects: Each cell corresponds to a statistical test and

shows, for the three-way interaction term, the level of significance achieved (top row), and

the effect size in bits (bottom row). Tests that reach 0.05 confidence threshold are dark blue.

To the right of the vertical blue line are argument structure controls, where we expect no

significant effects.
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more data. Thus, these results suggest that, within limits, model architecture, more than

training data size, may determine syntactic generalization ability (for similar conclusions

in a more controlled setting see Hu et al. (2020)). Turning to experimental condition, we

find that models show approximate equal sensitivity in the +gap condition (where 22/32 of

islands have 95% CIs within zero) and −gap condition (20/32). However, we do find that

models show some reduction for argument-structure controls in −gap conditions, which is

not evident in +gap conditions. As far as island-by-island variation, GRNN, GPT-2 and

JRNN show humanlike behavior for Adjunct Islands, CNP Islands, Coordination Islands

and Wh Islands. However, there is more variation between models for Left-Branch islands,

where models fail to show the proper licensing behavior in control conditions, as well as

Subject Islands and Sentential Subject Islands.

Turning to Figure 15, we find statistical evidence for island effects in 28/32 tests across all

models, and in 0/8 argument structure controls. In this case, we find that JRNN and GPT-2

demonstrate the expected sensitivity to islands for all structures, whereas GRNN and GPT-3

demonstrated the expected sensitivity for 6/8 structures. Despite cross-model architectural

variation, again we find strongest effects for Coordination, Adjunct and Complex NP islands,

with weaker effects for Left-Branch Islands, Subject, and Sentential Subject islands.21

In summary, we take the results from this section to indicate that general-purpose pattern

recognizers can acquire many, although not all, of the island effects from string data alone,

with models showing the expected behavior in 65% of cases for our absolute metric and

88% for our relative metric. These generalizations are possible when the training data is

equivalent to the linguistic experience of an older child (GRNN). The fact that all models

show lower power in the sentential subject and subject experiments, despite their different

architectural arrangements and training regimes, raises the intriguing possibility that rules

21This may be due to the type of sentential subject employed in our experimental stimuli. In the syntactic

literature, many examples are given using sentences with that-headed sentential subjects, such as I know who

that the count will duel surprised us.. But these sentences are difficult to translate into our 2× 2 testing

paradigm because both of the −filler conditions involve two that-complimentizers in a row, which may be

difficult for humans and models to process. Instead, we constructed we constructed Sentential Subject Island

violations using for -headed sentential subjects, such as I know who for the count to duel will surprise us.

Many islands have graded acceptability (Kush et al., 2013; Chaves, 2020), and it may be the case that for -

headed sentential subject violations are judged as less ungrammatical than their that-headed counterparts.

Further investigation is needed.
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governing subject/object asymmetry may prove especially challenging to learn from data.

6 General Discussion

In this section, we first discuss the issue of how and why the models are learning what

they do, arguing that the similarities in models’ generalizations despite their architectural

differences can be best understood through their objective function, which is to increase data

likelihood. Next, we address four possible concerns about the applicability of our modeling

results for addressing questions of learnability.22 Finally, we turn to the implications of the

models’ success for one influential argument in favor of linguistic nativism, the Argument

from the Poverty of the Stimulus.

6.1 How Are the Models Learning?

We start with a set of questions adapted from Pearl and Sprouse (2013a) addressing their

own computational model of island acquisition: (1) Why does the system attempt to learn

dependencies between tokens or sequences of tokens? (2) Why does the system attempt to

learn constraints on those dependencies? and (3) Why does the system treat wh-dependencies

as separate from other dependencies, like RC dependencies and binding dependencies?

