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Abstract

Children’s early speech often bears little resemblance to that of adults, and yet parents and other caregivers
are able to interpret that speech and react accordingly. Here we investigate how these adult inferences as
listeners reflect sophisticated beliefs about what children are trying to communicate, as well as how children
are likely to pronounce words. Using a Bayesian framework for modeling spoken word recognition, we find
that computational models can replicate adult interpretations of children’s speech only when they include
strong, context-specific prior expectations about the messages that children will want to communicate. This
points to a critical role of adult cognitive processes in supporting early communication and reveals how
children can actively prompt adults to take actions on their behalf even when they have only a nascent
understanding of the adult language. We discuss the wide-ranging implications of the powerful listening
capabilities of adults for theories of first language acquisition.
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How children learn their first language from the world around them has proven to be an enduring question
in psychology, cognitive science, linguistics, and related disciplines [1-5]. The degree to which adult caregivers
influence the outcome of the language learning process has been central to research on this topic [6-12]. However,
prior work has focused almost exclusively on adults’ role as speakers in child-centric interactions (e.g., child-
directed speech, [13-21]). We argue here, however, that adults’ role as speakers represents only one aspect of
the “work” that adults put in to communication with young children: successful adult-child communication also
depends on adults’ highly sophisticated listening behavior, which enables them to attribute word interpretations
(and hence meanings) to children’s variable and noisy linguistic output [22-24]. This allows adults to make
sense of children’s early language productions, which often deviate substantially from their own. Understanding
how adults interpret children’s early speech is important because these interpretations help drive how caretakers
respond and act, which in turn constitutes new input to the child in early language learning.

In this paper we ask what inferential process allows adults to interpret young children’s highly variable speech.
First, what leads adults to determine that a child’s vocalization! is even interpretable, versus unintelligible?
Second, to what degree do the words interpreted by adults reflect the phonetic productions produced by children,
versus adult beliefs about what they expect children to say?

Here we propose and test the hypothesis of child-directed listening: in order to interpret the speech of young
children, adult listeners must both rely heavily on their beliefs about what children are likely to say and adapt to
child pronunciations. For example, if a child says “ah wan du weed” when a book is present, an adult will most
likely take her to mean I want to read, not I want to weed. In such an example, adult beliefs about the child’s
communicative intent may override standard cues to word identity based on what the word sounds like. That is,
while the phonetic form [wid] (pronounced “weed”) might typically suggest weed as an adult speaker’s intended
word when judged solely based on acoustic information, an adult caregiver might instead assume that a child’s
intended word was read—both because children often pronounce r as w, and because children are more likely
to want to read than weed. In other cases, children may produce highly ambiguous vocalizations that adults
interpret as words in the adult language by relying on cues from the communicative context (e.g., interpreting
“da” as dog or dad depending on context). In both cases, adult caregivers use strong expectations about what

1We focus here on the case of children producing spoken language, though the current proposal readily extends to signed
languages.
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Figure 1: Schematic overview of the Bayesian spoken word recognition models and experiments. Models take
phonetic transcripts of child speech as input and try to predict the adult interpretation using the surrounding
context and the phonetic signal provided by the child. Each model makes use of (i) a prior (light blue box),
in the form of a probabilistic language model that predicts the word identity w based on the context ¢; and
(ii) a probabilistic pronunciation model (light pink box). The prior and likelihood are combined using Bayesian
inference to form a posterior distribution (light gray box) over candidate words w given ¢ and d. This posterior
is evaluated against human annotations in two ways: first, how well it predicts whether an adult listener takes
the input to be an intelligible word or treats it as unintelligible (Expt. 1); second, for intelligible input, how

well it predicts which word is found by the adult listener (Expt. 2). We then test models tuned to specific
children to see if adults tune to aspects of the speech of specific children (Expt. 3).

children are likely to say in order to support sustained communication. However, this idea has not been tested
formally or at scale.

Though we envision that some version of child-directed listening is active across the early years of speech
production, here we focus on adults’ interpretations of child speech from when they are 12 months to 48
months old. The beginning of this interval corresponds to when adults first report that their children use words
[25]. We expect adults’ beliefs to play the greatest role in informing their interpretation in these early stages
when children’s pronunciations differ the most from those of adults. We use a collection of audio recordings
of caregiver—child interactions (the Providence corpus; [26, 27]), and take transcribers’ written annotations in
the adult language as our proxy for caregivers’ interpretations of what young children said. We try to recover
the word identities from the phonetic input and surrounding linguistic context using a suite of computational
cognitive models of spoken word recognition. We then compare the models’ guesses to what adult transcribers
actually recovered from the children’s speech. By parametrically varying properties of the models, we can
infer the relative importance of different information sources—including the actual phonetic signal produced by
children—for how adults understand young children.

The proposed child-directed listening hypothesis is closely related to “noisy-channel” theories of commu-
nication [28] where listeners overcome the imperfect acoustic information, linguistic ambiguity, and speaker
variability present in everyday conversation by relying on their constantly-updating expectations about what
speakers are likely to say and by taking into account the nature of noise [29-31].2 Specifically, adult listen-
ers consider possible interpretations of the phonetic input they receive in terms of both the interpretation’s
plausibility in context and its perceptual similarity to typical adult pronunciations. We thus adopt a Bayesian
computational approach to spoken word recognition [29, 32, 31| to create models that “guess” what the child
said—whether or not it is a word (Expt 1, see Fig. 1), and if it is, what word (Expt 2). We then test for
evidence of adults adapting to the speech of specific children (Expt 3).

All proposed models evaluate evidence for different hypotheses about what word a child said (each possible
word interpretation, denoted w; see Fig. 1) in a particular context (denoted c¢), given the often-imperfect sequence
of sounds they produced, which we represent as a string of phonetic segments (e.g., |kee| for a production of
cat in which the final /t/ is not pronounced; denoted as data, d). The probability of each interpretation
given what the child said is computed with Bayes’ rule [33, 34]: p(w|d, ¢) x p(d|w, ¢)p(w|c). This comprises two
parts: each interpretation’s prior probability, p(w|c)—or how likely the interpretation is before hearing the child
production—and each interpretation’s likelihood, p(d|w, c)—or the fit of the acoustics of the child’s production

2The proposal of child-directed listening differs from standard theories of noisy channel communication in that it does not
assume that the speaker (the child) is a noisy-channel speaker. Instead, the child may not have a message in the adult language in
mind when producing a vocalization but the adult listener may interpret that vocalization as a word regardless.



to the word interpretation under consideration. We estimate the prior p(w|c) with several different probabilistic
language models that predicts the identity of a missing word from the linguistic context—to distinguish this
from the overall Bayesian model, we call this a “word prediction module.” The likelihood, p(d|w,c), can be
realized as a “pronunciation module,” which captures the probability distribution over possible pronunciations
from the child. Each model considers the 8,000 most common words in the child language environment as
possible interpretations (see Methods).

Empirical work has revealed that adults make use of a broad variety of information to infer word identi-
ties in spoken language from other adults: among them, the relative frequency of words and phrases [35, 36],
rich representations of discourse and linguistic structure [37, 32, 38], knowledge of available referents in the
scene [39-41], and rapid adaptation to the pronunciations of specific speakers [42]. Our full model of adults’
understanding of children’s speech incorporates all of these information sources. This involves modeling chil-
dren’s likely (mis)pronounciations, and expectations for the sorts of words, multi-word phrases, and topics that
children are likely to talk about. To analyze the relative contributions of the components of this full model,
we adopt the machine learning technique of model ablation: we test the effects of systematically substituting
simpler baselines for different components of the model to assess the effects on performance [43]. This gives
evidence about what information sources are most important for reproducing adult-like listening behaviors.

Handling Child Mispronunciations The full model learns how children are likely to mispronounce words,
e.g., that some mispronunciations are more likely for children than others, by estimating phoneme-specific
deletion, insertion, and substitution probabilities using a weighted finite state transducer (Phoneme-Specific
likelihood) in its pronunciation module (see Methods). We compare this approach with an ablated variant in
which all deletions, insertions, and substitutions of phonemes are assumed to be equally likely (Edit-Distance
likelihood, following [44]). This reveals the degree to which adults use regularities in children’s pronunciations
to understand their speech.

