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Abstract—Emerging non-volatile memories (NVMs) are ex-
pected to be part of future computing systems, including cloud
systems and edge devices. In addition to the high density (and
hence large capacities) NVMs can provide, they feature ultra-
low idle power which makes them very promising for edge
computing and data centers. Additionally, NVMs’ ability to retain
data upon system crash (e.g., power outage or software bug)
makes them a great candidate for high-availability and persistent
applications. However, NVMs’ data retention capability brings
in security challenges and further complicates today’s secure
memory implementations; to ensure correct and secure system
recovery, the data and security metadata must be persisted
atomically (i.e., up-to-date in memory upon a crash).

Despite the many efforts for rethinking secure memory im-
plementations to enable crash-consistency, we observe that the
state-of-the-art solutions are based on a major assumption that
may not be suitable for future memory interfaces. Specifically,
the majority of today’s solutions assume that either the en-
cryption counter and/or message-authentication code (MAC) can
be co-located with data by directly or indirectly leveraging
the otherwise Error-Correcting Codes (ECC) bits. However, we
observe that emerging interfaces and standards delegate the
ECC calculation and management to happen inside the memory
module, which makes it possible to remove extra bits for ECC
in memory interfaces. Thus, all today’s solutions may need to
separately persist the encrypted data, its MAC, and its encryption
counter upon each memory write. To mitigate this issue, we
propose a novel solution, Thoth, which leverages a novel off-chip
persistent partial updates combine buffer that can ensure crash
consistency at the cost of a fraction of the write amplification by
the state-of-the-art solutions when adapted to future interfaces.
Based on our evaluation, Thoth improves the performance by an
average of 1.22x (up to 1.44x) while reducing write traffic by an
average of 32% (up to 40%) compared to the baseline Anubis
when adapted to future interfaces.

Index Terms—Persistent Memory; Security Metadata; Secure
NVM

I. INTRODUCTION

Emerging non-volatile memories (NVMs) are promising
technologies to augment/replace DRAM in future computing
systems [20], [25], [34], [48]. Although they are still in their
infancy stage, emerging NVMs (e.g., Intel’s DCPMM) are
already getting deployed in major cloud systems [31], and
this is expected to grow over time [40]. For instance, SK
Hynix has recently announced its 3DVXP technology [45]
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which promises a better scalability than Intel’s and Micron’s
3DXPoint!. In addition to their high density (hence high
capacity modules), they offer ultra-low idle power which
offers great energy savings for data centers compared to
DRAM; DRAM requires periodic refresh operation for each
memory cell and hence its power consumption increases with
its capacity [32]. In today’s servers, around 40% of the
energy consumption is attributed to DRAM refresh operations
[8], [39]. Finally, in addition to NVMs’ capacity and power
advantages, they can retain data even in the events of power
outage. Such data persistence capability can be leveraged to
enable hosting persistent files in NVM memory modules [27],
[41] and facilitate crash-consistent applications [22]. On the
other hand, NVMs have limited write endurance [7], [34], [46]
and facilitate data remanence attacks [13], [18].

With security becoming a first-class citizen design require-
ment for computing systems, most processor vendors are
racing into providing security primitives that enable a safe
execution environment [2], [4], [5], [12], [14], [26]. While the
threat model and hence security guarantees, implementation
details, and maturity of these supports vary significantly, a
common theme between all of them is the need for protecting
data confidentiality and integrity when leaving the processor
chip. While efficient memory integrity and confidentiality
protection have reached to an acceptable maturity level for
conventional memory (i.e., DRAM) [11], [17], [35], recent
studies have shown that today’s secure memory implemen-
tations are incompatible with NVMs [16], [19], [28], [29],
[44], [49]. Such incompatibility mainly arises due to crash
consistency issues between data and its corresponding security
metadata (e.g., encryption counter and authentication code)
[71, [28], [44]; once the encrypted data reaches the persistence
domain, it needs to also have its security metadata in the
persistence domain as well. Otherwise, the encrypted data
cannot be decrypted or authenticated upon recovery from a
crash. Meanwhile, naively persisting security metadata along

Although Intel has recently abandoned its memory and NAND flash
business to focus on other market sectors, emerging NVMs remain to be major
investment plans for key memory companies such as SK Hynix, Samsung and
Toshiba.
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with data on each memory write can lead to significant
performance degradation and lifetime reduction of NVMs [6],
[10], [28], [29], [43], [44], [49].

To ensure crash consistency of secure NVMs while incur-
ring minimal write and performance overheads, state-of-the-art
solutions [10], [19], [42]-[44], [49] rely on persisting (part of)
the security metadata atomically with data through repurposing
Error-Correcting Codes (ECCs) that are co-located with the
data. For instance, recent secure NVM works [3], [10], [10],
[42], [49] commonly assume that ECC codes can be encrypted
and overridden in a way that enables recovering the encryption
after limited number of trials, as proposed in Osiris [44]. Other
works proposed to override ECC with Message Authentication
Code (MAC) [43], as done in secure DRAM for performance
reasons [36]. In all these works, the majority of the write
reduction is based on leveraging the ECC bits (typically 64-
bits) written atomically along with the data. Most importantly,
the fact that these bits are stored along with the data, and hence
can be used to store security metadata (encryption counter,
MAC, or ECC/counter [44]). However, if such extra bits for
ECC are not needed in future memory interface, the security
metadata need to be persisted as separate writes. Specifically,
if future memory interfaces do not have extra bits that
are suitable for co-locating secure metadata with data, then
there are no effective solutions for persistently secure NVMs.
The only available solution is to incur separate security
metadata writes with each persistent memory write in an
atomic fashion.

The Problem: Emerging NVM modules, such as Intel’s
DCPMM modules, compute ECC bits internally and attempt to
correct them before reporting errors (interrupt) to the host [1],
[24]. Such DIMM internal implementation of ECC is likely to
dominate the memory industry due to the following: (1) many
memory technologies with different reliability (and hence ECC
algorithms) are available, and thus relying on the processor-
side memory controller to implement them is infeasible. (2)
Leaving internal ECC implementation details to memory ven-
dors allows more flexibility in choosing suitable ECC memory
for critical domains (e.g., safety-critical systems) while more
relaxed (or absence thereof) ECC in less critical domains.
(3) With certain modules supporting encryption internally, the
best place to calculate ECC is after the encryption is done,
otherwise the errors diffuse after decryption and makes it
difficult for host-level ECC to fix it. For instance, Intel’s
DCPMM internally leverages AES-XTS and hence if there
is no strong ECC support inside the module then errors are
further exacerbated when decrypted internally before being
sent to the host?>. Moreover, the granularity of AES-XTS cipher
blocks is 128 bits and hence even a single bit error within a
128-bit of the memory block can turn a 128-bit into a nearly-
random value after decryption inside the DIMM; making it
challenging to fix at the host side even with strong ECC

2Unlike AES-CTR mode which is generally used in the processor side for
confidential computing, AES-XTS directly feeds the ciphertext as input to the
AES algorithm to complete decryption, and hence significantly diffuses any
bit errors upon decryption.

support. Similarly, future NVMs (e.g., SK Hynix’s 3DVXP)
are envisioned to be interfaced through computer express link
(CXL) memory semantic protocol [37], where the width is
66B of which only 2B are used for ECC of the transmission,
and the remaining 64B is the payload (e.g., cacheline).

