
1

RC-NVM: Recovery-Aware Reliability-Security
Co-Design for Non-Volatile Memories

Kazi Abu Zubair, Rahaf Abdullah, David Mohaisen, and Amro Awad

Abstract—Non-Volatile Memory (NVM) technologies are now available in the form of byte-addressable and fast main memory. Despite
their benefits, such memories require secure and reliable memory management to prevent malicious and spontaneous data alteration.
However, in NVM security, it is still a major challenge to maintain crash consistency and reliable system recovery. In particular,
Message Authentication Codes (MAC) are rarely discussed in recent recovery-aware NVM studies since they are generally not cached.
MACs have outstanding sensitivity to memory errors and hence they can be used for reliability enhancement alongside their
mainstream use to detect malicious tampering. However, persisting MACs is challenging and requires 2x writes and reads in a
conventional secure NVM system. It is possible to cache MACs in a MAC-assisted reliability scheme; however, this brings many
challenges related to crash consistency and reliability. In this paper, we present the difficulties associated with MAC recovery if they are
cached, and solutions to guarantee reliable system recovery. Finally, we propose a novel scheme, Recoverable and Chipkill capable
NVM, RC-NVM, which can effectively use a volatile write-back cache for MACs as well as recover them quickly after a system crash.
Our scheme reduces 27% of the writes and allows 18.2% performance improvement compared to the state-of-the-art, while preserving
the ability to recover from a system crash.

Index Terms—NVM, Security, Crash Consistency, Reliability

✦

1 INTRODUCTION

Byte addressable and fast Non-Volatile-Memory (NVM)
technologies such as Intel’s Optane DCPMM [22] are open-
ing many possibilities in both general-purpose, as well as
high-performance computing. However, although the non-
volatility, byte-addressability, near DRAM speed, and high
density of NVM make it a good candidate for future Uni-
versal Memory (UM [55]), it has many challenges. These
challenges have motivated many ideas which try to solve
many different aspects of NVM, such as wear-levelling [7],
[33], [37], [40], [64], performance [23], [28], [65], reliabil-
ity [26], [35], [46], [54], [63], [66], and security [5], [8], [9],
[10], [20], [31], [57], [60], [61], [69], [70], [73], [74], all of
which offer some unique advantages with minor changes
in the processor, memory design, system software, and
programming model.

A key challenge in Non-Volatile Main Memories is en-
suring data security. For instance, due to the data remanence
of NVM cells, previously stored data can be extracted from a
stolen NVM device without even freezing memory to cryo-
genic temperature in contrast to DRAM [18], [47], [62]. The
Operating System (OS) and applications may leave many
information and traces in the persistent main memory1. This
makes full memory encryption a primary requirement for
secure Non-Volatile Memories. While encryption of the data
ensures confidentiality, it must also come with data replay

• K. A. Zubair, R. Abdullah, and A. Awad are with the Department of
Electrical and Computer Engineering, North Carolina State University,
Raleigh, NC, 27606. D. Mohaisen is with the Department of Computer
Science, University of Central Florida, Orlando, FL 32765.

1. We consider NVM to be the main memory, which is visible to the
application’s address space, with or without an intermediate DRAM
cache. Both persistent and non-persistent data can be stored in NVM.

protection to guarantee that the integrity of the memory
contents is preserved. Several prior works have proposed
many different ideas to achieve Confidentiality [4], [50], [56]
and Integrity [10], [41], [44]—two fundamental aspects of
the CIA (Confidentiality, Integrity, and Availability) triad. To
meet such an ever-growing demand for a secure computing
environment, the industry is also adopting confidentiality
and integrity protection support to their processors [14],
[17]. Until now, it is a well-established practice to use
Counter Mode Encryption (CME) for confidentiality, and
Merkle-tree with Message Authentication Codes (MAC) for
protection against replay attacks.

Typically, the final aspect of the CIA triad, the
Availability, is ensured by using many different reliability
features such as Error Correction Codes (ECC) [19], [35],
[66], parity [13], [45], [52], [59], journaling and snapshot-
ting [38], [53], and software redundancy [26], [54].

While many of these features can be added optionally in
many different layers in the system software or the hard-
ware, the fundamental and most common reliability feature
in any high-availability memory system is the hardware-
managed ECC. Such hardware-managed ECC performs two
basic operations in the memory controller: error checking
and error correction. Interestingly, as discovered in many
prior studies [21], [45], [52], data MACs used in secure
memories have an outstanding sensitivity to memory errors
and hence can be used to detect them. This means that
we can delegate the error detection to the MACs and use
all available ECC bits for error correction. Such delegation
of error detection responsibility to MAC provides stronger
error detection and correction capabilities because all ECC
bits can be employed for correction, and a strong crypto-
graphic MAC is highly likely to detect data alteration due
to errors. For instance, Synergy [45] proposes to achieve

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



2

chipkill-level reliability by using data MACs to detect errors
and parities to correct an entire faulty chip. It observes that
if MAC is co-located with the data instead of ECC in an
ECC-DIMM, it is possible to check for both data errors
and malicious modification using the same MAC without
any extra memory read. If a discrepancy between calculated
MAC and stored MAC is discovered, Synergy speculatively
tries to correct each chip using the parity and verifies every
time whether successful chipkill-correction was performed
using the MAC.

While a system with such coordinated security and
reliability can achieve higher resilience to errors, it has
some practical limitations that must be addressed before
its adoption. The first obvious limitation is the update of
parities, which is done for every memory write. This incurs
2x writes and hence will significantly reduce the memory
lifetime if used in NVM. The second limitation is the write-
masking requirement for parity update. Since multiple par-
ities are stored in a single cache line, updating a single
parity requires read-modify-write of the parity cache line or
write masking inside the DIMM. As observed by ITESP [52],
both of these issues can be solved by using a dedicated
cache that caches parity. With caching, there is no need for
read-modify-write or write masking since the parity cache
line in a write-back cache will be able to coalesce parity
updates and commit all parity changes at once during its
eviction. Clearly, using a dedicated cache to cache parity is
an obvious solution–at least for DRAM-based systems.

The Problem. While both Synergy and ITESP are de-
signed primarily for DRAM-based systems, such coordi-
nated security-reliability can also be a useful feature in a
secure NVM system. However, additional complexity arises
during a system recovery after a crash if we use a write-
back SRAM cache for the parities. Updated parities in the
cache will be lost in a system crash, leading to a post-crash
inconsistency between the data and the parity. Naively, such
an event can be ignored, assuming that there will likely be
no error for the crash-affected data lines, and we can simply
re-calculate the parity after verifying the data. However,
in reality, this will be an overly optimistic and rare case.
Even if a single bit changes in a data cache line for which
the updated parity is lost in a crash, there will be a MAC
mismatch and no means for data recovery. The system will
identify such an event as either a possible Uncorrectable
Error (UE) or malicious data alteration simply because of a
stale parity. Unfortunately, NVMs have a very high Random
Bit Error Rate (RBER), ranging from 1×10−3 to 1×10−6 [66].
The probability of having at least one single-bit upset after
a system crash (for the small set of data cache lines that can
possibly have their parity lost in a crash) can be as high as
99% in PCM-based non-volatile memory for a small 32kB
parity cache. Although the system may have lightweight in-
DIMM error correction to offset some random errors, it will
still be insufficient. For instance, DDR5 specifies in-DIMM
single-bit correction per 128b data [2]. We observe that even
such in-DIMM correction is insufficient to prevent recovery
failure caused by errors. Therefore, it is highly likely that
such a coordinated security-reliability feature with caching
will render the system ‘Not Securely Recoverable’ after a
system crash—meaning that we will have to either compro-

mise the security or system reliability, once a system crash
occurs. Consequently, the coordinated implementation of
Security and Reliability by using MAC’s error detection
capability is not currently suitable for NVM.

In this paper, we re-architect such a coordinated security-
reliability approach for NVMs. In particular, we revisit two
fundamental aspects of such a method to make it suitable
for NVM. First, we rethink the position of both MAC and
parity and identify which one is cachable and recoverable
at the same time. Second, we design our scheme such that it
is capable of tolerating both random errors as well as chip
failure during both run-time and recovery time.
Contributions. We make the following contributions:

1) We propose Recoverable and Chipkill capable NVM,
RC-NVM, the first recovery-aware implementation of
security-reliability co-operation in NVM that is capable
of maintaining chipkill level protection not only during
run-time but also after a system crash.

2) We identify that it is better to co-locate parity/ECC
with the data and cache MACs in a recovery-aware
implementation of security-reliability cooperation for
NVMs. We integrate the MACs into the Merkle-tree to
be able to recover them after a system crash.

3) We co-locate Reed-Solomon code instead of parity
which is capable of correcting random symbols, as well
as an entire chip with the help of the MAC.

We evaluate our scheme in the Gem5 [12] simula-
tor (open source version) and analyzed its performance
with several memory-intensive workloads from SPEC® 2006
CPU, Whisper [36], and in-house persistent memory bench-
marks. Our proposed solution allows 1.18x speedup and
27% write reduction compared to the state-of-the-art.
Organization. We present the background (including the
threat model and key motivation) in section 2, the design
in section 3, our simulation methodology in section 4, the
evaluation results in section 5, the discussion in section 6,
the related work in section 7, and the conclusion in section 8.