Word Prediction Architecture We test a wide range of model variants for the word prediction module, fol-
lowing the naming scheme {model architecture} + {training dataset} + {use of context} (note that
the latter two dimensions are not applicable for some architectures, in which case the labels are omitted). The
full model uses BERT, an advanced neural network architecture that is able to represent rich semantic and
syntactic relationships between words and can predict the identity of missing (or “masked”) words [45]. BERT
uses a “bidirectional” input, or words from either side of the target word (here we use up to 256 words in either
direction, which easily accommodates 20 utterances). In addition to this representationally rich, bidirectional
model, we investigate four ablations in the model architecture component of the word prediction module, allow-
ing us to parse apart the contributions of tracking alternating dyadic turn structure in conversation, topics and
anaphora, long-distance syntactic dependencies, word sequences, and (at the most basic level) word frequencies.
First, we test an alternative neural network architecture, GPT-2 [46], which uses only preceding words for
prediction and may be a yet better model of realtime human language prediction ([47, 48]; see Use of Context in
Word Prediction, below). Second, we evaluate the predictive utility of a simpler baseline trigram model [49] fit
on the same corpus of child speech in two ways. Unlike the transformer models above, the trigram models are
not able to track long-distance dependencies between words. We use a TRIGRAM model to estimate the proba-
bility of each word in the probability as a continuation given the two previous words (the relevant dataset used
to fit the trigram model is described below). Third, we evaluate a model that reflects only the relative frequency
of use of each word in the a large corpus of child speech (UNIGRAM). Fourth, we evaluate the performance of
a model that assumes a priori that all words in the vocabulary are equally likely (UNIFORMPRIOR). This final
model represents a critical baseline in that it is entirely dependent on the child’s pronunciation to determine
the child’s intended word: all other models reflect prior knowledge about what children are likely to say rather
than relying directly on the acoustic signal supplied by the child. Testing these ablated versions clarifies the
relative importance and nature of adult expectations regarding language structure when interpreting children’s
speech.

Fine-Tuning Word Prediction Where possible, we fine-tune or fit word prediction models using a large
dataset of transcripts of child-caregiver interactions in the home environment in the same age range as the
test set, taken from the CHILDES corpus [50]. These models are designated by +CHILDES. Fine-tuning and
model fitting procedures vary by model and are detailed in the Methods. Among the BERT models, we test the
consequences of changing the data used to fine-tune the model in two ablations. In the first, we fine-tune the
model on a corpus of adult-to-adult telephone conversations (+SWITCHBOARD; [51]). In the second, we do not
fine-tune the model at all, leaving it in its base form where it was trained on a large collection of Internet-based
written texts, particularly news articles articles and web forums (+ADULTWRITTEN). This comparison provides
insight into how expectations regarding how young children speak may differ from other kinds of language.

Use of Context in Word Prediction The full model takes into account the content of up to 20 preceding
and following utterances when predicting the identity of the missing word (+BIDIRECTIONAL). Because we
evaluate these models against word identities found by adult annotators who can consult video and audio from
utterances following the target word, we expect the best performance from a model that can use both preceding
and following utterances to predict the missing word. Looking at both preceding and following utterances means



that if a potential referent (e.g., a person, animal, object, action, etc.) is mentioned in the following context, the
model places a higher probability on it as the identity of the target word. This differs from the situation faced
by caregivers, who—unlike annotators—must identify the word largely on the basis of the content of preceding
utterances. For this reason we investigate a set of ablated model variants that use the 20 preceding utterances
for prediction (+PRECEDING).> BERT’s bidirectional architecture means that in the +PRECEDING ablation,
preceding utterances as well as both preceding and following words in the utterance with the target word are
used for prediction; for GPT-2, prediction is based on preceding words only. We also test a set of ablated model
variants that use only the immediate utterance for word prediction (+ONEUTT). This set of model ablations
clarifies to what extent adults depend on the larger linguistic context in interpreting children’s speech.

In broad strokes (detailed below), our analyses reveal that the full model (BERT+CHILDES-+BIDIRECTIONAL)
achieves a strong quantitative fit to adult interpretations of children’s speech, accurately predicting the word
identity in more than 90% of cases, even when considering a vocabulary of approximately 8,000 possible word
identities. This best-performing full model has strong priors — expectations that children will be generally more
likely to: produce grammatical utterances (e.g., two dogs rather than two dog), refer to people and things in the
broader discourse context (e.g., cat if a cat has been recently mentioned), and talk about child-relevant words
(e.g., read rather than weed). Model ablations reveal that adapting to child pronunciations alone or failing to
use contextual cues to identify words yields a poor fit to the words found by adults. These analyses also provide
evidence that adults tune their listening to the speech of individual children. We conclude by discussing how
adults’ inferences that go beyond children’s phonetic productions may provide critical support for early dyadic
caregiver-child communication and how this in turn may drive the incremental refinement of children’s earliest
language knowledge.

Results
Expt. 1: Predicting Whether Adults Find Words

We first tested which spoken word recognition model best predicts when adults find word interpretations in
children’s speech vs. when they consider that speech to be unintelligible. We did this by evaluating each model’s
ability to predict when adults flagged word-length segments of children’s speech as unintelligible, vs. identify
them as specific words in a large corpus of child-produced speech. As a continuous predictor of intelligibility,
we used each models’ estimates of entropy over word identity (Fig. 1, Expt. 1) and used this as the sole input
to a binary classifier.

Prior: Comparing word prediction modules

We evaluated the statistical significance of differences in classifier performance, operationalized as area-under-
the-curve (AUC), and assessed the statistical significance in pairwise comaparison of model performance us-
ing DeLong’s test [52]. The full model (BERT+CHILDES-+BIDIRECTIONAL), which reflects rich linguis-
tic beliefs tuned specifically to child language productions, had the highest AUC (.932); this model best
replicates the behavior of adult listeners in predicting whether adults found a given vocalization to be in-
telligible (Figure 2A). This higher performance is statistically significant in comparison to all other mod-
els. In fact, most pairwise comparisons between all models were significant, with the exception of TRI-
GRAM+CHILDES vs. UNIGRAM+CHILDES (Z = 0.772,p = 0.44) and GPT2+CHILDES+ONEUTT vs.
TRIGRAM+CHILDES+ONEUTT (Z = 1.773,p = 0.076). The UNIFORMPRIOR performs substantially worse
than all others. Under this model, prior entropy is constant across all word types, consequently this clas-
sifier relies heavily on the contribution of the phonetic data produced by the child, and it performs much
closer to chance in predicting whether words were found to be intelligible. This analysis provides evidence
that a prior that is tuned specifically to child language and uses the surrounding utterance context (i.e., our
BERT+CHILDES+BIDIRECTIONAL model) is best able to replicate adult inferences, particularly as to which
vocalizations are likely to be interpreted as words by adults.

Likelihood: Comparing pronunciation modules

Across all word prediction model architectures, the Phoneme-Specific likelihood outperforms the Levenshtein
distance-based likelihood in predicting adult listening behavior (Fig. 2B). However, the performance differ-
ence between pronunciation modules for a given word prediction module is much less pronounced than the

3BERT models are trained and fine-tuned using a bidirectional masked word prediction task and the availability of context is
only restricted at inference time. We use the bidirectional task for training these models for the pragmatic reason that this is known
to yield very useful linguistic representations, and we make no claims regarding the appropriateness of BERT as a learning model
for the adult. GPT-2-based models, by contrast, are trained and fine-tuned with a left-to-right prediction task.
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Figure 2: A. Classification performance by model when predicting if adults will provide a word interpretation
versus flag a vocalization as unintelligible (n = 57,812 and n = 12,786, respectively). In panel A, all models
use the Phoneme-Specific likelihood in the pronunciation module. The solid line with slope = 1 indicates
chance performance. A larger area under the curve (AUC) corresponds to better classification performance.
B. Classification performance on the same task comparing models using the Phoneme-Specific likelihood (solid
lines) with those using the ablated Edit-Distance likelihood (dotted lines). Priors are matched within each panel.
Every model that uses a Phoneme-Specific likelihood outperforms the analogous one using the Edit-Distance
likelihood.

performance difference across word prediction modules for a given pronunciation module (compare Fig. 2B vs.
Fig. 2A). We investigate the reasons and quantitative difference in greater detail in Expt. 2.