The Challenge: In today’s state-of-the-art secure NVM im-
plementations [10], [19], [36], [42]-[44], [49], the message-
authentication codes (MACs) of data is assumed co-located
with data using additional pins, while the encryption counter
used to encrypt the data is persisted through overriding (or
repurposing) the ECC bits. Without the need for host-side
ECC, which could be replaced by on-DIMM ECC in future
interfaces, such implementations may lose their effectiveness.
Specifically, they will require two additional writes for the
MAC and counter blocks. Such overheads are unacceptable in
terms of both NVM lifetime and performance. Due to storage
efficiency, encryption counters and MACs are not co-located
in the same memory block; encryption counters has much
less storage overhead compared to MACs (typically 12.5% for
MACs vs. 1.56% for counters), and hence they are separated in
different blocks, which causes two extra separate block writes
to memory for each memory block write.

The Solution: Our key observation is that much of the write
amplification in secure NVM occurs because of the disparity
between counter and MAC sizes and the write granularity to
memory. On a memory write, an additional 8B MAC and 8B
counter (minor + major counters [11]) are updated along with
the data, and they are held in separate blocks in memory.
Because only one counter or MAC in each block is updated,
we refer to these as a partial updates. When partial updates are
persisted to memory to maintain crash consistency, both full
blocks (of the counter and MAC blocks) need to be persisted
causing the write amplification®.

Our main insight is that we can pair a large off-chip
persistent buffer for partial updates with the normal write-
back behavior of our secure metadata cache to create a new
write efficient architecture. Partial updates are packed together
efficiently and written into the persistent buffer to provide
crash consistency while the secure metadata cache continues
operate as a write-back cache. We observe that if we buffer
partial updates for long enough, when they are evicted from the
persistent buffer, no additional writes are needed because the
state they hold has already been written to memory efficiently
through other means. For example, the secure metadata cache
will eventually perform the update through its natural write-
back process, likely after accumulating many updates to the
same entry saving many writes. Another example is if another
yet younger partial update is made for the same metadata (i.e.,
MAC or counter), then all older partial updates to the same
metadata are stale and can be discarded, saving those writes.
Moreover, if the metadata cache block is persisted for any
reason, then all partial updates for that same metadata block
can be safely discarded because the metadata block in memory

3The write amplification further grows with NVMs that use larger access
granularity (128B or 256B in Intel’s DCPMM [38]) while the MAC and
counter sizes remain the same.
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is already up-to-date. With these insights, we conclude that
a large persistent buffer can provide lots of opportunities to
avoid writing partial updates to memory. Most importantly, we
observe that the overheads for maintaining such a persistence
buffer are minimal because we do not need the persistent
buffer to reside on-chip. Many partial updates can be packed
into one memory block and written to memory together.
Thus, with relatively minimal memory buffering overheads,
we significantly increase the probability of eliminating the full-
block write upon each partial update.

In this paper, we present our proposed solution, Thoth,
which ensures crash-consistency while exploiting temporal and
spatial combining of partial updates in a secure and elegant
manner. Thoth aims to (1) realize a persistent partial updates
buffer (PUB) in memory (2) upon eviction of a partial update
entry from the PUB, discard the write-back of the correspond-
ing metadata block when no longer necessary (i.e., updated
later or evicted from metadata cache in processor). To evaluate
Thoth, we use Gem5 [9], a full-system cycle-level simulator
with five representative persistent applications. Based on our
evaluation, Thoth improves the performance by 1.22x on
average (up to 1.44x), compared to the state-of-the-art solution
Anubis [49] when adapted to work with modern memory
interfaces (i.e., persist MAC and counter blocks upon each
write) and augmented with a small on-chip persistent write
queue as in Intel’s Write-Pending Queue (WPQ). Furthermore,
Thoth improves the NVM lifetime by reducing the number of
writes to 32% the Anubis baseline. Thus, we conclude that
carefully-handled large partial persistent buffers can have great
potential for reducing security metadata persistence overheads
in future memory interfaces.

The rest of the paper is organized as follows. First, in Sec-
tion II, we present the background and the main concepts re-
lated to Thoth. Later, in Section III, we quantitatively demon-
strate the potential for PUB and its effectiveness in eliminating
much of the otherwise-occurring full-block security metadata
writes. Section IV presents the design space discussion and
our proposed design of Thoth. Our methodology, evaluation
and analysis are presented in Section V. Section VI presents
the related work, and Section VII concludes.

II. BACKGROUND
A. Memory Encryption & Integrity Protection

In secure memory, both the confidentiality and the integrity
of the memory data are protected [6], [11], [29], [35], [49].

—»?\\ Memor'y

Plain Cache Block X
Evicted from Cache

Encrypted
Key —| AES Engine ! Block X
Initialization Vector (IV) T ;
[Padding [ Address | CTR4- -} {— Encryption
! Counter X

Trusted Domain Untrusted Domain

Fig. 1. Counter-mode Memory Encryption Mode.

Confidentiality: the data confidentiality is protected through
encrypting memory blocks once leave the processor chip
and decrypting them when read back. Generally speaking,
there are two ways commonly used to implement memory
encryption: direct encryption and counter-mode encryption.
Direct encryption, also known as electronic code book (ECB),
feeds the data to be encrypted/decrypted directly as an input
to the encryption algorithm (e.g., AES or DES). Meanwhile,
counter-mode encryption uses an initialization vector (IV) as
the input of the encryption algorithm to generate a one-time
encryption pad (OTP), where the OTP will be simply XOR’ed
with the plaintext/ciphertext to complete the encryption de-
cryption process. Due to its ability to hide the latency of
the encryption algorithm (fetching data can be overlapped
with generating OTP), and its ability to provide spatial and
temporal uniqueness of ciphertexts for the same plaintext,
it is the commonly used as the default memory encryption
scheme [7], [11], [35], [44], [49]. Figure 1 depicts counter-
mode encryption at high-level.