2 BACKGROUND AND MOTIVATION

2.1 Threat and Fault Models
2.1.1 Threat Model
Similar to the state-of-the-art NVM Security works [10], [14],
[41], [51], [58], [60], [71], [74], anything stored outside the
processor chip is considered vulnerable in our threat model.
The processor chip is assumed to be secure, trusted, and
difficult to tamper with. The attacker can tamper with the
memory contents, and maliciously modify or replay data or
security metadata stored in memory. The attacker can also
attempt to snoop the data bus to read processor-memory
communication. The attacks that physically tamper with
the processor chip to extract secret information, such as
encryption key and root hash are excluded from our threat
model. Leakage through access pattern is also orthogonal to
our work and not part of the threat model.

2.1.2 Memory Organization and Fault Model
Typically, bits in memory are grouped together in multiple
banks that form a memory chip. A group of such memory
chips is aligned to form a memory rank in the Dual In-line

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



3

Memory Module. Memory access is performed by activating
all chips in a rank, where each of the chips supplies some
portion of the accessed data. Typically, the size of the cache
line is 64B, and each of the memory chips supplies some
bytes. For instance, in an 8x8 DIMM, each chip will provide
access to 8B of the data. We assume NVDIMMs to have
similar organization and access behavior. While our work
is not restricted to any particular form factor or memory
organization, we assume x8 ECC chips where a rank has
eight data chips and one ECC chip. We also assume Phase
Change Memory (PCM) as the underlying technology for
NVM. However, our work can be seamlessly integrated with
any non-volatile main memory technology (e.g., ReRAM,
STT-RAM). Due to PCM’s popularity as a main memory
technology in available and commercial NVDIMMs [22], we
primarily focus on this type of technology.

While the memory organization in NVM can be similar
to DRAM, the fault model is different. In DRAM, the ma-
jority of the faults are permanent in nature (approximately
70% [48]) and can be masked during production using row
or column sparring. Transient fault can also occur in DRAM
due to radiation and particle strikes [49]. Although PCM
cells are not vulnerable to particle strikes, they can deviate
from their original state due to resistant drift and read
disturb [39]. Since NVM cells are not refreshed often as
DRAM, transient errors may occur more frequently, and get
accumulated over time, and that is a significant concern
for reliability [39], [66]. Hence, they require more robust
protection against random bit upsets. Server memories are
generally equipped to tolerate an entire chip failure. How-
ever, a chip failure can result from many internal upsets,
including failure in the memory circuitry and failure of a
large group of bits. Consequently, when designing reliable
NVM systems, we must consider both random errors and
chip failures. Therefore, similar to prior works on NVM
reliability [66], [72], we consider random failures in multiple
chips and complete chip failure.

2.2 Encryption, Protection, and Consistency

2.2.1 Memory Encryption

Counter Mode Encryption (CME) has been widely used in
the literature [44] and industry implementations [17] for
ensuring the confidentiality of data stored in main memory.
Simple encryption mechanisms(e.g., Electronic CodeBook,
or ECB) are not secure as they cannot preserve the spatial
and temporal uniqueness of the encrypted data. In memory
encryption, it is important to prevent the attacker from in-
ferring data by analyzing the temporal and spatial relations
between the encrypted cache lines. In the main memory
implementation of CME, every memory block (usually 64
Byte) is given a dedicated counter. These counters can be
considered as the version numbers of the data blocks, which
are updated on every memory write.

Fig. 1: Counter Mode Encryption.

Figure 1 shows a basic operation of the CME. During
encryption, an Initialization Vector (IV) is generated using
an incremented encryption counter and the address. This
‘IV’ is then encrypted using a key to generate One Time
Pad (OTP). Incrementing the counter before OTP creation
guarantees temporal uniqueness of memory writes, which
is critical for memory encryption to be secure. Additionally,
the use of the physical address of the data to generate OTP
also ensures that the same data will be encrypted with
different OTP if they are from different locations. To encrypt
the data, OTP is XORed with the data, and the encrypted
cache line (cipher) is written to the memory. The decryption
operation is also similar to encryption; the OTP is created
using the counter, address, and key, which is XORed with
the ciphertext read from memory to decrypt the data. Note
that the generation of OTP and reading the cipher from
memory can be done in parallel, which effectively hides the
decryption latency.

2.2.2 Data Tampering and Replay Protection

Generally, the integrity of the protected data is ensured
through a cryptographic hash value calculated over the
data. In a secure memory architecture, a hash tree (popularly
known as the Merkle tree) is used for this purpose. Such
a tree can be generated by hashing the data contents at
multiple levels, which eventually collapses into one single
hash (the root of the tree). The root hash consists of several
hashes (in case of non-parallel BMT) or counters (in case
of SGX-tree) as shown in figure 2, which can be securely
stored within the processor chip. The size of the tree de-
pends on the size of the protected memory, and the arity
(n-ary means each hash node has n children) of the tree.
Therefore, protecting a large memory requires an extremely
large tree size. Prior works [44] have proposed ways to
reduce the size of the tree by building the tree only over
the encryption counters, not the entire memory. Such a
design is known as Bonsai Merkle Tree (BMT), where the
data blocks are protected using a Message Authentication
Code (MAC) calculated over the data, address, and counter.
Figure 2 illustrates such a tree. While this type of tree has
the advantage of simplicity and authenticating the protected
contents using a single root, its update is sequential (non-
parallel). As used in Intel’s SGX, there is also a parallel style
BMT where the intermediate nodes accommodate ‘version
counters’ and MAC instead of hash values. In this way, it is
possible to update all respective counters in a branch and
calculate new MACs for all nodes in that branch in parallel
(Figure 2b). Note that we aim to recover Data MACs, and is
orthogonal to the choice of the tree structure.

Fig. 2: Merkle tree organizations.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



4

Synergy in NVM. Synergy [45] observes that we can use
the extra bandwidth to co-locate data MAC with its data
if ECC-DIMM is used. This design allows fetching the
{data, MAC} pair in a single memory read operation. If
the fetched data passes the MAC verification, it can be
safely assumed that no malicious (attack) or non-malicious
(error) data modification has occurred. Synergy also stores
parities calculated over the data chips in a separate location
to preserve the correction capability. If the MAC value
calculated using the counter, data, and address does not
match the co-located MAC that is fetched with the data,
Synergy first assumes that this is a possible chip failure.
In such an event, Synergy speculatively corrects the faulty
chip using parity and verifies the correctness with the MAC.
Assuming the parity bits are not faulty, one of eight trials
will successfully correct the chip. While this is a simple and
efficient method to achieve higher reliability and improved
run-time performance in a secure memory system, it has
to update parity in the same way MACs are updated in
the original BMT proposal to preserve such error correction
capability. Figure 3 shows Synergy’s memory organization
compared to the original ECC-DIMM.

Fig. 3: Synergy’s data layout (b) vs. typical data layout in
ECC DIMM (a).

2.2.3 Metadata Crash Consistency

Although caching security metadata in a fast and volatile
cache improves the performance significantly, it can leave
the system in an inconsistent state if a sudden system
crash happens. The volatile cache holds many dirty and
updated metadata, which are usually later reflected in the
memory when they are evicted from the cache. Therefore,
the memory version of the metadata can be stale if the
volatile contents within the cache are erased due to a system
crash before they are evicted.

Based on the prior works related to security metadata
crash recovery, the recovery efforts can be generalized in
three categories: (i) encryption counter recovery, (ii) recov-
ery of hash nodes in non-parallel BMT, (iii) version counter
recovery in parallel BMT. Among the security metadata, the
encryption counters have a distinct incremental property
that allows the lost value to be a few increments away from
the stale value found in the memory after a crash. This

property allows trial-and-error of the encryption counters
if they can be sanity checked by another means.

For instance, Osiris [60] achieves this sanity check using
encrypted ECC, and CC-NVM achieves this by using data
MAC. Incrementing a counter and checking its sanity using
encrypted ECC, or MAC can reveal the original value that
was lost in a crash. Once the counters are repaired, the hash
nodes in non-parallel BMT can be easily re-calculated and
verified against the root of the tree. While (i) and (ii) can
be easily done, (iii) can be challenging since the version
counter values can neither be simply re-calculated from the
lower level nor recovered using the trial-and-error method
as there is no available sanity checking method for them.
In such a case, Anubis persistently tracks the LSBs of the
version counters in a shadow memory region and uses lazy
style tree update2 to limit the updates in the tree from
tree level n, to only 1. While this provides recoverability
of parallel BMT nodes, it still incurs 2x writes. This is
solved in Phoenix [5] and STAR [20], where the updates
in the bottom level in the tree (encryption counter) are
not persisted strictly. Instead, Phoenix uses a sanity check
mechanism to recover the bottom level and persistently
tracks the upper levels. STAR persists the LSBs with the
data MAC assuming that the MAC size is 56b, similar to the
SGX-tree proposal [14], and some unused bits are available.
Unlike encryption counters, hash nodes, or version counter
nodes, the parity or data MAC cannot be recovered in such a
way. They cannot be simply incremented and sanity checked
like encryption counters, making [58], [60] ineffective. Even
if we assume that some unused bits are available similar to
Intel’s SGX tree where we can store the LSBs of the parity
or data MAC, it will not be effective. There is no guarantee
that MSBs will not change in the next update. Indeed, such
an event is highly likely in the newly calculated parity or
data MAC. The only option is to persist the updated parity
or data MACs on every data write, which takes the solution
right where the problem began.

