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Abstract— The problem of trip recommendation has been
extensively studied in recent years, by both researchers and
practitioners. However, one of its key aspects—understanding
human mobility—remains under-explored. Many of the pro-
posed methods for trip modeling rely on empirical analysis of
attributes associated with historical points-of-interest (POIs) and
routes generated by tourists while attempting to also intertwine
personal preferences—such as contextual topics, geospatial, and
temporal aspects. However, the implicit transitional preferences
and semantic sequential relationships among various POIs, along
with the constraints implied by the starting point and destination
of a particular trip, have not been fully exploited. Inspired
by the recent advances in generative neural networks, in this
work we propose DeepTrip—an end-to-end method for better
understanding of the underlying human mobility and improved
modeling of the POIs’ transitional distribution in human moving
patterns. DeepTrip consists of: a trip encoder (TE) to embed
the contextual route into a latent variable with a recurrent
neural network (RNN); and a trip decoder to reconstruct this
route conditioned on an optimized latent space. Simultaneously,
we define an Adversarial Net composed of a generator and critic,
which generates a representation for a given query and uses
a critic to distinguish the trip representation generated from
TE and query representation obtained from Adversarial Net.
DeepTrip enables regularizing the latent space and generalizing
users’ complex check-in preferences. We demonstrate, both
theoretically and empirically, the effectiveness and efficiency of
the proposed model, and the experimental evaluations show that
DeepTrip outperforms the state-of-the-art baselines on various
evaluation metrics.

Index Terms— Auto-encoder, deep learning, generative
adversarial net, spatial-temporal data, trip recommendation.

I. INTRODUCTION

RCENTLY, the high popularity of Location-based Social
Network (LBSN) such as Twitter, Flickr, and Instagram,
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Fig. 1. Illustration example of trip recommendation.

has enabled a generation of massive check-in data with POIs,
along with a large number of short messages and other
information related to space/location, time, and other context.
This, in turn, provides unprecedented opportunities to improve
various applications based on mining and learning human
mobility, e.g., POI recommendation [1], trip recommenda-
tion [2], trajectory-user linking [3], and so on. In particular,
the trip recommendation problem has spurred a lot of research
since then. In addition to improving route/itinerary planning,
it also helps to recover routes of users (e.g., criminals or
terrorists) with (partially) missing/anonymized trajectories.

A typical trip recommendation system is to provide a
sequence of ordered POIs for a given query which includes,
at a minimum, a starting location and a destination. As Fig. 1
shows, Jimmy who lives in the city of Glasgow sends a
query request including the start location “Whisky Bar” at
8:00 A.M., the destination “The Barras Market” at 9:00 P.M.,
and planning to visit seven sights during that period. The
system recommends Jimmy a trip like “Whisky Bar → A →
C → D → E → F → The Barras Market.” This trip
recommendation is different from the traditional POI rec-
ommendation that aims at suggesting some interesting POIs
without any sequential information [4]. It is also different from
a typical personalized route planning problem which is usually
to search for a shortest route or a route with a minimum
cost [5]. Because in the latter problem we only need to find
a route from a road network with starting and ending points
provided. In contrast, the sequence of POIs recommended in
a trip recommender system is not constrained by the road
network, and is, arguably, more difficult to obtain due to larger
search space.

Thus, the goal of trip recommendation is to build a proper
model to capture the various transition distribution among POI
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pairs or a set of POIs, and predict a POI sequence through
such a trained model. Therefore, most existing works rely
on developing statistical methods to identify top-k popular
POIs from massive trajectories [6], applying Markov-based
approaches to learn POI transition matrices from a large
number of historical trips [7], or adopting certain retrieval
algorithms (e.g., Monte Carlo Tree) to make a personalized trip
recommendation [2]. These methods first focus on predicting
the next POI based on POI transition matrices or attraction
popularity when the current POI is given and then formulate
a complete POI sequence for a user. These models, in turn,
exhibit a similar flow consisting of: 1) integration of spa-
tial and temporal features into each POI, along with some
other attributes (e.g., tourist’s interest, category of POI, and
POI popularity); 2) construction of a model to understand
sequential visiting patterns from massive historical trajectories;
and 3) development of rank-based or search-based methods to
recommend some (ordered) POIs.

The core motivation for our work is based on the obser-
vation that the existing studies on trip modeling/planning
exhibit certain limitations: 1) first, a trip recommendation
is traditionally formulated as a search or statistical problem
considering the associated POI information and users’ visiting
patterns, which is usually not efficient in generating satisfac-
tory routes from massive trajectory data. For instance, many
works focus on computing the local transitional distribution
between POI pairs by applying Markov-based models [7],
[8], given additional user constraints, e.g., spatial distance,
duration time, etc., which is computationally intensive due
to the estimation of transition probability between all POI-
pairs [9]. Moreover, it cannot yield good recommendation
since they ignore the high-ordered relations among POIs;
2) second, it is difficult to exploit and integrate the semantics
of sequential information among POIs by simply exploring
POI popularity or recommending nearby POIs, even some
constraints—e.g., the distance between POIs, POI’s category,
and tourists’ social ties—have been considered. In the trip
recommended by the system to Jimmy ’Whisky Bar → A →
C → D → E → G → The Barras Market’, the POI G may
not be the location Jimmy expects to visit, if it never appears
in his historical location traces; and 3) third, the diversity
of the POI sequences based on historical trajectories cannot
be obtained through simple empirical analysis. Consider the
route’s distance distribution for Edinburgh and Melbourne in
the Flickr data set, shown in (see [7]) in Fig. 2(a) and (b).
Each point indicates the sum of all POI’s distances from the
start point and distances from endpoint in a given route. Most
of the points correspond to short distances and are distributed
close to the red dashed line—implying that most of the POIs
in a route are closer to either the start point or the endpoint,
and the total distance from the start point is similar to the
total distance from endpoint. Moreover, even for the same
(start_point, end_point) pair, the starting time of the different
trips need not be the same.

Some recent works have relied on deep neural network
to capture human mobility and the semantics of sequen-
tial information among various POIs [3], [10], [11] and
constructed recurrent neural networks (RNN) to exploit the

Fig. 2. Route distribution. (a) Distance distribution of Edinburgh. (b) Distance
distribution of Melbourne.