As depicted in Figure 1, counter-mode memory encryp-
tion relies on counters that each is associated with a single
memory block (the access granularity to memory). Upon
decryption/encryption, the counter corresponds to the block
of interest is fetched from memory and used along with block
address (to ensure spatial uniqueness for similar data written to
different locations) and padding, all forming the initialization
vector (IV) to generate the encryption/decryption pad. Note
that the counter provides temporal uniqueness of the ciphertext
when the same value is written again to the same location;
it gets incremented each time the corresponding block is
encrypted and written to memory. Counters must be sized
enough such that they do not overflow, as this can lead to
major attacks such as known-plaintext attacks and data replay.
However, this can lead to large storage overheads. Thus, state-
of-the-art counter organization schemes use a split-counter
scheme mode [11] where a counter is comprised of a 64-bit
major part that is shared across all blocks of a page, and a 7-bit
minor specific for each block. Thus, a 64B counter block can
fit minor counters of 64 memory blocks and along with their
common major counter [11]. Also, counter-mode encryption
requires the integrity of counters to be protected. Due to total
size of counters, they are stored off-chip and only cached on-
chip upon access, similar to data. For the rest of the paper, we
use counter-mode encryption and split-counter mode.
Integrity: for memory integrity, Merkle Tree (MT) is gener-
ally used where the root of the tree is always kept inside the
processor chip [35]. MT can be thought of as a tree of hashes,
where each level is the hashes of its immediate children level
nodes. To speed-up update and verification operations of the
MT, a volatile cache inside the processor chip is used to cache
the most recent access tree nodes. Due to their high spatial
locality, integrity tree caches generally have very high hit rates.
To minimize the storage overheads of MT, prior work [35]
makes the observation that it is sufficient to build integrity
tree of encryption counters while protecting the encrypted data
through MACs calculated over the ciphertext, address, and
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counter; since the counter’s freshness is guaranteed through
the integrity tree, the ciphertext is guaranteed to be fresh since
the MAC is also calculated over the counter. In other words, no
need to build an integrity tree over data to ensure its freshness,
but it is sufficient to rely on MACs that are calculated over the
data and its counter. Such a scheme is called Bonsai Merkle
Tree (BMT) [35], and it is commonly used in most recent
works. Although our work is orthogonal to the integrity tree
scheme and implementation, and can be used with tree scheme,
we assume BMT for the rest of the paper due to its wide use
in secure memory [6], [10], [19], [42], [44], [49], [50].

B. Persistently-Secure Memories

One of the main features of emerging NVMs is the ability
to retain data upon system crash and power-failure events.
However, to enable that, the data and its corresponding security
metadata must be persisted atomically. Alternatively, there
should be a mechanism to recover/infer such security metadata
in a secure fashion. The BMT can be inferred, reproduced and
verified through the root [6], [49]. The BMT recovery process
can be sped-up using low-overhead tracking as shown in prior
work [49]. However, the encryption counter and data MAC
must be recovered and cannot be inferred from other elements.
For instance, the MAC uses the counter however the MAC is
also calculated over the data, and thus the most-recent MAC
must be persistent along with the data to verify its integrity.

Prior works leverage ECC bits written with data to store
MAC [36], [43] or (part of) encryption counter [6], [10], [19],
[42], [44], [49]. For instance, in Osiris [44], the encryption
counter is embedded in the ECC bits through encrypting ECC
along with the plaintext. Upon decryption, if a wrong/stale
counter is used, the ECC will be unrelated (large number of
code words will indicate error with high probability), and thus
a stale counter can be identified. By limiting the divergence
between the persisted counter in memory and the counter
used for encryption, a limited number of trial is used until
the counter used for encryption is recovered for each block.
For MACs, Osiris assumes an independent MAC chip that
can also be written concurrently with data. Most state-of-
the-art solutions in secure NVM [6], [10], [19], [42]-[44],
[47], [49], [50] builds on the idea of co-locating such security
metadata with data to minimize the write amplification for
implementing crash-consistent secure NVMs. In this paper, we
address the problem of crash-consistent secure memory with a
more generic and realistic emerging memory interfaces where
no host-accessible ECC are available as in DDR-T [1], [24],
CXL-based modules (e.g., SK Hynix 3DVXP [45]), and DDR5
modules in systems where the DDRS on-die ECC support is
considered sufficient [30], i.e., no host-managed ECC are used.
Asynchronous DRAM Refresh (ADR): persistent memory
standards require extra residual power to flush contents that
might be still in the volatile domain upon a crash. The
mandatory ADR support requires sufficient backup-power
(e.g., through ultra-capacitor) to flush a small buffer inside
the memory controller, called write-pending queue (WPQ).
Hence persistent applications do not need to wait until data

is written to NVM. On the other hand, there is an optional
feature called enhanced ADR (eADR) which allows flushing
the whole cache hierarchy. Unfortunately, eADR support is
limited to certain power supplies, and hence disabled even in
recent servers [23], and can lead to complexity in maintenance,
and increase in cost and carbon footprint for data centers [15],
especially with recent large cache hierarchies (e.g., AMD’s
512MB V-Cache in EPYC processors). Accordingly, we as-
sume basic ADR support in our system, and leave investigating
systems with optional eADR support to future work.

C. On-Die ECC in Emerging Memory Technologies and In-
terfaces

For current NVM offerings used as main memory, e.g.,
Intel’s DCPMM, a proprietary interface (DDR-T [24]) is used
where also ECC is calculated through ECC engine inside
the DIMM [1], [24]. We also observe that similar trend for
on-DIMM ECC capabilities started to become part of the
DDRS standard for DRAM [30]. Hence, even for DRAM, can
now reliably deploy large size memories without the need for
stringent reliability support from the host. While for DDRS,
there is an option to deploy additional host-level ECC for
stringent reliability requirements, the availability of ECC on-
DIMM by default will enable more users to take advantage
of larger memory reliably at lower cost. Finally, as discussed
earlier, when internal encryption is supported as in Intel’s
DCPMM, there should be a strong ECC support on the DIMM
side to enable correction before decryption, otherwise errors
can diffuse and hence potentially defeat the purpose of any
host-level ECC support. Simiarly, future CXL-based NVMs
are envisioned to have their own internal ECC implementations
given the limited fixed width (66B) of CXL.

Accordingly, prior works in secure NVM are no longer
effective as they require two extra persistent writes (MAC and
counter blocks) for each persistent memory write if host-side
ECC can be replaced with On-Die ECC. To enable secure
processors with emerging memory technologies and interfaces,
we need an efficient mechanism to minimize such writes under
these constraints while ensuring crash consistency.

III. MOTIVATION

In this section, we demonstrate the major observations we
have about the effectiveness of long-term buffering of partial
updates, which will later motivate our design decisions for
Thoth. First, we define partial security metadata block updates
as updates to a specific MAC or encryption counter within
a MAC cache block or counter block. Such partial updates
occur due to writing the memory block protected by these
MAC and counter. However, due to the access granularity
in memory, MACs, and similarly counters, are grouped into
memory blocks that are fetched and cached together (e.g., in
64B block granularity for conventional DDR). Thus, upon an
update to a MAC or a counter block, the whole blocks that
contain them will be persisted to NVM in addition to the
data block. Whole block persists triggered by partial security
metadata block updates are key source of write amplification
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for secure NVMs and we want to avoid as many as possible to
enable greater compatibility with emerging memory interfaces.
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Fig. 2. High-level example of partial updates buffer (PUB) system-level
layout.

We imagine a new organization for crash consistent NVM
that is able to efficiently reduce write amplification. As shown
in Figure 2, we add a partial updates buffer (PUB) in memory
to collect these partial updates. As shown in the figure, we
still use a write-back security metadata cache that is updated
on each security metadata update. However instead of also
persisting the full metadata block to memory due to a partial
update, we combine these partial updates, pack them tightly
into blocks, and buffer them in memory at a fraction of the
number of writes they would otherwise cost. Note that during
run-time, all metadata will be strictly fetched and evicted
through the normal path and not through the PUB, e.g. we
check for it in the cache, and otherwise bring it from its
original location (not the PUB). Also, upon eviction from the
secure metadata cache, if dirty, then it needs to be written to its
original location. However, upon crash events, the most recent
update in the volatile secure metadata cache might be lost,
and thus we need to recover the partial updates from the PUB.
This architecture may at first appear to increase the number of
writes to memory since evictions of the partial updates from
the PUB would ultimately require full block persists, however,
this organization actually significantly reduces writes.