2.3 Performance Issues

2.3.1 Recovery Time Problem
Recently explored secure NVM architectures [10], [71] show
that it is not only the recoverability but also the high recov-
ery time is a major challenge in adopting large scale secure
NVM system. Anubis [71] shows that it could take hours
to recover a secure NVM protected using Counter Mode
Encryption and Merkle tree. The main reason for such a long
recovery time is simply because the system cannot pinpoint
the stale metadata after a system crash, requiring aggressive
scanning and multiple trials to attempt metadata recovery.
To allow faster recovery, Anubis maintains a shadow region
in NVM and tracks the address of security metadata when-
ever the memory controller modifies them inside the cache.
During the entire life cycle of security metadata inside the
cache, from the placement to the eviction, it only needs to be
tracked once when it is modified for the first time. As such,

2. Unlike eagerly updated tree where all nodes in a branch are
updated up to the root, lazy update only updates the lower level.
Whenever a node from the tree is evicted, the upper level is updated.
This lazy propagation makes the root of the tree stale and hence
depends on a secondary root as used in [71] and [5].

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



5

the system can pinpoint the stale metadata and securely
recover them after a system crash.

Fig. 4: A simple shadow caching example.
A shadow tracking mechanism for a cache structure is

shown in Figure 4. The idea is to allow NVM to mirror the
state of the cache, where the gray box in the figure represents
the dirty blocks. The size and organization of the Shadow
Cache are identical to those of the cache it is mirroring. If
a cache line is marked dirty for the first time (step 1), a
shadow request is prepared. The destination address of the
request is prepared based on the respective location of the
dirty cache line in the cache (step 2). The data content of the
request holds the actual physical address of the cache line
that has become dirty inside the cache and is being tracked.
Finally, the shadow structure in the memory is updated.
The atomicity of the write requests (data, metadata, and
shadow write) must be preserved. Note that the subsequent
update of a dirty block does not need further tracking.
When evicted, the corresponding entry in the shadow region
does need to be erased. This relaxed tracking allows a
reduced overhead using a few trials during recovery. In
other words, a stale shadow log will not harm recovery.
If any new metadata transitions from clean to dirty in the
same position, the stale log is updated with the new one.

2.3.2 Preserving Atomicity of Writes
Modern architecture guarantees that any write which makes
its way to the NVDIMM is persisted. However, in an ideal
threat model, where only the processor chip is trusted,
security implementations need to be within the trusted
processor. In such an architecture, each memory write can
issue additional metadata writes–all of which may not be
committed to NVM at the same time. For instance, evictions
from the metadata cache (counter, hash node, or MAC) and
shadow entry update requests are generated when serving
a data write request. These write requests are placed in the
write buffer before finally being updated in NVM. Atomic-
ity of these writes must be guaranteed so that a batch of data
and security metadata updates is committed at the same
time. Instructions like pcommit can be used to flush the
Write Pending Queue (WPQ) to maintain atomicity. Modern
processors have started to provide hardware support [1] for
atomicity and persistence of the Write Pending Queue con-
tents. For instance, Intel supports the Asynchronous DRAM
Refresh (ADR) feature [24], which ensures that the contents
loaded in the Write Pending Queue (WPQ) are flushed on a
power loss event. However, the size of the WPQ is extremely
limited (only tens of entries) due to the limited backup
from ADR. State-of-the-art memory security and persistence

models utilize this limited ADR support to guarantee that
a batch of the atomic write requests is atomically written.
The cipher, evicted counter, tree nodes, MACs, and shadow
requests are temporarily stored in some persistent registers.
Next, they are moved to WPQ and erased from the registers
once all writes are moved into WPQ, which is backed by
ADR support. If power fails before pushing all writes to
WPQ, another attempt after the system reboot will be taken
to persist the batch. The requests that fail to reach the
persistent registers will not be committed.

2.4 Motivation
Reliability-Security coordination in secure NVM can be
done using the error detection capability of data MAC,
similar to many prior approaches that have achieved such
for DRAM. However, to make it practically usable in NVM,
we need to cache the parities (if MAC is co-located with
the data), or MACs (if parity is co-located with the data).
While caching improves performance and NVM’s lifetime,
it creates a single point of failure even with a single bit error
after a system crash. If parities are cached while MACs are
persisted with the data, the system may identify an error
using the MAC but lost parities will prevent reliable system
recovery. On the other hand, if MACs are cached, post-crash
data verification will not be possible.

Figure 5 illustrates such a scenario by varying the cache
size. The Y axis in the graph represents the probability of
having at least one error out of all data bits that are likely
to lose their MAC or parity after a system crash. Here we
assume each cache line in the cache will be able to hold
eight MACs or parities. Therefore, a single-bit upset in
8 × S kB memory data can possibly create a single point
of failure, where S is the size of the MAC/Parity cache.
Here we assume that the memory cells have certain bit
error rate and SEC in-DIMM ECC for each 128b is available
similar to DDR5 [2]. While this analysis is done purely
based on Raw Bit Error Rate (RBER) of the NVM cells
for generalization and keeping the analysis independent of
specific technology, there can be many reasons for post-crash
data errors. Glitches in the memory circuitry caused by a
power failure can also lead to failure in larger granularity
(e.g., entire row, column, bank, or even entire chip) [68].
To make caching effective in terms of performance, its size
needs to be reasonably large. As it is clear from Figure 5,
a reasonably large cache size (e.g., greater than 64kB) will
have recovery failure probability more than 50% in most
cases. Beyond 100kB, the failure is almost certain for average
NVMs even with in-DIMM ECC. Clearly, additional support
to securely recover the system is needed in such reliability-
security coordinated architectures.

3 RC-NVM
This section discusses the design options and challenges in
a MAC-assisted reliability scheme suitable for NVM.

3.1 Caching MAC vs. Parity
In MAC-assisted memory reliability, we can either co-locate
the MAC or the parity information in the ninth chip. If
the MAC is co-located with the data, the parity is stored

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



6

Fig. 5: System failure probability due to post-crash data
error.

in a dedicated data memory region and vice versa. As
originally proposed in Synergy, the MAC is co-located with
the data, and the parity is stored separately. The primary
motivation to co-locate the MAC with the data for such a
DRAM-based scheme is to allow checking for both errors
and malicious modifications at the same time, without any
additional reads. If there is no MAC mismatch, it can be
safely assumed that there is no error in the data, hence no
need to read parity. Assuming that the error rate of the
memory technology being used is extremely low, the data
will be simply errorless in most occurrences, and hence no
correction is needed. Therefore, most of the memory reads
will be low overhead as costly trials using parity for error
correction can be avoided. This can be true in the case of a
DRAM having low Raw Bit Error Rate (≈ 1×10-7), where the
cells are also frequently refreshed. However, it can trigger
frequent error correction trials3 in PCM-based Non-Volatile
memories due to high RBER, and lack of cell refresh. With
the MAC-assisted reliability being the primary defense, the
MAC latency can be tens of nanoseconds (e.g., 40ns [15],
[32]) and hence can cause a significant slowdown for fre-
quent error trials. Clearly, triggering such high-overhead
trial-and-error-based chip correction simply because of a
few bits of error is not the best approach for dense NVMs.
The better solution will be to employ a comparatively low-
cost error detection and correction method that can filter out
some random errors before even calculating the MAC.

For the above reasons, we use Reed-Solomon code in-
stead of plain parity, which is faster compared to MAC-
based error detection. RS code is able to detect a number
of random errors and correct a subset of them. The MAC
can then be used as a second line of defense against larger
granularity error (e.g., chip failure), or Silent Data Corrup-
tion (SDC) that the weaker ECC missed in the beginning.
This will preserve the costly trials with repeated MAC
calculations only where and when they are required. This is
challenging in the context of MAC-assisted error correction
without extending the size of the ECC. Fortunately, Reed

3. Synergy requires at least eight MAC calculation for an error
correction, which can be 16 in the worst case if parity is also erroneous.

Solomon (RS) codes have the capability to act as an erasure
parity if the location of the error is known and also correct
a limited number of random symbol errors if the location
is unknown [30], [66]. A 2t symbol long RS ECC code is
capable of correcting all combinations of random v symbol
errors, and e symbol erasures given that the inequality
v + e

2 ≤ t holds true [30]. This means that we can correct t
random symbols if no erasures are present and 2t erasures
if no random symbol errors are present. An s-bit symbol can
provide coverage to 2s − 1 symbols. Hence, the minimum
reasonable symbol size with an 8B RS code will be 8b. Such
code will correct up to four random erroneous bytes without
the help of the MAC and eight erasure bytes (equivalent to
an entire chip in x8 DIMMs) if MAC is used to identify the
faulty chip. The 8B RS code can be co-located with the data
and fetched easily while reading data, as originally done in
ECC DIMMs. On the other hand, the MAC can be stored in
a dedicated memory region and cached inside the processor
to avoid frequent memory reads for MACs.

