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ABSTRACT
Count-Min Sketch (CMS) and HeavyKeeper (HK) are two realiza-
tions of a compact frequency estimator (CFE). These are a class of
probabilistic data structures that maintain a compact summary of
(typically) high-volume streaming data, and provides approximately
correct estimates of the number of times any particular element
has appeared. CFEs are often the base structure in systems look-
ing for the highest-frequency elements (i.e., top- elements, heavy
hitters, elephant �ows). Traditionally, probabilistic guarantees on
the accuracy of frequency estimates are proved under the implicit
assumption that stream elements do not depend upon the internal
randomness of the structure. Said another way, they are proved
in the presence of data streams that are created by non-adaptive
adversaries. Yet in many practical use-cases, this assumption is
not well-matched with reality; especially, in applications where
malicious actors are incentivized to manipulate the data stream.
We show that the CMS and HK structures can be forced to make
signi�cant estimation errors, by concrete attacks that exploit adap-
tivity. We analyze these attacks analytically and experimentally,
with tight agreement between the two. Sadly, these negative results
seem unavoidable for (at least) sketch-based CFEs with parameters
that are reasonable in practice. On the positive side, we give a new
CFE (Count-Keeper) that can be seen as a composition of the CMS
and HK structures. Count-Keeper estimates are typically more accu-
rate (by at least a factor of two) than CMS for “honest” streams; our
attacks against CMS and HK are less e�ective (and more resource
intensive) when used against Count-Keeper; and Count-Keeper has
a native ability to �ag estimates that are suspicious, which neither
CMS or HK (or any other CFE, to our knowledge) admits.

CCS CONCEPTS
• Security and privacy! Hash functions and message au-
thentication codes.
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1 INTRODUCTION
The use of probabilistic data structures (PDS) has grown rapidly in
recent years in correlation with the rise of distributed applications
producing and processing huge amounts of data. Probabilistic data
structures provide compact representations of (potentially massive)
data, and support a small set of queries. The trade-o� for compact-
ness is that query responses are only guaranteed to be “close” to
the true answer (i.e., if the query were evaluated on the full data)
with a certain probability. For example, the ubiquitous Bloom �l-
ter [6] admits data-membership queries (Does element G appear in
the data?). The probabilistic guarantee on the correctness of re-
sponses assumes that the data represented by the Bloom �lter is
independent of the randomness used to sample the hash functions
that are used to populate the �lter, and to compute query responses.
This is equivalent to providing correctness guarantees in the pres-
ence of adversarial data sets and queries that are non-adaptive, i.e.,
made in advance of the sampling of the hash functions.

A number of recent works — notably those of Naor and Yo-
gev [25], Clayton, Patton and Shrimpton [8], and Filić et al. [13] —
have provided detailed analyses of Bloom �lters under adaptive
attacks; the results are overwhelmingly negative. Paterson and Ray-
nal [26] provided similar results for the HyperLogLog PDS, which
can be used to count the number of distinct elements in a data
collection [14].

In this work, we focus on PDS that can be used to estimate the
number of times any particular element G appears in a collection
of data, i.e., the frequency of G . Such compact frequency estima-
tors (CFEs) are commonly used in streaming settings, to identify
elements with the largest frequencies — so-called heavy hitters or
elephants. Finding extreme elements is important for network plan-
ning [12], network monitoring [18], recommendation systems [22],
and approximate database queries [2], to name a few applications.

The Count-min Sketch (CMS) [10] and HeavyKeeper (HK) [30]
structures are two CFEs that we consider, in detail. The CMS struc-
ture has been widely applied to a number of problems outlined
above. Details on these applications are thoroughly examined in
the survey paper by Sigurleifsson et al. [29]. The HK structure is
the CFE of choice in the RedisBloom module [2], a component of
the Redis database system [1].

As is the case for Bloom �lters, HyperLogLog and other PDS,
the accuracy guarantees for CFEs e�ectively assume that the data
they represent were produced by a non-adaptive strategy. Our work
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explores the accuracy of CMS and HK estimates when the data is
produced by adaptive adversarial strategies (i.e., adaptive attacks).
We give explicit attacks that aim to make as-large-as-possible gaps
between the estimated and true frequencies of data elements. We
give concrete, not asymptotic, expressions for these gaps, in terms of
speci�c adversarial resources (i.e., oracle queries), and support these
expressions with experimental results. And our attacks �t within a
well-de�ned “provable security”-style attack model that captures
four adversarial access settings: whether the CFE representations
are publicly exposed (at all times) or hidden from the adversary,
and whether the internal hash functions are public (i.e., computable
o�ine) or private (i.e. visible only, if at all, by online interaction
with the structure).

Our �ndings are negative in all cases. No matter the combi-
nation of public and private, a well resourced adversary can force
CMS and HK estimates to be arbitrarily far from the true frequency.
As one example of what this means for larger systems, things that
have never appeared in the stream can be made to look like heavy
hitters (in the case of CMS), and legitimate heavy hitters can be
made to disappear entirely (in the case of HK). This is somewhat
surprising in the “private-private” setting, where the attack can
only gain information about the structure and its operations via
frequency estimate queries. Of course, there are di�erences in prac-
tice: when attacks are forced to be online, they are easier to detect
and throttle, so the query-resource terms in our analytical results
are likely capped at smaller values than when some or all of an
attack can progress o�ine.

Our attacks exploit structural commonalities of CMS and HK.
At their core, each of these processes incoming data elements by
mapping them to multiple positions in an array of counters, and
these are updated according to simple, structure-speci�c rules. Sim-
ilarly, when frequency estimation (or point) queries are made, the
queried element is mapped to its associated positions, and the re-
sponse is computed as a simple function of values they hold. So, our
attacks concern themselves with �nding cover sets: given a target G ,
�nd a small set of data elements (not including G ) that collectively
hash to all of the positions associated with G . Intuitively, inserting
a cover set for G into the stream will give the structure incorrect
information about G ’s relationship to the stream, causing it to over-
or underestimate its frequency.

The existence of a cover set in the represented data is neces-
sary for producing frequency estimation errors in HK, and both
necessary and su�cient in CMS. Sadly, our �ndings suggest that
preventing an adaptive adversary from �nding such a set seems fu-
tile, no matter what target element is selected. The task can be made
harder by increasing the structural parameters, but this quickly
leads to structures whose size makes them unattractive in practice,
i.e., linear in the length of the stream.

Motivating a more robust CFE. Say that the array " in CMS
has : rows and< counters (columns) per row. The CMS estimate
for G is =̂G = min82 [: ] {" [8] [?8 ]}, where ?8 is the position in row 8
to which G hashes. In the insertion-only stream model it must be
that =̂G � =G , where =G is the true frequency of G . To see this, given
an input stream Æ( , let + 8G = {~ 2 Æ( |~ < G and ⌘8 (~) = ?8 } be the
set of elements that hash to the same counter as G , in the 8-th row.
Then we can write " [8] [?8 ] = =G + Õ

~2+ 8G =~ , where the =~ > 0

are the true frequencies of the colliding ~s. Viewed this way, we
see that the CMS estimate =̂G minimizes the impact of “collision
noise”, i.e., =̂G = =G +min82 [: ] {

Õ
~2+ 8G =~}.

We could improve this estimate if we knew some extra in-
formation about the value of the sum, or the elements that con-
tribute to it. Let’s say that, with a reasonable amount of extra
space, we could compute ⇠8 = n8

⇣Õ
~2+ 8G =~

⌘
for some n8 2 [0, 1]

that is bounded away from zero. Then we would improve the es-
timate to =̂G = =G + min82 [: ]

n
(1 � n8 )

⇣Õ
~2+ 8G =~

⌘o
. How might

we do this? Consider the case that for some row 8 2 [:] there
is an element ~⇤ 2 + 8G that dominates the collision noise, e.g.
=~⇤ = (1/2)Õ~2+ 8G =~ . Then even the ability to accurately esti-
mate =~⇤ would give a signi�cant improvement in accuracy of =̂G ,
by setting ⇠8 to this estimate. It turns out that HK provides some-
thing like this. It maintains a : ⇥< matrix �, where �[8] [ 9] holds
a pair (fp, cnt). In the �rst position is a �ngerprint of the current
“owner” of this position, and, informally, cnt is the number of times
that �[8] [ 9] “remembers” seeing the current owner. (Ownership
can change over time, as we describe in the body.) If we use the
same hash functions to map element G into the same-sized" and�,
then there is possibility of using the information at �[8] [?8 ] to re-
duce the additive error (w.r.t. =G ) in the value of " [8] [?8 ]. This
observation forms the kernel of our new Count-Keeper structure.

TheCount-Keeper CFE. We propose a new structure that, roughly
speaking, combines equally sized (still compact) CMS and HK struc-
tures, and provide analytical and empirical evidence that it reduces
the error (by at least a factor of two) that can be induced once a
cover set is found. It also requires a type of cover set that is roughly
twice as expensive (in terms of oracle queries) to �nd. Moreover, it
can e�ectively detect when the reported frequency of an element
is likely to have large error. In this way we can dampen the e�ect
of the attacks, by catching and raising a �ag when a cover set has
been found and is inserted many times to induce a large frequency
error estimation on a particular element.

Intuitively, our Count-Keeper (CK) structure has improved
robustness against adaptive attacks because CMS can only overesti-
mate the frequency of an element, and HK can only underestimate
the frequency (under a certain, practically reasonable assumption).
We experimentally demonstrate that CK is robust against a num-
ber of attacks we give against the other structures. Moreover, it
performs comparably well if not better than the other structures
we consider in frequency estimation tasks in the non-adversarial
setting.

As a side note, we uncovered numerous analytical errors
in [30] that invalidate some of their claims about the behaviors of
the HK structure. We have communicated with the authors of [30]
and contacted Redis, whose RedisBloom library implements HK
(and CMS) with �xed, public hash functions (i.e., the internal ran-
domness is �xed for all time and visible to attackers).

In [16], the authors consider adding robustness to stream-
ing algorithms using di�erential privacy. Meanwhile, Hardt and
Woodru� [15], Cohen et al. [9] and Ben-Eliezer et al.[4] have shown
that linear sketches (including CMS but not HK) are not “robust” to
well-resourced adaptive attacks, when it comes to various !? -norm
estimation tasks, e.g., solving the :-heavy-hitters problem relative
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to the !2-norm. These works are mostly of theoretical importance,
whereas we aim to give concrete attacks and results that are (more)
approachable for practitioners.

2 DATA STRUCTURE SYNTAX
In this section, we formalize data structures as abstract, syntac-
tic objects, and make explicit the attack model that we consider
throughout the paper. Before that, some notational conventions.

Let G   X denote sampling G from a set X according to the
distribution associated with X; if X is �nite and the distribution is
unspeci�ed, then it is uniform. Let {0, 1}⇤ denote the set of bitstrings
and let Y denote the empty string. Let Func(X,Y) denote the set
of functions 5 : X ! Y. We use ¢ to mean that a variable is
uninitialized. By [item] ⇥ ✓ for ✓ 2# we mean a vector of ✓ replicas
of item.