Our key observation that enables this reduction in writes
is that the vast majority of partial security metadata updates
when evicted from the PUB need no additional writes, if they
are persistently buffered for long enough. This is because,
after a long enough time passes, the probability is high that
memory already contains their update. The following reasons
explain why the probability is so high. (1) While the partial
update is buffered, the security metadata block which the
partial update belongs to may have already been evicted from
the secure metadata cache and persisted to NVM; such a
probability increases over time due to the natural changes
in the working set of applications over time. (2) An older
partial update eviction may have already caused a full security
metadata block persist which included the partial update from
the current entry (already in the persisted cached metadata
block). Note, this case captures spatial locality of updates to

metadata within the same block. (3) A younger partial update
arrived to the same location as an existing partial update. In
this case, any older partial update for the same metadata can be
discarded because it is stale. This case captures the temporal
locality associated with a data block that is frequently updated,
a common trait in persistent applications.

We observe that the aforementioned three cases are very
common and their probabilities increase significantly with the
increase of the partial buffer size. Figure 3 breaks down the
cases we observe upon eviction from a hypothetical FIFO par-
tial buffers with sizes of 500,000 entries (A), 5,000 entries (B),
and 50 entries (C). The written-back percentage represents the
probability of upon the eviction of a partial update its security
metadata cache block still needs to be persisted to memory.
Meanwhile, already-evicted represents the case of when upon
a partial update eviction from the buffer its up-to-date metadata
block has been already evicted from cache and written back to
memory, and thus the partial update can be discarded safely.
The clean copy case is when a partial update is upon eviction,
its metadata block is still in the metadata cache but in clean
state, which means it was either persisted due to partial update
eviction or evicted from cache then fetched again later. Finally,
the stale copy indicates the case where upon the eviction of a
partial update its metadata block was in the cache and dirty,
however the partial update is stale, i.e., a newer partial update
was inserted in the PUB. Thus, the stale partial update can be
safely discarded.
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Fig. 3. Breakdown different scenarios for evicted copies from Partial Combine
Buffer (PCB).

As shown in Figure 3, for all the benchmarks we can
observe that with a large enough partial buffer size, the
majority of partial updates (99.5% on average for the 500,000
buffer) do not cause a full block persist upon eviction. Rather
when the larger PUB sizes are used, the common case is that
evicted entries are stale, and the second most common case
is that the partial update has already been evicted and written
back from the secure metadata cache. In neither case is it
necessary to write the evicted PUB entry back to its original
location in memory to ensure crash recoverability.

Based on these insights, we observe the importance of
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large PUB and their great potential for eliminating extra
security metadata block persistence operations that ensure
crash consistency. In short, our approach replaces the certain
extra security metadata writes with a very small probability
of an extra write plus the low overhead of buffering packed
partial updates off-chip. The rest of the paper demonstrates
how to realize this hypothetical design in an elegant yet highly
effective fashion.

IV. DESIGN

In this section, we describe the design options and rationale

behind the various design choices for Thoth. First, we define
our threat model.
Threat model: Our threat model is similar to the state-of-the-
art secure NVM work [10], [19], [29], [43], [44], [49], [50]
in all aspects: bus-snooping attacks, physical thefts, memory
scanning, memory replay, and potential data tampering. In
addition to the conventional secure DRAM guarantees [11],
[35], [36], secure NVMs also need to ensure crash consistency
and the security of data across data reboot episodes. Similar
to prior work in secure NVMs, side-channel attacks such as
power-side channel attacks, memory timing attacks, and access
pattern leakage are beyond the scope of this work. Such types
of attacks have a wide range of solutions in literature that can
be adopted directly.

First, let’s more formally define the partial updates buffer
(PUB) alluded to earlier in Section III. A PUB contains partial
security cache block updates, i.e., only the portions to be
updated for security metadata blocks. For instance, a memory
write would cause updating the MAC block containing the
MAC and the counter block containing the counter correspond
to the memory location to be written. However, the partial
updates are the MAC (8B field) and the impacted counter
(typically just the 7-bit minor counter). Thus, a PUB should
merely contain the new values of the impacted MAC and
(minor) counter. To ensure correctness we need to ensure
the following: (1) the partial updates need to be securely
recoverable and protected. @ the volatile security metadata
cache should be updated with the most recent metadata (e.g.,
MACs and counters) upon buffering partial updates to the
PUB; this ensures consistency. @ there should be a safe
handling eviction policy when the PUB fills up.

As shown earlier, in Section III, the PUB needs to be quite
large (e.g., 500,000 entries) to maximize the benefits. Thus, the
logical place to place the PUB is off-chip. However, this brings
us to our first design question, how do we arrange partial
updates in memory?

A. PUB Organization

Since the memory write granularity is at a cache block
granularity (e.g., 128B or 256B), we need to persistently
pack partial updates into blocks before writing them back to
memory. The buffer itself is managed as a FIFO circular buffer
where two counters are used, one to indicate the start and one
to indicate the end. A third register is used to indicate the base
address of the buffer. Once the start equals the end, no more

On-Chip Off-Chip
{( 2 \‘, Persistence
8B MAC [} ---_ . N Domain  Persistent Combining
AT R - Buffer
maC Il s DN
\ Y
B \ CTR | \
1) " 1 NVM Memory
“\ ‘\\ Regular S
i \ WPQ Entries r 3 N
MAC Cache Counter Cache %
EDD:' Partial Updates
Buffer
Regular
WPQ Entries

Fig. 4. Overview of the coalescing steps leveraging reserved WPQ entries.

insertions are allowed until evictions occur (and hence the end
variable is incremented mod the buffer size).

To persistently hold partial updates as they are forming a
full cache block to be written off-chip to the PUB, a few
entries are reserved from the processor’s internal WPQ which
is battery-backed through the ADR support [21].

As shown in Figure 4, multiple partial updates can be
combined together in a single WPQ entry. When a new
memory write occurs, after obtaining the verified counter
value and calculating the new MACs, calculating the new
integrity tree root and nodes*, the new ciphertext and updated
security metadata need to be persisted before the transaction
is considered complete and persistent. Since an 8-to-1 MAC
is computed over the ciphertext, a 16B MAC is computed for
128B cache block and a 32B MAC for 256B. To be able to
pack more partial updates in one WPQ entry, an 8B second-
level MAC is computed and allocated in PUB. As shown in
Step (D), a specific ciphertext and its accompanying security
metadata (MACs and counter) are ready to be persisted, and
the counter and first-level MAC can be made to caches.
In Step @, which can be overlapped with (I), the partial
updates (counter and 8B second-level MAC, not their full
cache blocks) are placed in a reserved WPQ entry, while
the ciphertext block is inserted in the regular WPQ. Now as
the reserved coalescing WPQ entry is full, it can be written
to the PUB as shown in Step 3). We omitted the steps for
updating the bounds of the buffer upon insertion for the sake
of simplicity.