Before we begin answering these questions, we need to recapitulate three properties of

our models: First, as discussed in Section 3.3, all of our models are weakly-biased and do-

main general learners, with no evidence for natural-language like syntactic biases. Second,

the different neural networks vary widely in their assumptions about how the pieces of in-

put data are related to each other and how the input data should be represented: GRNN

represents each word as a single token, GPT-2 and GPT-3 break words down into sub-word

units, and JRNN processes each word as a character string using a separate convolutional

neural network component. In terms of the relationship among pieces of data, the two LSTM

models understand the individual token-to-token relationships as unfolding through incre-

mental state updates, which is intended to model time, whereas Transformers maintain a

fully-connected network of relationships where each token is assigned a time ‘index.’ Third,

neural networks in general, and our models in particular, are well-established to acquire rep-

resentations that correspond to various levels of linguistic abstraction (Belinkov et al., 2017;

22We thank one of our anonymous reviewers for raising the last two.
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Belinkov and Glass, 2019). LSTM models have been shown to capture syntactic part of

speech (Blevins et al., 2018), and for transformers (including GPT-2 models) different atten-

tion heads specialize at processing different parts of speech as well as different dependencies

(Vig and Belinkov, 2019).

With these pieces in place, we can turn to the questions posed above, which we address

by articulating the horns of the learnability debate: Because the abstractions on which these

dependencies operate are justified given the models’ inductive bias by the distributional struc-

ture of the data, and with these abstractions available, co-variation between these categories

is learned either because (a) it is favored by the inductive bias, or (b) because learning these

dependencies improves data likelihood. Since we know that no model architecture tested

here has an obvious strongly natural language syntax oriented inductive bias,23 and, despite

some differences, we find many similar results with multiple architectures that make differ-

ent choices about both input representation and the relationship between these inputs, the

most plausible conclusion is that data likelihood drives learning. Thus, in response to the

first two questions, our hypothesis is that each model learns the constrained co-variation

between fillers and gaps because it is a generalization available within the hypothesis space

determined by the model architecture that that allows it to successfully shift probability

mass away from unlikely sentences and place more weight on sentences that are more likely

to occur.

The response to the third question (“Why does the system treat wh-dependencies as

separate from other dependencies”) is similar. Given previous work demonstrating that

individual featural dependencies are tracked by individual neurons (Lakretz et al., 2019;

Giulianelli et al., 2018), it is likely that the respective distributions that characterize each

type of dependency are sufficiently distinct that they are represented differently in the net-

work. Given this, the inductive bias either does not favor generalizing constraints from one

dependency to others, or such generalization hurts data likelihood. In sum, the type of an-

swer we propose for the explaining the success of our models stems from the nature of their

objective function of maximizing data likelihood. If this is correct, then the model success

can be related to the success of other, more transparent models that use data likelihood

23There are model architectures that do encode syntax-oriented inductive biases, both explicitly (Dyer

et al., 2016) and implicitly (Shen et al., 2017). For performance of these models on the tests discussed here

see Wilcox et al. (2019b) and Hu et al. (2020).
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maximization to tackle issues of learnability, such as the model proposed for the acquisition

of subject-auxiliary inversion in Perfors et al. (2006).

6.2 Possible Concerns

The first possible concern has to do with data size: If we assume that a typical child in a

native English environment is exposed to about 30,000 words per day (≈ 11-million words per

year) (Hart and Risley, 1995), then GRNN has a quantity of linguistic experience comparable

to an 8-year-old. If this rate of exposure persists throughout a typical adult lifetime, then

JRNN roughly has a quantity of linguistic experience comparable to that of an 80-year-old,

GPT-2 that of 10 human lifetimes, and GPT-3 that of 100 human lifetimes. Although some

of these models are clearly exposed to vastly more linguistic experience than human children,

we believe that their learning outcomes are still relevant to debates about learnability. First,

their behavior may still be relevant in addressing what grammatical generalizations are

learnable in principle, which can bear on analytic arguments about learnability. In addition,

GRNN’s data size is approximately equal to that of late childhood, when we would expect

robust acquisition of islands. Crucially, though, these differences are made moot by our

results, which indicate that data size has little effect on qualitative model success, with our

smallest data model performing equivalently to GPT-3, our largest data model.

