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Synopsis  Mechanosensory information is a critical component of organismal movement control systems. Understanding the
role mechanosensation plays in modulating organismal behavior requires inherently multidisciplinary research programs that
reach across biological scales. Recently, there have been rapid advances in discerning how mechanosensory mechanisms are in-
tegrated into neural control systems and the impact mechanosensory information has on behavior. Thus, the Symposium “The
Role of Mechanosensation in Robust Locomotion” at the 2023 Annual Meeting of the Society for Integrative and Comparative
Biology was convened to discuss these recent advances, compare and contrast different systems, share experimental advice,
and inspire collaborative approaches to expand and synthesize knowledge. The diverse set of speakers presented on a variety of
vertebrate, invertebrate, and robotic systems. Discussion at the symposium resulted in a series of manuscripts presented in this
issue that address issues facing the broader field, mechanisms of mechanosensation, organismal function and biomechanics,

and sensing in ecological and social contexts.

Many animals exhibit extraordinarily robust behaviors
in the face of extreme external disturbances. This Sym-
posium, “The Role of Mechanosensation in Robust Lo-
comotion” at the 2023 Annual Meeting of the Society for
Integrative and Comparative Biology (SICB) focused on
how mechanosensors, in particular, enable consistent,
and robust motor control. The 2023 SICB Meeting was
an opportune time to bring together organismal sci-
entists studying mechanosensation, as mechanosensory
research has rapidly progressed in recent years, espe-
cially in the realm of neuroethology, with studies that
consider mechanosensory mechanisms in the context of
organism behavior.

Mechanosensors transduce mechanical information
(like tissue deformation or ciliary bending) into electro-
chemical neural signals, and the term “mechanosensa-
tion” broadly refers to this physiological process at all
levels of biological organization. For example, a Golgi
tendon organ is a mechanosensor in terrestrial ver-
tebrates found at the end of a sensory afferent nerve
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embedded in the myotendinous junction. Contraction
of the muscle causes tension in the Golgi tendon or-
gan, which then compresses mechanically sensitive ion
channels in the sensory afferent, causing them to depo-
larize. Thus, the mechanical information of the mus-
cle contraction is transduced into neural information
by the Golgi tendon organ mechanosensor. This neu-
ral information is then integrated into a motor control
feedback loop (Jami 1992; Milneuslic and Loeb 2006;
Granatosky et al. 2020).

A variety of mechanosensing systems are known
across organisms. The vestibular organs in vertebrates
and the lateral line specifically in fishes assist with
body positioning and orientation, as do a variety of
proprioceptors (including the vertebrate Golgi ten-
don organ) across vertebrates and invertebrates (e.g.,
Tuthill and Wilson 2016; Tuthill and Azim 2018; Hale
2021). In terrestrial vertebrates, proprioception regu-
lates gait mechanics (e.g., Maas et al. 2007; Gordon et
al. 2020). Proprioceptors also contribute to locomotor
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robustness (reviewed in Santuz and Akay 2023). Pro-
prioceptive motor control networks can also integrate
information from enteroceptive mechanosensors (e.g.,
in Caenorhabditis elegans, Kreig et al. 2022). In addition
to proprioceptive cells at the periphery, vertebrates have
mechanosensing cells in the central nervous system that
are involved in locomotion (e.g., Grillner et al. 1991;
Bohm et al. 2016; Massarelli et al. 2017; Katz et al. 2021;
Picton et al. 2021; Wu et al. 2021). Mechanosensation
is also manifest in tactile-sensing systems critical for
navigation and foraging, among other complex behav-
iors [summarized in Prescott et al. 2011]. For instance,
tactile mechanosensing is critical for behaviors related
to food acquisition (e.g., Catania 2012; Schneider et al.
2014; Amichai et al. 2023), reproduction (Yamanouchi
etal. 2023), and grooming (Zhang et al. 2020; Ravbar et
al. 2021).

The mechanism of mechanotransduction occurs
through several types of mechanically activated ion
channels (summarized in Kefauver et al. 2020). The
channel(s) implicated in mechanotransduction varies
across mechanosensory systems, and revealing this
mechanism is an active area of research in many sys-
tems. Because mechanosensors modulate motor con-
trol and thus behavioral motions, the implications of
mechanosensory abilities reach beyond the molecular-
scale mechanisms all the way to the organism-level and
even inter-organismal interactions. Indeed, a full un-
derstanding of the function of molecular-scale mech-
anisms requires studying the higher levels of biolog-
ical organization, while the mechanisms of higher-
scale phenomena require study of the molecular-
and cellular-levels. Thus, a full understanding of
mechanosensory control requires crossing biological
scales, which can be accomplished through interdis-
ciplinary training, collaboration, and through interac-
tions among the scientific community in gatherings
such as this symposium.