POI’s transitional distribution (coupled with POI’s contextual
information, spatial constraints and time preferences. Others
have relied on generative models such as adversarial net-
works [12] and (variational) autoencoders to better exploit
the representations of sequential POIs [13], [14]. However,
the latent factors governing human’s check-in preference are
too complex to be captured by an explicit probability den-
sity distribution. For instance, Zhou et al. [15] use a latent
variable model to capture the semantic sequence from human
mobility by formulating the latent code sampled from isotropic
Gaussian with diagonal covariance. It poses a strong pre-
sumption of the trajectory distribution, resulting in ill-defined
latent factor inference. Certainly, typical RNN-based models
are good at learning the sequential information of a given
trip, however, it cannot capture the non-linear transitional
patterns among user check-ins. This limits ability to recom-
mend subsequent POIs that do not appear in the training
data. Bayesian models such as VAE [16] are appealing on
addressing the uncertain transition problem inherent in RNN,
but they are also constrained by the agnostic prior distribution
problem—i.e., the learned variational distribution of a
sequence is usually assumed and regularized to be a diagonal
Gaussian, which can lead to posterior collapse and ignoring
the latent code—may be exacerbated by combining with
RNN-based models [17].

To tackle the aforementioned challenges, we propose
DeepTrip—an end-to-end neural network in an adversarial
spirit, to better understand various context affecting human
mobility when making trip recommendations. Specifically,
we first introduce a novel POI embedding approach to obtain a
low dimensional representation of each POI’s contextual infor-
mation including spatial and temporal constraints. DeepTrip
leverages the RNN-based autoencoder as the basis of a frame-
work to study the human mobility patterns via embedding each
trajectory/trip into a low dimensional vector. It contains an
encoder network and a decoder network, wherein each part is
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based on a standard RNN structure such as LSTM [18] and
GRU [19]. As such, the sequential and semantic information
can be well transformed in a dense vector representation.
Meanwhile, the involved RNN can capture the transitional
relationships between the elements sourced from sequential
data. We then adopt an auxiliary neural network to better learn
the sequential POIs distribution in an adversarial manner, so as
to sidestep the efforts of explicitly modeling prior distribution
with respect to trajectory data.

Preliminary results were reported in [20] and this article
advances the prior work in: 1) check-in embedding is a
fundamental and significant component in the trip recom-
mendation. Therefore, we propose a novel contextual embed-
ding method which takes the spatial and temporal constraints
into consideration. We also provide an explanation regarding
why we are integrating these constraints to make perfor-
mance improved. Extensive experimental results demonstrate
the important advantages of such an embedding method;
2) interpretability and theoretical foundations of our proposed
methods are detailed in this extended study; and 3) We
expand our work via experiments conducted on more data sets
(e.g., popular Foursquare data set) and compared with more
advanced benchmarks. Overall, our main contributions in this
study are fourfold.

1) We take a first step toward addressing the trip
recommendation problem under a framework of
encoder–decoder, jointly using an adversarial neural
network to train a code space for improving the
recommendation of preferred routes.

2) We incorporate the geographical and temporal features
of each POI, and give special consideration to the dis-
tance to the start point and endpoint—in turn, improving
the performance of trip modeling in RNN.

3) We encode the route, which contains a series of ordered
and discrete POIs, into a latent continuous space that can
be used directly in the generative adversarial networks
(GANs), avoiding the use of policy gradients or any
other auxiliary approaches that traditionally required to
tackle discrete data.

4) We present a theoretical interpretation of the proposed
model, and conduct extensive experimental evaluations
on two real-world data sets, demonstrating the effective-
ness and robustness of DeepTrip in comparison to the
state-of-the-art baselines.

II. PRELIMINARIES

We now introduce the basic terminology and the background
used in the rest of this article.

Let L denote the set of POIs (check-ins left by the users) and
for each POI lτ (lτ ∈ L) we have its geographical coordinates
ðτ =< l lat

τ , l lon
τ > and a timestamp tτ . The formulation of the

trip recommendation problem follows the related works [2],
[7], [21], [22]:

A. Trip Recommender

A tourist provides a query q that consists the desired start
point ls and start time ts , the length of trip N (i.e., the number
of POIs) and the endpoint le at time te. A trip recommendation

Fig. 3. Overall architecture of DeepTrip.

system returns a route � =(l1, l2, . . . , lN ), where l1 = ls and
lN = le for denotation convenience.

B. Generative Adversarial Network [23]

is a learning model consisting of a generator g(·) and a
discriminator f (·) that compete in a two-player minimax
game: g(·) learns to generate fake but reasonable samples, and
tries to “fool” f (·); while f (·) attempts to distinguish between
the real data, sampled from a true distribution x ∼ P(·), and
the samples x̃ that are generated by g(·). The objective of
training GAN follows the minimax optimization:

min
θ

max
φ

E
x∼P(x)

[log fφ(x)] + E
x̃∼Pg(z)

[log(1 − fφ(gθ (z))] (1)

where z denotes a latent space obtained by the empirical
distribution of the data [e.g., z ∼ N(0, I )], θ and φ are
parameterized neural networks of g(·) and f (·), respectively.

C. Wasserstein GAN [24]

It is a novel variant of GAN that replaces the Jensen-Shannon
divergence with Earth-Mover distance [a.k.a. Wasserstein-
1 distance or optimal transport (OT) distance] [25]–[27],
which can tackle the unstable training issue of original GANs.
It amounts to optimizing

min
θ

max
φ∈W E

x∼P(x)
[ fφ(x)] − E

x̃∼Pg(z)
[( fφ(gθ (z))] (2)

where x̃ = gθ(z). In WGAN, fφ(x) is alternatively treated as
a critic, in contrast to the discriminator in GAN. The critic
parameters φ are restricted to a Lipschitz constraint W by
weight-clipping method, i.e., within a compact space φ =
[−ε, ε]d . For more details on applications of OT distances,
including WGAN, We refer readers to the comprehensive
surveys in [25] and [26].

III. METHODOLOGY

We now present an overview of the proposed DeepTrip
model, followed by detailed discussions of each of its modules.