The second possible concern is about data genre: All of our models were trained on

newswire or similar adult-directed text, which may differ from child-directed speech in critical

ways, such as average sentence length and size of the lexicon. Commenting on genre, we

would like to point out that it is an open question whether it has a substantial effect on

human language learning outcomes. The manner and rate at which adults speak to children

varies substantially across cultures, and there are some cultures in which children are spoken

to infrequently yet still learn their native language (Weber et al., 2017; Cristia et al., 2019).

The third possible concern has to do with the effect of parasitic gaps on the logic we use

to test for island effects. Parasitic gaps (Engdahl, 1983) are instances where gaps in adjunct

islands can exist parasitically on the presence of an upstream host-gap, as in (21), below.

(21) I know what the spy burned after reading last night.

The concern is that, even if a model has acquired adult-like distribution of gaps, it should,
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nonetheless, posit some gaps in adjunct clauses, thus muddying our prediction for the absence

of wh-effects inside islands. While the example of parasitic gaps is extremely interesting, we

do not believe that they invalidate our logic. Generally, parasitic gaps need to be preceded

by a host gap, which do not exist in any of our test items. Thus, in the absence of upstream

host gaps, gaps inside adjuncts are still ungrammatical.24

The last possible concern we would like to address is one of coverage. We have chosen

to study models’ generalization of the filler–gap dependency by looking at embedded wh-

questions. We have done so to rule out possible confounds associated with other forms of

syntactic movement such as do-support for matrix level questions (“The lion ate the gazelle

yesterday. → What did the lion eat yesterday?”). Just because the models tested have

learned many aspects of the filler–gap dependency in the embedded question context does not

mean they have learned island constraints for other dependencies, such as relative clauses,

root-level questions and topicalization. However, it is possible that the models might learn

a non-unitary representation of the wh-dependency, but learn the correct constraints on

one of its parts (i.e. embedded questions). In this case, model learning would still provide

good empirical evidence that these cosntraints are learnable in principle. Additionally, this

possible limitation of the current work is alleviated by a recent study (Ozaki et al., 2022)

finding that our models do learn island constraints for other wh-dependencies, and that

these constraints are sometimes even stronger than for embedded wh-questions, providing

additional support for our conclusions.

6.3 Argument from the Poverty of the Stimulus

We now discuss the implications of our modeling results. The question we wish to gain

traction on is the following: Where on the nativist-to-empiricist spectrum should we place

island constraints? Nativist approaches posit that island constraints are learned by language-

specific innate constraints, which guide the child’s learning process. Language-specific refers

to abstract rules or operations stated in terms of syntactic (or linguistic) structures, and

are not used in other domains of cognition. These constraints guide the learning process

24One possible exception are sentences that involve both topicalization and parasitic gaps such as “I know

what, without reading , the spy burned .”, however, in written text, the topic must be introduced with a

comma or an m-dash, which are absent in our sentences, ruling them out as a possible confound. One other

way to rule out this potential confound would be to look at the whole post-gap region.
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by eliminating or down-weighting certain structures from the hypothesis space. Innate, as

argued in Mameli and Bateson (2011), is often discussed as a single property, but it is

more properly understood as a cluster (or less charitably a ‘clutter’) of interrelated con-

cepts. Here, we use the term to describe representations that do not need to be learned and

are sufficiently developmentally robust, or canalized. On the opposite end of the spectrum,

empiricist approaches posit that island constraints are learned by applying domain general

principles—such as pattern prediction—to the problem of efficient communication. As men-

tioned in Perfors et al. (2006), empiricist approaches to language learning do not deny that

grammatical representations are present in the learner’s hypothesis space. The difference

is that empiricist approaches posit that these structures are selected with respect to some

criteria (they do a good job predicting the data; they are simple) rather than because they

are favored or disfavored a priori.