We use zeros(:,<) to denote a function that returns a : ⇥<
array of 0s. We index into arrays (and tuples) using [·] notation; in
particular, if ' is a function returning a :-tuple, we write '(G) [8] to
mean the 8-th element/coordinate of '(G). If -= (G1, G2, . . . , GC ) is a
tuple and S is a set, we overload standard set operators (e.g.,- ✓S)
treating the tuple as a set; if we write - \ S, we mean to remove
all instances of the elements of S from the tuple - , returning a
tuple - 0 that is “collapsed” by removing any now-empty positions.

2.1 Data structures
We adopt the syntax of Clayton et al.[8]. For space reasons, our
description is terse; please see [8] for a full discussion of their
syntactic choices. Fix non-empty sets D,R,K of data objects, re-
sponses and keys, respectively. Let F@ ✓ Func(D,R) be a set of
allowed queries, and let FD ✓ Func(D,D) be a set of allowed
data-object updates. A data structure is a tuple ⇧ = (R��,Q��,U�),
where: R�� : K⇥D ! {0, 1}⇤ [ {?} is a randomized representation
algorithm, Q�� : K ⇥ {0, 1}⇤ ⇥ F@ ! R is a deterministic query-
evaluation algorithm, and U� : K ⇥ {0, 1}⇤ ⇥ FD ! {0, 1}⇤ [ {?} is
a randomized representation-update algorithm.

Allowing each algorithm to take a key  2 K provides an
explicit mechanism for separating randomness used across algo-
rithms and their executions, from per-operation randomness that
is local to each algorithm. HeavyKeeper is one example of a data
structure with per-operation randomness. In our security model,
the key may be secret (i.e., not given to the adversary) or public.
Secret keys are an explicit mechanism for reasoning about adver-
sarial correctness when representations are meant to be private.
Note that the traditional unkeyed data structures are captured by
setting K = {Y}. To make clear the semantic di�erences among
their inputs, we write repr   R�� (S),0  Q�� (qry), and
repr   U� (up) for the execution of these algorithms. The ab-
stract insertion function upG is handled by U� as a concrete action
of (say) carrying out certain hashing operations, and incrementing
counters indicated by those hashing operations. Side-e�ects of U�,
or cases where the algorithm’s behavior does not perfectly match
the intended update up, are a potential source of errors that an
adversary can exploit. We assume that all data structures admit
frequency estimation queries (also known as point queries) qryG
for each G 2 U, de�ned so that qryG (S) returns the number of
occurrences =G of G in data-object S.

Atkerr-fe[u,v]
Π,U (A)

1 : Æ(  ;;   K
2 : repr  R�� ( Æ( )
3 : kv >; rv >
4 : if D = 1 : kv  

5 : if E = 1 : rv repr

6 : G   U
7 : done  AHash,Up,Qry (G, kv, rv)
8 : =G  qryG ( Æ( )
9 : =̂G  Q�� (repr, qryG )
10 : return |=̂G � =G |

Up (up)
1 : repr0   U� (repr, up)
2 : Æ(  up( Æ( )
3 : repr repr0

4 : if E = 0 : return >
5 : return repr

Qry (qry)
1 : return Q�� (repr, qry)

Hash (- )
1 : if - 8 X : return ?
2 : if � [- ] = ?
3 : � [- ]   Y
4 : return � [- ]

Figure 1: the ERR-FE (ERRor in Frequency Estimation) attack model.
When experiment parameter E = 1 (resp. E = 0) then the represen-
tation is public (resp. private); when D = 1 (resp. D = 0) then the
structure key  is rendered public (resp. private). The experiment
returns the absolute di�erence between the true frequency =G of an
adversarially chosen G 2 U, and the estimated frequency =̂G . The
Hash oracle computes a random mapping X ! Y (i.e., a random
oracle), and is implicitly provided to R��, U� and Q��.

2.2 Streaming Data
A stream data-object Æ( = 41, 42, . . . is a �nite sequence of elements
48 2 U for some universe U. The elements of a stream are not
necessarily distinct, and the (stream) frequency of some G 2 U
is |{8 : 48 = G}|. From the perspective of the PDS, the stream
is presented one element at a time, with no bu�ering or "look
ahead". That is, processing of a stream is performed in order, and
the processing of 48 is completed before the processing of 48+1 may
begin; once 48 has been processed, it cannot be revisited.

2.3 Formal Attack Model
To enable precise reasoning about the correctness of frequency es-
timators when data streams may depend, in arbitrary ways, on the
internal randomness of the data structure, we give a pseudocode
description of our attack model in Figure 1. The experiment param-
eters D, E determine whether the adversary A is given  and repr,
respectively. Thus, there are actually four attack models encoded
into the experiment. The adversary is provided a target G 2 U,
and given access to oracles that allow it to update the current rep-
resentation (Up) — in e�ect, to control the data stream — and to
make any of the queries permitted by the structure (Qry). We abuse
notation for brevity and write Up (4) to mean an insertion of 4 into
the structure and Qry (4) to get a point query on 4 for some ele-
ment 4 2 U. Note that when E = 1, the Up-oracle leaks nothing
about updated representation, so that it remains “private" through-
out the experiment. The adversary (and, implicitly, R��,U�,Q��)
is provided oracle access to a random oracle Hash : X ! Y, for
some structure-dependent sets X,Y. The output of the experiment
is the absolute error between the true frequency =G of G in the
adversarial data stream, and the structure’s estimate =̂G of =G .
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3 COUNT-MIN SKETCH

R�� (S)
1 : "  zeros(:,<)
2 : for G 2 S
3 : "  U� (", upG )
4 : return"

U� (", upG )
1 : (?1, . . . ,?: )  ' ( ,G )
2 : for 8 2 [: ]
3 : " [8 ] [?8 ] += 1
4 : return"

Q�� (", qryG )
1 : (?1, . . . ,?: )  ' ( ,G )
2 : return min

82 [: ]
{" [8 ] [?8 ] }

Figure 2: Keyed count-min sketch structure CMS[',<,: ] admitting
point queries for any G 2 U. The parameters are integers<,: � 0,
and a keyed function ' : K ⇥ U ! [<]: that maps data-object
elements (encoded as strings) to a vector of positions in the array S .
A concrete scheme is given by a particular choice of parameters.

Figure 2 gives a pseudocode description of the count-min sketch
(CMS), in our syntax. An instance of CMS consists of a : ⇥ <
matrix" of (initially zero) counters, and a mapping ' between the
universe U of elements and [<]: . An element G is added to the
CMS representation by computing '( , G)= (?1, ?2, . . . , ?: ), and
then adding 1 to each of the counters at " [8] [?8 ]. Traditionally,
it is assumed that (?1, ?2, . . . , ?: )= (⌘1 (G),⌘2 (G), . . . ,⌘: (G)) where
the ⌘8 are sampled at initialization from some family � of hash
functions, but we generalize here to make the exposition cleaner,
and to allow for the mapping to depend upon secret randomness
(i.e., a key  ).

The point query Q��(qryG ) returns =̂G= min82 [: ] {" [8] [?8 ]}.
We note that it must be that =̂G � =G . To see this, let+ 8G= {~ 2 Æ( |~ <
G and '(~) [8] = ?8 } be the set of elements that “collide” with G ’s
counter in the 8-th row. Thenwe canwrite" [8] [?8 ]==G+

Õ
~2+ 8G =~ ,

where =~ � 0. Viewed this way, we see that a CMS estimate =̂G
minimizes the “collision noise”, i.e., =̂G==G +min82 [: ] {

Õ
~2+ 8G =~}.

For any n, X � 0, any G2U, and any stream Æ( (overU) of length
# , it is guaranteed that Pr [ =̂G � =G > n# ]  X when: (1) : = dln 1

X e,
< = d 4n e, and (2) '( , G) = (⌘1 ( k G),⌘2 ( k G), . . . ,⌘: ( k G)) for
⌘8 that are uniformly sampled from a pairwise-independent hash
family� [10]. Implicitly, there is a third requirement, namely (3) the
stream and the target G are independent of the internal randomness
of the structure (i.e., the coins used to sample the ⌘8 ).

4 HEAVYKEEPER
Like CMS, an instance of the HeavyKeeper data structure is parame-
terized by positive integers :,<, and a function ' : K ⇥U ! [<]: ;
in addition, it is parameterized by real-valued 3 2 (0, 1], and �n-
gerprinting function ) : K ⇥ U ! {0, 1}= for some �xed = > 0.
The HK structure (see the pseudocode in Figure 3) maintains a
: ⇥< matrix �. However, each �[8] [ 9] holds a pair (fp, cnt), ini-
tialized as (¢, 0) where ¢ is a distinguished symbol. Informally, for
a given stream Æ( , any I 2 Æ( such that �[8] [ 9] .fp = ) ( , I) is an
owner of this position; there may be more than one such owner at
a time, if ) ( , ·) admits many collisions. Ownership can change as

R�� (S)
1 : // initialise : ⇥< (fp,cnt) 2-d array

2 : for 8 2 [: ]
3 : �[8 ]  [ (¢, 0) ] ⇥<
4 : for G 2 S
5 : � U� (�, upG )
6 : return �

Q�� (�, qryG )
1 : (?1, . . . ,?: )  ' ( ,G )
2 : fpG  ) ( ,G )
3 : cntG  0
4 : for 8 2 [: ]
5 : if �[8 ] [?8 ] .fp = fpG
6 : cnt �[8 ] [?8 ] .cnt
7 : cntG max {cntG , cnt}
8 : return cntG

U� (�, upG )
1 : (?1, . . . ,?: )  ' ( ,G )
2 : fpG  ) ( ,G )
3 : for 8 2 [: ]
4 : if �[8 ] [?8 ] .fp 8{fpG ,¢}
5 : A   [0, 1)
6 : if A  3� [8 ] [?8 ] .cnt

7 : �[8 ] [?8 ] .cnt �= 1
8 : // overtake the counter if 0
9 : if �[8 ] [?8 ] .cnt = 0
10 : �[8 ] [?8 ] .fp fpG
11 : // increase the count if fp = fpG

12 : if �[8 ] [?8 ] .fp = fpG
13 : �[8 ] [?8 ] .cnt+= 1
14 : return �

Figure 3: Keyed structure HK[',) ,<,:,3 ] supporting point-queries
for any potential stream element G 2 U (qryG ). The parameters are
a function ' : K ⇥ U ! [<]: , a function ) : K ⇥ U ! {0, 1}= for
some desired �ngerprint length =, decay probability 0 < 3  1, and
integers<,: � 0.

a stream is processed: if some ~ arrives whose �ngerprint is di�er-
ent than that of the current owner(s), then the current (positive)
value 2 of�[8] [ 9] .cnt is decremented with probability 3�2 . Loosely,
decrementing 2 is akin to �[8] [ 9] “forgetting” a prior arrival of its
current owner(s); with this viewpoint, the value of�[8] [ 9] .cnt is the
number of times that this position “remembers” seeing its current
owner(s). If ~ causes that number to become zero, then it becomes
an owner: the stored �ngerprint is changed to fp~ = ) ( ,~), and
the counter is set to 1. Note that for CMS, " [8] [ 9] “remembers"
the total number of elements that it observed, but nothing about
which elements. This observation will motivate our Count-Keeper
structure, later on.