A. Overview of DeepTrip

The overall framework is shown in Fig. 3, and the model is
designed with three main components: 1) Trip Encoder (TE):
Eω(·); 2) Trip Decoder (TD): Rψ(·); and an 3) Adversarial
Net which further consists of a generator (gθ (·)) and a critic
( fφ(·)). DeepTrip employs a parameterized TE Eω(·) to explore
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the spatio-temporal routes, and generates a continuous code
space called trip code (X ). Subsequently, the parameterized
TD (Rψ(·)) leverages the trip code to recover the input route.
The process follows an autoencoder manner, and we incor-
porate an Adversarial Net to enhance the generation ability
of the TD by regularizing the autoencoder. We first employ
a generator to encode the given query (start point, endpoint
and expected length of the trip), to obtain a continuous code
representation called query code (X̃ ), which is similar to the
trip code X . Then, the critic tries to distinguish the trip code X
from the query code X̃ by performing a binary classification.
This is a min-max optimization, whereby the generator and
critic are trained together with TE and TD. After the model
converges, generator and critic can no longer prevail over each
other. Thus, in the recommendation process, we first obtain
the query code X̃ by feeding the given input query into the
generator of the Adversarial Net, and then input X̃ into the
TD Rψ(·) to request a recommended route. Clearly, the three
components of DeepTrip affect each other: the trip code is
derived from the TE Eω(·), while a recommended route is
decoded from the TD Rψ(·) which relies on the trip code,
thereby improving the encoded capability of Eω(·). Similarly,
the Rψ(·) is enhanced by adversarially criticizing the trip code
and query code generated from the given query.

B. Trip Encoder

Recurrent neural networks (RNNs), such as Long
Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU) [18], [19], have been successfully applied in sequential
or time-series data analysis where they take an element one at a
time and use a memory-like structure to remember information
learned from the past. Besides, RNNs recursively encode each
element by using the same parameters that can reduce the
model complexity and transform independent elements into
dependent representations. However, traditional RNNs usually
confront the vanishing gradient problem, while LSTM and
GRU can alleviate this concern owing to their gated mecha-
nisms. Although GRU is simpler in its structure, LSTM usually
achieves more reliable performance than GRU in various real
tasks [3], [13]. As such, the TE applies an LSTM to capture
the POIs’ long term dependencies, as well as the spatial and
temporal contexts associated with a route. We first obtain the
contextual representation of each POI including spatial and
temporal constraints and then construct the route as a sequence
of POIs, while generating a trip code X via this LSTM.

1) Contextual Embedding: The time and location/distance
are critical factors for trip recommendation—see [11],
[28], [29] utilize time gate and distance gate to capture
spatio-temporal preferences for sequential POIs. However,
the existing works focus on integrating the influences of
previous spatial locations to the next/current one (as their main
task is to make the next POI recommendation). As illustrated
in Fig. 2, POIs are often constrained by both of start point
and endpoint in term of spatial distribution. Thus, straight-
forwardly adapting the existing approaches for the next POI
recommendation may yield a trajectory that deviates from the
expected preferences.

We propose a novel embedding approach, bundling POI’s
id, spatial and temporal context into a unified dense represen-
tation vector that captures the semantics and features better
than discrete representations (e.g., one-hot technique) and
improves the handling of data sparsity problem. Specifically,
we first randomly initiate each POI lτ with a d−dimensional
vector v(lτ ) ∈ Rd by sampling from a truncated Gaussian
distribution [28].

Since different users visit a particular POI in different man-
ners, we need to cater to diverse preferences in terms of arrival
time. For example, some tourists prefer to visit a museum in
the morning, but others may prefer the afternoon. Motivated
by previous works on time information processing [28], [30],
[31], we construct an hour-level time representation to encode
human check-in time preference, which splits the day into
24 discrete time intervals and adopts the continuous variables
randomly generated from a truncated Gaussian distribution to
represent the 24 hours. Therefore, a tourist who visits a POI
at time τ can be represented as u(tτ ) ∈ Rd ′

, where d ′ is the
embedding size.

Then, we represent the geographical feature of POIs with
continuous vectors, incorporating the constraints imposed by
the start point and endpoint in the representation. They cor-
respond to the distances between current (recommended) POI
and the start one, and between current (recommended) POI
and the end one, respectively. The geographical feature u(ðτ )
of a POI lτ is defined as

u(ðτ ) = 1

2

(
dist(ðτ , ðs)

maxdist
u(s) + dist(ðτ , ðe)

maxdist
u(e)

)
(3)

where dist(·, ·) is the great-circle distance, and maxdist denotes
the upper bound of geographic distances in the training data
set. dist(ðτ , ðs) denotes the great-circle distance between lτ
and the start point ls , and dist(ðτ , ðe) denotes the great-circle
distance between the lτ and the endpoint le. ðs and ðe

are the geographical coordinates of the start point and the
endpoint, respectively. Similar to time embedding, we use
two dense vectors, u(s) and u(e), to respectively represent
the geographical feature of start point and endpoint. In (3),
we vectorize the geographical feature of the POI lτ constrained
by the corresponding start point and endpoint in a query.
In this way, we formulate the representation of geographical
coordinate ðτ of current POI lτ with the weighted geographical
features of the start point and destination.

Finally, we integrate the above three aspects into a unified
representation (see Fig. 4) as Cτ = [v(lτ ); u(ðτ ); u(tτ )], noting
that other features associated with POIs (e.g., duration of a
visit, if available) can be straightforwardly incorporated in the
representation vector.

2) Generating Trip Code: After obtaining the contextual
embeddings of POIs, we apply the Long Short Term Mem-
ory (LSTM) cells to encode each trip (l1, l2, . . . , lN ) and the
current state henc

τ can be updated by

iτ = σ(WiCτ + Ui h
enc
τ−1 + Vi cτ−1 + bi)

fτ = σ(WfCτ + Ufh
enc
τ−1 + Vfcτ−1 + bf)

oτ = σ(WoCτ + Uohenc
τ−1 + Vocτ−1 + bo)

cτ = fτ cτ−1 + iτ tanh(WcCτ + Uchenc
τ−1 + bc) (4)
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Fig. 4. TE with contextual information.

where it , ft , ot , and b∗ are respectively the input gate,
forget gate, output gate and bias vector; and matrices
W∗, U∗, V∗ ∈ R(d+2d ′)×d ′′

are parameters needed to be
learned. In (4), each cell state cτ stores the spatio-temporal
information constrained by a given query, which will be
transferred to the hidden state hτ

henc
τ = tanh(cτ )oτ . (5)

Following earlier work [3], the last output of LSTM will be
leveraged as the trip code X :

X = henc
N (6)

which can be fed into the TD to recover the original route
and to have X updated during the training process.