Expt. 2: Predicting the Words Recovered By Adults

While Expt. 1 compares model performance in determining whether adults would find a child production to
be interpretable as a word or not, Expt. 2 digs into the specifics of word identity, asking whether our Bayesian
spoken word recognition models recover the same words as adult transcribers. This reflects the idea that
models must not only effectively predict what will be treated as a word, but also how adults will interpret a
given vocalization. To evaluate the degree to which models replicate adult listening behavior, we focus on the
cases where transcribers interpreted children’s productions as transcribable words and compute the surprisal
[53, 54] or self-information that each model assigns to the transcriber’s interpretation (see Methods). The lower
the average surprisal of the transcriber’s word interpretation, the better the model reflects adult inferences
about child speech. In addition, we report the average rank of the transcriber’s word interpretations for each
model (ideal model performance would result in a mean rank of 1, which would mean that the transcriber’s
word is always the highest ranked word interpretation according to the model). We also report the percentage of
vocalizations in the test set where the model’s highest probability guess was the same word found by the adult
(“Correct Top Guess”, Table 1). Here we report model performance across a test set taken from all children in
the Providence corpus; for a follow-up analysis of model performance by child, see Supplementary Note: Spoken
Word Recognition Model Performance By Child.



Table 1: Model performance as measured by average surprisal, average rank of transcriber interpretation, and
percentage of correct top guesses for word recognition models. The left column (“Prior”) reflects the distributions
from the word prediction module, i.e., before using the child’s production to identify the word. The center and right
columns reflect integrating information from two variants of the pronunciation module. The full model is indicated in
red, which we expect to best replicate adult interpretations of child speech. We compare this with a phonetics-only
baseline model, which must recognize words solely on the basis of the acoustic signal produced by the child (green).
Ablated models test which information sources are most critical for the full model.

Prior Posterior
Phoneme-Specific Likelihood Edit-Distance Likelihood
Average Average  Correct Average Average  Correct Average Average  Correct
Surprisal*  Rankf Top Surprisal*  Rank* Top Surprisal*  Rankf Top
Language Model Prior (bitsT) Guess® || (bitst) Guess® | (bits™) Guess®
Full Model Ablated Models
BERT+CHILDES+BIDIRECTIONAL 2.78 30.76 60% 0.57 1.80 90% 1.03 5.63 84%
BERT+SWITCHBOARD+BIDIRECTIONAL 3.41 49.77 54% 0.74 3.12 88% 1.32 9.19 81%
BERT+CHILDES+PRECEDING 3.56 61.39 52% 0.77 3.52 88% 1.41 11.85 80%
BERT+ADULTWRITTEN+BIDIRECTIONAL | 4.76 91.47 39% 1.11 6.05 83% 1.85 18.25 73%
BERT+CHILDES+ONEUTT 5.02 124.52 36% 1.18 7.61 82% 2.05 24.35 72%
BERT+SWITCHBOARD+ONEUTT 6.33 342.27 28% 1.60 15.84 78% 2.63 4411 67%
GPT2+CHILDES+PRECEDING 6.45 396.27 29% 2.01 25.91 75% 3.17 66.76 63%
BERT+ADULTWRITTEN+ONEUTT 7.16 459.78 26% 1.90 18.74 74% 2.92 48.8 65%
TRIGRAM+CHILDES 7.82 679.72 14% 2.54 21.21 65% 3.73 57.3 54%
GPT2+CHILDES+ONEUTT 7.88 549.98 18% 2.60 45.41 71% 3.99 104.85 58%
TRIGRAM+CHILDES+ONEUTT 8.04 490.70 29% 1.93 15.29 73% 2.89 43.39 63%
UNIGRAM+CHILDES 8.74 305.69 3% 2.36 16.86 66% 3.91 50.79 49%
UNIFORMPRIOR 12.97 3998.00 0% 413 49.1 42% 5.16 143.26 30%
Phonetics-Only Baseline Model

* A lower surprisal indicates a better model. The difference in average probability assigned to the transcriber interpretation is 29, where diff is
the difference between two model scores.

T Paired t-tests yield statistically significant pairwise differences between all model surprisal values, p < 10~5.

A lower average rank indicates a better model. Ranks are taken out of a vocabulary of 7,997 possible words.

¢ A higher percentage of correct top guess indicates a better model.

Prior: Comparing word prediction modules

The rows of Table 1 show comparisons of models using different priors (paired ¢-tests yield statistically sig-
nificant differences between all adjacently ranked model pairs, all p < 0.0001 after Bonferroni correction for
multiple comparisons). Among the ablated models, those using the preceding and following linguistic con-
text (+BIDIRECTIONAL), including the full model, systematically outperform the ones that use only the im-
mediate utterance for context (+ONEUTT). Using only the preceding and current utterance for prediction
(BERT+CHILDES+PRECEDING) only minimally impacts model performance relative to the bidirectional
context, suggesting that the model can perform well using information available to caregivers in realtime.
Word prediction modules that use the BERT architecture generally outperform GPT-2-based models, which
in turn outperform the TRIGRAM models,* which in turn outperform UNIGRAM. While BERT + PRECEDING
and GPT-2+PRECEDING models both use Transformer-based architectures and largely or entirely rely on the
preceding context, the former show uniformly higher performance, possibly because of the additional infor-
mation available from same-utterance context immediately following the target vocalization. All models that
fit prior expectations to data in some way substantively outperform the baseline UNIFORMPRIOR model. Ad-
ditionally, BERT models fine-tuned on child speech (+CHILDES) outperform ablated models fine-tuned on
adult speech (+SWITCHBOARD), which in turn outperform models based on written text (+ADULTWRITTEN).
More broadly, we see that the more context available to the model, the more sophisticated the model archi-
tecture (neural network vs. trigram), and the more tuned the model to the type of language in our dataset
(spoken language produced by children), the better the model performs in predicting how adults interpret child
vocalizations.®

4TriGRAM+CHILDES+ONEUTT shows an outlying pattern of relatively high average surprisal (Table 1), yet a much more
competitive average rank, percentage correct top guess, and yields highly competitive posteriors. Follow-up analysis reveals a much
flatter probability distribution over candidate interpretations than the other models, though the relative rankings of candidates are
a reasonable match to annotators.

50ne exception to this generalization is the notably low performance of GPT2+CHILDES+ONEUTT, which is below some or
all TriGraM models depending on the evaluation metric used. One possible explanation is that because most child utterances are
short, a considerable proportion of target vocalizations are very near the beginning of an utterance. When the GPT2 architecture
is constrained to same-utterance left context, there is little information to predict from.
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Figure 3: Average posterior surprisal of the transcribers’ recovered word interpretation under each model with
the phoneme-based likelihood, plotted according to the similarity of the child production to the standard adult
pronunciation (x-axis). Vertical error bars (gray) indicate the standard error of the mean; at many edit distances
the SEM is too small to be seen. All models yield comparable predictions for vocalizations that are similar
to adult pronunciations (left side of the graph). However, models with sophisticated knowledge of syntax and
discourse structure, which are fine-tuned to child language and consider the broader linguistic context, assign a
much lower surprisal (higher probability) to the words recovered by transcribers when pronunciations deviate
from the adult language (right of the graph). This points to how the contribution of adults’ prior expectations
increases with the degree of child mispronunciation.

Likelihood: Comparing pronunciation modules

Integrating information from children’s pronunciations through the two likelihoods results in a better fit to the
adult interpretations of children’s speech, but maintains the same relative ranking of performance as seen from
the word prediction modules (Table 1). Indeed, the contribution of the model priors / word prediction module to
the model posteriors is so critical that the full model (BERT+CHILDES+BIDIRECTIONAL) word prediction
module makes better inferences about the word interpretation without using the phoneme string produced
by the child (2.78 bits surprisal, average rank 30.76, 60% correct top guess) than a model with minimally
informative prior word expectations that does use the phonetic form (UNIFORMPRIOR with the Phoneme-
Specific likelihood; 4.13 bits surprisal, average rank 49.1, 42% correct top guess). The full model (which
uses the BERT+CHILDES+ BIDIRECTIONAL word prediction module, plus the Phoneme-Specific likelihood)
outperforms the ablated model that uses the Levenshtein distance likelihood (0.57 bits of surprisal, average
rank of 1.80, 90% correct top guess vs. 1.03 bits of surprisal, average rank of 5.63, 84% correct top guess).
The full model also outperforms the ablated model where the word prediction module is fine-tuned on adult-to-
adult conversational speech (SWITCHBOARD with the Phoneme-Specific likelihood, 0.74 bits of surprisal, average
rank of 3.12, 88% correct top guess). All these models substantively outperform ones with less sophisticated
expectations about language structure (e.g., UNIGRAM+CHILDES with the Phoneme-Specific prounciation
module, average surprisal of 2.36 bits, average rank of 16.86, and 66% correct top guess). The much lower
performance of the model with theUNIFORMPRIOR and Phoneme-Specific pronunciation module (42% correct
top guess) reveals that children’s pronunciations alone are insufficient for inferring their intended word identities,
and makes clear the importance of prior expectations for replicating adult interpretations of children’s speech.

