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A B S T R A C T   

We explored neural processing differences associated with aging across four cognitive functions. In addition to 
ERP analysis, we included task-related microstate analyses, which identified stable states of neural activity across 
the scalp over time, to explore whole-head neural activation differences. Younger and older adults (YA, OA) 
completed face perception (N170), word-pair judgment (N400), visual oddball (P3), and flanker (ERN) tasks. 
Age-related effects differed across tasks. Despite age-related delayed latencies, N170 ERP and microstate analyses 
indicated no age-related differences in amplitudes or microstates. However, age-related condition differences 
were found for P3 and N00 amplitudes and scalp topographies: smaller condition differences were found for in 
OAs as well as broader centroparietal scalp distributions. Age group comparisons for the ERN revealed similar 
focal frontocentral activation loci, but differential activation patterns. Our findings of differential age effects 
across tasks are most consistent with the STAC-r framework which proposes that age-related effects differ 
depending on the resources available and the kinds of processing and cognitive load required of various tasks.   

1. Introduction 

Age-related differences in cognitive function have been associated 
with changes in performance (e.g., delayed responses to stimuli), brain 
function (e.g., decreased neural activation), and structure (e.g., reduced 
brain volume), among others (Grady, 2012). Physiological and brain 
imaging technologies have improved our understanding of these 
age-related differences (Reuter-Lorenz and Park, 2010). In particular, 
the use of electroencephalography (EEG) and event-related potentials 
(ERP) has allowed assessment of cognitive processes in real time by 
using sensors to measure voltage changes on the scalp (Banaschewski 
et al., 2007). However, few studies have examined whether age-related 
neural processing differences are consistent across cognitive tasks 
within individuals. Likewise, few studies have made use of new 
whole-head scalp topography analysis techniques to explore changes in 
the scalp distributions of neural processing associated with aging. 

Examining ERPs of older and younger adults has identified age dif
ferences associated with a variety of cognitive processes (Yi and Fried
man, 2011). The N170 elicited by faces, in contrast to objects, was 

delayed and larger in older relative to younger adults (Boutet et al., 
2021). The P3 elicited to infrequent compared to frequent events 
increased in latency and decreased in amplitude with increasing age 
(van Dinteren et al., 2014). The N400 effect reflecting differences be
tween semantically related and unrelated word pairs decreased with age 
(Joyal et al., 2020). The error related negativity (ERN) in a flanker task 
was reduced in older adults and had a somewhat different component 
structure (Hoffmann and Falkenstein, 2011). Generally, older adults are 
reported to produce smaller amplitudes and longer latencies than 
younger adults (Friedman, 2012). An important exception to the finding 
of smaller amplitudes in older adults comes from studies requiring in
hibition of responses, such as Go/NoGo or stop signal procedures, in 
which greater activation has been found in older adults (Hong et al., 
2014; Kropotov et al., 2016; Paitel et al., 2021; Staub et al., 2014). 

ERP analysis has been an effective method of identifying age-related 
differences in the timing and strength of neural responses in various 
cognitive processes. However, conventional ERP analyses select sensors 
(or groups of sensors) and processing time windows based on a priori 
assumptions about the underlying neural generators of the ERPs, 
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potentially limiting the hypotheses that can be addressed with ERPs, as 
well as missing age-related changes that may not be present at the 
electrode or time window of interest. Even when ERP analyses include a 
multi-electrode region of interest, they are limited in that they do not 
quantify synchronous activity across the whole head over time. Further, 
another limitation is that the presence of a particular component in the 
waveform and its amplitude are dependent on the reference that is 
chosen (Murray et al., 2008). 

More recently, technological and computational advances have led 
to the development of analytic methods that identify distinct voltage 
distributions across scalp electrodes over time (Murray et al., 2008; 
Michel and Koenig, 2018). For example, microstate analysis of resting 
EEG data has identified periods ranging from tens to hundreds of mil
liseconds when the scalp topography remains stable (Tomescu et al., 
2018). In contrast to ERP analyses, microstate analysis requires no a 
priori assumptions about the scalp location or timing of neural processes 
because it classifies stable configurations of voltage activity over time 
over the entire electrode array. Examination of these stable topo
graphical patterns allows insights into the temporal dynamics of neural 
activity as well as insights into the organization of perceptual and 
cognitive processes in the brain. Different microstates are thought to 
reflect differing mental processes since each map displays activation 
from a different pattern of neural sources (Lehmann and Michel, 2011; 
Khanna et al., 2015; Koenig et al., 2005; Michel and Koenig, 2018). 
Thus, microstate analysis allows for the exploration of hypotheses 
regarding age-related differences in neural processing such as whether 
microstates differ by age or task conditions. More specifically, it can 
allow assessment of theories predicting topographic shifts toward more 
frontal activation (Davis et al., 2008) or reduced hemispheric asym
metry (Cabeza, 2002) for the cognitive processing of older adults. 