The HK provides frequency estimates via point-queries. A
point-query forG returnsmax

�
�[8] [?8 ] .cnt|�[8] [?8 ] .fp= fpG , 82 [:]

 
where (?1, . . ., ?: )  '( , G) and fpG ) ( , G); if that set is
empty the point query returns 0 (no position “remembers” ever
having seen G .)

Yang et al.[30] do state a probabilistic guarantee on the size
of estimation errors, under an assumption that each �[8] [ 9] has
one and only one owner for the duration of the stream, but the
statement is insu�ciently precise and its proof is �awed, so we
will not quote it. In the full version of this paper1 we recover a
meaningful result.

5 ATTACKS ON CMS AND HK
In the following discussion of attacks against CMS and HK in our
formal model, we will implement the mappings ' : U! [<]: and
) : K ⇥ {0, 1}⇤ ! {0, 1}= via calls to the Hash-oracle. In detail,
given some unambiguous encoding function h·, ·, ·i, for CMS we set

1The full version appears on the IACR’s ePrint Archive, under the same title.
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'( , G) = (Hash (h1, , Gi),Hash (h2, , Gi, . . .,Hash (h:, , Gi))) ,
and for HK, we set '( , G) [8] =Hash (h“cnt”, 8, , Gi) and ) ( , G)
=Hash (h“fp”,: + 1, , Gi). Note that the traditional analysis of
CMS correctness assumes that the row-wise hash functions are
sampled (uniformly) from a pairwise-independent family of func-
tions, whereas our modeling treats the row-wise hash functions
as : independent random functions fromU! [<]. This makes the
adversary’s task more di�cult, as our attacks cannot leverage adap-
tivity to exploit structural characteristics of the hash functions. For
the HK, the strings “cnt” and “fp” provide domain separation, andwe
implicitly assume that the outputs of calls to the Hash-oracle can
be interpreted as random elements of [<]: when called with “cnt”,
and as random elements of the appropriate �ngerprint-space,e.g.,
{0, 1}C for some constant C � 0, when called with “fp”.2

5.1 Cover Sets
Say =̂G is the CMS estimate. As noted in Section 3, the estimate
=̂G = =G + min82 [: ] {

Õ
~2+ 8G =~}; thus =̂G = =G if there exists an

8 2 [:] such thatÕ~2+ 8G =~ = 0. Since=~ > 0 for any~ 2 + 8G , we can
restate this as =̂G > =G if and only if + 1

G , . . . ,+
:
G are all non-empty.

When this is the case, the union C =
–
82 [: ] + 8G contains a set of

stream elements that “cover” the counters" [8] [?8 ] associated to G .
Since the presence of a covering C within the stream is necessary
(and su�cient) for creating a frequency estimation error for the
CMS, we formalize the idea of a “cover” in the following de�nition.

D��������� 1. Let U be the universe of possible stream elements.
Fix G 2U, A 2 Z, and Y ✓* . Then a set C = {~1,~2, . . .,~C } is an
(Y, G, A )-cover if: (1) C ✓ Y\{G}, and (2)88 2 [:] 9 91, . . . , 9A 2 [C]
such that '( , G) [8] ='( ,~ 91 ) [8], . . .,'( , G) [8] ='( ,~ 9A ) [8]. ⌥

For the CMS, we will be interested in Y =U, A = 1, and we
will shorten the notation to calling this a 1-cover (for G), or just
a cover. For the HK, we will still be interested in A = 1, but with a
di�erent set Y. In particular, HK has a �ngerprint function ) ( , ·),
and we de�ne the set FP( , G) = {~ 2 U |) ( ,~) <) ( , G)}. In
analyzing their HK structure, Yang et al. [30], rely on there being
“no �ngerprint collisions", to ensure that HK have only one-sided
error. (In general, the HK returned estimates may over- or underes-
timate the true frequency.) But, no precise de�nition of this term
is given. We de�ne it (by negation) as follows: stream Æ( does not
satisfy the no-�ngerprint collision (NFC) condition with respect to G
(and key  ) if there exists ~, I 2 Æ( kG such that ) ( ,~) = ) ( , I)
and 98 such that '( ,~) [8] = '( , I) [8]; otherwise Æ( does satisfy
the NFC condition with respect to G (and  ). In other words, Æ( kG
cannot contain distinct elements that have the same �ngerprint
and share a counter position. Our analysis treats the �ngerprint
function ) ( , ·) and position hash functions '( , ·) [8] as random
oracles, the particular value of  will not matter, only whether
or not it is publicly known. As such, explicit mention of  can be
elided without loss of generality, and we shorten FP( , G) to FPG .
Further, in the random oracle model the �ngerprint computation
and row position computation are independent, so the probabil-
ity of their conjunction is much smaller than the simple “birthday
2This separation could be more directly handled by augmenting the attack model with
an additional hashing oracle, but for simplicity and ease of reading, we chose not to
do so.

bound” event on �ngerprint collisions. Anyway, for our HK analy-
sis (Section 5.3), we will be interested in (F PG , G, 1)-covers, which
are just (U, G, 1)-covers under NFC condition.

When analyzing our new CK structure (Section 6), which
inherits the �ngerprint function from HK, we will be interested in
(F PG , G, 2)-covers, as A = 1 will no longer enable attacks to drive
up estimation error.
Exploring time-to-cover. Observe that even when the stream ele-
ments and the target G are independent of the internal randomness
of the structure, a su�ciently long stream will almost certainly
contain a cover for G . For example, for CMS, this results in =̂G being
an overestimate of =G . How long the stream needs to be for this to
occur is what we explore next.

Each of CMS, HK and CK use a mapping '( , ·) to determine
the positions to which stream elements are mapped. Let !A8 be the
number of distinct-element evaluations of '( , .) needed to �nd ele-
ments covering the target’s counter in the 8th row A times. Then !A8 is
a negative binomial random variable with success probability ? = 1

<
and Pr[!A8 = I] =

�I�1
I�A

�
(1 � ?)I�A?A . This is because !A8 counts the

minimal number of evaluations needed to �nd A elements ~1, . . .,~A
with '( ,~ 9 ) [8] = ?8 . This holds for any 8 2 [:], and all !A8 are
independent. Thus, letting !A = max{!A1, !A2, . . ., !A: }, we have

Pr[!A  I]= Œ:
8 = 1 Pr[!A8  I]=

⇣
?A

ÕI�A
C = 0

�C+A�1
C

�
(1 � ?)C

⌘:
.

When A = 1, this simpli�es to

Pr[!1  I] =
⇣
(1 � @) (1 + @ + @2 + · · · + @I�1)

⌘:
= (1 � @I): (1)

with @ = 1 � ? . When A = 2 we arrive at a more complicated expres-
sion Pr[!2  I] = (1 � I@I�1 + (I � 1)@I): .

One can show that E[!1] = Õ1
I=0 (1 � (1 � @I): ); for typical

values of<, we have the very good approximation E[!1] ⇡<�: ,
�: being the :-th harmonic number.

5.2 Cover-Set Attacks on CMS
In our attack model, if the mapping '( , ·) is public, we may use
the Hash oracle (only) to �nd a cover set for the target G “locally”,
i.e., the step is entirely o�ine. When this is not the case, we use a
combination of queries to the Up and Qry oracles to signal when
a cover set exists among the current stream of insertions; then we
make additional queries to learn a subset of stream elements that
yield a cover. For space reasons, we give only one cover-�nding
algorithm (Figure 4), while the others can be found in the full
version.

Before exploring each setting, we build up some general results.
Let CoverAG be the event that in the execution of Atkerr-fe[u,v]

Π (A),
the adversary queries theUp-oraclewith up48 , . . ., up4C and 41, . . ., 4C
is an A -cover for the target. For concision, de�ne random variable
Err = Atkerr-fe[u,v]

Π (A). We will mainly focus on E[Err] when ana-
lyzing the behavior of structures, so here we observe that the non-
negative nature of Err allows us towriteE[Err] = Õ

b>1 Pr [ Err � b ].
In determining the needed probabilities, it will be bene�cial to con-
dition on CoverAG , as this event (for particular values of A ) will be
crucial for creating errors.

Our attacks against CMS (and, later, HK and CK) have two
logical stages. The �rst stage �nds the necessary type of cover
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for the target G , and the second stage uses the cover to drive up
the estimation error. The �rst stage is the most interesting, as the
second will typically just insert the cover as many times as possible
for a given resource budget (@� ,@* ,@& ). We note that whether or
not the �rst stage is adaptive depends on the public/private nature
of the structure’s representation and hash functions, whereas the
second stage will always be adaptive.

Say Up-query budget (i.e., number of adversarial stream ele-
ments) is �xed to @* , and for the moment assume that the other
query budgets are in�nite. Let some @0*  @* of the Up-queries be
used in the �rst stage of the attack. The number @0* is a random
variable, call it & , with distribution determined by the random-
ness of the structure and coins of the attacker. So, E [Err] may
depend on the value of & , and then we calculate the expectation as
E[E[Err |&]]. After a cover C is found by the �rst stage (so Cover1G
holds), the second stage can insert C until the resource budget
is exhausted. Note that each insertion of C will increase the CMS
estimation-error by one. Our attacks ensure that |C|  : , and so the
number of C-insertions in the second stage is at least

j
@* �&
:

k
. Let-

ting 0  )  @* be the maximum number of Up-queries allowed
in the �rst stage (i.e. &  ) ), we have

E [Err] �
)’

@0* =0

�
@* �@0*
:

⌫
Pr

⇥
Cover1G |&=@0*

⇤
Pr

⇥
&=@0*

⇤
.

Public hash and representation setting. The public hash setting
allows to �nd a cover using the Hash oracle only (i.e., &=0). This
step introduces no error; E [Err] =

⌅@*
:

⇧
Pr

⇥
Cover1G |&=0

⇤
. Given

our de�nition of !1 as the minimal number of '( , ·) evaluations to
�nd a cover, the cover-�nding step of the attack requires : (1+!1)
Hash-queries: : to evaluate '( , G), and then :!1 to �nd a cover.
Say @� is the Hash-oracle budget for the attack. A cover is then
found i� !1@� �:: . Assuming @* > : (so that a found cover is
inserted at least once) and using (1) we arrive at

Pr
⇥
Cover1G |&=0

⇤
=

⇣
1� (1�1/<)

@�
: �1

⌘:
(2)

implying E[Err] �
⌅@*
:

⇧ ⇣
1 � (1 � 1/<)

@�
: �1

⌘:
. For @� /: � 1,

which is likely as @� is o�ine work and practical : are small,
E[Err] ⇡ @* /: . The pseudocode of the attack can be found in
the full version.

Private hash and private representation setting. This is the
most challenging setting to �nd a cover: the privacy of hash func-
tions e�ectively makes local hashing useless, and the private repre-
sentation prevents the adversary from learning anything about the
result of online hash computations.