Each PUB cache block is comprised of 9 partial updates (for
128B cacheline size) or 19 partial updates (for 256B cacheline
size). A partial update entry contains the {address, MAC,
counter, status}. The address is 32b and represents the cache
block address which the MAC and counter correspond to, this
can address address up to a 512GB module (note that there are
unused bits that can be used for address if larger modules are
used in the future). The counter is the 7b minor counter; we
persist the counter block immediately when a minor counter

“Note that this also can be done lazily by securely tracking the cache
content as done in Anubis [49] and Phoenix [3].
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overflow occurs (i.e., the major counter changes). The MAC
is 64b for both designs with 128B cache blocks and 256B
cache blocks. Finally, the status bits (2b) are used to help on
deciding the actions upon the eviction of this partial update
entry from the PUB (will be discussed later in this section).
To eliminate issues with crashes while the coalescing entry in
WPQ is not full yet, we duplicate the existing partial entries
upon a crash to fill a full cache block.

B. PUB Eviction Mechanism

The second question we aim to answer is: how to efficiently

implement an eviction policy from the PUB? Note that this
is perhaps the most critical aspect in Thoth; without an effi-
cient mechanism, most partial updates will end up eventually
causing their corresponding metadata blocks to be persisted
when these partial update entries are evicted from the buffer.
Upon an eviction of an entry from the PUB, it is time to
decide whether to persist the partial security metadata blocks’
updates to their original locations or not. To implement this,
upon an eviction from the PUB entry, we fetch the victim
(e.g., last) partial updates memory block from the PUB, which
contains a pack of updates. For each entry, we check to see
if we actually still need to persist that partial update or not,
i.e., if it has been already persisted through the natural cache
writeback path, persisted due to a later partial update to the
exact same MAC/CTR, or simply a prior PUB entry that falls
within the same security metadata block has been evicted, and
hence caused the spatially-shared security metadata block in
cache to be persisted.
Security Aspects: The first aspect that arises here is whether
or not we need to verify the integrity of the partial updates
entries once they are read back for eviction from the PUB
(and potentially persist their corresponding security metadata).
Since the most recent counter/MAC values are also either in
the volatile counter/MAC cache or already evicted to memory,
the partial update value is never needed or incorporated in any
update during run-time and normal operation. In other words,
during normal execution time, original location of secure
metadata blocks in NVM is always updated by the copies
in secure metadata cache. However, upon a crash, the most
recent values of these updates in the cache are lost, and thus
we need to recover them through reading the PUB. Fortunately,
since the most recent counter values are already incorporated
in the integrity tree root persistent inside the processor [6], or a
secure and protected shadow cache in memory (as in [49]), we
can verify these partial updates upon secure reconstruction. In
other words, during crash, tampered PUB is detected using the
integrity trees. For example, tampering a most-recent counter
value that is lost in the cache is detected by leveraging the root
calculated over secure metadata cache. Tampering a counter
value that is already updated in-place before crash will result
in failure in reconstruction of the main integrity tree. Thoth
only replaces encoding MAC/CTR blocks using extra bits at
the memory bus with a temporary combination buffer before
they end up being updated in place.

Detection of Stale Partial Updates: Another major aspect is
how to efficiently detect if a partial update is no longer needed,
e.g. due to the cache eviction of the security metadata cache
block already containing this update to memory. As mentioned
earlier, we aim to identify the following three cases: (D) the
up-to-date cache block containing the partial update has been
already evicted from cache. Note that this case should also
incorporate the scenario for evicting the cache block after the
partial update occurred, but it has been read later and other
parts of the block were updated. 2) the same partial metadata
has been updated later and added to the partial buffer @) a
prior metadata block persist operation, e.g., due to eviction
of a PUB entry, caused other partial updates that share the
security metadata block to be already persisted along with the
block. To allow detecting these cases, we start with a simple
design, which we call Write-Back Through Bitmask Checks
(WTBC), that relies on fine-granularity tracking of dirtiness
of counters/MACs within security metadata blocks. Upon a
fetch of a security metadata block, all dirty bits for all its
MAC/CTRs are set to 0. Only upon a partial update to any
of them will that specific MAC/CTR’s corresponding dirty bit
be set to 1. Also, upon persisting a metadata block, all of its
dirty bits are reset to 0. Figure 5 depicts scenarios that reflect
how WTBC captures cases () and 3), in Event 4 and Event
6, respectively. Unfortunately, merely relying on the dirty bits
to capture case (2) is insufficient; if any write to the same data
block occurs between the evictions of two prior partial updates
correspond to the same data block, then the later eviction
would still cause a persist of the metadata block as the dirty
bit will be one. However, the first partial update eviction could
have already caused persistence of the block which potentially
contained the later partial update. One more efficient way to
capture case () is to compare the value to be evicted from the
PUB with the verified value in the metadata cache. Based on
our observation that each partial update for MAC/CTR will
generate a new unique value; thus, by comparing that value
along with the dirty bit value, we can know if the partial update
is stale or not.(Note, evicted partial update’s MAC needs to
be compared with a second level 8B MAC computed over the
corresponding MAC in the secure metadata cache.) In other
words, the partial update needs to occur only if the dirty bit is 1
and the partial update’s MAC/CTR value is different than that
in the cache block. Note that this is also safe to do since we
merely use the partial update value to decide to persist or not,
however the newest counter value is already incorporated in
the integrity tree (root). The main issue of the WTBC scheme
is its need for fine-grain dirtiness tracking of security metadata,
which can add extra storage overhead to caches.

To avoid adding the area overhead, we propose our second
design, which we call Write-Back Through Status Checks
(WTSC). WTSC is based on our observation that upon the
insertion of an entry to the PUB, we can use the block dirty
status to determine if the partial update value is captured
during the eviction of an older partial update entry or not.
Specifically, if the metadata block is already dirty upon a new
partial update, it means that a prior partial update occurred

Authorized licensed use limited to: University of Central Florida. Downloadeé QQJanuary 29,2024 at 20:01:31 UTC from IEEE Xplore. Restrictions apply.



Event 2
Block H is Evicted from Metadata
Cache and Replaced by Block Z

Event 1 Event 3

Updating MAC X In its Cache
Block H and in Add it to Partial
Update Buffer

MAC  Dirty
Block  Bits

MAC  Dirty
Block  Bits

[elelslelel=eTs]

Partial Update Buffer Partial Update Buffer

Block H is Fetched Again
and its MAC Z is Updated

Event 6
Evicting Partial Update Z'
Since Dirty is 1, We Need to
Persist the Whole Block
and Reset Dirty Bits

Event 5
Updating MAC A

Event 4
Evicting Partial Update X'
Since Dirty Bit is 0, We Can
Discard this Update

MAC  Dirty
Block  Bits

MAC  Dirty
Block  Bits

MAC  Dirty
Block  Bits

[eleTeTelal=Tole]

Partial Update Buffer Partial Update Buffer Partial Update Buffer

] [xT ] Izl

[xT]

'
1
I
1
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
I
I
1
'
'
'
'
'
'
'
'
'
'
'
'
'
I
'
|

[ [z1]: [&] [z1 1! [I&]

' '
' 1
' I
' 1
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
1 '
' '
I '
' '
' I
' I
I 1
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' I
1 '
I I

'
1
1
1
1
1
1
'
|
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
I
'
'
'
'
'

Time
Fig. 5. Demonstration of how WTBC captures the various
for counter block.