How can computational modeling provide evidence for or against nativist or empiricist

approaches? To be clear, the performance of a given model does not provide direct evidence

for or against the learnability of a particular structure. Given the vast distance between any

computational model available today and the human brain, model success does not mean

that the structure is necessarily learned and model failure does not mean that the structure

is not learnable. Rather, we use computational modeling as an empirical corollary to analytic

arguments about learnability, specifically the Argument from the Poverty of the Stimulus.

Since it was first introduced in Chomsky (1965), the APS has been formulated differently

by different people. The version presented here is a blend of the argument as construed in

Clark and Lappin (2010) and Laurence and Margolis (2001). As the APS has typically been

treated as an argument advocating linguistic nativism, it is important to situate it in the

discourse of these debates. For this reason, as advocated in Clark and Lappin (2010) the

way we will frame the APS is as a logical argument about the necessity of language-specific

biases.25

25The APS has been formulated, for example by Pullum and Scholz (2002) and Legate and Yang (2002)

as being about whether the learning algorithm employs data-driven induction or not. We avoid this term

here, as data-driven induction can support either nativist or non-nativist positions, as introduced above.

For example, connectionist networks (McClelland et al., 1987; Elman, 1990) and unsupervised parsers that

assume an underlying Context Free Grammar (Charniak, 1996) are both data-driven algorithms, but, if they

are to be taken as models of cognition, make very different commitments about what must be learned.
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Argument from the Poverty of the Stimulus:

1. Learners acquire target language L0 through domain general learning algo-

rithms or through algorithms with a strong language-specific learning biases.

2. The primary linguistic data are consistent with an infinite number of linguistic

generalizations L0, L1, L2, . . . .

3. Language learners consistently acquire the actual generalizations of their tar-

get language, L0.

4. There are no domain-general learning algorithms that favor L0 over

L1, L2, . . . .

5. Therefore, children acquire L through algorithms with a strong language-

specific bias.

This formulation of the APS is useful because it provides a clear role for computational

modeling experiments. If an algorithm with no language specific learning bias is able to ac-

quire the proper linguistic generalizations, then Premise 4 does not hold and the argument

falls apart. As stated by Lappin and Shieber (2007) in the context of the role of connec-

tionist networks in debates about the APS: “[T]o the extent that a given machine learning

experiment is successful in acquiring a particular phenomenon, it shows that the learning

bias that the model embodies is sufficient for acquisition of that phenomenon. If, further,

the bias is relatively weak, containing few assumptions and little task specificity, the experi-

ment elucidates the key question by showing that arguments against the model based on its

inability to yield the relevant linguistic knowledge are groundless.”

Now, note that the learning algorithm must be domain-general (in our formulation of

the APS) or weakly-biased and not task-specific (in the formulation of Lappin and Shieber,

2007). The two neural architectures we employed—RNNs and Transformers—were selected

precisely for this purpose. Furthermore, based on the experiments presented in Section 4

and Section 5, these models demonstrate behavior that is consistent with learning the basic

dependency between fillers and gaps, their hierarchical restrictions, and some of the island

phenomena (stronger learning outcomes for Coordination, Complex NP, Wh and Adjunct

Islands and weaker learning outcomes for Left Branch, Subject and Sentential Subject Is-

lands). Therefore, we conclude that their success provides an empirical refutation of the
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APS for these structures, and neutralizes it as an argument in favor of linguistic nativism.