C. Trip Decoder

The TD actually has a dual role of a decoder and a
recommender in the DeepTrip. As a decoder, its objective
is to decode the trip code X to reconstruct the input trip.
However, unlike the encoder, it generates ordered POIs one
by one, predicting the next POI lτ based on its hidden state
hdec

τ and the trip code X :

lτ = W ′[hdec
τ ;X ] + b′ (7)

where W ′ and b′ denote the weight matrix and bias, respec-
tively. The overall probability of a route (l1, l2, . . . , lN ) can be
computed as

p((l1, l2, . . . , lN )) =
N∏

τ=1

p
(
lτ |hdec

τ−1,X
)
. (8)

The TE and the TD can be considered as two parameter-
ized functions: the TE—Eω(·) generates the trip code X by
Eω(�) �→ X with parameters ω; and the TD— Rψ attempts to
reconstruct the � from given X parameterized by ψ . Hence,
the reconstruction loss is computed as

LE R(ω,ψ) = − log pψ(�|Eω(�)). (9)

In order to minimize (9), the cross entropy can be involved
to reconstruct the original route �, while the parameters ω and
ψ will be updated in the training process [32].

D. Adversarial Net

We now describe the Adversarial Net which we involve to
jointly train the autoencoder neural network.

1) Components of Adversarial Net: The two components,
as shown in Fig. 3, are the generator and the critic. A query
code is obtained from the generator which is constrained
by a given query. In turn, the critic will be updated by
distinguishing between the trip code from TE and the query
code from the generator, whereas the TE will be updated by
critic and TD, simultaneously. This will help to provide an
optimal trip code space. The generator will also be updated,
to provide a better query code which would approximate the
trip code in an adversarial manner. We employ the Wasserstein
GAN (WGAN) [33] to construct our Adversarial Net. More
specifically, the components can be described as follows.

1) Generator: The generator gθ produces a query code X̃
given a user query < ls, N, le > which is modeled by
another LSTM network. Unlike the TE and TD, it feeds
the start-end pair < ls, le > into LSTM cells to generate
X̃ which has the same dimension as the trip code

X̃ = gθ (〈ls, le〉). (10)

2) Critic: The critic distinguishes the query code X̃ from
the trip code X via performing binary classification.
We use a multi-layer fully-connected network as a critic
function fφ and, in particular, the critic parameters φ
are restricted to an 1-Lipschitz function set. Thus, we set
each parameter φi = [−ε, ε] (φi ∈ φ) following previous
works [32], [34].

2) Objective in Adversarial Net: The objective in our
Adversarial Net is similar to WGAN [see (2)]—i.e., it follows
the min-max optimization in terms of training. It optimizes the
parameters θ in the generator and the parameters φ in critic,
where we show in the following:

min
θ

max
φ

EX∼Pr [ fφ(X )] − EX̃∼P f
[ fφ(X̃ )] (11)

where Pr and P f are trip code distribution and query code
distribution respectively. For the training process of our Adver-
sarial Net, we can separate the objective of generator and critic
into two parts. For the generator, we define the objective as

LGen = min
θ

E
X̃∼P f

[ fφ(X̃ )]. (12)

For the critic, we define the objective as

LCri = min
φ∈W

max
ω

E
�∼P�

[ fφ(Eω(�))] − E
X̃∼P f

[ fφ(X̃ )]. (13)

Consequently, the Adversarial Net of the DeepTrip will jointly
minimize the objectives of (12) and (13).

IV. ALGORITHMIC ASPECTS

We now provide a detailed analysis of the methodology
proposed in Sec. III and present the overall recommendation
algorithm.

A. Theoretical Analysis

Generally, when modeling the trip recommendation prob-
lem, one can simplify it as fitting an appropriate function
that can map the given query q to a requested route � (i.e.,
Eω(q) �→ �), which can be done by minimizing the following
objective:

L′
E R(ω,ψ) = −

∑
log pψ(�|Eω(q)). (14)
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Here, Eω(q) actually is a TE that will embed the discrete query
into a continuous variable. Trip recommendation can also be
considered as a problem of constructing a model with latent
variable to retrieve a satisfactory route: Eω(q) ∼ X . Thus,
we define a model to elaborate the training process before we
want to make recommendation.

Let Pr (�) be a set of discrete and real (i.e., actual) routes
distribution, and P(�) be the model distribution. According
to the (14), the training process of the trip recommendation
problem is transferred to adapt a conditional distribution
P(�|q) by

P(�|q) ∼ P(�, q)/P(q). (15)

Since any given POI, as well as a collection/sequence of
POIs are discrete data items, we attempt to set a continuous
latent variable to represent all the discrete data (including the
query q and the route �), in which we can preserve the transi-
tional information. Consequently, the two key components to
be addressed are:

1) How to force the latent variable of a given query to
approximate or match the latent variable of a real route?

2) How to make the latent variable of real route preserve
the original information of a route?