Event 2

Updating MAC X in its Cache
Block H and Add it to Partial

Event 1 Event 3

Block H is a Clean
Cache Block
Update Buffer with Status Bit

Updating MAC Z in its Cache |
Block H and Add it to Partial | Since its Status bitis 1, We
Update Buffer with Status bit: Need to Persist the Whole

PUB eviction scenarios. MAC block is

shown, but similar events and actions would also occur

Event 6
Evicting Partial Update Z'
Since its Status bit is 0,
We Can Discard this
Update.

Event 5
Updating MAC A

Event 4
Evicting Partial Update X'

Block and Reset Dirty Bit

|
1 s s :
' ! 1 1
! ' i i
1 i ! 1
| : . | ;
y | ' MAC  Dirt I MAC  Dirty ' MAC  Dirty ! MAC  Dirty
e by ' MAC  Dirty ; Bock  Bi : Block  Bit i Block  Bit i Block  Bit
! Block  Bit -
10 ; ok B : : x_1[@ : x 10 :
v ; 10 : ; v ; Y ;
7 i Y ' ' z ' z !
W | Z ' i W i w i
A | w 1 [ A | i A 1 A '
B i A i [ 8 | ' B ) B :
c 1 8 | 1 c ' c :
b ' S i Lo | ' D ' D |
1 D ] 1 ] ]
| | | | |
Partial Update Buffer i Partial Update Buffer ' Partial Update Buffer ' Partial Update Buffer i Partial Update Buffer ' Partial Update Buffer
|
I [xT] | [zl [T | [oz1]; [T [o[zT 7 AT ]
1 : | i i
Time

Fig. 6. Demonstration of how WTSC captures the various PUB eviction scenarios. MAC block is shown, but similar event and actions would also occur for

counter block.

and has not been evicted yet (otherwise the block would have
been cleaned upon its persistence). We observe that upon
fetching a metadata block from memory, only the first partial
update which converts its status to dirty needs to persist the
block upon the partial update’s eviction. Meanwhile, for all
later partial updates arriving while the block is already dirty,
their values will be captured and persisted implicitly upon
the persistence of the partial update preceding them which
caused the block to become dirty. Thus, we record the dirty
bit status upon a partial update along with its entry in the PUB,
which we refer to as the status bit. However, WTSC partially
captures case () and @); if a another (or same) metadata partial
update within the same data block occurs after eviction of the
block, then the status bit will be set to 1 in the corresponding
entry. However, upon the eviction of a the later entry, we
will needlessly still persist the block even though the new
partial update value might have been already captured. Thus,
WTSC captures all the cases needed for functional correctness
but is more conservative as it fails to precisely detect if the
persist is not needed (not the other way around) compared
to WTBC. Figure 6 demonstrates how WTSC captures the
various scenarios.

Fortunately, we empirically found that WTSC, even though
an approximate but needlessly more conservative version of
WTBC, is sufficient to eliminate most of the writes upon the
eviction of partial updates from the buffer. Thus, for the rest
of the paper, we select WTSC as the eviction persist policy of
partial updates from the PUB.

C. Interactions with WPQ

Today’s processors support a small persistent write buffer
on-chip called the write pending queue (WPQ) [21]. The WPQ
is typically a small buffer (e.g., 64 entries) and merely holds
the evicted blocks before being written to NVM; this reduces
the latency it takes to persist data compared to waiting until
the block reaches the NVM. Adding the PUB raises the design
question of how to interact and leverage the WPQ. First,
to persistently combine partial updates, we simply dedicate
entries from the ADR-backed WPQ to combine partial updates
together. We refer to the WPQ entries used to coalesce
independent partial updates as the persistent combining buffer
(PCB), and the rest of the WPQ entries as WPQ.

Logically, there are two ways to arrange the ordering
between PCB and WPQ, PCB-before-WPQ or WPQ-before-
PCB. The former waits until the PCB is full before placing the
entries in the WPQ using the address of where this block needs
to be written in the PUB in memory. However, this approach
misses opportunities to coalesce updates to the same security
metadata block once it is evicted from the small size PCB;
even though partial updates could belong to the same security
metadata, they will look like independent entries once inserted
in the WPQ (they are tagged with different addresses in WPQ).

The other approach is to place the PCB after the WPQ
(PCB-after-WPQ approach). In this approach, WPQ entries
are augmented with a volatile (i.e., no need for extra ADR
support) bitmask to indicate which partial parts of a metadata
block are in this block. Each time there is a partial update, we
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check if the security metadata block exists in the WPQ, and if
so, we update the bitmask and merge the partial update within
its original metadata block in the WPQ. Upon an eviction
of a WPQ entry, we check the bitmask, if all bits are set to
1 (e.g., ciphertext block or metadata block has all its fields
updated while in WPQ), then we persist the block in its
original location. Otherwise, based on the number of partial
updates within a metadata block derived from the bitmask, we
can choose to place it in PCB or simply persist the full block.

Fortunately, we found that an augmented version of PCB-
before-WPQ, where we check the addresses of partial updates
in the PCB upon each partial update such that they are merged,
can minimize the pressure on the WPQ and obtain similar
performance as in PCB-after-WPQ. Thus, throughout our
evaluation we use such an augmented PCB-before-WPQ with
8 entries of the WPQ devoted for PCB while the remaining
56 entries are used as WPQ, compared to a 64-entry WPQ in
the baseline. Figure 7 depicts our adopted approach.

D. Recovery Scheme

Upon a crash, the PUB will contain more recent values than
the values in the security metadata blocks in their original
locations in NVM. Thus, upon a restoration from crash,
these security metadata need to be merged with their original
locations in NVM (rather than the PUB buffer in NVM). It is
critical to note that even though the most recent counters and
MACs are not persisted in-place, they can still be verified
using the typical mechanism relying on the integrity tree.
Thoth relies on prior works to ensure crash consistency of
the integrity tree, e.g., Anubis [49], but reduces the number of
writes needed to be able to reconstruct the verifiable integrity
tree. For instance, in Anubis [49], the counters and MACs must
be recovered, however they are verified through a persistent
up-to-date integrity root. We leverage the same mechanism,
however, before we reconstruct the then-to-be-verified tree,
we need to recover the counters and MACs; such recovery of
MAC/CTRs was previously done by leveraging ECC bits or
co-location, which is no longer feasible in emerging memory
interfaces. Thus, Thoth’s responsibility is to merely merge
the updates in PUB with the tree (and MAC blocks) to be
re-constructed before verification. To do that, the first step is
to scan through the partial updates in PUB in a reverse order

(i.e., oldest entry to youngest entry), read it, then read the
corresponding metadata blocks, merge the updates (counter
and MAC) in their corresponding blocks and write them to
memory. To recover the MAC, we will fetch the corresponding
ciphertext, compute two levels of MAC, and use the second
level of MAC to verify the fetched ciphertext. Note that the
potential replay attack will be detected later when the integrity
of counters is verified using typical mechanism relying on
the integrity tree. Once all PUB entries are incorporated, the
tree reconstruction can be done as suggested in Anubis [49].
Note that to speed-up recovery time, Anubis already records
the addresses of the blocks lost from the cache in a shadow
region. Thus, Thoth would first recover the entries in the WPQ,
then leverage Anubis’ fast recovery mechanism by reading its
shadow address tracking and start the tree reconstruction of
the inconsistent parts, all before the tree verification starts.