Most microstate research has focused on resting-state EEG micro
states in young adults in paradigms in which no specified cognitive 
operations are called for (Jabès et al., 2021; Zanesco et al., 2020.) In 
these studies, much of the variance in global field power (GFP)1 can be 
explained by four to six microstates. In older adults, the same micro
states are observed although they occur less frequently, with longer 
durations (Jabès et al., 2021; Koenig et al., 2002; Tomescu et al., 2018). 
Specifically, Jabes et al., Koenig et al., and Zanesco et al. reported a 
lower occurrence of one of the major states (State C) in older adults, 
although Tomescu et al. did not find this. State C shows strong occipital 
and parietal activation and has been linked to neuronal activity in pa
rietal brain regions, in particular core regions of the default mode 
network (Custo et al., 2017). Jabès et al. and Zanesco et al. also found 
lower activity in another state (referred to as C’ by Jabes et al., 2021 or E 
by Zanesco et al., 2020) linked to the cortical salience network. This 
state extends more centrally than State C. 

Importantly, microstate analysis can also be used to explore task- 
related cognition (Koenig et al., 2011). Most of these studies use 
task-related data from young adults (Jouen et al., 2021; Kim et al., 
2021). We are aware of only one study using task-related microstate 
analysis to compare younger and older adults, in this case using the 
Stroop procedure (Ménétré and Laganaro, 2023). When comparing 
microstate maps for younger and older adults, the same microstate maps 
were present for both age groups. Although older adults showed a 
general slowing of the onset of the states, age-related differences 
emerged in the duration of the conflict detection phase around 400 ms, 
such that older adults had a disproportionately longer state duration. 

Based on a source reconstruction, Ménétré and Laganaro concluded that 
a relatively similar network of structures was engaged in both age 
groups. 

In this study, we examined age-related differences across four 
different cognitive tasks, some more perceptual and others more 
cognitive, performed by the same participants. We used well-studied 
paradigms that produce ERPs with well-documented timing, neural 
distributions, and neural sources: (1) a visual discrimination task for 
eliciting the face-specific N170 response (Eimer, 2011; Feuerriegel et al., 
2015; Rossion and Jacques, 2012); (2) an active visual oddball paradigm 
for eliciting the P3 component (van Dinteren et al., 2014; Polich, 2007, 
2012); (3) a word-pair association paradigm for eliciting the N400 
component (Kutas and Federmeier, 2011; Lau et al., 2008; Swaab et al., 
2011); and (4) a flanker paradigm for eliciting the error related nega
tivity, or ERN (Gehring et al., 2012; Olvet and Hajcak, 2008). We ex
pected to replicate age-related ERP differences reported in the literature 
and determine whether these differences could be confirmed when the 
same participants performed all four tasks. 

The central goal and the novel contribution of the present research 
was to explore the microstate concomitants of these ERPs. We compared 
the ERP results with those from task-related microstate analyses to 
determine if age-related differences in scalp topographies converged 
with ERP findings and whether the whole-scalp configuration of these 
microstates could tell us more about age-related changes in neural 
processing. 

2. Method 

2.1. Participants 

Forty participants were recruited from the Claremont Colleges and 
the surrounding Claremont, CA (USA) community. Younger adults (YA) 
received either financial compensation or partial course credit; older 
adults (OA) received financial compensation. Compensated participants 
were paid $10 per hour. All participants had at least 20:30 vision, 
measured using a vision contrast test (Vistech Consultants, Inc.). No 
participant reported a history of psychological disorders, neurological 
injury or disease, loss of consciousness for more than two minutes, or 
stroke. The study was approved by the Claremont McKenna College 
Institutional Review Board. All participants provided informed consent. 
The Shipley Institute of Living Scale (SILS) assessed general levels of 
intellectual functioning with vocabulary and abstraction subscales 
(Shipley and Burlingame, 1941). YAs and OAs did not differ in the 
combined score, t (32) = 1.47, p = 0.15. No participants scored below 
the cut-off score of 21 in the vocabulary assessment, indicating partic
ipants did not have impaired cognitive function (Harnish et al. (1994). 
However, it is of note that OAs had higher Vocabulary scores than YAs, t 
(32) = −2.80, p = 0.01, but YAs had higher Abstraction scores than OAs, 
t (32) = 3.50, p = 0.001. 

Participants were excluded from analyses based on data quality and 
task performance across all four tasks. Poor data quality was determined 
if at least one data set had less than 50% of trials remaining after artifact 
rejection and correction, or significant noise remained in the data 
following artifact correction (n = 3 YA). Poor performance was deter
mined if task accuracy was under 70% in any task (n = 3 OA). For the 
flanker task, all participants met the inclusion criterion of at least six 
errors (Kappenman et al., 2021). Thus, 34 participants were included in 
analyses with 17 YAs and 17 OAs. The demographics of the participants 
are listed in Table 1. 