We note that this resembles the learning process of autoen-
coder or variational autoencoder—the autoencoder can be any
model trained to force an input data to a latent space. Then we
ought to build back the original information [29], [35], which
can be done by optimizing the evidence lower bound (ELBO)

log P(�) ≥−K L(Q(X |�), P(X ))+EQ(X |�)[log P(�|X )]. (16)

Analogously, we create a generator with random parameter θ
to implicitly parameterize the unknown real distribution P(q),
and obtain the query code X̃ (see Section III). Specifically,
q ∼ P(q), X̃ = gθ (q). Let P(X̃ ) denote the query code dis-
tribution. We also define the aggregated posterior distribution
of the route1 Q(X )

Q(X ) =
∫

�

Q(X |�)Pr (�)d�. (17)

Following [36], we assume that Q(X |�) is a deterministic
function of �. Therefore, Q(X ) is only dependent on the real
data distribution Pr (�). Now the main task becomes how to let
query code imitate or match the trip code which is from real
route distribution. To accomplish this, we involve the adversar-
ial network to guide the trip code distribution Q(X ) toward
matching the query code distribution P(X̃ ). In essence, this
amounts to increasing the similarity between Q(X ) and P(X̃ ),
which we evaluate by using the Jensen-Shannon divergence

DG(Q(X ), P(X̃ ))= K L(Q(X )||Pm)+K L(P(X̃ )||Pm) (18)

where Pm is the mixture of Q(X ) and P(X̃ ) [33].
In this article, we adopt WGAN to perform the

DG(Q(X ), P(X̃ )) by weight clipping [29], [33].

DG(Q(X ), P(X̃ ))

= inf

∈P(X∼Q(X ),X̃∼P(X̃ ))

EX ,X̃∼
(||X − X̃ ||) (19)

1Actually, we assume that P(q) and P(�) are identical distribution.

where P(X ∼ Q(X ), X̃ ∼ P(X̃ )) is the joint distribution
with marginals Q(X ) and P(X̃ ), and ’|| · ||’ is the Wasserstein
distance.

Similar to variational autoencoder [16], [35], a decoder
(e.g., a generative model P(�|X )), will deterministically recon-
struct the route � by mapping trip code X to � = Rψ(X )
which guarantees the quality of the generated latent variable.
In other words, we aim to “preserve” the whole information of
original data, toward which we are maximizing the expectation
by EQ(X |�)[log P(�|X )]. Now we can solve out the two key
components [1) and 2)] with latent variables, and we need to
optimize

DG(Q(X ), P(X̃ ))︸ ︷︷ ︸
(i)

− EQ(X |�)[log P(�|X )]︸ ︷︷ ︸
(ii)

. (20)

As Fig. 3 illustrates, in (20), if the Wassertein distance
DG(Q(X ), P(X̃ )) between the (distributions of the) trip code
and the query code converges, the generator which encodes
the given query can store the latent information about missing
POIs in a whole route, because the query code distribution
is close-enough to the trip code distribution. Note that, since
the second term converges, it means that the decoder is able
to rebuild the route conditioned on a given latent code—
moreover, the input latent code can well exploit the sequential
information among a set of POIs. Hence, when the (20)
converges, we can use the generator to encode the tourist’s
query and use the obtained latent code to build a route for
him/her.

B. Training Algorithm

The objective of the training process of DeepTrip is three-
fold, according to (9), (12), and (13). First, we need to
minimize the reconstruction loss between TE and TD. Next,
the adversarial training on trip code and query code needs to
be employed. Therefore, the total objective of our DeepTrip
is to optimize

L = LER + LCri + LGen. (21)

1) Computational Complexity: Using (21) above, we can
conclude that the computational complexity in LER is depen-
dent on the parameters ω and ψ in each iteration. Hence, it is
O(niters×(‖ω‖+‖ψ‖)), where niters is the number of iterations.
Similarly, the computational complexity of the Adversarial
Net, including generator and critic (LCri and LGen), is typically
related with the parameters θ and φ. Therefore, the computa-
tional complexity in LCri and LGen is O(niters×(k×‖φ‖+‖θ‖)),
where k denotes the iterations used in optimizing the LCri in
each iteration of L. Hence, the computational complexity of
L is O(niters × (k × ‖φ‖ + ‖θ‖ + ‖ω‖ + ‖ψ‖)).

The training process of DeepTrip is summarized in
pseudo-code in the Algorithm 1. When it comes to the rec-
ommendation process by our trained DeepTrip, as illustrated
in Fig. 5, we use the trained generator and the trained TD
to make a trip recommendation for a given query-requested.
In the process, we set the TD as a recommender to generate
the trip for the user. As mentioned, we first aim at obtaining
the space code (in the training process, it is called query code)
from the generator through feeding a testing query. Next, we
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Algorithm 1 DeepTrip Training
Input: maximum training epoch niters , the number of

critic training per generator iteration k
/* Training */

1 initialize Model M
2 for epoch = 0; epoch < niters do
3 Minimizing the reconstruction loss between Eω and

Rψ

4 Sample {�(i)}B
i=1 a batch from route data set

5 Compute latent representation Eω(�(i))
6 Obtain the trip code X(i)

7 Compute LE R(ω,ψ) = − 1
B

∑B
i=1 log pψ(�(i)|X(i)),

backpropagate gradients, update ψ and ω
8 Critic training
9 for k steps do

10 Sample {�(i)}B
i=1 a batch from route data set

11 Obtain the trip code X(i)

12 Compute the adversarial loss on the trip code
samples 1

B

∑B
i=1 El′∼P�

[ fφ(X(i))], backpropagate
gradients, update φ and ω

13 Obtain a batch of query code from given
query{X̃(i)}B

i=1 = gθ (< ls , le >)
14 Compute the adversarial loss

− 1
B

∑B
i=1 EX̃∼Pg

[ fφ(X̃(i))], backpropagate
gradients, and update φ, clip the weight of the φ to
[−ε, ε]d

15 end
16 Generator training
17 Obtain a batch of query code from given

query{X̃(i)}B
i=1 = gθ(< ls, le >)

18 Compute the generator loss 1
B

∑B
i=1 EX̃∼Pg

[ fφ(X̃(i))],
backpropagate gradient, and update θ

19 end
Output: the trained Model M

Fig. 5. Recommendation process with DeepTrip.

turn to feed this space code to TD while giving the length of
recommended POI sequence. More specifically, the route is
generated by the TD, in which we concatenate the query code
and the output of each step to obtain the POIs.

V. EXPERIMENTS

We now present the evaluation of the performance of
DeepTrip in comparison with the state-of-the-art trip recom-
mendation methods.2 Specifically, we address the following
questions.

2The source code of the implementations is publicly available at
https://github.com/gcooq/DeepTrip

TABLE I

STATISTICS OF THE TWO DATA SETS

1) RQ1. What is the effectiveness of DeepTrip—i.e., does
it provide better trip recommendation performance?