Thus, in addition to the sub-seconds of recovery time for
Anubis [49], we add a marginal extra recovery time of 7
seconds even for a PUB as large as 64MB>. We believe that 7
seconds of recovery time is marginal compared to other boot-
up and OS aspects upon system startup.

V. EVALUATION
A. Simulation Setup

We use GEMS5 [9], a cycle-level simulator to evaluate the
performance overheads of Thoth. As illustrated in Table I, we
simulate 4 X86-64 Out-of-Order cores with 32GB DDR-based
PCM. We also use 4 database benchmarks from WHISPER
[33] and one in-house benchmark (Random Array Swap).
For each benchmark, we fast-forward to a point where the
application has run at least 5000 transactions on each core and
also insert partial update entries into the PUB using realistic
secure metadata generated during the fast-forwarding phase. In
the evaluation, we start evicting entries from the PUB when it
is 80% full and this threshold is met after the fast-forwarding
phase. We set the off-chip PUB size to be 64MB, which incur
less than 1% storage overhead with off-chip memory capacity
of 32GB. We incorporate a counter cache, MAC cache and
MT cache with default size of 64 kB, 128 kB and 256 kB,
respectively, in the memory controller. We model a 10-level
MT over NVM with lazy update and a 4-level MT over the
secure metadata cache with eager update. In our model, a
single MAC computation takes 40 cycles, similar to prior work
[6], [29], [49]. Table I lists the detailed configuration for our
simulation. For all applications, we use 128B as the default
transaction size. The WHISPER workloads are command-line
configurable for multiple transaction sizes, and we implement
our in-house benchmark with similar functionality by setting
the swapped array length to the transaction size.

Baseline machine setup: The baseline machine adopts strict
persistence for counters and MACs and allows persisting MT
nodes through natural evictions, since these can be verified

SThis can be calculated by latency needed to each of the PUB blocks,
reading their corresponding MAC, ciphertext and counter blocks, computing
2 leves of MAC, then updating the counter and MAC blocks of each PUB
blocks’ entries.
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TABLE I
SIMULATION CONFIGURATION PARAMETERS

Processor
Core 4 Cores, X86, 000, 4GHz
L1 Cache 2 cycles, 64KB,2-Way
L2 Cache 20 Cycles, 2MB, 8-Way
LLC 32 Cycles, 16MB, 16-Way
WPQ size 64 entries in baseline; 56 entries in Thoth

DDR based PCM Memory
Size [ 32GB
Access Latency | read latency 150ns. write latency 500ns.
Secure Memory Parameters
40 Cycles
40 Cycles
10-level 8-ary Merkle Tree over NVM;
4-level 8-ary Merkle Tree over secure cache
Lazy Update for MT over NVM
Eager Update for MT over secure metadata cache
WTSC, size = 64MB
8 entries
9 updates in 128B block;
19 updates in 256B block;

AES Latency
Single Hash Latency
Integrity Tree

Tree Update Policy

Partial Update Buffer
Persistent Combining Buffer
Number of partial updates

/ cache block

Counter cache size 64kB; 4 way
MAC cache size 128kB; 8 way
Merkle Tree cache size 256kB; 8 way

using an eagerly updated root [49]. Since each counter is
persisted directly to NVM, besides updating the 4-level small
merkle tree over the secure metadata cache, we calculate
another hash for the last level of the merkle tree. We set the
WPQ to start draining when it is 50% full so that secure
metadata from the same cache block that arrive in a short
time period can be coalesced.

B. Overall Performance

A -- WTSC | [ Cache block=128B
B - WTBC | [ Cache block=256B

Speedup (Normalized to strict persistence)

0 ABAB
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Fig. 8. Speedup of Thoth with WTSC and WTBC scheme (transaction size
= 128B)

Figure 8 compares the overall speedup achieved by Thoth
over the baseline for both 128B and 256B cache block sizes.
Each workload is configured with a transaction size of 128B.
Thoth achieves similar speedup using WTSC scheme and
WTBC scheme. Thoth achieves an averaged speedup of 1.22x
and 1.16x for cache block sizes of 128B and 256B, respec-
tively. The performance advantages of Thoth stem largely from
the reduction in write traffic compared to the baseline, as
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Fig. 9. Number of Writes of Thoth with WTSC and WTBC scheme (128B
transactions)

shown in Figure 9. Thoth reduces the number of writes by an
average of 32% and 37% for block size of 128B and 256B,
respectively, over the baseline system. The 256B blocks are
able to pack more partial updates per block and coalesce more
entries, leading to a greater reduction in writes. To explain
memory reduction in Thoth, we break down write requests in
both baseline design and Thoth design. In the baseline design,
the write requests can be classified into three main categories:
1. Writes for regular data; 2. Writes for counter blocks; 3.
Writes for MAC blocks. In Thoth, the write requests can
be classified into four main categories: 1. Writes for regular
data; 2. Writes for PCB entries; 3. Evicted counter blocks;
4. Evicted MAC blocks. (There exist other categories. Since
their numbers are low, we do not list them here.) In the
baseline, categories 2 and 3 take an average of 24.37% and
29.7% respectively from the total write requests. In Thoth,
categories of 2, 3, 4 takes an average of 3.95%, 6.81%,
9.46% respectively from the total write requests. The swap
benchmark shows the opposite behavior(i.e., more reduction of
writes in 128B cache block) because more evictions of secure
metadata in Thoth with 256B cache blocks. Even though
that higher reduction in writes for 256B cache blocks, the
speedups are less for 256B cache block. This is because writes
in baseline are reduced by 256B cache block. Therefore, the
performance of our baseline is improved by using 256B cache
block, which leads to less speedup in Thoth using 256B cache
block.

Among the workloads, the swap benchmark does not
achieve any speedup when using Thoth and even degrades in
performance a little. This is partly an effect of the relatively
small transaction size of 128B. Because swap merely ex-
changes two arrays that are allocated contiguously in memory,
it touches few memory locations and induces relatively few
secure metadata writes to memory as compared with the other
workloads. While Thoth successfully eliminated 20% and 15%
of swap’s writes to memory, for 128B and 256B respectively,
this did not yield a speed-up.
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C. Sensitivity to Different Transaction Size
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Fig. 10. Speedup of Thoth for transaction sizes of 128B, 512B, 1024B, 2048B

We also study the performance of Thoth over multiple
transaction sizes. We run each application with transaction
sizes of 128B, 512B, 1024B and 2048B using cache block
sizes of 128B and 256B. The average speedup of Thoth with
128B blocks is 1.22x, 1.23x, 1.19x and 1.19x when transaction
size is 128B, 512B, 1024B and 2048B respectively, as shown
in Figure 10. The average speedup of Thoth with 256B blocks
is 1.16x, 1.17x, 1.14x and 1.19x when transaction size is 128B,
512B, 1024B and 2048B respectively, as shown in Figure 10.
In some of the benchmarks, Thoth achieves less speed up
over the baseline as transaction size increases because the
baseline behavior improves. Larger transactions create more
opportunity for coalescing secure metadata writes in the WPQ
in the baseline machine, reducing the gains in Thoth.