Observation: Triggering costly trials for chip correction
in a MAC-assisted reliability scheme is high overhead,
which can be extremely inefficient in dense PCM-based
memories. A reasonable solution is to use co-located RS
ECC instead of parity as the first line of defense and
store MACs separately while caching them.

Intuitively, one can argue that we can still co-locate the
MAC with the data and simply cache the RS codes within
the processor. We can still apply the RS bytes initially to
filter out random errors before checking with the MAC.
However, this is an odd choice of placement given that
the first operation after reading the data will be correcting
random symbol errors, not integrity verification. While the
order of error checking and MAC verification is one reason
to co-locate RS-ECC with the data, it is clearly preferable
if the error correction during recovery time comes into
the picture. If we lose the parity or RS bytes, we lose
correction capability for some data and hence the ability to
recover from a crash. On the other hand, if we lose MACs,
they can be recovered if we preserve the data correction
capability through co-located RS bytes across crashes and
employ a secondary verification method to determine the
authenticity of the recovered MACs. Note that, we assume
that the MACs can be recovered for now; the details of the
recovery procedures using a secondary verification method
are described in Section 3.4. This secondary verification is a
fundamental aspect of RC-NVM’s recovery mechanism and
will be discussed later. Thus, co-locating the RS ECC bytes
(to preserve error correction capability) with the data and
caching MACs is a more reasonable and practical choice for
recovery-aware NVMs.

Memory Organization. Since the reason to allow MAC
caching and co-location of RS ECC with the data is clear
from the above discussion, we now focus on illustrating the
details of the system organization and recovery mechanism.

Figure 6 shows our data, ECC, and MAC organization.
Each data chip (D0-D7) stores eight bytes of data, and the
ECC chip stores eight bytes RS ECC calculated over the
entire 64B cacheline. Similarly, a 64b MAC is calculated over
the 64B data cache line, and initially written to the dedicated

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



7

Fig. 6: Organization of MAC, RS ECC, and DATA in NVM.

MAC cache. A MAC cache line, consisting of eight MACs, is
only written back to the NVM if it is evicted from the cache.

3.2 Run-time Data Error Correction
Once data and its corresponding RS ECC bytes are read
from the memory, the data is checked for errors using
the ECC bytes. The error checking in Reed Solomon code
involves encoding to re-calculate the parity information and
syndrome generation—The syndrome is simply the vector
sum of the received parity code and recomputed parity
code [30]. Encoding and error detection using RS code is
comparatively faster than decoding (e.g., 1.6ns for encod-
ing vs. 45ns for decoding [66]). Decoding is only needed
when errors are identified after syndrome calculation and
corrections are required. The RS ECC bytes will be able to
correct up to four bytes of random symbol errors (32 bits
total) before passing the data to the MAC calculation engine.
However, if the number of errors in the data spans more
than four bytes, the ECC may start miscorrection or silent
error propagation. This will be identified when the MAC
calculation is done over the corrected data and is matched
against the previously calculated value. A mismatch be-
tween the calculated and pre-stored MAC will indicate one
of the following events: (i) RS ECC has miscorrected the
data or silently propagated the error, (ii) An attacker has
maliciously modified the data.

Whenever such an event occurs, the memory controller
optimistically assumes that a chip failed and starts correct-
ing it using MAC trials. During such a trial, the originally
fetched data is used as input since miscorrection by the
RS ECC will likely expand the error beyond one chip and
the recovery will fail. In each trial, one of the chips is
assumed to have failed and then corrected by using RS ECC
bytes as erasure code. After correction, the MAC validation
indicates whether it was a successful correction or a failure.
A match in the calculated and pre-stored MAC means that
the faulty chip has been corrected successfully. If none of the
trials is successful, it may indicate multi-chip failure, five
random byte failures that are not enclosed within a chip, or
a malicious modification of the data.

3.3 Root-Connected MAC for recovery
In a traditional Bonsai Merkle-Tree, the tree is generated on
top of the encryption counters, and data MACs are stored
separately (Figure 2). While the leaves of the tree represent
the encryption counters, the MACs are separated and are
connected to the root indirectly through the encryption
counters. This organization makes it difficult to replay a
MAC or data block without replaying the counter (which

is detectable using the root). While this guarantees that data
alteration will be detected through the MAC and MT root
during run-time operation, recovery-time data verification
can be challenging if updated MACs are lost from the
volatile cache. Assuming that we can recover the counters
using the available methods, we can attempt to recompute
the MAC using the data, address, and counter. However,
there is no way to verify whether the newly obtained MAC
is authentic since it also depends on the data. The attacker
may tamper with the data blocks that correspond to the lost
MACs, and there will be no way to detect this. While this
is the fundamental reason why post-crash data verification
is challenging if we cache MACs in a cache, this is also the
reason why we cannot recover the lost MACs.

One way to circumvent this problem is to avoid using
the BMT structure altogether and create a larger Merkle-
tree over the data instead of the counters. While this would
eliminate the necessity of using data MACs and, hence,
recovery, such a design would have a larger Merkle-tree
and increase both performance and storage overheads for
the Merkle-tree verification. Similarly, an alternative design
where the MT is built over the MACs instead of the counters
would have similar issues. On the flip side, if there were a
way to verify the correctness of the recomputed MAC in
BMT, we could easily recover the MAC after a system crash.
This would prevent any post-crash tampering of the data
blocks that correspond to the affected MACs.

Observation: Lack of direct connection between the
root of Merkle-tree and MAC prevents post-crash data
verification and MAC recovery if MACs are cached in a
volatile cache.

It is possible to authenticate a recalculated MAC after a
system crash if we include the MACs as additional inputs
to compute the Merkle-tree root. The number of children of
a node determines the arity. For instance, figure 7 shows
a naive way to include MACs into the original Merkle-
tree in a system that uses 64-ary split counter organization
[56] and 8-ary Bonsai Merkle-tree above the counters. Each
64B cipher block is associated with a 56b MAC. A node
in the lowest level of the Merkle tree covers 512 cipher
blocks. In this organization, MAC and Merkel-tree hash
size is 56b, similar to Intel-SGX. Therefore, intermediate
MT nodes can store an additional 56b data in the unused
space. To integrate the MACs into the main tree and hence
make a connection between the MACs and the MT root,
we can hash MACs of the 512 consecutive ciphers in the
physical address space into a single 56b hash which is stored
alongside the hash of counters in the lowest level of the
Merkle-tree. The 512b node in level 1 that accommodates
eight counter hashes and one MAC hash will be hashed
into a 56b value in the upper level, the MACs will be used
for the root calculation. The MAC hash calculation can be
done similarly to Merkle-tree calculation by hashing MACs
in several levels. In this way, intermediate hashes for the
MAC hash calculation can be temporarily stored in memory
to reduce the number of hash calculations.

With this modification in the Merkle-tree organization,
reading from memory will be unchanged. The 56b MAC
Hash in the lowest level of the Merkle tree is not needed for

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



8

Fig. 7: Naive way of implementing root-connecting MACs.

data verification during run-time and hence ignored during
reads. The integrity of the ciphers read from memory is
verified using the associated MACs, and the counters are
verified using the Merkle tree as done typically. However,
during a write process, MAC hashing needs to be done,
and the calculation of level 2 will have to stall until the 56b
MAC hash is available. Assuming a duplicate hash engine
is available, MT Level 1 and MAC Hash calculation can
start in parallel. While simple, this approach has several
drawbacks. First, all input MACs may not be present in
the cache and will incur several additional memory reads.
This will incur significant stalls during write operations. If
we organize this hashing process in a Merkle-tree structure
and store the intermediate nodes (colored in gray), we can
possibly reduce the number of MACs we need to read for
such calculation. More precisely, for 512 MACs in the lowest
level, we need a four-level Merkle-tree and hence need to
read three cache lines to calculate the MAC; one containing
eight MACs (one new MAC and seven other neighboring
MACs) and two upper-level nodes. However, in terms of
performance and storage overhead, this solution behaves
similarly to a naive Merkle-tree structure that is built over
the data only. Consequently, there is no justification for
using such a design if we use BMT. The primary problem
here is due to the fact that the MAC hash calculation process
in this design is non-incremental, and we need additional
inputs. In other words, it is not possible to update the MAC
hash only using the updated MAC (colored in red), avoiding
all other neighboring and intermediate MACs.

Fig. 8: Calculating MAC of MACs in an incremental fashion.