To better understand the contribution of priors expectations, we investigated their contribution as a function
of how non-standard the child’s pronunciation was in comparison to the standard adult form for the word found
by transcribers. We then compared a linear regression predicting posterior surprisal using the interaction of
model and edit distance versus one using only edit distance. The former model substantially outperforms the
latter (BIC = 5,200,682 vs. BIC = 7,673,790), suggesting that models differ in their ability to replicate adult
interpretations depending on the fidelity of the child pronunciation to the adult form. While most models assign
high probabilities to the word found by adults when the child’s pronunciation is close to the adult form, the
BERT-based priors are a much better match to adults when the child’s production is relatively dissimilar (right
side of Figure 3). For example, for child productions that are two edits away from the adult form (z = 2 in Fig.
3), the full model (BERT+ CHILDES} BIDIRECTIONAL) assigns approximately 64 times the probability to the
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Figure 4: A. Substitution probabilities for the Phoneme-Specific likelihood. ,— {phoneme} indicates insertion
(top row), while {phoneme} — , indicates deletion (leftmost column). Off-diagonal entries reflect common
deviations from adult pronunciations made by English-learning children: [f] in place of [0] (think — fink), [w] in
place of [1] (read — weed), [s] in place of [[] (fish — fiss). The leftmost column captures that children are likely to
delete many phonemes altogether. B. Average posterior probability of words found by adult transcribers under
two variants of the BERT+CHILDES+BIDIRECTIONAL model: one using the Phoneme-Specific likelihood and
one using the Edit-Distance likelihood (error bars, where visible, reflect the standard error of the mean). While
the two variants show comparable performance in cases where children include unexpected additional sounds in
their pronunciation, the one using the Phoneme-Specific likelihood is a better fit to adult data when children
drop many of the phonemes that make up the conventional pronunciation of the word (left side of graph).

transcribers’ interpretations compared to the model that only uses the phonetic input UNIFORMPRIOR. This
difference in probabilities becomes yet more pronounced at higher edit distances: at six edits, the full model
assigns transcribers’ interpretations 5,928 times the probability as the UNIFORMPRIOR model. This analysis
provides clear evidence that adult listeners rely most heavily on their prior expectations when interpreting child
vocalizations that differ the most from words in the adult language.

While the above analyses highlight the critical importance of the prior regardless of the choice of likelihood,
we sought to further understand why models using the the Phoneme-Specific likelihood, including the full model,
consistently outperform those using the Edit-Distance one. We visualize the probability over phoneme-level edits
from the fitted WFST from the Phoneme-Specific likelihood as a transition matrix (Figure 4A). Most phonemes
are likely to be pronounced correctly by children, as captured by the highest values along the diagonal. However,
English-learning children are very likely to omit many phonemes (leftmost column in Figure 4A). This contrasts
with the Edit-Distance likelihood, which considers insertions and deletions as equally probable. Nonzero values
off of the diagonal capture many common approximations in the speech of English-learning children: [f] in place
of [8] (think — fink), [w] in place of [1] (read — weed), and [s] in place of [f] (fish — fiss). The model also
captures children’s propensity to add an unstressed mid central vowel o (i.e., the default vowel in a relaxed
vocal tract) to change the prosodic structure of words to make them easier pronounce, especially to break up
consonant clusters (e.g., pronouncing black as bulack, [blaek] — [boleek]).

We next tested whether the improvement observed under the Phoneme-Specific likelihood module is driven
by its ability to capture children’s articulatory approximations or their deletions. We compute the average
posterior probability of transcribers’ interpretations stratify by whether the child’s pronunciation is shorter, the
same length, or longer than the adult citation form (i.e., , standard pronunciation). If the improvement comes
from better accounting for the child’s articulatory approximations, then the model with the Phoneme-Specific
likelihood will show an improvement in performance when the child’s form is of comparable length to the adult
citation form. If, by contrast, the improvement comes from expecting children to delete many phonemes, then
the model should assign a higher posterior probability to the transcriber’s interpretations than the Edit-Distance
likelihood when the child produces a much shorter form. Figure 4B provides evidence in favor of the latter
hypothesis: the improvement of the Phoneme-Specific likelihood over the Edit-Distance one in predicting adult
interpretations is greatest when children omitted many phonemes (towards the left of the graph).
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Figure 5: Average posterior surprisal of fine-tuned model guesses by child age. Relative to a model fine-tuned on
conversations with older children (red circles), a model fine-tuned on language usage from younger children (blue
squares) does better at recovering transcriber interpretations from young children and slightly worse for those
from older ones. Both outperform a model trained on adult-to-adult conversational speech (green triangles).
Error bars, where visible, reflect standard errors of the mean; at most ages sample sizes are sufficiently large
that standard errors of the mean are too small to be visible on the plot.

Expt. 3: Fitting Models to Developmental Age and Specific Children

The results presented so far involve only a small degree of model fine-tuning, to general datasets of child or
adult spoken language. We now further ask whether fine-tuning prior expectations or likelihood functions
to specific developmental ages and even to specific children’s language production—beyond that proposed in
the previously-discussed full model—leads to better predictions regarding what adults will understand. To
test whether additional fine-tuning can capture finer-grained adult expectations, we fine-tune two separate
models, one on a language sample for 11-29 month old children and one from 30 to 48 months. The model
trained on the speech of young children (BERT+Y0OUNGERCHILDES+BIDIRECTIONAL) demonstrates better
word recognition performance for speech from young children, while a model trained on the speech of older
children (BERT+OLDERCHILDES+BIDIRECTIONAL) demonstrates better word recognition on the speech of
older children (Fig. 5). To test the for statistical significance of this difference, we fit a mixed effects model
predicting surprisal using the interaction of model type and child age and a maximal random effects structure
[55]. The age by model type interaction term in this model reveals that the model trained on younger children
(BERT+YOUNGERCHILDES+BIDIRECTIONAL) assigns higher surprisal to transcriber-found words at older
ages (8 = .184, SE = .013, Pr(> |t|) < 10710).

Besides tuning to the linguistic input of children of a specific age, an adult may also become attuned to
the particular topics, constructions, and words that a specific child prefers. Our modeling results shows strong
evidence for this hypothesis: the adult interpretation data for each child are better predicted by a model fine-
tuned on the production data for that child than by models fine-tuned on the production data for any other
child for five of six children (Fig. 6A, p=.002 by Monte Carlo simulation).® When combined with child-specific
likelihood functions, posterior surprisal values are lowest for child-specific word recognition models in all six cases
(Fig. 6; p < .0001 by Monte Carlo simulation). Taken together, these two analyses of age- and child- specific
models demonstrate that child-directed listening models can be made yet more representative of adult inferential
behaviors by further fine-tuning to specific children and developmental time periods. It also provides evidence
that adults are themselves adapting to these same features when listening to children, as their interpretations
are less likely under the models fit across all children.

Discussion

Here we find strong evidence of “child-directed listening:” sophisticated expectations on the part of adults regard-
ing what messages children are most likely to communicate in early speech, as well as child-specific expectations
for pronunciations. Returning to the example of “ah wan du weed” we introduced at the outset of the paper,
Fig. 2 illustrates differences in the top guesses under the different models for the target vocalization “weed.”
Bayesian cognitive models of spoken word recognition that use sophisticated neural-network—based priors can

6Scores for this analysis reflect a different test set than those in Table 1, and cannot be compared directly (see Methods).



Table 2: Example top guesses for the identity of the final word when a child says “l want to [wid]” (/ want to weed).
Adult annotators labeled this word as “read.” Parenthetical indicates probability of top guess. Posterior probabilities
reflect phoneme-specific likelihood.