The speakers in this symposium (outlined below)
exemplify this integrative organismal perspective on
mechanosensory research, which was a major theme of
the symposium. Other exciting, cutting-edge research
areas in mechanosensation and organismal biology in-
clude building an understanding of how mechanosen-
sation shapes and is shaped by organismal devel-
opment (e.g., Sternberg et al. 2018; Williams and
Ribera 2020; Agrawal and Tuthill 2022), the integra-
tion of mechanosensation in regenerating systems (e.g.,
Monroe et al. 2015; Hamlet et al. 2023b; Katz and
Hamlet 2023, this issue), and how mechanosensory spe-
cializations have evolved (e.g., tuned to the biomechan-
ics of organisms, Aiello et al. 2017).

Future advances in the field will be enabled by form-
ing a cohesive and comparative understanding of how
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different mechanosensory organs and systems func-
tion across organisms. Thus, SICB 2023 was an ex-
cellent time to bring together researchers to compare
and contrast their different systems (at cellular, organ,
and organismal-levels); share experimental advice and
methods; and inspire collaborative, cross-species ap-
proaches to understanding the role of mechanosen-
sation in movement control systems. Goals for the
Symposium included (1) encouraging a comparative
approach to understanding how mechanosensors are
incorporated in organismal control systems, includ-
ing how robotic systems can help us learn biological
principles and vice versa; and (2) developing an evo-
lutionary approach to understanding the basic biol-
ogy of mechanosensors, considering the potential for
analogous (or homologous) sensor structure and func-
tion across taxa. By assembling researchers who study
mechanosensation in different organisms and at differ-
ent biological scales, and by encouraging a comparative
approach to mechanosensory research, we hoped to en-
able breakthroughs in understanding the general prin-
ciples of mechanosensory control of behavior.

The symposium

We assembled a diverse group of speakers who pre-
sented their research on a variety of mechanosensing
mechanisms in both a main symposium session as well
as in a complementary session. These presentations
covered a wide range of topics, including proprioceptive
and tactile sensing systems; sensors at the periphery and
in the central nervous system; insect, vertebrate, and
robotic models; and the integration of mechanosensa-
tion, biomechanics, and behavior.

The symposium began with presentations on how
mechanosensory feedback is integrated into locomo-
tor systems, including several examples. Brad Dicker-
son discussed how a common control system archi-
tecture from engineering control theory can be used
to study sensory system dynamics and animal behav-
ior (Dickerson et al. 2023; further reading: Dickerson
et al. 2014; Dickerson et al. 2019; Dickerson 2020; and
Dickerson et al. 2021). Kaushik Jayaram described how
the study of distributed mechanosensors across animals
can inform the design of bioinspired robots with dis-
tributed mechanosensory capabilities the improve lo-
comotor function (Jayaram et al. 2023; further reading:
Jayaram and Full 2016; Jayaram et al. 2018a and 2018b;
Kabutz and Jayaram 2021; Hari Prasad and Jayaram
2022; McDonnell and Jayaram 2022).

The Drosophila melanogaster (fruit fly) model system
has been recently used to reveal the complex mecha-
nisms involved in mechanosensory locomotor control,
facilitated by the availability of targeted genetic tools
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and very high-resolution anatomical data (e.g., Phelps et
al. 2021). Several speakers discussed their cutting-edge
research on mechanosensation in Drosophila. Chris
Dallmann discussed how sensory information from
fly proprioceptors—namely, from the proprioceptive
femoral chordotonal organ—is modulated depending
on behavioral context (Dallmann and Tuthill 2023; fur-
ther reading: Dallmann et al. 2016, 2017, 2021). Sweta
Agrawal continued the conversation on fly proprio-
ceptors by presenting a reconstruction of the fly leg
mechanosensory circuits (Agrawal et al. 2023; further
reading: Agrawal et al. 2020; Chen et al. 2021). Julie
Simpson revealed how neurons that sense debris shape
grooming behaviors in flies and outlined current efforts
to map and characterize these behavioral-modulating
mechanosensory circuits (Simpson 2023; further read-
ing: Hampel et al., 2011, 2015, 2017; Zhang et al. 2020;
Ravbar et al. 2021; Guo et al. 2022; Mueller et al., 2021).