TABLE II
AVERAGED PERCENTAGE OF WRITES FOR CIPHERTEXT ON TRANSACTION
SIZE OF 128B, 512B, 1024B, 2048B

Type(Cache block) Percentage of merged partial updates
128B 512B 1024B 2048B
Baseline(Cache block=128B) | 45.52% | 49.28% | 52.68% | 58.15%
Baseline(Cache block=256B) | 41.35% | 44.15% | 47.24% | 51.30%
Thoth(Cache block=128B) 68.35% | 67.97% | 68.78% | 73.59%
Thoth(Cache block=256B) 67.09% | 67.00% | 69.60% | 76.24%
TABLE III

AVERAGED PERCENTAGE OF PARTIAL UPDATES MERGED IN PCB ON
TRANSACTION SIZE OF 128B, 512B, 1024B, 2048B

Cache block Percentage of merged partial updates
128B 512B 1024B 2048B

Cache block = 128B | 74.36% | 57.68% | 44.26% | 34.25%

Cache block = 256B | 87.88% | 80.51% | 71.17% | 62.74%

To help explain this trend, Table II shows the average
percentage of writes to ciphertext for both the baseline and
Thoth. The percentage of writes for ciphertext in Thoth mainly
depends on the eviction rate from the secure metadata cache
and the coalescing effect in the PCB. As the transaction
size increases, the relative benefit of coalescing in the PCB
decreases with respect to coalescing in the WPQ in the base-
line, as shown in Table III. This is because the on-chip PCB

can only coalesce consecutive updates for the same partial
update (same minor counter/MAC). With larger transaction
sizes, these consecutive updates are less likely to reside in the
PCB at the same time. However, the WPQ can coalesce any
two updates to the same secure metadata cache block, giving
it more flexibility to coalesce writes. Also, the WPQ is larger
than the PCB, giving it another advantage of more entries over
which it can attempt to coalesce. In spite of these advantages in
the baseline, Thoth still achieves a significant speed up across
all configurations. Thoth reduces the number of writes on an
average by 32%, 28%, 24% and 20% for 128B cache block
and 37%, 33%, 31% and 31% for 256B cache block. The trend
shows Troth reducing writes by a smaller percentage as the
transactions grow larger because of better coalescing in the
WPQ of the baseline machine as transaction size increases.

Btree of 256B cache block, rbtree and swap have a different
trend. They achieve more speedup as transaction size increases
due to the number of writes in the baseline and/or more
reduction in writes caused by less evictions from metadata
cache with larger transaction size. In some cases(e.g., Swap)
where performance increases with transaction size, the number
of memory writes with larger transaction size in the baseline
is significantly higher than the one in smaller transaction
size, which signify the impact of memory writes reduction
on performance.

D. Sensitivity to Secure Metadata Cache Size

T T T T
A -- Cache size = 64kB/128kB |[I] Cache block=128B
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C -- Cache size = 1MB/2MB 7

o
T

Speedup (Normalized to strict persistence)
© o ©° = =2
> (=] © - N >~ (=]

o
N

0—ABcABC
Hashmap

ABCABC
Ctree

ABCABC ABCABC
Btree RBtree
Benchmark

Fig. 11. Thoth’s Speedup for various countet/MAC cache sizes.
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We further characterize Thoth in the context of larger
secure metadata caches. We evaluate the performance of Thoth
when varying the counter/MAC cache size to 64kB/128kB,
512kB/IMB and 1IMB/2MB. The average speedup of Thoth
with a 128B cache block is 1.22x with the smallest secure
metadata cache sizes to 1.34x at the largest sizes as shown in
Figure 11. Similarly, the average speedup with a 256B cache
block is 1.16x for the smallest cache sizes up to 1.28x for
the largest. These trends show that Thoth achieves even more
speedup with larger metadata cache sizes. This is because
Thoth allows secure metadata to be persisted through natural
eviction from cache, and with larger metadata cache sizes,
there will be fewer evictions and, hence, fewer write backs as
well.
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E. Sensitivity to Reduced WPQ Size

We also study the performance of Thoth over smaller WPQ
with 16 entries and 32 entries. In the experiments, we reserve
1/8 of WPQ entries for the purpose of PCB. We assumed
64 entries WPQ, however when using smaller WPQ with
32 entries and 16 entries, we observe a 1.48x and 1.65x
improvement respectively with 128 byte cache block and 1.50x
and 1.81x improvement respectively with 256 byte cache
block, as shown in Figure 12. Thoth achieves more speedup
with smaller WPQ because less security metadata is coalesced
in the baseline with smaller WPQ.
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Fig. 12. Thoth’s Speedup for various WPQ size.

F. Compare Thoth with Mechanism Using ECC Bits

In this section, we compare Thoth with Anubis [49]. Anu-
bis leverages and re-purposes ECC bits in memory inter-
face to persist secure metadata. Based on our results, with
64kB(counter) and 128kB(MAC) metadata cache size, Thoth
brings an overhead of merely 7% on average over baseline that
hypothetically assumes all future chips will have co-located
ECC (i.e., Anubis).

VI. RELATED WORK

Secure NVM: In addition to enabling crash-consistency, var-
ious secure NVM works optimize for different things. For
instance, Anubis [49], enables fast and ultra-low recovery
time of integrity trees and counters. Meanwhile, Osiris [44]
allows recovery of encryption counters regardless of recovery
time. Soteria [50] hardens integrity trees to improve reliability.
Dolos [19] minimize the latency for persistent transactions
through a decoupled security unit. Janus [29] enables efficient
scheduling of security memory backend operations. All these
works need a new vehicle to persist their security metadata
when no ECC or extra metadata bits are available for the
processor, and hence Thoth can help realizing them in future
memory interfaces.

Overloading ECC Bits: Most of the state-of-the-art solutions
in secure NVM [6], [10], [19], [42]-[44], [47], [49]-[51]
builds on the idea of co-locating such security metadata with
data to minimize the write amplification for implementing
crash-consistent secure NVMs. Other works, focus on selec-
tively choosing which data to persist [28]. Thoth provides a

new vehicle for prior works through leveraging off-chip partial
update buffers in the absence of processor-controlled ECC
bits or extra pins, as the case in future memory interfaces.
For demonstration purposes, we presented Thoth enabling a
state-of-the-art secure NVM work [49] in future interfaces.
Some other works [51] leveraged WPQ-like structures to hold
metadata blocks before they are persisted, to enable merging
more writes before writing to NVM; this is already captured
in our baseline.
VII. CONCLUSION

In this paper, we propose Thoth, a novel off-chip persistent
buffer that can enable crash consistency in future memory
interfaces with minimal write amplification. Thoth works by
combining several partial secure metadata updates into one
memory block write and persists them in a large off-chip
persistent buffer in NVM. Based on our evaluation, Thoth
improves the performance by an average of 1.22x (up to 1.44x)
while reducing write traffic by an average of 32% (up to
40%) compared to the baseline Anubis when adapted to future
interfaces.
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