To reduce the overheads of the aforementioned design,
we utilize the concept of Parallel MAC, or PMAC [42], [43].
The PMAC construct allows the calculation of a unique
MAC over many inputs in an incremental fashion. Figure 8a

shows how a single MAC can be calculated over 512 MACs
in this fashion. The first step in this process is to XOR the
individual inputs (MACs) with a unique value (υi) that is
dependent on a secret key K1. Next, the XORed Values (Xi)
are then scrambled using a block cipher F that takes another
secret key K2. The results (Yi) are XORed all together into
a single value Σ. Finally, the Σ is fed into FK2 to get the
final MAC. Here, we refer to this final MAC as the MAC
of MACs or MMAC. We can use this MMAC in place of
the MAC Hash in the prior design. To be able to perform an
incremental update, we should be able to invert MMAC and
get the Σ back. One advantage of calculating MMAC in this
way is that we can re-use the AES engine for the function
F. Since, AES-CTR mode XORs the pad in the final stage, it
is possible to get Σi-1 back if we XOR the MMAC with the
pad we have used to encrypt it. To update the MMAC with
just a single MAC, we need to recover Σi-1, and perform
(Σi-1 ⊕ Yi ⊕ Yi-1) where Σi-1 is the previously calculated
MMAC fetched from the MT node, Yi is the output from
FK2 for updated MAC, and Yi-1 is the output from FK2 for
previously calculated MAC for the same data block. We
can leverage the uniqueness of the PAD in AES-CTR to
combine the first two steps into one by XORing the MAC
with a truncated version of the OTP created using AES-
CTR (OTP1, as shown in Figure 8b). Finally, all Y values
are XORed and encrypted using another PAD calculated
using a different key. As soon as the AES engines finish the
data encryption process, we can re-employ them to create
four OTP—generally, four 128-bit AES engines are used to
encrypt 512-bit of data. After encryption, these engines sit
idle, and we use four of them to calculate the MMAC; OTP1i,
OTP1(i-1), OTP2j, and OTP2(j-1). Since AES encryption finishes
before the MAC calculation [34], we can start calculating
OTP2 even before the MAC calculation finishes. Once we
have the new MAC Mi, old MAC Mi-1, old MMAC and two
OTPs, we can quickly perform Σj = (Σj-1 ⊕ Yi ⊕ Yi-1) which
is XORed with the OTP2j to get the updated MMAC. This
process does not have any additional storage overheads and
incurs small delays in MT updates.

3.4 Recovery Procedure

After a system crash, the volatile contents from the SRAM
caches are erased. This includes all cached encryption coun-
ters, Merkle-tree hashes, and the MACs. With shadow track-
ing of security metadata similar to prior works [5], [71], it is
possible to pinpoint the stale metadata.

First, the encryption counters are recovered using any
of the state-of-the-art recovery methods [31], [60], [71]. For
instance, to recover the encryption counters, we can try to
decrypt the data with the stale value of the counter and
calculate the RS Syndrome. If a wrong counter has been
used, or if there are some errors present in the data, it will
likely produce a non-zero syndrome. The recovery engine
first speculatively tries all the possible counters assuming
there is no error in the data. The number of trials for each
counter can be limited by setting a threshold value for
updates of a counter inside the cache, similar to Osiris [60].
If all counters produce a non-zero syndrome, the reason is
likely a data error. At this stage, the recovery unit starts
treating the RS bytes as erasures and speculatively tries to fix

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



9

Algorithm 1: Crash Recovery Procedure
1 Read Shadow Entries (Stale Counters, Stale MACs, Stale MT);
2 #Counters
3 for all C i in Stale Counters do
4 while C i¡= C i+m do
5 Decrypt Data; Calculate Syndrome;
6 if non-zero syndrome then
7 try correct();
8 else
9 continue;

10 end
11 end
12 end
13 #MACs
14 for all M i in Stale MACs do
15 Recalculate MACs;
16 end
17 #MT
18 for all MT i in Stale MTs do
19 Recalculate MT Hash from children;
20 end
21 #Verify
22 for all C i in Stale Counters and all M i in Stale MACs do
23 Traverse all the way up to root;
24 if root mismatch then
25 Recovery Failure;
26 else
27 Continue;
28 end
29 end

each chip’s contents, and verifies again by recalculating the
syndrome. This way, an entire failed chip can be tolerated.
Note that this process is also done for all possible counter
values. If there are n chips and m possible counter values
(e.g., four in Osiris), the total number of trials in the presence
of errors for each block will be m× n. After the recovery of
the counters, we speculatively recalculated the MAC using
the data fetched from NVM and the encryption counter. This
is followed by an attempt to verify the data by traversing all
the way up to the root. Since the Merkle-tree covers both the
counters and the MACs, any tampering with the data will
be detected. Algorithm 1 shows our recovery procedure in
brief.

4 EXPERIMENTAL METHODOLOGY

We evaluate our RC-NVM’s performance using the
Gem5 [12] simulator. We use a mix of persistent and non-
persistent workloads. Note that we use the NVM to host
both persistent and non-persistent data. Since the security
metadata is managed in the memory controller and trans-
parent to the software, the operations undertaken in the
memory controller will be the same regardless of what
application is being used. We have used SPEC CPU 2006
benchmarks [3] for non-persistent workloads and a mix of
in-house benchmarks and benchmarks from Whisper [36]
as persistent workloads. The in-house microbenchmark uX
accesses one byte after every X byte in a sequential man-
ner with a read/write ratio of 1. We checkpoint after the
application’s initialization phase for each application and
simulate 500M instructions after that. We have implemented
counter mode encryption, the Bonsai Merkle Tree, and MAC
verification for the baseline system. A write-back cache has
been integrated with the memory controller for caching
encryption counters and Merkle tree nodes. Finally, we
incorporate the RC-NVM system that caches MACs and
performs necessary operations to enable MAC recovery. We

varied the cache size from very small (8kB) to large (512kB)
and analyzed the cache performance, speedup, and recovery
time for sensitivity analysis. Table 1 lists our parameters.

TABLE 1: Simulation Configuration Parameters

Processor
Core 4 Cores, X86, OoO, 2.66GHz
L1 Cache Private, 2 cycles, 32KB,8-Way
L2 Cache Private, 20 Cycles, 512KB, 8-Way
LLC Shared, 32 Cycles, 8MB, 64-Way

PCM Main Memory
Size 16 GB
PCM Latencies Read latency 100ns, Write latency 300ns

Encryption
Metadata Cache 256kB, 8-way, 64B Block
AES latency 40 cycles [32]
Encryption Counter 64bit major, 7 bit minor Split Counter Organization
Merkle Tree 8-ary Bonsai Merkle Tree
MAC cache 64kB, 4-way, 64B Block
MAC Latency 40ns [16], [32]
MAC Organization 8 MACs/ Cacheline

5 EVALUATION RESULTS

The simulated performance, memory access, and sensitivity
results are presented in this section. In the rest of this
section, we compare the following designs:

1) Synergy-NVM (Baseline). This scheme is similar to the
Synergy [45] scheme in terms of MAC management. No
extra reads or writes are required for MACs; however,
each write needs to update the parity. Additionally,
CME and Merkle tree are also implemented to ensure
data confidentiality and integrity guarantee.

2) Atomic Non Co-Located MAC. In this scheme, MACs
are written to a separate and dedicated memory region.
For each memory read/write operation, MAC for the
data is read or written atomically.

3) Write-Through (WT). This scheme uses a write-through
cache for MACs, where MAC reads are satisfied from
cache but writes must be written back to the memory.

4) RCNVM. Our proposed scheme, RCNVM, which uses
a write-back cache for MACs and allows MAC recovery
through integrating MACs into the Bonsai Merkle Tree.

5.1 Impact on Performance

Figure 9 shows the normalized speedup for different
schemes compared with the baseline Synergy. As it can
clearly be observed, data MACs in secure memory archi-
tecture can severely hamper the system’s performance in
Atomic Non-Co-Located MAC scheme, where MACs need
to be written to and read from memory for every data
write read. Our evaluation shows that such scheme can
incur approximately 15% (up to 25% in leslie3d) slowdown
in comparison with the baseline Synergy. The performance
of a write-through cache scheme is very similar to the
baseline Synergy. The only downside of the WT scheme
in comparison with Synergy is that the WT scheme will
have to read a few additional MACs when cache misses for
MACs occur on reads. Both Synergy and WT schemes have
high overheads due to the extremely high number of writes
for MACs and Parities in WT and Synergy, respectively.
On average, the WT scheme is only 2.1% slower than the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



10

Fig. 9: Normalized Performance Improvement

baseline Synergy. On the other hand, RC-NVM uses a write-
back cache that can allow dirty MACs to reside in cache,
reduce the number of writes, and allow for crash recovery
by calculating MAC over each consecutive 512 MACs and
using it in Bonsai Merkle-Tree construction. On average, RC-
NVM improves the performance by 18.2%. As shown in the
figure, RC-NVM is the only recovery-aware scheme that can
outperform Synergy in terms of performance.