Mechanosensory neurons within the central nervous
systems (as opposed to at the periphery) were an-
other theme of the symposium. Claire Wyart discussed
her extensive line of work on the mechanosensory
(and chemosensory) cerebrospinal fluid-contacting
neurons, which modulate spinal posture and loco-
motion (Wyart et al. 2023; further reading: Wyart et
al. 2009; Bohm et al. 2016; Orts-delTmmagine and
Wyart 2017; Sternberg et al. 2018; Cantaut-Belarif et
al. 2020; Orts-del'Tmmagine et al. 2020; Wu et al.
2021). Katie Stanchak described current work on the
avian lumbosacral organ, a putatively mechanosen-
sory organ in the lower spinal cord of birds, includ-
ing efforts to test a set of mechanistic functional hy-
potheses (Stanchak et al. 2023a, 2023b; Sta further
reading: Stanchak et al. 2020 and 2022; Stanchak et
al., 2023Db, this issue). Hilary Katz characterized the
mechanosensory Rohon-Beard neurons in the larval
zebrafish, which sense at the periphery but have cell
bodies within the spinal cord (Katz et al. 2021; Katz
2023). Dr. Katz then connected this sensory system to
functional regeneration of spinal cord in lamprey (Katz
et al. 2020; further reading: Katz and Hamlet 2023,
this issue).

Christina Hamlet addressed injury recovery and re-
generation from a neuromechanical perspective and
presented a computational model of an anguilliform
swimmer in fluid with proprioceptive feedback (Hamlet
et al. 2023a; further reading: Hamlet et al. 2018; Hamlet
et al. 2023b; Katz and Hamlet 2023, this issue). Eric
Tytell then elaborated on this topic by comparing com-
putational simulations with new experimental results
of lamprey swimming in fluids of different viscosities
(Tytell et al. 2023; further reading: Tytell et al. 2010;
Tytell et al. 2011; Massarelli et al. 2017; Hamlet et al.
2018; Tytell et al. 2018; Hamlet et al. 2023b). Other
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speakers addressed mechanosensory systems for loco-
moting through a different fluid: air. Jasmin Wong pre-
sented new vibration analysis results to characterize the
mechanical filtering properties of bird feathers (Wong
et al., 2023). Brooke Quinn showed new experimental
data demonstrating that the hair sensors on bat wings
help regulate flight in turbulent conditions (Quinn et al.
2023; further reading: Amichai et al. 2023; Rummel et
al. 2023).

The symposium extended beyond the biologi-
cal level of the individual organism and explored
how mechanosensation can influence animal ecol-
ogy and sociality. Eve Schneider explained how the
mechanosensitive bills of domesticated ducks help
them distinguish food items (West et al. 2023; further
reading: 2014; 2017; Schneider et al. 2019; West et al.
2022). Michael Smith then presented on the sensitivity
of chameleons to vibrations and their ability to produce
these tremors in the presence of other individuals
(Denny et al. 2023; further reading: Huskey et al., 2020;
Tegge et al. 2020; Denny et al. 2023a and 2023b, this
issue).

Associated manuscripts

This issue of Integrative and Comparative Biology in-
cludes a series of papers stemming from the symposium
session, including collaborative pieces among speakers
that were inspired by the discussion during the Annual
Meeting. The first piece is a collaborative perspective
from several speakers that argues that mechanosensa-
tion is critical for robust locomotion and discusses how
collaboration between experimental biologists and en-
gineers can inform the implementation of mechanosen-
sory feedback control systems in robotics (Dallmann
et al., 2023, this issue). The second is another collab-
orative piece that focuses on advances in mathematical
models of anguilliform locomotion and how these more
complex models with integrated sensory feedback can
support biological investigation (Katz and Hamlet 2023,
this issue). Following that is an outline of hypotheses
on how the avian lumbosacral organ might sense or-
ganismal movement, which provides a framework for
further research on putative mechanosensory mecha-
nisms of the LSO (Stanchak et al., 2023b, this issue).
Finally is a set of experimental studies on how veiled
chameleons communicate through biotremors (Denny
et al. 2023a and 2023b, this issue). Collectively, these
papers cover a wide range of topics in mechanosensa-
tion at different conceptual and biological scales: issues
facing the broader field, cellular-level mechanisms of
sensation, organismal function and biomechanics, and
sensing in ecological and social contexts. Our hope is

20z Aenuepr gz uo Jasn Jsyua) aoueles|) ybuAdo) Aq 8E652Z . /y1/2/€9/21914e/qol/wod dnoolwapede//:sdiy woly papeojumoq



Introduction to the symposium

that these papers will inspire more integrative and in-
terdisciplinary research on mechanosensation.
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