Highest Probability Guess From...
Model Prior Posterior
BERT+CHILDES+BIDIRECTIONAL read (0.71) read (1.0)
BERT+CHILDES+PRECEDING read (0.74) read (1.0)
BERT+SWITCHBOARD+BIDIRECTIONAL read (0.57) read (1.0)
GPT2+CHILDES+PRECEDING read (0.61) read (1.0)
TRIGRAM+CHILDES go (0.1) read (0.86)
UNIGRAM+CHILDES i (0.04) read (0.4)
UNIFORMPRIOR All guesses equal | weed (0.53)

capture these implicit beliefs and produce interpretations of children’s early language that are very similar
to adults. By contrast, simpler ablated models—such as models of word recognition that rely on knowledge
of word sequence probability (TRIGRAM-+CHILDES), word probability (UNIGRAM+CHILDES), or only the
phonetic data produced by the child (UNIFORMPRIOR) —place lower probabilities on the adult interpretation.
This illustrates the richness of the inferences made by adults in the process of early communication, and points
to ways in which adult cognition may facilitate communication between young children and adults.

While the current results do not speak directly to whether children learn more effectively as a consequence
of child-directed listening, we outline below how this ability may have substantial implications for the nature of
the learning challenge faced by children. We then discuss the implications of the current work for methods of
evaluating children’s linguistic knowledge, and note several limitations.

First and foremost, these results invite a reconsideration of the nature of feedback in early language devel-
opment [56-58]. For example, if we assume that successful communication is itself reinforcing, child-directed
listening constitutes feedback to the child learner even in the absence of child-directed speech. For example,
a caregiver who interprets a child’s production of “uh” to mean “up” may not say anything in response to the
child’s production, but may be providing a different form of feedback when they pick the child up. This, in
turn, leads to new puzzles: if adult caregivers can help many otherwise deficient attempts at communication
succeed, what pressures children to get better?

Second, this deeper understanding of the adult helps to clarify how children’s earliest language productions
can serve as speech acts—linguistic productions that effect change in or via the listener—even as their knowledge
of adult-like linguistic structure is still emerging (e.g., [59]). In this way, child-directed listening might provide
scaffolding to support the gradual emergence of linguistic structure in support of communication. The adult
expectations described here are most useful for inferring word identities from noisy phonetic productions when
the range of expected messages from the child is most restricted, i.e., in early development, when adults expect
young children to use only a few words. Adult expectations are less useful as children begin to use language to
express a greater range of messages. Instead, communication will increasingly depend on the child’s ability to
distinctively articulate a growing inventory of words and multi-word constructions.

A serious consideration of child-directed listening has several implications for our most common tools for as-
sessing child language: parental reports of vocabulary and transcribed speech. Children’s articulatory maturity
and vocabulary size are often evaluated through parent report (e.g., Communicative Development Inventories,
[60]), but caregiver biases have long been recognized as a potential confound in the yielded data [25]. The
current work suggests that such biases may emerge as a natural consequence of adult inferential processes: for
example, adults may posit the presence of nouns in ambiguous segments of children’s speech by virtue of their
prior expectations and the salience of contextual cues; thus, adults may be more likely to over-report nouns
in their children’s vocabularies. The current work may be extended into quantitative methods to gauge and
correct for such biases. For transcribed speech, the current work makes it clear that the interpretation of a
child’s word is highly dependent on cognitive processes in listeners.

We note a notable, yet arguably temporary, limitation with the current work: We make the simplifying
assumption that inferences made by adult transcribers in the lab are representative of the inferences made by
adult caregivers in the moment. Transcribers have less shared history and only limited access to the broader non-
linguistic context relative to adult caregivers who are interpreting their children’s speech in realtime. However,
transcribers have substantial exposure to child language (often from the same child), along with opportunities
to replay the child’s speech, which caregivers do not have. We also note that transcribers may use speech and
actions on the part of adult caregivers in the dataset to inform their interpretations of children’s speech (e.g., the
parent responding to “ah wan du weed” with “let’s find a book!”). In such cases, transcribers’ interpretations
may be especially representative of the inferences made by caregivers. Nonetheless, potential differences in the
inferential capacities of caregivers relative to other adult “listeners” should be tested experimentally.
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Figure 6: A. Average prior surprisal and B. average posterior surprisal under the Phoneme-Specific likelihood for
seven spoken word recognition models (lower is better). The first six models are fine-tuned on transcripts from
specific children, while the remaining one is trained on a broader dataset: all children in the Providence corpus.
Colors are normalized with respect to the baseline performance of a model trained on data from all six children
(final row); children are ordered by median age of their productions in the corpus. In A, the best-scoring prior is
the one fine-tuned on other transcripts from that specific child for five of six children. This suggests that adults—
even transcribers—adapt to the constructions, topics and lexical choices of specific children. When combined
with likelihoods tuned to each specific child (B), models fine-tuned to specific children always outperform those
fine-tuned to other children on each child’s test data. This provides evidence that adults’ interpretations involve
adapting to both the linguistic content and pronunciations of specific children.

Conclusion

We present a suite of Bayesian models of spoken word recognition to test for and characterize child-directed
listening, or how adult caregivers find words in the noisy and often non-conventional speech productions of young
children. We find strong evidence that context-specific beliefs about what children are likely to say are critical
for replicating adult interpretations of noisy child speech. We further find evidence of child-specific adaptation:
models that are fine-tuned to the pronunciations, topics, constructions, and word choices of specific children
yield even better approximations of adult interpretations of those children’s speech. This research paves the
way for new avenues of inquiry into how children become mature language users through the contributions of
adult listeners.
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Methods
Model Setup

We treat the challenge of understanding what children mean—here, inferring the identity of a word used by
a particular child in a particular linguistic context—as an instance of Bayesian inference (Fig. 1). In our
characterization, an adult listener seeks to recover a conventional word from the phonetic form produced by the
child, e.g., finding read in the child’s production “weed” (phoneme string [wid]). To combine the contributions
of adult expectation with the phoneme string produced by the child, we adopt a Bayesian model of spoken word
recognition (in the vein of [32]; see also [37]). The model assigns a posterior probability to each candidate word
interpretation w, taking into account the perceptual input data d (i.e., the child’s phoneme string), and the
linguistic context c:

P(d|w, c¢)P(w|c)
Lwey Pldw’, ) P(w'|e)

This formulation cashes out the intuition that the degree of belief that the child said word w reflects the
combination of (a) fit to perceptual data produced by the child and (b) the listener’s linguistic and non-linguistic
expectations. “Fit to perceptual data” is evaluated via the likelihood function, P(d|w, ¢). For the current work,
we assume that adults take a child’s pronunciation of a word to be independent of the broader linguistic context
in which it appears, i.e., we approximate P(d|w, ¢) ~ P(d|w), though this assumption could be relaxed in future
work.

The listener’s expectations are captured by the prior probability P(w]|c) of the word w in context ¢ (before
perceptual input is taken into account). Here we focus on the linguistic context, though we note that non-
linguistic information could be leveraged here as well (e.g., people and salient objects visible in the scene;
see also [53]). The denominator in Equation 1 reflects the summed strength of all competitor words w’ in
the vocabulary V. Thus, the model guesses upon seeing both the phonetic data and the surrounding context
(technically a Bayesian posterior) constitute a probability distribution over candidate words, with favored word
interpretations receiving higher probabilities than disfavored ones. In what follows, we discuss the likelihoods
and then the priors for the set of models under consideration.

P(w| d,c) = (1)

Likelihood

For the likelihood P(d|w), or word pronunciation module, we tested three distinct likelihood functions. We
describe the simplest one first to develop intuitions regarding model behavior. In the simplest Edit-Distance
likelihood, we use a transformation of string edit distance between the phoneme sequence for each candidate
word interpretation and the phoneme string produced by the child. Specifically, we use exponentiated negative
edit distance [29]:

P(d|w) o 676 X dist(d*:w, d) (2)

where dist is the edit distance (or Levenshtein distance, or the minimal number of deletions, insertions and
substitutions) between citation form d* for candidate word w, designated here (d* : w), and the observed child
phonetic form (d). If a word w has more than one citation form, e.g., read can be pronounced as [1id] or as [1ed],
we iterate over all pronunciations and take the smallest distance. The free parameter § scales these likelihoods:
as ( approaches 0, all likelihoods approach 1.