Our attack (Figure 4) starts by �rst querying for the estimated
frequency of target G followed by inserting distinct random ele-
ments (<G), and querying for the estimated frequency of G after
each insertion. Call this stream of elements Æ� . This continues until
the estimate on G increases by 1, which signals that a full 1-cover
for G is contained within the stream Æ� of initial insertions. Next, we
extract from Æ� a 1-cover of size  : . Call I1 the last element inserted
as a part of Æ� . As this insertion caused the estimate to increase it
must be that I1 covers at least one counter of G . Thus, we set our

CoverAttackUp,Qry (G,?,?)
1 : cover FindCoverUp,Qry (G )
2 : until @* Up-queries:
3 : for 4 2 cover: Up (4 )
4 : return done

UncoverUp,Qry (G,00, cover)
1 : 10  �1
2 : while 00 < 10

3 : if (@* � |cover | + 1)Up-
4 : or @& Qry-queries:
5 : return cover

6 : 10  00

7 : for ~ 2 cover : Up (~)
8 : 00  Qry (G )
9 : return 00

FindCoverUp,Qry (G)
1 : // �nd 1-cover for x
2 : cover ;
3 : found False

4 : Æ�  ;;0  Qry (G )
5 : while not found
6 : if @* Up- or @& Qry-queries:
7 : return cover

8 : ~   U \ (Æ� [ {G })
9 : Æ�  Æ� [ {~}
10 : Up (~) ; 00  Qry (G )
11 : if 00 < 0 :
12 : cover {~}
13 : found True

14 : for 8 2 [2, 3, . . . ,: ]
15 : 0 UncoverUp,Qry (G,00, cover)
16 : if 0 = cover : return cover
17 : for ~ 2 I // in order of insertion to I

18 : if @* Up- or @& Qry-queries:
19 : return cover
20 : Up (~) ;00  Qry (G )
21 : if 00 < 0 :
22 : cover cover [ {~}
23 : Æ�  I \ {~}
24 : break
25 : return cover

Figure 4: Cover Set Attack for the CMS in private hash function and
private representation setting. The attack is parametrised with the
update and query query budget @* and @& .

round-one candidate cover C1  {I1}. Next, we keep inserting
the cover until the estimate for G stops changing, signalling that
counters that G maps to that are minimal are not covered by C1.

We then proceed as follows. In each round 8 = 2, . . . we �rst
keep reinserting Æ� \ C8�1 in order until some I8 increases the CMS
estimate for G again, then we set C8  C8�1[{I8 }. We then reinsert
the cover until G ’s estimate stops changing signalling, again, that
the minimal G-counters are not covered by C8 and allowing to �nd
a “fresh” covering element of G in the subsequent round.

This procedure ensures that after ✓  : rounds a full cover
is found. Each round 8 adds exactly one new element I8 to the
incomplete cover C8�1, and there are only : counters to cover. Let
38 be the number of re-insertions of C8 in round 8 . Then, the number
ofUp-queries required to reach C✓ is@0*  ✓ |Æ� |+

Õ✓�1
8=1 838 . So, C✓ can

be potentially reinserted b(@* �@0* )/✓c times, each time increasing
the error on G .

From the attack’s construction, it is easy to see that X8 =
38 � 1 re-insertions of C8 each increase the error by 1, and that,
additionally, the error increases by 1 at each detection of a fresh
I8 . Assuming @& is not the limiting factor and replacing |Æ� | with !1
(as E[|Æ� |] =!1), and simplifying, we get
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Err �
j⇣
✓+1
2 + 1

✓

⇣
@* + Õ✓�1

8=1 (✓ � 8)X8
⌘
� !1

⌘k
.Wenote that Err

is a function of several random variables: !1, ✓ , {X8 }82 [✓�1] . For prac-
tical values of :,< (e.g., : = 4, with< � :) it is likely that ✓ = : ;
✓ < : if and only if at least one I 2 C cover multiple G-counters
which is unlikely for small : ⌧ <. So, we approximate Err withcErr by replacing ✓ with : , dropping the �oor operation, and arrive
at E[cErr] ⇡ (: + 1)/2 + 1/:

⇣
@* + Õ:�1

8=1 (: � 8)E[X8 ]
⌘
� E[!1] . Re-

arranging and using the very tight approximation E[!1] ⇡ <�: :
E[cErr] ⇡ ⇣

@*
: �<�:

⌘
+ :+1

2 +
⇣
1
:

Õ:�1
8=1 (: � 8)E[X8 ]

⌘
. We expect

E [X8 ] to be upper bounded by a constant that is small relative to
<,@* /: , and thus, the dominant term in E[cErr] ⇡ E[Err] will be
@*
: �<�: . This is observed experimentally (see Table 2). We give
more details about this attack (including considering the case in
which @& is the limiting adversarial resource) in the full version.

Public hash and private representation setting. Observe that
the public representation is never used in our attack in the public
hash and public representation setting. Therefore, in this public
hash and private representation setting, the same attack can be
used. The same analysis applies.

Private hash and public representation setting. The public
representation allows for an attack similar to our attack in the
public hash settings. Here, we use the Up-oracle instead of the
Hash-oracle to �nd a cover. By comparing the state before and
after adding an element it is easy to deduce the element’s counters
(as they are the only ones to change). Our attack �rst adds the
target to get its counters. Then, we keep inserting distinct elements,
comparing the state before and after until a cover C is found. By the
de�nition of !1, the cover is found with (@0* = 1 + !1) Up-queries,
and is after reinserted b(@* � @0* )/|C|c times, each time adding
one to the estimation error. Hence, Err � b(@* � 1 � !1)/|C|c �
b(@* � 1 � !1)/:c and E[Err] �

@* �1�E[!1]
: ⇡ @* �<�:

: .

5.3 Cover-Set Attacks on HK
By examining the HK pseudocode, it is not hard to see that when a
stream Æ( satisfying the NFC condition is inserted in the HK struc-
ture, over-estimations are not possible; any error in frequency es-
timates is due to underestimation. We also note that if Æ( satis�es
the NFC condition, then any cover that it contains for G 2 U must
be a (F PG , G, A )-cover. In attacking HK, we will build (F PG , G, 1)-
covers; as such, in this section we will often just say “cover” as
shorthand.

The intuition for our HK-attacks is, loosely, as follows. If one
repeatedly inserts a cover for G , before G is inserted, then the coun-
ters associated to G will be owned by members of the cover, and
the counter values can be made large enough to prevent any sub-
sequent appearances of G from decrementing these counters with
overwhelming probability. Wewill sometimes say that such hard-to-
decrement counters are “locked-down”. As such, the HK estimate =̂G
will be zero, even if =G � 0.

We note that attacks of this nature would be particularly dam-
aging in instances where the underlying application uses HK to
identify the most frequent elements in a stream Æ( . With relatively
few insertions of the cover set, one would be able to hide many

occurrences of G . DDoS detection systems, for example, rely on com-
pact frequency estimators to identify communication end-points
that are subject to an abnormally large number of incoming con-
nections [19]. In this case, the target G is an end-point identi�er
(e.g., an IP address and/or TCP port). Being able to hide the fact
that the end-point G is a “heavy hitter” in the stream of incoming
�ow destinations could result in G being DDoSed.

Interestingly, while a cover is necessary to cause a frequency
estimation error for G , it is not su�cient. Unlike the CMS, whose
counters are agnostic of the order of elements in the stream, the
HK counters have a strong dependence on order. Thus, if G is a
frequent element and many of its appearances are at the beginning
of the stream, then it can lock-down its counters; a cover set attack
is still possible, but now the number of times the cover must be
inserted may be much larger than the frequency (so far) of G .

Setting the attack parameter t. Say our attack’s resource budget
is (@� ,@* ,@& ). The HK attacks �nd a cover C = {I1, I2 . . . } and
then insert it C times. We set the value C such the the probability ?
of decrementing the any of the target’s counters with subsequent
insertions of G is su�ciently small. For our experiments we set ? =
2�128.

Let ⇡C8 be the event that at the end of the attack �[8] [?8 ] .fp =
fpG given that at some point during the attackwe had�[8] [?8 ] .cnt =
C with �[8] [?8 ] .fp = fpI8 , I8 < G . Let

�
⇡C

�
=

‘
8=1 ⇡

C
8 . Then,

Pr[⇡C8 ]
�@*
C

� ŒC
9=1 3

9  (@* )C 3
C (C+1)

2 .

Say 5 (C) = : (@* )C 3
C (C+1)

2 . If the attack set �[8] [?8 ] .cnt = C
with �[8] [?8 ] .fp = fpI8 , I8 < G for each 8 , then the probability of G
overtaking any of its counters by the end of the attack is bounded
by Pr[‘:

8=1 ⇡
C
8 ]  5 (C). This motivates the selection of C in our

attacks as the smallest C � 1 such that 5 (C)  ? .
Public hash and public representation setting. This attack is
similar to the CMS attack for the public hash setting, but with a
few tweaks. The cover is inserted only C times and then the Up
budget is exhausted by inserting target G (at least (@* � C:) times)
to accumulate error. If ¬⇡C then this process introduces the error
of at least (@* � C:). Thus, as the cover �nding step uses Hash
only and induces no error,

E [Err] � (@* � C:) (1 � ?) Pr
⇥
Cover1G | & = 0

⇤
.

For the term Pr
⇥
Cover1G | & = 0

⇤
we can simply apply the same

bound as for the CMS attack (Equation (2)) obtaining

E [Err] � (@* � C:) (1 � ?)
⇣
1 � (1 � 1/<)

@�
: �1

⌘:
.

The pseudocode of the attack can be found in the full version.

Private hash and private representation setting. The attack for
this setting starts by inserting G once. Starting with an empty HK
implies that then G owns all of its buckets, i.e., �[8] [?8 ] .fp = fpG
for all rows 8 , with their associated counters 21, . . . , 2: set to one,
setting G ’s current frequency estimate 0 = max82 [: ] {28 } = 1. The
attack then keeps inserting distinct elements until the frequency
estimate for G drops to 0, i.e, �[8] [?8 ] .fp < fpG for all rows 8 . Let I1
be the set of inserted elements < G at the moment that this happens,
and the last inserted element was I1. Then, I1 must share at least
one counter with G (the one that changed�[8] [?8 ] .fp from fpG most

3260



CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sam A. Markelon, Mia Filić, and Thomas Shrimpton

recently). So, we set our round-one candidate cover set C1  {I1}
and insert C times to the HK. Now we are at the point when all
21, . . . , 2: are owned by elements < G , and all but one are of value
one. Note that inserting I1 increased the estimate error by one.

The adaptive portion of our attack proceeds as follows. In each
round 8 = 2, . . . we �rst keep reinserting G until � (G) reaches 1.
Let38 be the number of these reinsertions. Hence, these reinsertions
increased the estimate error by 38 � 1. At this point, at least one
counter 21, . . . , 2: is owned by G and all counters owned by G are
set to 1. Then, we search for a new element to create our round-8
cover set candidate C8 , by inserting new distinct elements, until
we �nd a I8 that drops � (G) to 0. We set C8  C8�1 [ {I8 } and
insert I8 C times. At this point, all counters 21, . . . , 2: are owned by
elements < G again, and all are of value one, but the ones covered
by C8 which (very likely) hold a value strictly greater than 1 and
(very) close to C .

The procedure ensures that after some ✓  : rounds we have
found a complete 1-cover with (very) high probability. Each round
8 adds maximally one new element to the incomplete cover C8�1.
The added element covers whatever G is owning at the beginning
of the round. Thus, with (very) high probability, counters owned
by G in the round are not covered by C8�1. This is because all the
counters covered by C8�1 were set to value C (or a value close to C
with very high probability3) at some point, and the selection of C
makes the probability of later overtaking one such counter (very)
small. There are only : counters to cover and so with (very high)
probability having only : rounds su�ces to �nd a cover.