Properly understood, our results bear on questions of nativism not as argument, but as

counterargument against the APS. If we remove the APS from the picture, then what are

we left to conclude about the filler–gap dependency and islands? One of the most striking

features of syntactic islands is that they appear in language after language and in unre-

lated languages (Richards, 2001) (see also Phillips, 2013, Section 2.1.5, for shorter overview

of crosslinguistic variation). For a brief overview of the various claims made about the

crosslinguistic distribution of the islands explored here, see Appendix B. If innate, domain-

specific biases must be recruited to explain their distribution in the world’s languages, then

the filler–gap dependency and islands may still stand as good evidence for the nativist po-

sition. However, we want to note that relative success of grammatical, processing, and

discourse-structural accounts for explaining crosslinguistic variation is still very much an

area of active research. Grammatical accounts, which have traditionally been linked more

strongly to nativist positions, have long sought to ground variation in other properties of

the grammar (Bošković, 2005; Richards, 2001), and contemporary accounts have used this

approach successfully, for example, for subject/object asymmetries (Stepanov, 2007; Nunes

and Uriagereka, 2000; Omaki et al., 2020). However, recent empirical work has found that

many reported crosslinguistic differences are eliminated when testing materials are properly

controlled (Sprouse et al., 2016; Abeillé et al., 2020). And discourse structural accounts

(Ambridge and Goldberg, 2008; Ambridge et al., 2014), potentially grounded in empiricist

assumptions, may capture these data just as successfully. Given our results, which demon-

strate that many of the English islands can be learned by domain-general, weakly-biased

algorithms, and given the rapid advance in machine learning in the past decade, we suspect

that the strongest arguments for or against linguistic nativism will hinge on data about the

similarities and differences between languages, rather than their learnability within a given

language.

7 Conclusion

As mentioned in the introduction, we believe that one key feature of this paper is its method-

ological contributions and hope that the methodology deployed here can be extended beyond

the case of the filler–gap dependency. The approach taken in this paper involves assessing the
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capabilities of Artificial Neural Network models by testing them similarly to how one would

test a human subject in a psycholinguistic experiment. Constructing test suites that mimic

online processing experiments in humans makes it possible to test any model that makes

incremental predictions about language, even ones whose internal states are opaque, such as

RNNs and Transformers. Furthermore, this method can be used to test learning outcomes

over a wide array of syntactic structures. Our tests reveal that these weakly-biased models

acquire impressively sophisticated generalizations regarding the filler–gap dependency and

island constraints from even a childhood’s quantity of linguistic input, though in some cases

we find acquisition failures. It is our hope that this method gains traction among psycholin-

guists studying incremental models of processing, as well as syntacticians who are more

concerned with grammatical representations.
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A Quantifying grammatical generalization strength with

log-probabilities

If a language model’s word predictions reflect implicit grammar-like structural generaliza-

tions, then its predictions for a word w given a context C can be productively decomposed

as
∑

X P (w|X,C)P (X|C) where X ranges over possible structure-level continuations that

might apply in a context C. Consider two contexts that superficially are only minimally

different, but that should have large differences in the expectation as to whether there will

be a gap, such as “I know {that/what} the lion devoured. . . ”. If we take X to be whether

a gap happens or not, then for a model making human-like generalizations, P (X|Cthat) and

P (X|Cwhat) should be very different. But P (w|X,Cthat) and P (w|X,Cwhat) may be very

similar, reflecting word frequencies, relations with preceding individual words, and so forth.

Let us denote the possible values of X as x+ for presence of a gap and x− for absence of

a gap, and denote by w+ a word that would require a gap, such as yesterday in the given

example. We make explicit the marginalization over possible X explicit and consider the

ratio of conditional word probabilities:

P (w+|Cwhat)

P (w+|Cthat)
=

∑
X P (w|X,Cwhat)P (w+|Cwhat)∑
X P (w+|X,Cthat)P (X|Cthat)

(5)

=
P (w+|x+, Cwhat)P (x+|Cwhat) + P (w+|x−, Cwhat)P (x−|Cwhat)

P (w+|x+, Cwhat)P (x+|Cthat) + P (w+|x−, Cthat)P (x−|Cthat)
. (6)

For a model that has successfully learned human-like generalizations, P (w+|x−, Cwhat) and

P (w+|x−, Cthat) should both be extremely small, because gap-requiring words w+ require
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gaps (x+), allowing us to drop the second term of the summands in both the numerator and

denominator:

P (w+|Cwhat)

P (w+|Cthat)
≈ P (w+|x+, Cwhat)P (x+|Cwhat)

P (w+|x+, Cwhat)P (x+|Cthat)
. (7)

Furthermore, we can expect that P (w+|x+, Cthat) ≈ P (w+|x+, Cwhat)—that is, the presence

or absence of a gap is the factor that mediates the probability of gap-requiring words across

these contexts. This allows us to cancel the first remaining terms in the numerator and

denominator, giving us:

P (w+|Cwhat)

P (w+|Cthat)
≈ P (x+|Cwhat)

P (x+|Cthat)
. (8)

We should have P (x+|Cwhat) ≫ P (x+|Cthat) so in turn the probability ratio for any specific

gap-requiring word in the two contexts should be much larger than one. As described

in Section 3.2, one can indeed argue that for truly human-like linguistic generalization in

contexts where omitting the gapped phrase is ungrammatical without a filler, we should

have P (x+|Cthat) ≈ 0 so the larger the value of this ratio, the more human-like the model’s

behavior. If we take the negative log, we get a difference in surprisals ranging between

(−∞,∞) whose value should be smaller (closer to −∞) for more human-like generalization:

− logP (w+|Cwhat) + logP (w+|Cthat). (9)

Conversely, for material w− that indicates there is no gap (such as the gazelle), equivalent

logic implies that a positive value for the quantity

− logP (w−|Cwhat) + logP (w−|Cthat) (10)

would be indicative of human-like sensitivity to filler–gap structural relationships.

These differences of log inverse-probabilities in Equations (9) and (10) are the wh-

effects described in Section 3.2 and used throughout the paper in our tests of neural

language models’ acquisition of human-like filler–gap dependencies.

B Crosslinguistic Distribution of Islands

Table 1 gives a sample of the crosslinguistic variation of islands tested in this paper. This

is not intended to be an exhaustive list, rather to highlight some of the important empirical
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conclusions from the past 50 years. For the purposes of our argument two things are impor-

tant: First, the same islands appear in multiple unrelated languages, and second, there is

variation between languages regarding the status of each island.
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Island Yes Extraction No Extraction

Adjunct Islands Korean, Japanese, Malayalam

(Yoshida, 2006)

Hungarian, Russian, Spanish,

Basque (Yoshida, 2006) English,

Italian, Portuguese, French, Ger-

man (Sprouse and Hornstein,

2013)

Complex NP Islands Swedish, Danish, Norwegian

(Engdahl, 1982; Engdahl et al.,

1997), Japanese (contested)

(Kuno, 1973)

Serbo-Croatian, Greek, En-

glish (Bošković, 2015); Italian,

Spanish, Portuguese, French,

German, Russian, Hungarian

Sprouse and Hornstein (2013)

Coordination Islands None (but proposed whole con-

junct extraction for: Japanese,

Korean, Serbo-Croatian, Rus-

sian, Old English, Latin (Oda,

2017))

All Languages (Bošković, 2020)

(extraction out of conjuncts)

Left Brach Islands Russian, Polish, Czech (Corver,

1991)

English, Dutch (Corver, 1991)

Sentential Subject Is-

lands

Palauan, Malagasy, Chamorro,

Japanese, Akan, Tuki (Sabel,

2002)

English

Subject Islands Japanese, Navajo, Turkish, Rus-

sian (Stepanov, 2007), Hungar-

ian (Kiss, 2013), Palauan (Geor-

gopoulos, 1991)

Norwegian, Italian (Sprouse

et al., 2016), Egnlish, French

(Sprouse and Hornstein, 2013)

Wh-Islands Italian (Rizzi, 1982), Spanish,

Portuguese (Sprouse and Horn-

stein, 2013) Scandanavian Langs

(Maling, 1978)

English, German, Russian

(Sprouse and Hornstein, 2013)

Table 1: Some Crosslinguistic Variation of Islands
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