5.2 Memory Access Overheads
5.2.1 Writes
Figure 10 shows the writes percentage of RC-NVM scheme
compared to Synergy, where a significant reduction is
achieved by RC-NVM scheme. Although Synergy inter-
changes the MAC and ECC position and has no extra
memory access for MACs, it still incurs a high number of
writes for updating ECCs/Parities similar to the ANH and
WT schemes. Therefore, the number of writes is the same
in Synergy, ANH, and WT schemes; the only scheme that
can offer reduced writes is RC-NVM due to the use of
a write-back cache that coalesces writes sent to memory.
The figure shows how many writes RC-NVM can save
in comparison with Synergy/ANH/WT. As shown in the
figure, RC-NVM can reduce almost 27% of the memory
writes. Such reduction in writes allows both performance
improvement and an extended lifetime for a secure NVM
system.

Fig. 10: Percentage of write reduction in comparison with
Synergy.

5.3 Sensitivity to MAC cache Size
To further analyze the benefits coming from using a write-
back MAC cache with eight MACs per cache line (similar to
Intel SGX’s counter organization [17]), we vary the size of
the cache from very small (1kB) to very large (512kB) and
analyze the cache hit rate and speedup for selected memory-
intensive workloads. We also analyze the recovery time with
varying cache sizes.

5.3.1 Cache Performance

Figure 11 shows the increase in hit-rate with cache size. As
shown in the figure, the MAC hit rate in most applications
increases with the increase in the size of the MAC cache.
We notice that most of the applications’ hit rate reaches
their maximum with a cache size of 64kB. For instance,
LBM quickly saturates at 64kB and does not significantly
increase the hit rate with larger caches. MCF shows slight
improvement with larger MAC caches.

Fig. 11: Hit rate with varying cache size.

5.3.2 Performance Sensitivity

With a larger MAC cache, RC-NVM can reduce the miss
rate and improve the performance significantly compared to
Synergy. Figure 12 shows how speedup increases with the
increase in the MAC cache size until a certain point, after
which applications do not show any speedup with further
cache size increase. After 64kB, most of the applications
saturate in terms of speedup and only improve slightly with
further increase in cache size.

Fig. 12: Performance sensitivity to cache size

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



11

5.3.3 Recovery Time Sensitivity
By varying the MAC cache size, we also analyze how long
the system will take to recover from a power failure as
shown in figure 13. For this analysis, we have assumed
equal partitions of 128kB each for counters and Merkle
tree in the metadata cache. Each counter cache line has 64
counters, and RC-NVM will have to fix all counters of a dirty
cacheline. For simplicity, we assumed that all cache lines in
the cache are dirty. During recovery, RC-NVM first recovers
encryption counters. Then, it speculatively calculates MACs
over the fetched data and recovered counters. The resulting
MACs will be used for the verification of successful recovery
by traversing the Merkle-tree up to the root.

Fig. 13: Recovery time sensitivity to cache size

6 DISCUSSION

MAC Cache vs RS ECC Cache. Although we assume that
MACs are stored in a separate memory region and cached in
a MAC Cache–an alternative design is also possible where
RS ECC bytes are cached and MACs are co-located with the
data. If RS-ECC bytes are cached similarly to ITESP [52],
they can be re-calculated over the data if the MAC verifi-
cation is successful. However, in case of a MAC mismatch,
RS codes are needed to filter symbol errors and re-check
by using MAC verification after error correction is done
with RS codes. While both methods will have similarities
in performance and reliability in current memory systems,
allowing natural co-location of ECC with data is a more
suitable choice for future NVM memory design for several
reasons. The size of the MAC per 64B cache line is likely to
remain unchanged for future memory systems as the MAC
collision rate is not a direct function of DIMM organization
or memory technology while the reliability is. On the other
hand, the ECC/parity size varies depending on the memory
design and the desired level of reliability.

Future memory systems will likely have higher error
correction requirements and extended hardware support for
stronger ECC. For instance, DDR5 supports 16-bits ECC
per 64-bit data (divided into two channels) [2], [11]. Such
a larger access granularity will render a 16B parity per 64B
data cache line. Similarly, the parity/ECC size will also vary
depending on the symbol size (e.g., 16B parity per cache
line in a 4x16 DIMM for Synergy). It is impossible to use the
larger access granularity of DDR5 to fit both MAC and ECC
simultaneously in Synergy. For instance, if each channel in a

DDR5 DIMM consists of 4 x8 data chips storing 64B data in
16 bursts, a chip will store 16B data of a cache line, and hence
the entire 16B parity will be needed to provide Synergy’s
chipkill level protection. Storing such large parity elsewhere
and caching them will lead to both underutilization of bus
and poor parity locality. Therefore, we adopt the design
option to allow natural co-location of ECC/parity, in our
case RS ECC bytes, with the data and cache MACs.

RCNVM with eADR. eADR [6] feature helps to flush CPU
caches during power failure. When it comes to the recov-
ery process, there are some differences between processor
caches (L1, L2, and LLC) and metadata caches residing
in memory controllers. Fortunately, the Metadata Cache
can leverage several features, such as incremental counter
update and inter-layer MAC relation, to facilitate recovery
without relying on other costly methods. However, for CPU
caches, the only possible options to ensure recovery are
using frequent flush instructions, using extra power (eADR),
or using a slow and costly non-volatile cache. In addition,
the power budget for eADR needs to be deterministic and
cannot rely on the assumption that not all parity cache
blocks will be dirty during a failure. On the other hand,
the L2 cache and LLC are more likely to absorb writes more
frequently and can, therefore, maximize the power they are
provided during a failure. This means that if we need to
choose between protecting the parity cache and allocating
an equal portion of the L2 cache for a given power budget,
it is wiser to protect the L2 cache. It is important to note
that the optimization that enables parity cache persistence
without eADR is not practical for the L2 cache due to the
higher number of L2 writes and the larger number of dirty
blocks that change very frequently.

The question then arises as to whether optimizing hard-
ware is better than spending power extravagantly, even
though hardware optimization is possible. The current di-
rection of modern processor design such as ARM v8 [29], M1
and M2 [27], Graviton [25], and other performance aware
chips focuses on extracting maximum performance with
minimal power consumption, not only in mobile processors
but also in PC [67] and server processors [25]. This suggests
that a one-time hardware optimization with negligible area
overhead and a better Power-Performance pair is always the
better choice.

MMAC over data vs. encryption counters. Another impor-
tant question is why we cannot simply use MMAC over
the counters instead of data MACs. In a typical situation,
assuming we are operating within the ECC’s correction
limit, this would be possible. However, it is essential to
note that RCNVM’s motivation is to enable the recovery of
MACs when using MAC-assisted reliability schemes, such
as Synergy [45], which enhances performance and reliability
by reusing the MAC as an error detector. Although this
scheme is already proposed for DRAM systems, it is not fea-
sible in NVM due to a recovery-time reliability bottleneck.
If we use traditional methods of using MACs for security
and ECC for errors instead, we do not need to recover
the MACs. The cached MACs can be directly recalculated,
assuming that BMT can authenticate the counter’s integrity
and ECC can guarantee the counter’s error-correction. How-
ever, since we are using MACs for error detection, there will

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



12

be an unpredictable race hazard when trying to error-check
and authenticate the counter before recalculating the MAC.
Therefore, in RCNVM, we generate MMAC over data MACs
so that the MACs can be used to verify and recover faulty
data even in the event of a chip failure.

7 RELATED WORKS

The security aspects of NVMs have been studied in recent
works, focusing on the efficient encryption methods [4],
[50], crash consistency [31], [60], write optimization [64],
and recovery time [10], [71]. Memory security in general,
including counter mode encryption [56] and integrity pro-
tection [44], is also studied. Prior works related to NVM
security assumed that the data MACs would be written
to memory simultaneously when the data is written. Syn-
ergy [45] interchanges MAC and ECC positions in memory,
storing MACs in the ECC chip while separately storing
parities. Synergy also utilized the error detection capability
of MACs to strengthen the reliability of the system.

Synergy does not reduce the number of writes as addi-
tional writes are now done for writing parities. The number
of reads is reduced since errors are relatively rare, and
parities are not read unless MAC detects any tampering or
error in the data. Synergy does not use any write-back cache,
which triggers more writes to the memory and is mostly
designed for the DRAM system. Several systems, including
cc-NVM [58], Osiris [60], and Anubis [71] are related to
our work and propose crash consistency and recovery time
reduction. However, each of these works is motivated by
a different aspect. Osiris focuses on encryption counters
recovery, and Anubis proposes low recovery time by in-
troducing shadow tracking for security metadata. None of
the works discussed the recovery of MACs and overlooked
the MAC problem if cached in a write-back cache. Several
research works are also done for the reliability exploration
of emerging NVMs. For example, Zhang et el. [66] explored
how chipkill reliability can be achieved in NVMs. Our work
is the first to allow authenticated recovery of MACs, and it’s
the first to combine MACs into the integrity tree.

8 CONCLUSION

We present the ineffectiveness and recovery problem in the
current implementation of MACs in secure NVM archi-
tectures. While the current assumptions incur either high
overhead, cause design complexities, or can not achieve
reliable recovery, our proposed scheme can achieve better
performance and reliability with minor modifications in the
memory controller. On average, RC-NVM can improve the
performance by 18.2% over the state-of-the-art Synergy and
reduce writes by 27%. Furthermore, RC-NVM is the first
scheme to propose MAC recovery that can tolerate an entire
chip failure during recovery and manages to recover all
types of security metadata within seconds at the expense
of marginal modifications within the memory controller.