Let I8 be the set of inserted elements < G in each round. We
get the number of Up-queries required to complete : rounds is
@0* 

Õ:
8=1 (38 + |I8 | + C) =

Õ:
8=1 (38 + |I8 |) + C: .

So, G can be potentially inserted @* � @0* times, accumulat-
ing some additional error4. Say C is the attack’s maximal round
candidate cover. Whenever ¬

�
⇡C

�
, adding I8 C times to the HK in-

cremented one of the G ’s counters, not yet set to value C by elements
in C8�1. If, in addition, we have |C| = : , : di�erent elements set :
di�erent counters of G (i.e. all of the G ’s counters) to C making them
impossible to decrement later.

Therefore, after the rounds to reach C are completed every
further insertion of G (@* � @0* of them) increased the error by 1.
Note that |C| = : implies the attack completed exactly : rounds and⇥
Err | ¬

�
⇡C

�
, |C| = :

⇤
� @* �

Õ:
8=1

⇥
|I8 | | ¬

�
⇡C

�
, |C| = :

⇤
� C: .

Let ⇡8 be the set of rows 8 with �[ 9] [? 9 ] .fp = fpG (i.e. G owning
the counter) after the reinsertion step. Say 28, 9 are the values of
�[ 9] [? 9 ] .cnt after the 8-th round reinsertion step. Say .8, 9 counts
the minimal number of distinct element insertions to overtake the
counter in row 9 2 ⇡8 from G after the 8-th round reinsertion step,
i.e., the minimal number of distinct evaluations of '( .·) to set
�[ 9] [? 9 ] .fp < fpG . Then, .8, 9 is a geometric random variable with
? = 328,9

< , 328,9 coming from the probabilistic decay mechanism
and |I8 | = max92⇡8

�
.8, 9

 
. Moreover, 28, 9 = 1 for all 9 2 ⇡8 –

3We could have I8 simultaneously covering more not yet covered counters. Then,
adding I8 C times �xes one counter to C , and the others to C with at probability at
least 0.9 – the other counters might have been owned by some others elements but
are de�nitely of value one, so each of them gets “taken” by I8 in the �rst insertion
with probability 0.9.
4We say potentially as the Qry-query budget might be a limiting factor.

that is counters owned by G always have value 1. As |⇡1 | = :
we have that |I1 | = max92⇡1

�
.1, 9

 
is essentially !1 with ? = 3

< .
Since |⇡8 |  : and all .8, 9 are positive and i.i.d. we have that
E [|I8 |]  E [|I1 |]. Hence, <3 �: � E [|I8 |]. Skipping the derivation
due to space constraints (refer to the full paper), this implies that
E [Err] � (@* �C:) Pr

⇥
¬

�
⇡C

�
^ |C| = :

⇤
� :<

3 �: .
We expect Pr

⇥
¬

�
⇡C

�
^ |C| = :

⇤
⇡ 1 andE [Err] ⇡ @* �C:�:<3 �: .

We con�rmed this experimentally as seen in Table 2. The attack’s
pseudocode can be found in the full version.
Public hash and private representation setting. As with the
CMS, the same attack and analysis applies from the public hash
and public representation setting.
Private hash and public representation setting. The public
representation allows us to design an attack similar to the attack for
the public hash settings, but, as with the CMS attack in the setting,
we need to �nd the cover using the Up oracle. Starting with an
empty �lter, the attack �rst inserts G , such that G is guaranteed to
own all of its counters. Then, we keep adding distinct elements,
until all the �[8] [?8 ] .fp that once belonged to G has changed, in
turn signaling the cover for G has been found.We give a pseudocode
description of this attack in the full version.

Adding any ~ < G has 3
< probability to change �[8] [?8 ] .fp

after the single initial insertions of G . Let .8 be the minimal number
of distinct-element < G insertions before �[8] [?8 ] .fp changes from
fpG . We observe that.8 is a geometric random variable with success
probability ? = 3

< . Set . = max82 [: ] {.8 }. So, our cover �nding
step requires (@0* = 1 + . ) Up-queries to complete - 1 query to
insert G , and then . to �nd a cover. Say @* is the total Up-query
budget. After the cover �nding step, we insert cover C C times to
lock-down the counters followed by @* � @0* � C |C| insertions of G .
Each G-insertion added one to the error if ¬

�
⇡C

�
and

E[Err] � E
⇥
Err | ¬

�
⇡C

� ⇤
Pr

⇥
¬

�
⇡C

� ⇤
� (@* � 1 � E [. ] � C:) Pr

⇥
¬

�
⇡C

� ⇤
⇡ @* �

<

3
�: � C: .

The last approximation comes from assuming C is set such that
Pr

⇥
¬

�
⇡C

� ⇤
⇡ 1, and observing that . is essentially !1 with ? = 3

<
(i.e.< replaced with <

3 ).

6 COUNT-KEEPER
In Figure 5 we present the Count-Keeper (CK) data structure. At
a high level, CK uses information from both CMS and HK (with
3 = 1) to create frequency estimates that are more accurate than
either CMS or HK (alone) when the stream is “honest”, and that are
more robust in the presence of adversarial streams. After describing
the structure, we will provide analytical support for its design, i.e.,
why it is more accurate and robust. To summarize this very brie�y
and informally: CK is more accurate because its HK component
can decrease the e�ect of “collision noise” that drives up the values
held at the relevant" [8] [?8 ] in the CMS component; and it is more
robust because a 1-cover no longer su�ces to create estimation
errors (minimally, a 2-cover is needed) and, unlike either CMS or
HK alone, CK can detect when the state of",� is “abnormal” and
prone to producing spurious estimates.
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6.1 Structure
At initialization, the CK initializes a standard CMS (initialized in the
structure as") and a HKwith the decay parameter3 = 1 (initialized
in the structure as �) in their usual way. We set the substructures
to be of the same number of rows and buckets and let the elements
hash to the same counters’ positions in each substructure using the
same row hash functions.

To insert a stream element G arrives, we run the CMS and HK
update procedures"  U�CMS

 (", upG ) and � U�HK (", upG ),
respectively.We note that the same positions (?1, . . . , ?: )  '( , G)
are visited in both procedures; thus the same elements are ob-
served by" [8] [?8 ] and�[8] [?8 ]. By “observed", we mean that both
" [8] [?8 ] and �[8] [?8 ] maintain summary information about the
same substream, namely the substream of elements I such that
?8 ='( , I) [8].

When queried for the frequency estimate of an element G 2 U,
CK �rst computes the CMS and HK estimates, which we will
write as CMS(G) and HK(G) for brevity. If CMS(G)=HK(G), then
we return their shared response. We will see precisely why this
is the correct thing to do, but loosely, it is because (under the
no �ngerprint collision assumption) HK(G)  =G  CMS(G). If
CMS(G) < HK(G) then CK proceeds row-by-row, using the infor-
mation held at �[8] [?8 ] to re�ne the summary information held
at" [8] [?8 ]. If any of the �[8] [?8 ] .fp are uninitialized, then we are
certain that =G = 0; had any stream element been mapped to this
position, the �ngerprint would no longer be uninitialized.In this
case, CK(G ) returns 0.

Now assume that none of the �[8] [?8 ] have uninitialized �n-
gerprints, and CMS(G) < HK(G). To explain our row-by-row re-
�nements, let us de�ne two sets �G = {8 2 [:] | �[8] [?8 ] .fp= fpG }
and �̂G = {8 2 [:] | �[8] [?8 ] .fp < fpG }, i.e., the subset of rows in"
(and�) that are “owned" and not “owned" (resp.) by G . Observe that
we can write the CMS estimate for G as

CMS(G) = min

(
min
82�G

{" [8] [?8 ]} ,min
82�̂G

{" [8] [?8 ]}
)

so for each row 8 2 [:], we have two cases to consider. For each
case, CK maintains an internal estimator: when 8 2 �̂G the esti-
mator is ⇥81, and when 8 2 �G the estimator is ⇥82. We will talk
about each of these, next. The upshot of this discussion is that CK
de�nes ⇥1 = min82�̂G {⇥

8
1}, ⇥2 = min82�G {⇥82}, and its return value

bmin{⇥1,⇥2}c is always at least as good as CMS(G). Later we will
argue that the CK estimate can be signi�cantly more precise than
the CMS estimate.

6.2 Correcting CMS and Correctness of CK
In what follows, we will assume the NFC condition. For su�ciently
large �ngerprints (e.g., g-bit �ngerprints where 2g is much larger
than the number of distinct elements in the stream) this is reason-
able. Under this assumption, CK may only overestimate =G .

Correcting" [8] [?8 ] when G does not “own" �[8] [?8 ]. By its de-
sign as a count-all structure, the value of" [8] [?8 ] = =G +

Õ
~2+ 8G =~ .

When 8 2 �̂G , we claim that =G 
Õ
~2+ 8G =~ . To see this, observe

that if =G >
Õ
~2+ 8G =~ then G would own �[8] [?8 ]: we can pair

up appearances of G with appearances of elements in ~ 2 + 8G , and

R�� (S)
1 : "  zeros(:,<)
2 : for 8 2 [: ]
3 : �[8 ]  [ (¢, 0) ] ⇥<
4 : repr h",�i
5 : for G 2 S
6 : repr  U� (repr, upG )
7 : return repr

U� (repr, upG )
1 : h",�i  repr

2 : "   U�CMS
 (", upG )

3 : �  U�HK (�, upG )
4 : return repr h",�i

Q�� (repr, qryG )
1 : h",�i  repr

2 : (?1, . . . ,?: )  ' ( ,G )
3 : fpG  ) ( ,G )

4 : ⇥1,⇥2  1 ,� 1

5 : #  
<’
9=1

" [1] [ 9 ]

6 : �ag False

7 : // CMS only overestimates

8 : cntUB,G  Q��CMS
 (", qryG )

9 : // HK only underestimates

10 : cntLB,G  Q��HK (�, qryG )
11 : // if upperbound equal to lowerbound

12 : if cntUB,G = cntLB,G

13 : return cntUB,G , �ag

14 : for 8 2 [: ]
15 : // if never observed
16 : if �[8 ] [?8 ] .fp = ¢

17 : cntUB,G  0

18 : return 0 , �ag

19 : // upper bound adjustment

20 : // x does not own counter

21 : else if �[8 ] [?8 ] .fp < fpG

22 : ⇥ " [8 ] [?8 ]��[8 ] [?8 ] .cnt+1
2

23 : ⇥1 min {⇥1,⇥}

24 : �̂ ⇥

25 : // x owns counter
26 : else if �[8 ] [?8 ] .fp = fpG

27 : ⇥ " [8 ] [?8 ]+�[8 ] [?8 ] .cnt
2

28 : ⇥2 min {⇥2,⇥}

29 : �̂ " [8 ] [?8 ]��[8 ] [?8 ] .cnt
2

30 : � min
�
�, �̂

 
31 : cntUB,G bmin {⇥1,⇥2} c

32 : if � � k# : �ag True

33 : return cntUB,G , �ag

Figure 5: Keyed structure CK[',) ,<,: ,k ] supporting point-

queries for any potential stream element G (qryG ). Q��CMS
 ,U�CMS

 ,
resp. Q��HK ,U�HK , denote query and update algorithms of keyed
structure CMS[',) ,<,: ] (Figure 2), resp. HK[',) ,<,:, 1] (Figure 3,
but note3 = 1). The parameters are a function' : K⇥ {0, 1}⇤ ! [<]: ,
a function ) : K ⇥ {0, 1}⇤ ! {0, 1}= for some desired �ngerprint
length =, and integers<,: � 0. A concrete scheme is given by a par-
ticular choice of parameters. Additional �ag parameter k 2 (0, 1)
allows the structure to raise a �ag on “bad” frequency estimation
(see Section 6.6).

because no element of + 8G has the same �ngerprint as G , each pair
(G,~) e�ectively contributes 0 to the value of �[8] [?8 ] .cnt. So if
=G >

Õ
~2+ 8G =~ , the �ngerprint held at �[8] [?8 ] would be fpG .