This treatment of edit distance does not take into account phoneme similarity, i.e., that certain phonemes
are more perceptually similar, that children are more likely to make certain substitutions or deletions compared
to others (e.g., , that [wid] is a relatively likely child pronunciation for read, [1id]), or that certain edits are
more likely in combination. This means that the Edit-Distance likelihood may not fully capture adults’ abilities
to use the phonetic form to inform their interpretation. For this reason, we include a more sophisticated
Phoneme-Specific model of child pronunciation, in the form of a weighted finite state string transducer [61, 62].
A transducer is a probabilistic or deterministic mapping between strings in an input language and strings in an
output language.

Here, we train the mapping on pairs of citation forms for words coupled with children’s pronunciations from
the Providence corpus. Following [63], we learn an alignment between adult and child pronunciation through
expectation maximization [64] using the BaumWelch library [65]. We use a learning rate of 1.0, representing
weights in the tropical semiring, and normalize the weights of all arcs leaving a state with the same input label
sum to one. We then learn a joint unigram model ([66]; see also pair language models, [67]) over the aligned
pairs (i.e., each event in the n-gram model is a combination of an input symbol and an output symbol). With
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this phoneme-specific model, we can then estimate the probability that each possible candidate word w would
generate the child’s observed pronunciation d.

The transducer yielded by the training procedure in the main text encodes joint probabilities of edits (input-
output pairs) on strings. Our goal then is to estimate the probability of a given output string (the phonetic
form produced by the child) given an input string (the conventional adult form), similar to the Edit-Distance
likelihood above. Thus we adopt a similar likelihood function to the Levenshtein distance one above,

P(d|w) e~ X Owrst(dw, d) (3)

Whereas the Edit-Distance likelihood relies on a single minimum edit distance between the input and output
string, the Phoneme-Specific likelihood relies instead on the aggregate weight of paths through a finite state
machine, Owrst(d* : w, d), which captures the probabilities of the different edit sequences that would transform
the adult conventional form into the child’s produced form. We create a finite state machine, FSM(d*, d), for
each combination of 7,997 word identities in the candidate vocabulary and phonetic form produced by the child.
Computationally, this involves composing a finite state acceptor for the conventional adult form d* for each
possible word identity with the transducer learned above, and then composing that machine with the finite state
acceptor for the child’s produced phonetic form, d. We then enumerate the weights along all paths through the
finite state machine,

OwrsT(d* : w, d) = —1 x log > P(path) | . (4)
pathe FSM(d*,d)

Following the chain rule, each path reflects the product of the conditional probabilities of its component arcs:

P(path) = H Prgni(a-,d)(arc). (5)

arc€path

To obtain the conditional probabilities appropriate for this computation (rather than a joint probability, as
yielded by expectation maximization) we normalize the arc probabilities the probability of all possible outputs
given the input (all arcs from a given state),

Prgni(a-,q) (arc) S P& = 5) (6)
where s indicates each possible output symbol in the symbol set S. In the unigram case, the probability of edit
d; — d; is not conditioned on any history, thus we simply divide by the summed probability of all possible edits
where d; is the input symbol. Note that the Phoneme-Specific likelihood would yield probabilities proportional
to the simpler Edit-Distance likelihood if the probability (i.e., cost) of all edits is equal to 1 in Eq. 6 and
only the lowest cost path were considered. As with the simpler Edit-Distance likelihood, we iterate over all
pronunciations for a given orthographic word and take the path weights associated with the citation form that
assigns the highest probability to the observed data.

For the Edit-Distance likelihood, we evaluated posterior surprisal estimates for values of 3 between 1.5 and
4.5 by 0.1 increments, and take the value that assigns the highest posterior probability to a sample of 5,000
transcriber word interpretations. We confirmed that the resulting scores were convex across the parameter range
and that the highest scoring parameter value was not on the edge of the range of possible values. In the case of
the Phoneme-Specific likelihood, we grid sample the scaling parameter A, analogous to 3 for the Edit-Distance
likelihood, although we focus on the range 0-2 by 0.1 increments.

The third likelihood function we test (Expt. 3) reflects the same approach as the Phoneme-Specific likelihood,
however we fit a separate WFST for each child, and follow the an analogous fitting procedure. This captures
the intuition that listeners may learn how individual children are likely to deviate from pronunciations in adult
speech. Given the primary goal of evaluating adults’ prior expectations when listening to children, we test
child-specific likelihoods only in combination with child-specific priors.

Priors: Language Models

For each child vocalization, we retrieve prior probabilities over candidate word interpretations using a suite
of probabilistic language models. As a “best” prior architecture capable of capturing long-distance syntactic
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dependencies, discourse patterns, and child-specific constructions we use BERT [45], which has demonstrated
extremely competitive performance for single-word completion tasks, including automatic speech recognition
[68]. By virtue of its attentional mechanisms, BERT is able to effectively model long distance dependencies
[69], and capture speech register and discourse-level information. We compute the probabilities for the masked
word P(w|c) from BERT, using a language modeling head with the transformers library [70]. We treat the
identities of words other than the masked word as sufficiently reliable to predict the identity of the masked
position in the utterance (cf. [68]). For each masked phoneme sequence, we take the real-valued vector of
predictions corresponding to the model’s full vocabulary, extract the activations corresponding to the candidate
vocabulary above, and compute the softmax to yield a vector of probabilities over each of the candidate words
in the vocabulary.

We also test another transformer-based model, GPT-2, which uses a similar attentional mechanism to BERT
but predicts word identities sequentially (i.e., left-to-right in an utterance). Like BERT, GPT-2 can effectively
model long-distance dependencies and discourse topics. In the same fashion as BERT, we take a real-valued
vector of activations corresponding to the candidate vocabulary and compute the softmax (see Tokenization
below regarding how we achieved parity in vocabularies between GPT-2 and BERT).

Fine Tuning

For fine tuning BERT, we initialized a standard BERT-uncased model using the transfomers library, then
updated the weights to best predict the identities of words in a new training set — in this case, utterances
from 80% of North American English and UK English CHILDES transcripts. This dataset consists of 4,119,182
utterances and 15,885,051 words (an additional 20% of transcripts were held out for validation). We followed
a similar procedure to finetune GPT-2 models. These fine-tuned models (BERT+CHILDES+BIDIRECTIONAL,
BERT+CHILDES+PRECEDING, BERT+CHILDES+ONEUTT, GPT2+4+CHILDES+PRECEDING, GPT2-+CHILDES+
should be expected to be more representative of adult linguistic expectations in understanding child speech than
the standard BERT and GPT-2 models respectively for three reasons. First, they should assign higher proba-
bility to words that are common in speech to and from children. Second, they should assign higher probability
to non-sentence fragments, which are ubiquitous in conversational speech but somewhat less prevalent in adult-
directed written language. Third, they should encode an expectation for the dyadic, back-and-forth structure
of scenes typically captured in transcripts (see Speaker Identity, below).

To test for the advantages of fine-tuning on utterances from the child language environment, we fine-tune
two more BERT models (BERT +SWITCHBOARD-+BIDIRECTIONAL, BERT +SWITCHBOARD-+ONEUTT) using
a large adult-to-adult conversational speech corpus, the Switchboard corpus [51]. This training sample includes
95,786 utterances and 1,175,384 words in the training sample. While we expect that fine-tuning on a conversa-
tional model will produce a model that expects shorter utterances, a higher proportion of sentence fragments,
and more filled pauses, it does not contain the conversational topics and constructions preferred by children.

Scope of Linguistic Context

In addition to fine-tuning the model, we manipulate whether prior estimates reflect access to the larger discourse
context as captured by the transcript before and after a particular vocalization. Because these models are meant
to be representative of caregiver expectations, these models condition their predictions regarding word identity
on what the caregiver and child both say, both before and after the masked token. In +BIDIRECTIONAL
models, we allow the model to see 20 utterances preceding and following each mask during inference; while
in +PRECEDING the model sees only the 20 preceding utterances plus the utterance containing the target
vocalization. For GPT-2 models, +PRECEDING refers to strictly words preceding the target vocalization. For
BERT models, +PRECEDING refers to those preceding the target vocalization as well as those in the same
utterance because BERT is not suited to computing probabilities of continuations.