9 ACKNOWLEDGMENTS

Part of this work was funded through Office of Naval
Research (ONR) grants N00014-21-1-2809 and N00014-21-
1-2811, and the National Science Foundation (NSF) grants

CNS-1814417, CNS-1908471 and CNS-2008339. The views,
opinions and/or findings expressed are those of the authors
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government. Approved for public release. Distribution is
unlimited.

REFERENCES

[1] “Deprecating the PCOMMIT Instruction,” https://software.intel.
com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction,
accessed: 2019-11-13.

[2] “Introducing Micron® DDR5 SDRAM: More Than a
Generational Update,” https://www.micron.com/\protect\
discretionary{\char\hyphenchar\font}{}{}/media/client/
global/documents/products/white-paper/ddr5 more than a
generational update wp.pdf?la=en, accessed: 02/06/2021.

[3] “SPEC CPU 2006 Benchmarks,” https://www.spec.org/
cpu2006/, accessed: 2019-11-13.

[4] “i-NVMM: a secure non-volatile main memory system with in-
cremental encryption, author=Chhabra, Siddhartha and Solihin,
Yan,” in 2011 38th Annual international symposium on computer
architecture (ISCA). IEEE, 2011, pp. 177–188.

[5] M. Al-Wadi, K. A. Zubair, D. Mohaisen, and A. Awad, “Phoenix:
Towards ultra-low overhead, recoverable, and persistently secure
NVM,” IEEE Trans. Dependable Secur. Comput., vol. 19, no. 2, pp.
1049–1063, 2022. [Online]. Available: https://doi.org/10.1109/
TDSC.2020.3020085

[6] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin,
“Bbb: Simplifying persistent programming using battery-backed
buffers,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 2021, pp. 111–124.

[7] A. Alsuwaiyan and K. Mohanram, “Mfnw: An mlc/tlc flip-n-write
architecture,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 14, no. 2, pp. 1–32, 2018.

[8] M. Alwadi, A. Mohaisen, and A. Awad, “Promt: optimizing in-
tegrity tree updates for write-intensive pages in secure nvms,” in
Proceedings of the ACM International Conference on Supercomputing,
2021, pp. 479–490.

[9] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne,
“Silent shredder: Zero-cost shredding for secure non-volatile main
memory controllers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp.
263–276, 2016.

[10] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-nvm:
Persistency for integrity-protected and encrypted non-volatile
memories,” in Proceedings of the 46th International Symposium on
Computer Architecture, pages=104–115, 2019.

[11] S. A. Berke, V. Sankaranarayanan, and B. M. Mutnury, “Main-
taining highest performance of ddr5 channel with marginal signal
integrity,” Jun. 16 2020, uS Patent 10,685,736.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al.,
“The gem5 simulator,” ACM SIGARCH computer architecture news,
vol. 39, no. 2, pp. 1–7, 2011.

[13] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson, “Raid: High-performance, reliable secondary storage,”
ACM Computing Surveys (CSUR), vol. 26, no. 2, pp. 145–185, 1994.

[14] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[15] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist level parallelism:
Streamlining integrity tree updates for secure persistent memory,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2020, pp. 14–27.

[16] A. Freij, S. Yuan, H. Zhou, and Y. Solihin, “Persist level parallelism:
Streamlining integrity tree updates for secure persistent memory,”
in 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2020, pp. 14–27.

[17] S. Gueron, “A Memory Encryption Engine Suitable for General
Purpose Processors,” Cryptology ePrint Archive, Report 2016/204,
2016, https://eprint.iacr.org/2016/204.

[18] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest we remember: cold-boot attacks on encryption keys,” Com-
munications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 

https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://www.micron.com/\protect \discretionary {\char \hyphenchar \font }{}{}/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://www.micron.com/\protect \discretionary {\char \hyphenchar \font }{}{}/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://www.micron.com/\protect \discretionary {\char \hyphenchar \font }{}{}/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://www.micron.com/\protect \discretionary {\char \hyphenchar \font }{}{}/media/client/global/documents/products/white-paper/ddr5_more_than_a_generational_update_wp.pdf?la=en
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://doi.org/10.1109/TDSC.2020.3020085
https://doi.org/10.1109/TDSC.2020.3020085
https://eprint.iacr.org/2016/204


13

[19] M. N. Hsieh, A. F. Rodrigues, S. Li, K. Chen, N. Muralimanohar,
C. D. Kersey, J. B. Brockman, and N. P. Jouppi, “System im-
plications of memory reliability in exascale computing.” Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), Tech.
Rep., 2011.

[20] J. Huang and Y. Hua, “A write-friendly and fast-recovery scheme
for security metadata in non-volatile memories,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2021, pp. 359–370.

[21] R. Huang and G. E. Suh, “Ivec: off-chip memory integrity protec-
tion for both security and reliability,” ACM SIGARCH Computer
Architecture News, vol. 38, no. 3, pp. 395–406, 2010.

[22] Intel, “Intel Optane DC Persistent Memory,”
”https://www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html”, 2020,
[Online; accessed 05-February-2020].

[23] N. S. Islam, M. Wasi-ur Rahman, X. Lu, and D. K. Panda, “High
performance design for hdfs with byte-addressability of nvm
and rdma,” in Proceedings of the 2016 International Conference on
Supercomputing, 2016, pp. 1–14.

[24] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent
memory module,” arXiv preprint arXiv:1903.05714, 2019.

[25] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “The power of arm64 in
public clouds,” in 2020 20th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp.
459–468.

[26] R. Kateja, N. Beckmann, and G. R. Ganger, “Tvarak: software-
managed hardware offload for redundancy in direct-access nvm
storage,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020, pp. 624–637.

[27] C. Kenyon and C. Capano, “Apple silicon performance in scientific
computing,” in 2022 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2022, pp. 1–10.

[28] N. S. Kim, C. Song, W. Y. Cho, J. Huang, and M. Jung, “Ll-pcm:
Low-latency phase change memory architecture,” in Proceedings of
the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[29] M. A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne, A. Jundt,
W. A. Ward, R. Campbell, and L. Carrington, “Characterization
and bottleneck analysis of a 64-bit armv8 platform,” in 2016 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 2016, pp. 36–45.

[30] S. Lin and D. J. Costello, Error control coding. Prentice hall New
York, 2001, vol. 2, no. 4.

[31] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in
encrypted non-volatile main memory systems,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2018.

[32] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan,
“Janus: Optimizing memory and storage support for non-volatile
memory systems,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2019, pp. 143–
156.

[33] X. Luo, D. Liu, K. Zhong, D. Zhang, Y. Lin, J. Dai, and W. Liu,
“Enhancing lifetime of nvm-based main memory with bit shifting
and flipping,” in 2014 IEEE 20th International Conference on Embed-
ded and Real-Time Computing Systems and Applications. IEEE, 2014,
pp. 1–7.

[34] D. McGrew and J. Viega, “The galois/counter mode of operation
(gcm),” submission to NIST Modes of Operation Process, vol. 20, pp.
0278–0070, 2004.

[35] T. Mittelholzer, M. Stanisavljevic, N. Papandreou, and H. Pozidis,
“High-throughput ecc with integrated chipkill protection for non-
volatile memory arrays,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

[36] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” ACM
SIGPLAN Notices, vol. 52, no. 4, pp. 135–148, 2017.

[37] P. M. Palangappa and K. Mohanram, “Flip-mirror-rotate: An
architecture for bit-write reduction and wear leveling in non-
volatile memories,” in Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, 2015, pp. 221–224.

[38] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Analysis and evolution of journaling file systems.” in USENIX
Annual Technical Conference, General Track, vol. 194, 2005, pp. 196–
215.

[39] M. K. Qureshi, S. Gurumurthi, and B. Rajendran, “Phase change
memory: From devices to systems,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 4, pp. 1–134, 2011.

[40] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based
main memory with start-gap wear leveling,” in 2009 42nd Annual
IEEE/ACM international symposium on microarchitecture (MICRO).
IEEE, 2009, pp. 14–23.

[41] J. Rakshit and K. Mohanram, “ASSURE: Authentication scheme
for secure energy efficient non-volatile memories,” in Proceedings
of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[42] P. Rogaway and J. Black, “Pmac: A parallelizable message authen-
tication code,” Preliminary Draft, October, vol. 16, 2000.

[43] P. Rogaway and J. Black, “Proposal to nist for a parallelizable
message authentication code,” 2001.

[44] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using
address independent seed encryption and bonsai merkle trees
to make secure processors os-and performance-friendly,” in 40th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007). IEEE, 2007, pp. 183–196.

[45] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
454–465.

[46] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ecp,
not ecc, for hard failures in resistive memories,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 3, pp. 141–152, 2010.