Note that if =G =
Õ
~2+ 8G =~ and 8 2 �̂G , then �[8] [?8 ] .cnt = 1 and
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some ~ < G was the last insertion. Thus, �[8] [?8 ] � 1 is a lower-
bound on the di�erence

Õ
~2+ 8G =~ � =G , i.e., the number of oc-

currences of ~ 2 + 8G that are not canceled out by an occurrence
of G . Thus, =G + �[8] [?8 ] � 1  Õ

~2+ 8G =~ , which implies that
" [8] [?8 ] = =G + Õ

~2+ 8G =~  2=G + �[8] [?8 ] � 1. This argument
gives a proof sketch of the following lemma, whose full proof (along
with full proofs for Lemma 2, Corollary 1,and Corollary 2) can be
found in the full version of the paper.

L���� 1. Let Æ( satisfy the NFC condition, and let G 2 U. Then for
any 8 2 �̂G we have =G  " [8 ] [?8 ]��[8 ] [?8 ] .cnt+1

2 =⇥81. ⌥

As this lemma holds for every 8 2 �̂G , we conclude that =G  ⇥1 =
min82�̂G {⇥

8
1}  min82�̂G {" [8] [?8 ]}.

Correcting " [8] [?8 ] when G does “own" �[8] [?8 ]. Now, say
that row 8 2 �G . Under the NFC condition �[8] [?8 ] .cnt stores the
number of occurrences of G that are not canceled out by occur-
rences of ~ 2+ 8G . So, we must have had at least

Õ
~2+ 8G =~ � =G �

�[8] [?8 ] .cnt occurrences of ~ 2 + 8G . This implies" [8] [?8 ] � 2=G �
�[8] [?8 ] .cnt, and, by rearranging, =G  " [8 ] [?8 ]+�[8 ] [?8 ] .cnt

2 . This
sketches a proof of the following lemma, whose full proof appears
in the full version of the paper.

L���� 2. Let Æ( satisfy the NFC condition, and let G 2 U. Then for
any 8 2 �G we have =G  " [8 ] [?8 ]+�[8 ] [?8 ] .cnt

2 = ⇥82. ⌥

As this lemma holds for every 8 2 �G , we conclude that=G ⇥2 =
min8 2 �G {⇥82}  min8 2 �G {" [8] [?8 ]}. Combined with the conclu-
sion of Lemma 1, we have =G  CK(G) = bmin{⇥1,⇥2}c  CMS(G).
Precise estimation when some |+ 8G | 2 {0, 1}. If there exists an 8
such that

��+ 8G �� = 0, then " [8] [?8 ] =�[8] [?8 ] = =G . Hence, in this
special case, both CMS(G) = =G and HK(G) = =G . When this is not
the case, =G < " [8] [?8 ] for all 8 2 [:], so =G < CMS(G). For CK,
on the other hand, if there exists a row 8 such that |+ 8G | = 1, we still
have CK(G) = =G . Our next result, which is a corollary of Lemmas 1
and 2, shows that either one of ⇥81 or ⇥82 is precisely =G , or the
smaller of the two is =G ± 1/2. Thus CK(G) = bmin{⇥1,⇥2}c ==G .
The proof can be found in the full version.

C�������� 1. Let 8 2 [:] be such that |+ 8G | = 1. If the stream satis�es
the NFC condition, then

8 2 �̂G) =G=
" [8] [?8 ] ��[8] [?8 ] .cnt

2
+2 with 2 2 {1/2, 0},

8 2 �G) =G=
" [8] [?8 ] +�[8] [?8 ] .cnt

2
+2 with 2 2 {�1/2, 0}. ⌥

Finally, we note one more case when CK(G) ==G . If one of the
G ’s buckets holds uninitialized �ngerprint, i.e. 8 2 [:] such that
�[8] [?8 ] .fp=¢, then |=̂G � =G | = 0. This is because 1) the HK has
the property that if G maps to a position in � with an uninitialized
�ngerprint, then G was never inserted (i.e., =G = 0); and 2) we de�ne
CK to return =̂G = 0 if any of G ’s positions in� holds an uninitialized
�ngerprint.

6.3 Frequency estimate errors
In this section we extend the frequency estimation error analysis
of CMS to CK. We have already seen that the CK estimate is never

worse than the CMS estimate; in this section, we explore how much
better it can be.

We begin with a simple theorem about the relationship be-
tween ⇥1 and the plain CMS estimate.

T������ 1. Fix an G 2 U, and let 8⇤ be any row index such that
CMS(G) = " [8⇤] [?8⇤ ]. If 8⇤ 2 �̂G then either CK(G) = =G , or⇣
⇥1  CMS(G )

2

⌘
. ⌥

P����. If any �[8] [?8 ], 8 2 [:] has an uninitialized �ngerprint,
then CK(G) = =G = 0. Now assume this is not the case, so that
�[8] [?8 ] .cnt � 1 for all the counters associated to G . By de�nition
⇥1 = min82�̂G ⇥

8
1  ⇥8

⇤
1 , and so ⇥1  " [8⇤ ] [?8⇤ ]��[8⇤ ] [?8⇤ ] .cnt+1

2 
CMS(G )

2 . ⇤

Next, a similar theorem relates ⇥2, the plain CMS estimate, and the
HK estimate (when 3 = 1).

T������ 2. Fix an G 2 U, and let 8⇤ be any row index such
that CMS(G) = " [8⇤] [?8⇤ ]. If 8⇤ 2 �G then either CK(G) = =G

or
⇣
⇥2  CMS(G )+HK(G )

2

⌘
. ⌥

P����. If any �[8] [?8 ], 82[:] has an uninitialized �ngerprint, then
CK(G) = =G = 0. Now assume this is not the case, so�[8⇤] [?⇤8 ] .cnt 
max82IG �[8] [?8 ] = HK(G). We have, ⇥2= min82�G ⇥

8
2  ⇥8

⇤
2 =

" [8⇤ ] [?⇤8 ]+�[8⇤ ] [?⇤8 ] .cnt
2  CMS(G )+HK(G )

2 . ⇤

Now, if CK(G) is determined by line 13 of Figure 5, then CK(G) =
CMS(G )+HK(G )

2 . On the other hand, if CK(G) is determined by line
18, then CK(G) = 0  CMS(G )+HK(G )

2 . If neither of these holds,
⇠ (G) = bmin{⇥1,⇥2}c. Thus, Theorem 1 and 2 imply bmin{⇥1,⇥2}c 
CMS(G )+HK(G )

2 , giving us the following lemma.

L���� 3. For any G 2 U, CK(G)  CMS(G )+HK(G )
2 . ⌥

From here, it is straightforward to bound the CK estimation error,
giving us the main result of this section.

C�������� 2. Let G 2 U. If the stream sati�es the NFC condition,
then CK(G) � =G  CMS(G )�HK(G )

2 . ⌥

Consequences of Corollary 2. First, as CMS(G) and HK(G) ap-
proach each other — even if both are large numbers (e.g. when the
stream is long and G is relatively frequent) — the error in CK(G)
approaches zero.

Next, because CMS is a count-all structure, the worst case
guarantee is that the error CK(G) � =G  CMS(G)/2, i.e., when
HK(G) = 0. This occurs i� G does not own any of its counters,
which implies that G is not the majority element in any of the sub-
streams observed by the positions�[8] [?8 ] .cnt to which G maps. As
" [8] [?8 ] observes the same substream as �[8] [?8 ], and CMS(G) =
min82 [: ] {" [8] [?8 ]}, for practical values of :,< it is unlikely that
all : of the+ 8G have unexpectedly large numbers of elements. More-
over, for typical distributions seen in practice (e.g., power-law dis-
tributions that have few true heavy elements), it is even less likely
that all of the+ 8G contain a heavy hitter. Thus under “honest” condi-
tions, we do not expect CMS(G) be very large when HK(G) is very
small.
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This last observation surfaces something that CK can pro-
vide, and neither CMS nor HK can: the ability to signal when the
incoming stream is atypical. We explore this in detail in Section 6.6.

6.4 Experimental Results
We will now compare non-adversarial performance of the compact
frequency estimators (CFEs) by measuring the ability of these struc-
tures in identifying the most frequent (heavy) elements of a stream.
Finding the heavy elements of a stream is the typical use case of
CFEs and as such these structures are used for that purpose in
many systems level applications [5, 7, 10, 20, 21, 24, 30]. The ability
to accurately identify these heavy elements is based on a CFE’s
ability to accurately make frequency estimations on these heavy
elements, while maintaining the ability to make accurate frequency
estimations on the non-heavy elements, such that one would be
able to distinguish between the two classes of elements. Therefore,
we experimentally measure the non-adversarial performance of
these structure by comparing a number of performance metrics in
identifying heavy elements across three di�erent streams.

Data Streams. We have three di�erent streams we experiment
with. We sourced two streams from a frequent item mining dataset
repository5. We also sourced an additional stream by processing a
large English language novel from Project Gutenberg.

We summarize each of these three streams and why they are
of particular interest to experiment on below.
(1) Kosarak Stream: This data collection contained anonymized
click-rate data collected from visits to an online Hungarian news
site. The resultant stream is of total length 8, 019, 015 with 41, 270
distinct elements. As aforementioned, we sourced this stream from
a frequent item mining dataset repository which is a collection of
data sets meant to test frequent item �nding algorithms on – the
very task which we are doing. We �attened the raw collection of
data such that it would resemble a stream that could be processed
item-by-item.
(2) Novel Stream: We created a stream by processing the individ-
ual words sequentially of The Project Gutenberg eBook plaintext
edition of the 1851 English-language novelMoby-Dick; or, TheWhale
by Herman Melville (ignoring capitalization and non-alphabetical
characters) [23]. Long bodies of natural language obey an approx-
imate Zipf distribution as the frequency of any word is inversely
proportional to its rank in an ordered frequency list [3]. It is of
interest to measure compact frequency estimators performance
against data following a Zipf distribution [5, 7, 11, 21, 24, 30]. The
stream is of total length 2, 174, 111 with 19, 215 distinct elements.
(3) Retail Stream: This data collection contained anonymized
shopping data from a Belgian retail store. The resultant stream is
of total length 908, 576 and contains 16, 740 distinct elements. This
data set is also from the frequent items mining dataset repository.
As with the Kosarak stream we �attened the raw data such that it
would resemble a stream after processing.