2) RQ2. How important is the impact of the two
components - Adversarial Net and Contextual
Embedding - in our DeepTrip model?

3) RQ3. How good are the recommended results
from DeepTrip compared to the existing
approaches/baselines? How does the Adversarial Net
contribute to the performance of trip recommendation?

4) RQ4. How do the parameter settings affect the
performance?

The data sets used in our experiments are shown in Table I.
The trips in Toronto, Osaka, Glasgow and Edinburgh are
extracted from Flickr photos and videos used in [37], while
the Melbourne data is as built in [7]. Foursquare data set [38]
contains check-ins in Tokyo collected for about 10 months
(from April 12, 2012 to February 16, 2013). Each check-in
is associated with a timestamp, GPS coordinates and some
semantics (e.g., fine-grained venue-categories). We first filter
out short trajectories which contain less than three POIs.
Furthermore, we normalize the timestamp into hour-level
(i.e., mapping each timestamp into 24 intervals). For each
city, we first choose trajectories with more than three check-
ins, to form the training data sets. Following [7], we adopt
leave-one-out cross validation to evaluate all methods.

— Baselines: We compare DeepTrip to the following
methods:

• POIPopularity [39]: Recommends the most popular or
frequently visited POIs to the user at each time instant.

• PersTour and PersTour-L [37]: The trip recommendation
is modeled using a formulation of the orienteering problem
and considers user trip constraints such as time limits and the
need to start and end at specific POIs. PersTour recommends
a trip based on exploiting POIs’ features with a time budget.
And PersTour-L a variant of PersTour by replacing the time
budget with a constrained trajectory length.

• POIRank [7]: Recommends a trajectory by first ranking
POIs with the RankSVM method, and then connecting them
according to their ranking scores.

• Markov and Markov-Rank [7]: Constructs a POI transi-
tion matrix, and recommends a trajectory based on Markov
transitions and POI ranking.

• Path and Path-Rank [7]: Path and Path-Rank are sig-
nificant methods for eliminating sub-tours in Markov and
Markov-Rank methods by finding the best path using an
Integer Linear Program with sub-tour elimination constraints
adapted from the Traveling Salesman Problem.
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TABLE II

PARAMETER SETTINGS IN OUR EXPERIMENTS

• PersQueue [2]: A personalized tour recommendation
method that considers the attraction popularity, user interests,
and queuing time to make tour recommendation based on
Monte Carlo Tree Search (MCTS). Since we do not attempt
to constrain explicitly the queuing time of POIs, we employ
the time interval between two adjacent POIs as the implicit
queuing time for the next POI.

We implemented our model on the TensorFlow platform
accelerating by a 1080Ti GPU. For baselines, we used the cor-
responding source codes3 provided by [7], and implemented
PersQueue based on [2] with implicit duration time feedback.

— Metrics: We choose two commonly used metrics for
performance comparison, F1 and pairs-F1 scores.

F1 score: We follow [7], [37] in using the F1 score to
evaluate a recommended trip—which is, the harmonic mean
of Precision and Recall of POIs in a trip

F1 = 2 × Precision × Recall

Precision + Recall
. (22)

pairs-F1 score: a specific metric proposed in [7]. It considers
both POI correctness and sequential order by measuring the
F1 score of every pair of POIs, whether they are adjacent or
not in a trajectory

pairs-F1 = 2 × pairs-P × pairs-R

pairs-P + pairs-R
(23)

where pairs-P and pairs-R denotes the Precision and Recall of
ordered POI pairs respectively. The values of both pairs-F1

and F1 are between 0 and 1. The higher the value, the better
the recommended results—e.g., a value of 1 means that both
POIs and their visiting order in the planned trajectory are
exactly the same as the ground truth. We note that the optimal
parameter settings tuned for our experiments are shown in
Table II (discussed further in Section V-D)

A. Overall Performance (RQ1)
Table III and Table IV show the performance comparisons

between the proposed DeepTrip and the baselines, in terms
of F1 and pairs-F1 scores, respectively. The best results are
indicated in boldface font.

First, we observe that DeepTrip outperforms the
baselines/state-of-the-art on all the six data sets, with
an average improvements 8.72% and 46.52% over the
best baseline method in terms of F1 and pairs-F1 score,
respectively. Among the baselines, the traditional Rank-based
methods focus on analyzing various POI’s and query’s
features including geographical and temporal information.
Markov-based methods, in contrast, are more concerned

3https://bitbucket.org/d-chen/tour-cikm16

with the transitional patterns among POI pairs, and therefore
do not perform as well in comparison with Rank-based
methods [7]. However, both of these approaches rely on
statistical policies that affect the execution time (see Fig. 6),
either due to counting the transition distribution or attempting
to leverage POIs’ information as much as possible. The values
in Table III and Table IV demonstrate that it is effective to
use the encoder-decoder framework jointly combining the
adversarial net in the trip recommendation. One of the main
aspects is that spatio-temporal constraints can significantly
affect the tourist visiting intentions, and DeepTrip does well
in jointly tackling both these aspects by embedding into a
deep neural network, providing better performance on a trip
recommendation.

B. Effects of Components (RQ2)

Before explicitly addressing RQ2, we define four variants
of DeeptTrip, each of which focuses on different components.
One of the variants is to train tourists’ trips by only using the
components of TE and TD. We name this method Trip-ED.
Specifically, we feed the given query into TE, and leverage
TD to make a recommendation. The second variant uses
the LSTM cell in DeepTrip without spatial and temporal
context, and we call it DeepTrip-L. We derive the third variant
DeepTrip-G, which uses the GRU cell instead of LSTM in
DeepTrip. At last, we adopt the vanilla GAN [23] instead
of the corresponding module in DeepTrip to investigate the
impact of adversarial learning, namely DeepTrip-V.

1) Effect of Adversarial Net: Trip-ED which has no Adver-
sarial Net performs poorly compared to DeepTrip as shown by
the values in Table V and Table VI. This implies that Trip-ED
which uses the encoder-decoder framework cannot exploit well
the latent representation from trained routes to formulate the
latent representation X . Conversely, this demonstrates that
integrating the adversarial network, as done in other variants
and DeepTrip, can really improve the performance of the trip
recommendation problem.