[47] H. Seol, M. Kim, Y. Kim, T. Kim, and L.-S. Kim, “Amnesiac dram:
A proactive defense mechanism against cold boot attacks,” IEEE
Transactions on Computers, 2019.

[48] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira,
J. Stearley, J. Shalf, and S. Gurumurthi, “Memory errors in mod-
ern systems: The good, the bad, and the ugly,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 1, pp. 297–310, 2015.

[49] V. Sridharan and D. Liberty, “A study of dram failures in the
field,” in SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE,
2012, pp. 1–11.

[50] S. Swami and K. Mohanram, “ACME: Advanced counter mode
encryption for secure non-volatile memories,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE,
2018, pp. 1–6.

[51] S. Swami and K. Mohanram, “ARSENAL: Architecture for Se-
cure Non-Volatile Memories,” IEEE Computer Architecture Letters,
vol. 17, no. 2, pp. 192–196, 2018.

[52] M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,
M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact leakage-
free support for integrity and reliability,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 735–748.

[53] Z. Wang, C.-H. Choo, M. A. Kozuch, T. C. Mowry, G. Pekhimenko,
V. Seshadri, and D. Skarlatos, “Nvoverlay: Enabling efficient and
scalable high-frequency snapshotting to nvm.”

[54] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase,
T. B. Da Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-
tolerant non-volatile main memory file system,” in Proceedings of
the 26th Symposium on Operating Systems Principles, 2017, pp. 478–
496.

[55] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li,
“Emerging non-volatile memories: Opportunities and challenges,”
in Proceedings of the seventh IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, 2011, pp. 325–
334.

[56] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryp-
tion and authentication,” in ACM SIGARCH Computer Architecture
News, vol. 34, no. 2. IEEE Computer Society, 2006, pp. 179–190.

[57] F. Yang, Y. Chen, H. Mao, Y. Lu, and J. Shu, “Shieldnvm: An effi-
cient and fast recoverable system for secure non-volatile memory,”
ACM Transactions on Storage (TOS), vol. 16, no. 2, pp. 1–31, 2020.

[58] F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No Compromises:
Secure NVM with Crash Consistency, Write-Efficiency and High-
Performance,” in 2019 56th ACM/IEEE Design Automation Confer-
ence (DAC). IEEE, 2019, pp. 1–6.

[59] J. Yao, H. Jiang, Q. Cao, L. Tian, and C. Xie, “Elastic-raid: A
new architecture for improved availability of parity-based raids

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 



14

by elastic mirroring,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 4, pp. 1044–1056, 2015.

[60] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories,” in 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2018), 2018.

[61] M. Ye, K. A. Zubair, A. Mohaisen, and A. Awad, “Towards low-
cost mechanisms to enable restoration of encrypted non-volatile
memories,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 4,
pp. 1850–1867, 2021.

[62] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold boot
attacks are still hot: Security analysis of memory scramblers in
modern processors,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2017, pp. 313–
324.

[63] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P.
Jouppi, and M. Erez, “Free-p: Protecting non-volatile memory
against both hard and soft errors,” in 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. IEEE, 2011,
pp. 466–477.

[64] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-efficient
encryption for non-volatile memories,” ACM SIGPLAN Notices,
vol. 50, no. 4, pp. 33–44, 2015.

[65] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm asym-
metries,” in 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA). IEEE, 2013, pp. 282–293.

[66] D. Zhang, V. Sridharan, and X. Jian, “Exploring and optimiz-
ing chipkill-correct for persistent memory based on high-density
nvrams,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 710–723.

[67] Z. Zhang, “Analysis of the advantages of the m1 cpu and its im-
pact on the future development of apple,” in 2021 2nd International
Conference on Big Data & Artificial Intelligence & Software Engineering
(ICBASE). IEEE, 2021, pp. 732–735.

[68] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, “Understanding
the robustness of ssds under power fault,” in 11th {USENIX}
Conference on File and Storage Technologies ({FAST} 13), 2013, pp.
271–284.

[69] J. Zhou, A. Awad, and J. Wang, “Lelantus: fine-granularity copy-
on-write operations for secure non-volatile memories,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE, 2020, pp. 597–609.

[70] Y. ZOU, K. A. ZUBAIR, M. ALWADI, R. M. SHADAB, S. GAND-
HAM, A. AWAD, and M. LIN, “Ares: Persistently secure
non-volatile memory with processor-transparent and hardware-
friendly integrity verification and metadata recovery,” ACM Trans-
actions on Embedded Computing Systems, vol. 1, no. 1, 2021.

[71] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and
recovery time for secure non-volatile memories,” in Proceedings of
the 46th International Symposium on Computer Architecture. ACM,
2019, pp. 157–168.

[72] K. A. Zubair, S. Gurumurthi, V. Sridharan, and A. Awad, “Soteria:
Towards resilient integrity-protected and encrypted non-volatile
memories,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 1214–1226.

[73] K. A. Zubair, D. Mohaisen, and A. Awad, “Filesystem encryption
or direct-access for NVM filesystems? let’s have both!” in IEEE
International Symposium on High-Performance Computer Architecture,
HPCA 2022, Seoul, South Korea, April 2-6, 2022. IEEE, 2022, pp.
490–502.

[74] P. Zuo, Y. Hua, and Y. Xie, “SuperMem: Enabling application-
transparent secure persistent memory with low overheads,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 479–492.

Kazi Abu Zubair obtained his PhD in Com-
puter Engineering from NC State University in
2022, where he was advised by Prof. Amro Awad
within the Secure and Advanced Computer Ar-
chitecture (SACA) research group. He is cur-
rently a CPU Core & Simulator Architect at Intel
Corporation. is a final year PhD student major-
ing in Computer Engineering at NC State. His
research interests include secure memory archi-
tecture, NVM security, and memory reliability. He
received his BS degree from the University of

Chittagong, Bangladesh, and worked in the R&D industry for several
startup companies in Bangladesh before joining SACA.

Rahaf Abdullah is a PhD student in computer
engineering at NC State University. Her research
interests revolve around memory security in ad-
dition to the security of GPUs with the least
overheads possible. Rahaf graduated with a BS
degree in Computer Engineering from An-Najah
National University in Nablus, Palestine, at the
end of 2020. Prior to joining NC State University,
she worked as a software engineer developing
macOS applications used in the production of
laptops and smart devices.

David Mohaisen obtained his Ph.D. in Com-
puter Science from the University of Minnesota
in 2012. He is currently a professor of Computer
Science at the University of Central Florida,
where he leads the Security and Analytics Lab
(SEAL) and has been since 2017. Previously,
he was an Assistant Professor at SUNY Buffalo
(2015-2017) and a Senior Scientist at Verisign
Labs (2012-2015). His research interests are in
the broad area of applied security and privacy,
covering aspects of computer and networked

systems, software systems, IoT and AR/VR, and machine learning. His
research has been supported by NSF, NRF, AFRL, AFOSR, etc., and
has been published in top conferences and journals alike, with multiple
best paper awards. His work was featured in the New Scientist, MIT
Technology Review, ACM Tech News, Science Daily, etc. Among other
services, he is currently an Associate Editor of IEEE Transactions on
Mobile Computing and IEEE Transactions on Parallel and Distributed
Systems. He is a senior member of ACM (2018) and IEEE (2015), a
Distinguished Speaker of the ACM and Distinguished Visitor of the IEEE
Computer Society.

Amro Awad is currently an assistant profes-
sor and leads the Secure and Advanced Com-
puter Architecture (SACA) research group at NC
State. Before joining NC State in Fall 2020, he
was an assistant professor at UCF (2017-2020).
Amro received his PhD degree from NC State
University in 2016. During his Ph.D., he had
several stints at LANL, HP Labs and AMD Re-
search. His research papers have been pub-
lished in top-venues in computer architecture,
such as ISCA, MICRO, HPCA, ASPLOS, PACT

and ICS. His research group has been funded by NSF, NSWCDD, ONR,
DARPA, Sandia National Laboratories, US Army CCDC, and AFRL. He
pioneered the area of persistently-secure memories, where the security,
high-availability and crash consistency need to be guaranteed in future
memory systems. He also was the PI of DARPA’s MemSec project
resulting in dozens of novel ideas.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3279031

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on January 29,2024 at 19:57:10 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background and Motivation
	Threat and Fault Models
	Threat Model
	Memory Organization and Fault Model

	Encryption, Protection, and Consistency
	Memory Encryption
	Data Tampering and Replay Protection
	Metadata Crash Consistency

	Performance Issues
	Recovery Time Problem
	Preserving Atomicity of Writes

	Motivation

	RC-NVM
	Caching MAC vs. Parity
	Run-time Data Error Correction
	Root-Connected MAC for recovery
	Recovery Procedure

	Experimental Methodology
	Evaluation Results
	Impact on Performance
	Memory Access Overheads
	Writes

	Sensitivity to MAC cache Size
	Cache Performance
	Performance Sensitivity
	Recovery Time Sensitivity


	Discussion
	Related Works
	Conclusion
	Acknowledgments
	References
	Biographies
	Kazi Abu Zubair
	Rahaf Abdullah
	David Mohaisen
	Amro Awad