Measures and Metrics. We want to measure the performance of
the CFEs of interest in the non-adversarial setting by determin-
ing how well they are able to identify and characterize the heavy
elements in the streams above.

5http://�mi.uantwerpen.be/data/

This problem, with varying but related de�nitions, is referred
to in the literature as the heavy-hitters problem, the hot-items
problem, or the top- problem.

The simplest of these de�nitions to apply is that of the top- 
problem, which is to simply report the set of elements with the  
highest frequencies (for some  ) for a given stream. That is given
elements of a stream Æ( ✓ {41, 42, . . . , 4" } with associated frequen-
cies (=41 ,=42 , . . . ,=4" ) we can order the elements {4⇤1, 4⇤2, . . . , 4⇤" }
such that (=⇤41 � =⇤42 � . . . � =⇤4" ). Then for some  2 Z+ we
output the set of elements {4⇤1, 4⇤2, . . . , 4⇤ } with the  highest fre-
quencies (=⇤41 � =⇤42 � . . . � =⇤4 ).

The top- problem can be solved exactly given space linear to
that of the stream by keeping an individual counter for each distinct
element in the stream. It is not possible to solve exactly with space
less than linear (see [28] for a formal impossibility argument), but
it is a common technique to place a small data structure such as a
min-heap restricted to size  on top of a CFE and by updating this
small structure on each insertion once, one is able to approximate
this top- set [20, 24, 30].

For our purposes we simply compute the approximate top-
 by processing the stream with a compact frequency estimator,
querying on every distinct element in the stream, and ordering
elements by approximated frequency. Likewise, we compute a true
top- for each stream by processing said streamwith amap linear in
the size of the stream, computing a frequency for each element, and
ordering by true frequency. We note that we would have achieved
identical results by putting a min-heap on top of each structure
with �xed sized  , updating as described in [30] and outputting its
contents once the entire stream has been processed. However, for
experimental purposes our approach is more extensible than the
one that would be used in practice.

The number of heavy elements, or perhaps the number of
heavy elements one would care about, varies depending on the
stream and the application. For instance, it is noted that in a telecom-
munications scenario when monitoring the top outgoing call desti-
nations of a customer typically a value of  in the range of 10 � 20
is appropriate [17]. Moreover, when identifying the most frequent
elements of interest of Zip�an distribution it is often of interest to
vary  based on the parameters of the underlying distribution [7].

We select for each stream by observing the number of clearly
identi�able outliers in the underlying stream. We do this by visually
inspecting the selected streams’ frequency plots. We set the G-axis
to enumerate all distinct elements in a stream, ordered from most
to least frequent and the ~-axis as those distinct elements’ corre-
sponding frequencies. We make a cut-o� around the point where
the frequencies went from very peaked (distinct with prominent
frequency jumps from element to element) to �at (many elements
with about the same frequency – the point at which the frequency
di�erences decline less sharply). These frequency plots can be seen
in Figure 6. We set  = 20 for the Kosarak stream,  = 22 for the
novel stream, and  = 22 for the retail stream.

We measure the accuracy of the non-adversarial performance
according to four di�erent metrics.
(1) Set Intersection Size (SIS): This measures the size of the set
intersection of the true top- setK of the stream and the estimated
top- set K̃ as reported by the CFE: SIS = |K \ K̃ |. This is measure
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Kosarak stream Novel stream Retail stream

Figure 6: We plot the top 35% probability mass for each stream. That is the most frequent elements that make up 35% of the total weight of the
stream (i.e. the fewest number of elements in each stream whose frequencies sum to such that when divided by the total length of the stream
equal 35%). The �rst vertical red line in each plot is the top 20% probability mass, the second the top 25%, the third the top 30%, and the last the
top 35%. From visual inspection we decided to make the top- cut-o� at, 20 for Kosarak, 22 for the Novel, and 22 for the Retail stream.

of precision on the estimated top- set as compared to the true
top- set. A SIS of  would imply perfect precision.
(2) Jaccard Index (JI): The JI is a statistic that measures the similar-
ity of two sets [27]. We use the statistic to determine the similarity
of the true top- setK of the stream and the estimated top- set K̃
as reported by the CFE. It is de�ned as JI = |K\K̃ |

|K[K̃ |
. A JI can be in

the range [0, 1], with a JI of 1 implying a perfect characterization
of the true top- set by the CFE in its top- estimation.
(3) Minimal Top- ̃ to Capture True Top-K (MCT): This mea-
sures determines the minimal size ! �  the estimated top-k set K̃
would need to be to capture all elements contained in the true top- 
set K . That is if one were to order the frequency estimates of all
items made by a particular CFE, we would determine the number of
items one would need to examine (starting from the most-frequent
going down to the least-frequent) until all the elements from K
were contained in that ordered set. Thus, !� indicates the number
of elements that fall out ofK that are incorrectly being individually
estimated to be greater than at least one element that is truly in K .
(4) Average Relative Error on Top-k elements (ARE): Aver-
age Relative Error is a standard measure to use when comparing
CFEs [30]. It is de�ned as ARE = 1

 
Õ 
8=1

|=̂8�=8 |
=8

where 8 2 [ ]
indexes the true top- elements for a particular stream.

Results. We crafted reference implementations for all three CFEs
of interest: CMS, HK, and CK6. They are implemented in Python3
and use the BLAKE2b cryptographic hash function for independent
row hash functions and for a �ngerprint hash function in the case
of CK and HK.

We are interested in comparing performance when the space
used by the structures is held constant. Observe that CK is three
times as large as CMS, and HK is twice as large as CMS assuming
the same space is used for a counter bucket and a �ngerprint bucket
(in the CK and HK) across all structures. In practice these buckets
could be (say) 32-bits. We picked two sets of parameters, a standard
set and a constrained set to test.

6Source code is available at: https://github.com/smarky7CD/cfe-in-adv-envs

The standard set of parameters set < = 2048,: = 4 for
CMS, < = 1024,: = 4 for HK, and < = 910,: = 3 for CK. This
corresponds to 32.76 kB of space when using a 32-bit bucket sizes.
We experimentally show that at this size all the structures are able
to identify the heavy elements of the streams we test upon with
minimal to no error.

The constrained set of parameters sets < = 512,: = 4 for
CMS, < = 256,: = 4 for HK, and < = 341,: = 2 for CK. This
corresponds to just 8.19 kB of space when using a 32-bit counter
and �ngerprint bucket sizes. In this space constrained setting the
structures are still able to identify the heavy elements of the streams
we test upon, but with some degree of moderate error.

For HK, we set 3 = 0.9 for all experiments, as this is the
default chosen by Redis [2] and satis�es the desired properties of
the exponential decay function stated in [30].

We ran 1000 trials for each structure, stream, and parameter
triplet using our reference implementations. We randomize each
trial on the particular choice of hash functions used for the rows
(by selecting a random per-trial seed), as well as the order in which
the items in the stream are processed. The latter simulates an item
being randomly drawn from the underlying distribution of the
stream. We averaged our four metrics for each structure, stream
and parameter triplet over the 1000 trials.

We present a summary of the results in Table 1. For the stan-
dard parameter set we see that CK and HK perform best, being able
to perfectly capture the true top- set for each stream with their
outputted estimated top- set in every trial. This is indicated by
the SIS and MCT being equal to  and the JI being equal to 1 for
each stream. Moreover, the estimates on these top- elements for
both of these structures were very tight. The ARE over all trials and
streams was ⇡ 0 (ignoring a small rounding error). This indicates
that CK and HK nearly perfectly individually estimated every single
element in the true top- across all trials.

CMS with the standard parameter sizing performs almost as
well. Only failing to capture the true top- set with its estimated set
a few number of times over the 1000 trials. This is indicated by the
SIS and MCT being very close to  and the JI being very close to 1
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Structure SIS JI MCT ARE
Standard

CK
(910, 3)

20
22
22

1
1
1

20
22
22

⇡ 0
⇡ 0
⇡ 0

CMS
(2048, 4)

19.303
22.999
21.643

0.934
0.999
0.997

20.901
22.001
22.405

0.017
0.009
0.040

HK
(1024, 4)

20
22
22

1
1
1

20
22
22

⇡ 0
⇡ 0
⇡ 0

Constrained

CK
(341, 2)

17.189
21.617
13.442

0.757
0.967
0.441

28.695
22.451
209.439

⇡ 0
⇡ 0
0.021

CMS
(512, 4)

18.241
21.638
18.745

0.841
0.969
0.745

24.567
22.473
41.609

0.125
0.062
0.296

HK
(256, 4)

20
22

21.976

1
1

0.998

20
22

55.008

⇡ 0
0.001
0.005

Table 1: A comparison of honest setting results between the CK, CMS,
and HK compact frequency estimators. Each parameter pair (<,: ) is
given under the name of the corresponding structure. The statistics
in each cell are listed such that they correspond to the streams in the
following order: Kosarak ( = 20) , Novel ( = 22) , Retail ( = 22)–
from ascending to descending.

for each stream. However, CMS, as it is prone to overestimation on
every element, has slightly higher ARE than the other structures.

The constrained set of parameters presents a challenge for
all the CFEs in computing individual frequency estimations on
elements in the streams, and as a result computing an accurate esti-
mated top- . This setting only allocates CK a measly 642 individual
counters to compactly represent streams that all have over 19, 000
distinct elements. Under these conditions, HK performs best accord-
ing to our metrics. It perfectly captures the true top- in both the
Kosarak and Novel stream, while only failing to do so in a handful
of trials with the Retail stream. Moreover, the ARE is small across
all streams – comparatively less than CMS with the standard pa-
rameters. HK by design prioritizes providing accurate estimates
on the most frequent elements, by way of its probabilistic decay
mechanism. So while it performs well on this task, it severely un-
derestimates middling and low frequency elements at this sizing,
reporting an individual frequency estimate ⇡ 0 for any element
that is not heavy.

CMS and CK perform less well in this small space allocation
setting. While CMS performs slightly better in capturing the true
top- set within its estimated top- set, CK continues to give better
accuracy on individual point estimations of the true top- elements
across streams due to its internal sub-estimators that provide tighter
estimations than CMS.

We observe in this constrained space setting across the struc-
tures measured performance is the worst on the Retail stream. This
is because the Retail stream has a �atter distribution as compared to
the other streams. That is to say, it has very few clearly identi�able

heavy elements before containing a large collection of elements of
about the same frequency. This can be seen in the frequency plot
in Figure 6. The Retail element with frequency rank 22 has a true
frequency of 1715while the Retail element of frequency rank 56 has
a true frequency of 1005. Comparing this to =22 = 22631,=56 = 9559
and =22 = 1176,=56 = 474, respectively for the Kosarak and Novel
stream, one can see that the relative fall o� in true frequency is
far less pronounced within this region of the Retail stream. This in
turn leads to small errors in the individual frequency estimations
of elements near (but outside) the true top- of the Retail stream
propagating to the top- estimation – by making it challenging
for the CFEs to draw a clear distinction between the truly heavy
elements and the nearly heavy elements. The upshot being, one
needs larger structures to accurately estimate these �atter streams.