2) Effect of Contextual Embedding: For our proposed meth-
ods with the adversarial network, both DeepTrip-L and Deep-
Trip adopt the LSTM cell in the TE, TD and the generator
net, while DeepTrip-L does not consider the geographical and
temporal information. We observe that DeepTrip outperforms
DeepTrip-L, which further demonstrates that the geographical
constraints and temporal influence affect the tourist’s moving
preference—which is why we considered each recommended
POI’s distance, along with the start point and endpoint.

3) Impact of Recurrent Neural Networks: In Table. V and
Table. VI, DeepTrip outperforms DeepTrip-G on all three data
sets. Despite the similar performance of LSTM and GRU
on sequential learning tasks such as machine translation and
language generation, we discover that LSTM is more suitable
for mobility pattern learning in our task. A similar results can
be found in previous human trajectory learning works [3], [40],
[41]. We conjecture that this happens due to the sparsity of
human mobility data. Thus, the simplified structure in GRU
may not be appropriate for sparse sequential data.

4) Impact of GAN Style: From the results, we observe
that DeepTrip outperforms DeepTrip-V, which proves the
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TABLE III

F1 COMPARISONS AMONG DIFFERENT ALGORITHMS ON FLICKR AND FOURSQUARE DATA

TABLE IV

PAIRS-F1 COMPARISONS AMONG DIFFERENT ALGORITHMS ON FLICKR AND FOURSQUARE DATA

Fig. 6. Runtime comparison on six data sets.

TABLE V

EFFECT OF COMPONENTS ON F1

effectiveness of WGAN in learning implicit trajectory distrib-
ution for better trip recommendation.

C. Interpretability of DeepTrip (RQ3)

In this part, we provide explanations of the recommended
results made by DeepTrip. We first visualize the recommended
result by a simple example in Edinburgh. There is a user
who provides a start location, an end location, and the
number of expected visiting POIs (e.g., 5). Fig. 7(a) shows

TABLE VI

EFFECT OF COMPONENTS ON PAIRS-F1

trip recommendation results by four different approaches,
i.e., Markov model, Markov-Rank, Trip-ED, and our DeepTrip
based on their respective trained models.

In Fig. 7(a), we discover that the Markov-based method
can only successfully make a short POI sequence, because it
only considers the last POI to recommend the next POI and
is able to capture the local sequential and transitional rela-
tionship. However, it also generates some redundancy in the
recommended POI sequence [see the yellow star in Fig. 7(a)].
Fig. 7(b) shows a better performance than the Markov-based
method—it reduces the redundancies. However, the rank-based
method also shows poor performance in capturing the whole
sequential distribution. We note that the result of Trip-ED
[Fig. 7(c)] is similar to the Markov-Rank method. However,
we also note that the proposed DeepTrip, which adopts adver-
sarial nets, gets the best performance and can well capture the
global recommended trips’ sequential information [Fig. 7(d)].

To further illustrate the performance of adversarial net,
we use the t-Distributed Stochastic Neighbor Embedding
(t-SNE) to visualize the trip code X and query code X̃
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Fig. 7. Recommended results with different methods. (a) Markov.
(b) Markov-Rank. (c) Trip-ED. (d) DeepTrip.

Fig. 8. Visualization of Latent codes. (a) Melbourne. (b) Tokyo.

distribution in 2-dimensional space in Fig. 8. We can see
that the query code X̃ distribution is similar to trip code X
distribution, which implies that query code X̃ which is only
obtained from a given query, indeed affects the generation
of the whole sequential information, and can improve the
recommendation by feeding the query code X̃ into TD.

D. Effects of Parameters (RQ4)

Lastly, we discuss the influence of several important para-
meters, including the embedding size of POIs, the hidden
size of the neural networks, and the initial learning rate.
Besides, the contribution of each training loss will also be
discussed.

For embedding size, we present training results with differ-
ent embedding size of POI in Osaka city and Glasgow city.
Fig. 9 demonstrates that a suitable embedding size of POI
identity representation can affect the effectiveness of training.
We first try to implement our DeepTrip and variants with
different embedding size, and aim at selecting the optimal
results. In this article, we choose the 256 or 512 as embedding
size (see Table II).

For the hidden size, as illustrated in Fig. 10, we also have
choices when constructing the training network. In Fig. 11,
we show the initial learning rate regarding optimization
between the TE and TD in the training process. We set
the initial learning rate empirically in our experiments by

Fig. 9. Results with different embedding sizes. (a) Osaka. (b) Glasgow.

Fig. 10. Training versus hidden size. (a) F1-score value on Osaka.
(b) F1-score value on Glasgow.

Fig. 11. Training versus learning rate. (a) F1-score value on Osaka.
(b) F1-score value on Glasgow.

considering the trade-off between effectiveness and over-fitting
problem.

Now, we consider whether the reconstruction loss LER

and two adversarial losses (LCri and LGen) have the same
contribution to the model performance of DeepTrip. Toward
that, we add a weight (ranging from 0.5 to 2.0) to the two
adversarial losses in (21) and the reconstruction loss in (9),
respectively. According to the results shown in Fig. 12, we
observe that the testing performance is drastically decreased
when we gradually decrease the weight of the reconstruction
loss. In contrast, the adversarial losses are relatively stable
when varying their importance weights. In other words, the
reconstruction loss is more sensitive than the adversarial loss.

E. Discussion

Above we have conducted experiments on the data sets of
six popular cities to test the effectiveness of our DeepTrip.
Compared to the state-of-the-art baselines, our DeepTrip is
capable of recommending better trips based on users’ specific
requests. In addition, we investigate the effect of each key
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Fig. 12. Results on Osaka with different weight impact. (a) F1 value.
(b) Pairs-F1 value.

component, the model interpretability, and the effects of some
important hyper-parameters to assure the model robustness
and generality. Therefore, we can conclude that DeepTrip,
which spends more efforts in understanding human mobility
through learning implicit trajectory distributions, can pro-
vide more pleasant trips while significantly improving model
efficiency.