Speaker Identity

One option for fine-tuning models is to include speaker identities as tokens (e.g., [CGV] for caregiver and [CHI]
for child) and include them in the fine-tuning process. This allows the model to condition its predictions on the
current speaker, for example providing different completions for “|CHI| T want to [MASK]” vs. “[CGV] I want
to [MASK].” Both fine-tuned BERT and GPT-2 models with speaker information uniformly outperformed ones
without, so for brevity we report on only these in the current paper. Both Switchboard and standard BERT
models are trained on written data that lack speaker identifiers, so this information cannot be used in inference
for these models.
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Tokenization

The standard BERT model has its own vocabulary, which imposes limitations on the vocabulary in the anal-
ysis. Standard implementations of BERT split longer words into “word pieces,” or most common repeated
sub-sequences. In English, this often yields an approximation of morphological segmentation (e.g., fishing —
fish ##ing), but many word pieces are not morphemes (unless the model is specifically trained to yield such,
e.g., [71]). For the purposes of predicting a single masked word, BERT predicts only one word piece. We thus
limit the vocabulary to word-initial word pieces like fish, and exclude continuations like ##ing from consid-
eration.” This means that the model largely excludes morphologically-rich words, though children relatively
rarely produce such words during this age range. Further, we expect that the general approach of child-directed
listening holds for these words as well.

GPT-2 uses a different tokenization scheme, called byte pair encoding [72], such that the set of tokens
predicted by the model differs from the BERT models above. To achieve parity in the vocabularies across these
models, we added any words in the vocabulary of the BERT models to the tokenizer and learned representations
for these words during the fine-tuning process.

Age and Child-Specific Fine Tuning

For age-specific fine-tuning, we fine-tuned separate BERT models on language samples from the CHILDES
dataset from children at or below 30 months, vs. above. 20% of transcripts were held out for model validation.
We then evaluated these models on the same test set as all other models, such that the results in Fig. 5 are
comparable to the scores in Tab. 1.

The child-specific fine-tuning analysis required a careful approach to clearly separate training, validation,
and test data from the Providence corpus in order to avoid overfitting (i.e., testing a model on words it saw
during training). We thus created for each child test and validation sets consisting of an age-balanced selection
of randomly selected transcripts and apportioned the remainder to the training set for that child. This age
stratification strategy helps to avoid artifacts in performance that might emerge from differences in ages in the
composition of test data (i.e., the model will appear to perform better when more test items come from when
children are older). We did not use an age-stratified training set out of a concern for data sparsity. We used
each training set to fine-tune a variant of the BERT+CHILDES-+BIDIRECTIONAL model for each child; we
then also used all words with phonetic transcripts from that training set to fit a child-specific WFST to use in
the model likelihood. We then fit a free parameter in each likelihood (S for the Edit-Distancelikelihood and A
for the Phoneme-Specific one) separately for every combination of train and test dataset (i.e., each cell in Fig.
6B).

Ablated Models

To evaluate a baseline where adults solely use the phonetic input supplied by the child, we include a UNI-
FORMPRIOR model where all English mono- and bi-syllabic words in the child language environment are equally
likely a priori and the model must rely on the perceptual input to identify the child’s intended word. This
model assigns equal probability to all words (1/|V|, where |V|is the number of candidates). This provides the
comparison case of a maximally uninformative prior.

We include a unigram, or frequency-based model (UNIGRAM+CHILDES) which uses the normalized fre-
quencies of words in the same dataset used to fine-tune BERT and GPT models (see Fine Tuning, above). To
avoid assigning zero probability to any unseen words (i.e., words in the Providence corpus but not in CHILDES),
we add a small pseudocount (.001) smoothing to all counts before computing probabilities. This model reflects
the hypothesis that adults expect young children to use specific words, but do not expect them to use adult-like
syntactic structures or adhere to common patterns of discourse, such as alternating turn-based contributions.

We also test an n-gram model trained on the same large sample of child language as the fine-tuned neural
network models. This trigram model is more sophisticated than the unigram model in that it takes into account
sequential dependencies among words, but is less sophisticated than the neural network models because it
cannot track long distance dependencies. We employ Kneser-Ney smoothing [73] to re-allocate probability mass
to unseen bigrams and trigrams on the basis of commonly observed unigrams and bigrams, respectively. We
query this trigram model in two different ways in the word prediction module. In TRIGRAM+CHILDES, we
extract the probability distribution over continuations in the vocabulary using up to the preceding two words
in the utterance, P(w;|w;—2,w;—1). In the second method, TRIGRAM+CHILDES+ONEUTT, we compute
the probability of the resulting utterance for each item in the vocabulary under the n-gram model, testing
probability in context:

"Hence we do not consider each phonetic sequence as a possible continuation of the preceding word, though this is logically
possible.
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P w;) =
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(7)

This evaluates the probability of w; as a continuation of preceding words through the second term, P(w;|w<;), as
well as the probability of the resulting continuations through the third term, P(ws;|w<;, w;). This is normalized
by the probability of all possible words in the vocabulary (iterating through w’ in the denominator).

Data Retrieval and Processing

Utterances from both parents and children and phonological transcripts from children from the Providence
corpus |26, 27| were retrieved through childes-db 2020.1 [74]. The dataset contains broad phonetic transcriptions
by trained transcribers for a subset of children’s speech in the Phonbank format [75]. Wherever transcribers
identified English words in children’s speech, transcripts were seeded with phonetic transcriptions with adult
citation forms from the CMU pronunciation dictionary (henceforth CMU dictionary); thereafter a separate
group of phonology-focused transcribers edited the transcriptions word-by-word to reflect children’s actual
productions. Other phonetic material was transcribed directly. Further details regarding participants, coding
procedure, and evaluations of inter-annotator agreement can be found in [27].

For the current work, we identified instances where adult transcribers assigned a conventional American
English interpretation to a child’s vocalizations. More specifically, we identified tokens produced by children in
the intersection of four criteria: (1) possessing mono- or bi-syllabic phonetic forms (motivated below in Limiting
to One and Two-Syllable Vocalizations) (2) possessing no unintelligible (CHILDES code xxx) or phonology-
only (yyy) tokens in the same utterance 8 (3) whose gloss is present as a token in BERT (motivated below in
Tokenization) (4) whose gloss is included in the CMU pronouncing Dictionary.

We also identified instances where the transcribers did not assign a conventional English interpretation.
These instances had to meet the first criterion above, but received the special gloss code of yyy. This code indi-
cates that the vocalization could receive a phonetic transcript, but not an adult English interpretation (compare
with Phonbank’s xxx code, indicating that a vocalization was unintelligible in both respects, often as a conse-
quence of environmental noise). Following best practices from machine learning for ensuring generalizability to
new data, we split the dataset into validation and evaluation partitions and developed model architectures
with respect to validation, and ran our models on samples in the test partition after committing to the model
architectures and fitting procedures.

Limiting to One and Two-Syllable Vocalizations

We restricted our analysis to one- and two- syllable vocalizations produced by the child. Vocalizations with
three or more syllables are problematic for two reasons. First, they are much more likely to contain multiple
distinct words, which would require considering multi-word sequences as possible interpretations of the phonetic
signal produced by the child, which would in turn require a more complex modeling approach. Second, even if
a longer vocalization corresponds to a single word, it is much less likely to be present as a separate token in the
model vocabularies, meaning that the model would still need to consider multi-token sequences (e.g., sequences
of “word piece” tokens in BERT) as interpretations. While we could easily articulate such a model, it would
add considerably to the complexity of the proposed model and be much more computationally intensive. For
this reason, we restrict our vocabulary as well as test items to short vocalizations. Syllables were counted by
enumerating the number of vowel nuclei separated by consonants.

Candidate Vocabulary

The vocabulary considered by each model was the intersection of (1) words in the CMU dictionary with one or
two syllables and (2) tokens present in BERT (motivated below) (3) tokens that appeared four or more times in
CHILDES (to limit to words that might reasonably be said by English-learning children). The final vocabulary
included 7,997 orthographic words. Each orthographic word could map to one or more pronunciations, for
example that read could be pronounced as [1id] or [1ed], and that red could also be pronounced as [1ed]. In
total we considered 8,943 possible pronunciations. We reconciled differences in IPA conventions between the
Providence Corpus and the CMU dictionary following a procedure detailed in our codebase (osf.io/v7c3e/).