In sum, CK performs comparatively well to both CMS and HK,
and in fact better than CMS when not burdened with very tiny
space constraints. It is able to perfectly estimate the true top- 
for all streams overall trials with only 2730 individual counters in
the standard parameter setting, while also being adversarial robust
where the others structures are not.

6.5 Attacks Against the CK
Our attacks against CK are almost one-to-one with those we present
against the CMS with one major di�erence. Recall from Corollary 1
that if at least one counter in some row 8 of the element G we are
querying on maps to has |+ 8G |  1 then CK returns estimate =̂G
such that =̂G = =G , i.e. CK(G) is a perfect estimate of G . This implies
that for an error to exist in a frequency estimation of G it must be
that 88 2 [:] it is necessary that |+ 8G | � 2. In the attack setting this
means we need to �nd a 2-cover (speci�cally a (F PG , G, 2)-cover)
on G to create error.

We attack CK in a two-step process, as with CMS and HK. We
�rst �nd a 2-cover for our target element G and then repeatedly
insert the 2-cover to create error. Under the assumption that G does
not own any of its counters in the � substructure of the CK (which
is guaranteed in our attack model7), then the ⇥1 sub-estimator will
be used to make the �nal error evaluation Qry query on G . Say
that after some process of �nding a 2-cover for G (which will be
of size  2: – for this discussion we will assume the size of the
2-cover is exactly 2:) we have l insertions to repeatedly insert
the elements in the cover. Repeated and equal insertions of each
of the elements in the 2-cover for G will cause the values in all of
G ’s counters in the" substructure of the CK to be of value l: . In
the � substructure the value in the counters that G maps to will
have value 1 and be owned by some element in the 2-cover. This
is because (under the no-�ngerprint collision assumption) in the
initially empty structure, ownership of said counters will �ip-�op
on each iteration of the insertion of the 2-cover between the two
distinct elements that map to these counters in accordance with
the U� algorithm of the HK with 3 = 1.

Then applying the estimation from ⇥1 we see that we will
generate error on G equal to l

2: . If we hold : constant and assume
that we are attacking a CMS under the same conditions (we have
found a 1-cover for a target G through some process and have l

7Save for the trivial case in the public representation, private hash setting when no
cover is able to be found.
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insertions to accrue error) we will have an error of l: , which is
twice that of the CK under the same conditions. Under the same
assumptions for HK, with the added one that we have already
primed the cover in the structure, we will achieve an error on the
target ofl , which isl � l

2: greater than that of the CK. We will see
this pattern holds when giving concrete experimental attack error
results at the conclusion of this section. We present the pseudocode
for all the attacks in the full version.
Public hash and representation setting. In this setting, we �nd
a 2-cover for target G using the Hash oracle only, and then accu-
mulate error for the target by repeatedly inserting the 2-cover. Each
insertion of the 2-cover increases the error by one. The two cover
can be inserted at least @*2: as the size of the cover is  2: . We apply
the same analysis used for the CMS attack, but replace : (1 + !1)
with: (1+!2) as the number ofHash-queries to complete the cover-
�nding step, as again, we now �nd a 2-cover. Assuming @* > 2:
(so that any found C can be inserted at least once) we arrive at
E[Err] �

⌅@*
2:

⇧
Pr

h
!2  @� �:

:

i
Using results from Section 5.1 we

can further obtain a concrete expression for Pr
h
!2  @� �:

:

i
.

Private hash and representation setting. Our CK attack for
the setting is essentially the same as the CMS attack, except a 2-
cover (as opposed to a 1-cover) is detected and repeatedly inserted
to build up the error. Using analysis similar to the CMS case and
assuming @& is not the limiting factor,

Err �
j⇣
✓+1
2 + 1

✓

⇣
@* + Õ✓�1

8=1 (✓ � 8)X8
⌘
� !2

⌘k
with ✓  2:

rounds to �nd a 2-cover. For reasonable sizes of the CK we mainly
expect ✓ = 2: (for the CMS case we expected ✓=:) and that E [X1]
are bounded by a constant that is small relative to<,@* /: . Given
that : ⌧<, we expect the following to approximate E[Err]:

E

"$ 
2: + 1
2

+ 1
2:

 
@* +

2:�1’
8=1

(2: � 8)X8
!
� !2

!%#
⇡ @D

2:
� E[!2] .

Public hash and private representation setting. The attack and
analysis from the public hash and representation setting applies.
Private hash and public representation setting. This attack is
one-to-one with the CMS attack in the same setting but again we
�nd 2-cover as opposed to a 1-cover. Hence,E[Err] � @* �1�E[!2]

2: '
@* �1�2<�:

2: .

Attack Comparisons. We implemented our attacks against all
structures in all settings to experimentally verify their correct-
ness and our analysis. In Table 2 we present a summary of results
for the public hash setting (our least restrictive setting) and the
private hash, private representation setting (our most restrictive
setting.). We experiment on two sets of parameters, one �xing : = 4
and the other : = 8. We then select a reasonable value of < for
CMS and then half it for HK and third it for CK so that the same
space is used in each structure. We �x adversarial resources such
that @� ,@* ,@& = 220. In practice this ensures that the number
of Hash queries or Qry queries will not be the bottleneck in our
attacks and that we are able to generate su�cient error in each
attack to showcase overall trends. We run each attack setting and
structure pairing over 100 trials, selecting a random target in each
trial, and average the results.

Observe the pattern that when holding : constant and setting
reasonable< values, adjusting such that CMS, CK, and HK use the
same space, attacks against CK generate the least amount of error.
The attacks against CK produce about half of the amount of error
as opposed to the CMS attacks, and about @* � @*2: less the amount
of error as opposed to the HK attacks. Moreover, observe that our
analytical results closely match those of our experimental results.

6.6 Adversarial Robustness
Corollary 2 shows that the error in CK(G) is largest whenHK(G) ⌧
CMS(G). In particular, when G does not own any of its counters
HK(G) takes on its minimal value of zero. But we can say something
a bit more re�ned, by examining what is computed on the way to
the returned value CK(G).

Speci�cally, recall that ⇠ (G) = bmin{⇥1,⇥2}c, where ⇥1 is
the smallest upperbound on =G that we can determine by looking
only at the rows that G does not own, and ⇥2 is the smallest upper-
bound on =G that we can determine by looking only at the rows
that G does own. Let � = |CK(G) � =G | be the potential error in
the estimate ⇠ (G). Dropping the �oor for brevity, if CK(G) = ⇥1
then Lemma 2 tells us that �  (" [8⇤] [?8⇤ ] ��[8⇤] [?8⇤ ] .cnt+ 1)/2,
where 8⇤ 2 { 9 | ⇥91 = min82�̂G {⇥

8
1}}.

Likewise, if CK(G) = ⇥2 then by Lemma 2 we have =G 
(" [8⇤] [?8⇤ ]+�[8⇤] [?8⇤ ] .cnt)/2, where 8⇤ 2 { 9 | ⇥92 = min82�G {⇥82}}.
In this case�[8⇤] [?8⇤ ] .cnt  =G , sowe know that�  (" [8⇤] [?8⇤ ]+
�[8⇤] [?8⇤ ] .cnt)/2��[8⇤] [?8⇤ ] .cnt = (" [8⇤] [?8⇤ ]��[8⇤] [?8⇤ ] .cnt)/2.
Adding 1/2 to this upperbound gives the same expression as in the
previous case.

Thus, we can augment the basic version of CK so thatQ��(qryG )
computes �, and returns a boolean value �ag along with the esti-
mate of =G . The value of �agwould be set to 1 i� � � k# , where #
is the length of currently inserted stream andk is a parameter. We
choose this condition because the non-adaptive correctness guar-
antees of CMS have a similar form: with : rows and< counters per
row, the estimate CMS(G) is such that Pr [ CMS(G) � =G  n# ] �
1 � X when n = 4/<, X = 4�: . From Corollary 2, in the worst case
we have �  (1/2)CMS(G)  (1/2) (=G + n# ) with probability at
least 1 � X .

Observe that when the frequency estimation error on an ele-
ment G is large, then row 8⇤ will be such that" [8⇤] [?8⇤ ] will have a
large value and �[8⇤] [?8⇤ ] .cnt will have a value very small relative
to the value in" [8⇤] [?8⇤ ]. In the worst case �[8] [?8⇤ ] .cnt = 1 – in
our attacks we force this to be the case. Taking �[8⇤] [?8⇤ ] .cnt ⇡
0, observe that whether CK(G) is determined by ⇥1 or ⇥2, we
see CK(G) ⇡ (1/2)" [8⇤] [?8⇤ ] ⇡ (1/2)CMS(G) in this high error
case. Then rolling in the non-adaptive CMS correctness guarantee
we see Pr[� > (1/2) (n# ) � (1/2)=G ]  X and certainly Pr[� >
1/2(n)# ]  Pr[� > 1/2(n)# � (1/2)=G ], thus setting k = (1/2)n
(where we can derive n from parameter<) can be a useful starting
point for settingk . As a caveat, however, as # becomes large, an ad-
versarial stream may be able to induce signi�cant error by settingk
in this way (due to the looseness of the CMS bound). Depending
on the deployment scenario, smaller values ofk , or even sublinear
functions of # , may be more appropriate for detecting abnormal
streams.
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Public Hash Setting Private Hash,
Private Rep Setting

Structure |cover| Experimental Err E[Err] |cover| Experimental Err E[Err]
CK, (< = 682,: = 4) 7.96 131821.00 131072.00 7.96 130796.69 127432.90

CMS, (< = 2048,: = 4) 3.99 263017.82 262144.00 3.99 261116.16 257877.34
HK, (< = 1024,: = 4) 3.99 1047502.69 1047500.00 4.0 1038804.55 1038018.54
CK, (< = 1365,: = 8) 15.97 65667.10 65536.00 15.93 63776.52 56618.28
CMS, (< = 4096,: = 8) 8.00 131072.00 131072.00 7.99 127029.66 119939.65
HK, (< = 2048,: = 8) 7.96 1046434.76 1046424.00 7.98 1007439.04 996946.87

Table 2: A comparison of Err accumulated by the di�erent structures during attacks in the public hash setting and the private hash, private
representation setting. We give the average size of the cover set and average error accumulated in each structure, setting pair over the 100
experiment trials. We also give the E[Err] according to our analysis.

Nonetheless, we implemented an version of CK with �ag-
raising (see Figure 5), and set< = 1024,: = 4. This corresponds
to n = 0.00265, X = 0.0183. We then setk = 0.0012 < 1

2n . Against it,
we ran 100 trials of the public hash, public representation attack
with @* = 216, and with per-trial random target elements G . The
average error was 8203.71, and in every trial the warning �ag was
raised.

For comparison, we also ran 100 trials, with the same parame-
ters, using the non-adversarial streams from Section 6.4. In each
trial, the entire stream was processed, and then we queried for the
frequency of every element in the stream, counting the number
of estimates that raised the �ag. Over all 100 trials, or nearly 7.7
million estimates in total, only three �ags were raised. These initial
�ndings suggest that the potential for CK to �ag suspicious esti-
mates may be of signi�cant bene�t to systems employing compact
frequency estimators.
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