Despite the aforementioned advantages, our model has room
for further improvement. First, our model is built on sparse
training data, which means it still suffers from the data sparsity
issue and the overfitting problem. A possible solution is to
augment the mobility data with synthesis but plausible human
traces via deep generative models [42]. Besides, the trajec-
tory distribution learned in DeepTrip is inherently intractable.
Though we can indeed improve the implicit distribution with
adversarial models, the model itself lacks interpretability and
explainable and flexible posterior approximation. We hypoth-
esize that tractable density estimation techniques such as
normalizing flows [43] may help in interpreting the model
behavior.

VI. RELATED WORK

We now review the related literature from three perspectives.

A. POI Recommendation

Most of the existing POI recommendation methods are
based on matrix factorization (MF) or Markov Chain (MC)
algorithms [4], [8], [44]. There are, however, other approaches
leveraging spatial and temporal preference to predict user’s
next destination or recommend a series of POIs. For instance,
a Personalized Ranking Metric Embedding (PRME) method
adopts the embedding technique to model user preference [39].
Feng et al. leverage a new latent representation model
POI2Vec to incorporate the geographical influence for the
next POI prediction [1]. Recently, deep learning has been
widely used to tackle the POI recommendation problem. A
spatial-temporal Recurrent Neural Networks (ST-RNN) was
proposed in [11] to model temporal and spatial influences in
each time step for POI prediction. A spatio-temporal LSTM
model to learn human movement for POI recommendation
which more considers POI’s distance and time in each LSTM
kernel was proposed in [29] and an attentional RNN to
predict users’ mobility from lengthy and sparse trajectories
was proposed in [10]. Recently, a heterogeneous graph-based
method [45] and a self-attention-based model [46] have been
proposed for improving the POI recommendation accuracy.
However, the main task of the POI recommendation problem

is to recommend a (ranked) list of top-k POIs to a specific
user, which is quite different from a trip recommendation
that considers the spatio-temporal constraints and generates
a sequence of ordered POIs.

B. Trip Recommendation

The existing solutions for the trip recommendation (some
works call this trip planning) are based on variants of
the orienteering based problem, where the main idea is to
use a heuristic to combine the POIs and trajectories [21].
Wei et al. [6] construct top-k popular routes from uncertain
trajectory. Zheng et al. [47] integrate users’ preferences
to learn the features of trajectory for personalized trip
recommendation. Ge et al. [48] consider the time cost in a
trip recommendation to learn tourist’s interests and the travel
cost from traveling tour data. Recently, a novel model called
PersTour for recommending personalized tours, which inte-
grated the popularity of POIs and preference of user interest
was proposed in [37]. Another proposal for an itinerary recom-
mendation model called TOURMUSTSEE that incorporates
the mandatory POIs to search the POI candidate was presented
in [22]. A learning model aiming at jointly exploiting the
locations’ and routes’ preferences was proposed in [7],
demonstrating that the learning-based methods outperform
traditional heuristic trip recommendations. Complementary,
the PersQ method incorporates attraction popularity, user
interests, and queuing times into consideration for personalized
itinerary recommendation [2]. However, these works do not
consider the long term dependence of POIs and, arguably,
it is difficult to make a diverse route recommendation by
simply relying on statistical methods. In addition, they do not
consider the semantic information among the POIs in a route.

C. Learning Human Mobility With Generative Model

Deep learning techniques, especially RNNs (e.g., LSTM
[18], [49], GRU [19], [50], and bidirectional RNN [51])
have been widely adopted to capture the sequential influence
and moving patterns. For example, Gao et al. [3] utilizes
RNN-based methods to identify human mobility, and Wu et al.
[52] employs the RNN to model trajectories with topological
constraints. Capture both the current and historical human
mobility for the next POI prediction by adopting GRU cells
was presented in [10].

Deep generative models, such as variational auto-encoder
(VAE) [16], [35], [53] and GANs [23], [54], [55], have been
widely used in computer vision, natural language processing,
and recommendation systems. In particular, deep generative
models have successfully been applied in time series modeling
by combining Recurrent neural networks [14], [49], [53]. VAE
can capture the latent variability from complex high dimen-
sional data and has been successfully used to tackle trajectory
classification problem [15] and friendship inference from
human mobility [13]. GAN received broad attention due to
the ability of generating high-quality image and fluent conver-
sations. They have also been used for human mobility learning,
e.g., WGAN [24] has been used to generate synthetic trajec-
tories [12] for the purpose of privacy-preserving of human
locations. However, GAN cannot generate discrete data such
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as text directly due to lacking the ability of back-propagation
through discrete latent variables. Similarly, it is difficult to
apply the GAN model directly to exploit human moving
patterns. The efforts on tackling the discrete data with the
GAN model can be reviewed from two aspects: 1) improving
GAN structure itself, e.g., modifying the generator objective
by integrating policy gradient algorithm [56], or reparame-
terizing the categorical distribution with the Gumbel-Softmax
trick [57]. These approaches are more concerned about the
gradient estimator improvement and need some additional
objectives and/or an approximate sampling function; 2) recent
popular approach is to firstly transfer or encode the discrete
data into a continuous space, and utilize the discriminator to
optimize such continuous space, to alleviate the limitations
of traditional GANs [24], [32]. In this spirit, our DeepTrip
model employs the encoder-decoder framework combining
the regularization network [32], toward smoothly learning the
latent representation of each trip, thereby improving the trip
recommendation.

VII. CONCLUSION

We presented DeepTrip, a method for learning human
mobility based on the adversarial encoder-decoder coupling.
We also provided two variants of DeepTrip and conducted
extensive experimental evaluations. The results demonstrate
superior effectiveness of our proposed approaches in compar-
ison to state-of-the-art benchmarks. To the best of our knowl-
edge, this is among the first work that leverages adversarial
networks for learning mobility patterns of trips, by jointly
combining the context of each POI and it captures well the
human transition patterns for a given start point and endpoint.
As part of our future work, we are investigating the way
to incorporate other generative models such as variational
auto-encoder with Gaussian process [58] and normalizing
flows [43], and incorporate more attributes (e.g., check-in cat-
egory and social preferences) to improve the recommendation
performance.
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