8Handling multiple unknown tokens per utterance is entirely possible, but would require a more sophisticated modeling approach
and significantly more computational resources than the one presented here, as the model would need to consider all possible
interpretations of utterances. Here, we limit ourselves to the simpler model of individual word recognition for accessibility to a
broader audience.
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Table 3: Example model inputs and guesses for four of the sixteen Bayesian spoken word recognition models we
test. Each model receives a phoneme sequence and the surrounding utterance or utterances (A, B) and produces
a posterior probability distribution over possible word interpretations for what the word indicated by the empty square
may be. C. shows the highest prior probability guesses (before observing the data) corresponding to the different
probabilistic language models used as priors. Each models’ top 4 guesses are shown ordered left to right by their
model-estimated probability; the word recovered by the transcriber is indicated with italics (only on left side, A, since no
word was recovered by transcribers on the right, B). D shows model guesses from each model’s posterior probability
distribution, which reflect both the prior expectations from C as well as the fit to the child-produced data (i.e. based on
the phonetic input from the child). This basic setup can be used both in cases where transcribers interpret children’s
speech as a word (A) or treat it as unintelligible (B).

A. Transcriber Finds a Word (read) B. Transcriber Labels Form as Unintelligible

Mother this is Mother do you want ta put some beans in your eggs?
Inputs to Model Mother you want mamma let’s see Child  no

Child  /as wan do wid/ Child  /ju mek yoas fet/

I wantto| ] you make your| ]

Mother okay that’s fine Mother can | make one?

Mother okay mommy’s gonna pick out a book Mother no
Language Model C. Highest Probability Model Guesses for[ |
CDL+CONTEXT see (0.55) go (0.05) play (0.04) read (0.03) [...] own (0.16) house (0.05) bed (0.05) dinner (0.03) [...]
BERT+CONTEXT read (.49) see (.28) play (.04) know (.04) [...] own (.25) choice (.24) point(.04) bed (.03) call (.03) [...]
CHILDES-1GRAM | (.04) a(.03) the (.03) yeah (.03) no (0.03) [...] 1(.04) a(.03) the(.03) yeah(.03) no(0.03) [..]
UNIFORMPRIOR All word identities equiprobable a priori All word identities equiprobable a priori
Language Model D. Highest Probability Model Guesses for[ | (using WFST Likelihood)
CDL+CONTEXT read (0.994) wait (0.001) weed (0.001) what (0.001) [...] favorite (0.35) first (0.21) fort (0.12) face (0.07) [...]
BERT+CONTEXT read (0.49) see (0.28) play (0.04) know (0.04) [...] favorite (0.34) first (0.26) effort (0.14) fort (0.06) [...]
CHILDES-1GRAM read (0.39) with (0.25) what (0.12) would (0.04) [...] first (0.38) for (0.32) front (0.08) different (0.03) [...]
UNIFORMPRIOR  weed (0.37) worried (0.17) reed (0.06) read (0.06) [...] freight (0.2) freighter (0.09) fort (0.09) flirt (0.08) [...]

Evaluation

Our evaluation tests whether our models can predict what adults interpreted children as saying in this “guess
the word” setup. More specifically, we take the posterior probabilities of word identities yielded by each of
these 26 models (thirteen priors X two likelihoods) and test how well they predict adult interpretations of
child phoneme strings. Ideally, we would use a large dataset of caregivers’ realtime inferences of what their
children said. However, such a large datasets would be prohibitively difficult to collect. Instead, we use the fact
that annotators who create transcripts of child language datasets are faced with a similar inferential problem:
assigning interpretations to children’s speech. Our test corpus (the Providence corpus, covering n = 6 children,
11 — 48 months old, and containing 460,000 utterances; [26, 27]) contains matched pairs of phonetic transcriptions
and English adult word interpretations provided by trained annotators.

In Experiment 1, we test our models’ ability to predict whether transcribers deemed a particular vocalization
to be a word versus flagged it as unintelligible. We divide our set of child phoneme strings into instances where
transcribers posited a word interpretation (Table 3A) and instances where they did not (Table 3B).

We take the entropy of the model’s posterior distribution over candidate words w, P(w|d,c), as the key
quantity predicting whether a given perceptual input token d in context ¢ will be interpreted as a word or as
unintelligible:

n
H(w|d,¢) = =Y P(wld, c)log P(wld, c), (8)
i=1
We assume that the lower the entropy, the more likely d will be deemed to be intelligible and assigned a word
interpretation. We assess each model’s performance by the area under its receiver operating characteristic curve
(AUC; [76]). We evaluated 57,812 phonetic sequences that transcribers assigned a word interpretation, and
12,786 instances where they did not.

In Experiment 2, we test these Bayesian spoken word recognition models in their ability to reproduce
transcribers’ word interpretations. Focusing on only these cases where transcribers interpreted children’s pro-
ductions as transcribable words, we compute the surprisal [29, 54] or self-information that each model assigns
to the transcriber’s interpretation w,

I(w|d7 C) = - 10g2 Pmodel (w|d, C)v (9)
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and then take the average across the 57,812 instances where transcribers found words in our dataset for each
model.” The lower the average surprisal of the transcriber’s word interpretation, the better the model reflects
adult inferences about child speech. In addition, we report the average rank of the transcriber’s word inter-
pretations for each model (ideal model performance would result in a mean rank of 1, where the transcriber’s
word is always the highest ranked word interpretation according to the model). We also report the percentage
of correct top guesses, which captures how often the word found by the annotator is the same as the highest
ranked interpretation under each model.

In Experiment 3, we investigate additional age-based and child-specific fine-tuning of the prior, as well as
child-specific fine-tuning of the likelihood. For the age-based priors, we compute the posterior surprisal averaged
across a sample of child vocalizations per each 6-month age bin. To evaluate the child-specific models, we run
each model on the six child-specific test sets.

Model and Data Availability

All model training and analysis code, as well as the fine-tuned model pre-processed child transcripts can be
accessed through our Open Science Foundation repository at osf.io/v7c3e/.
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Supplementary Information

Supplementary Note: Spoken Word Recognition Model Performance By Child

To what degree does performance of the spoken word recognition models used in Experiments 1 and 2 vary
by child? Given that the word prediction module for each model is trained on language samples from children
outside of the test set, does this general, cross-child model reproduce adult interpretations better for some
children in the test set compared to others? Here we re-analyze the results of Expt. 2 by calculating the
proportion of top-1 guesses per each model (i.e., how often the model’s top guess was the word identity ascribed
by an annotator) and splitting performance by child. Fig. S7 shows model performance when predicting word
identities based on prior expectations—before seeing data—is relatively stable across children, with the model
architecture / training dataset accounting for substantially more variance than the identity of the child.
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Spoken Word Recognition Model

Figure 7: Proportion of instances where each model agrees with the annotator’s word identity by child across
the thirteen models used in Expts. 1 and 2 (analogous cross-child model results are presented in “Prior Correct
Top Guess” in Table 2). Models are plotted left to right based on the model’s average performance across
children.

Once the models observe the word form produced by the child and use the pronunciation module to produce
a posterior update, the performance by child is more clearly distinguished (Lily > Violet > Naima > Alex >
William > Ethan). This suggests that both likelihoods tested for the word pronunciation module are more
sensitive to the identity of the child: some children’s articulations that are less noisy than others with respect
to a cross-child model of pronunciation. We note that the Phoneme-Specific pronunciation module could, in
principle, perform better on some children rather than others because more annotator labels + pronunciations
came from some children rather than others. However, we note that the same ordering of children exists
for the models using the Levenshtein Distance pronunciation module, which reflects only how far the child
pronunciations are from the standard adult pronunciation (i.e., , not reflecting the amount of data from each
child used to train the model). This suggests that performance is largely dependent on how similar children’s
productions are to word pronunciations in the adult language.

We note that differences in performance across children in both cases (model priors and model posteriors)
could arise from differences in the age coverage of the test set: the models perform better on speech from older
children (Figure 5), and some children may have more test items from older ages. We more rigorously approach
this question of cross-child variability — how to equitably compare it and how adults might adapt to it — in
Expt. 3.
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Spoken Word Recognition Model

Figure 8: Proportion of test items where each model’s highest posterior probability guess is the same the
annotator’s word identity, plotted by child across the thirteen models used in Expts. 1 and 2 (analogous to
cross-child model results in “Phoneme-Specific / Edit-Distance Correct Top Guess” in Table 2). Results are
faceted by the likelihood used by the model (Edit-Distance vs. Phoneme-Specific). Models are plotted left to
right based on average performance across children. Model posteriors show a much more stable performance
ordering across children than model priors (compare with Fig. S7).
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