2.2. Tasks 

2.2.1. Procedure 
Participants completed four experimental tasks while EEG was 

collected: Face Perception, Active Visual Oddball, Word-Pair Judgment, 
and Flanker tasks (modified from Kappenman et al., 2021; Fig. 1). 

1 Global field power (GFP) is a reference-independent measure of the po
tential field. It quantifies the amount of activity at each time point in the field, 
integrating the data from all recording electrodes simultaneously (Skrandies, 
1990). It corresponds to the spatial standard deviation in an electrical potential 
map at a given point in time. Low GFP is associated with relatively uniform 
activity; high GFP is associated with substantial variability in activity across the 
scalp. 
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Participants were seated at a viewing distance of 75 cm from the screen, 
with eyes level with the center of the screen, legs uncrossed, and feet flat 
on the floor. Stimuli were presented on a ViewPixx computer monitor 
with a 61.5 cm screen with a 1280×1024 resolution (Vision Science 
Solutions) using Presentation version 22 software (Neurobehavioral 
Systems). Task order was counterbalanced across participants. The EEG 
testing session was approximately 1.5 h in duration. 

2.2.2. Face Perception 
The face perception task was an object recognition paradigm modi

fied from Rossion and Caharel (2011) (Fig. 1a). Face images were 
modified to remove background, clothing, and hair. Car images were 
edited to remove the background. Scrambled faces and scrambled cars 
were created using a Fourier phase randomization procedure (Jacques 
and Rossion, 2004). On each trial, a stimulus was presented from one of 
four categories: faces, cars, scrambled faces, and scrambled cars. Each 
stimulus subtended 3.32◦ × 3.78◦ of visual angle and was presented in 
the center of the screen for 300 ms, with a jittered ISI of 1100–1300 ms 
(rectangular distribution, average of 1200 ms). A central white fixation 
point (0.15◦ visual angle) was presented during the ISI. Faces and cars 
were referred to as “objects,” and scrambled faces and scrambled cars 
were referred to as “textures.” Participants pressed one button for ob
jects and another button for textures using the index and middle fingers 
of their dominant hand. The stimulus-response mapping was counter
balanced across participants, such that half of the participants pressed 
with the index finger for objects, and half of the participants pressed 
with the index finger for textures. Each stimulus category had 40 stimuli, 
presented twice, for a total of 320 trials. Stimuli were presented in a 
random order, with the exception that a given stimulus was only pre
sented once in the first half and once in the second half of the experi
ment. Participants were given a rest break every 40 trials. 

2.2.3. Visual oddball 
For the active visual oddball task, participants viewed a sequence of 

letter stimuli and classified each stimulus as a target or non-target. On 
each trial, a letter (A, B, C, D, E, in uppercase, Geneva font, subtending 
2.5×2.5◦ of visual angle) was presented for 200 ms in the center of the 
screen over a continuously visible central white fixation point (0.15◦

visual angle), with a jittered SOA of 1200 - 1400 ms (rectangular dis
tribution, average of 1300 ms). Participants pressed one button for 
targets and another button for non-targets using the index and middle 
fingers of their dominant hand (Fig. 1b). Prior to each block of trials, one 
letter was designated as the target stimulus and the other four letters 
were non-targets. Each of the five letters served as a target in one block 
of the experiment and as a non-target in the other four blocks, with the 
order of blocks randomized across participants. The stimulus-response 
mapping was counterbalanced across participants (50% of participants 
used the index finger for targets; 50% of participants used the index 
finger for non-targets). Participants completed five blocks with 40 trials 
each, for a total of 200 trials. In each block, the probability of the target 
was 20%, and the probability of the non-targets was 80%, for a total of 8 
target trials and 32 non-target trials per block. The probability of each of 
the non-targets and targets within a block was 20%, eliminating possible 
sensory differences between target and non-target stimuli. Breaks were 
provided between blocks to allow participants to rest their eyes. 

2.2.4. Word-pair judgment 
For the word-pair judgment task, participants determined if two 

words were semantically related (see Kappenman et al., 2021 Supple
ment for list of words). The two words were presented in different colors 
of ink to make it easier for participants to track which word required a 
response. Both colors were equally distant from the gray background in 
the CIE (1976) color space. Words were presented in uppercase, Geneva 
font, with each letter in a word subtending 1×1◦ of visual angle. Each 
word was presented over a continuously visible white central fixation 
point (0.15◦ visual angle). 

The first word on each trial (“prime”) was presented in red (100, 0, 0) 
for 200 ms, followed by an ISI of 900–1100 ms (rectangular distribution, 
average of 1000 ms). The second word (“target”) was then presented in 
green (0, 90, 0) for 200 ms, followed by an ITI of 1400 - 1600 ms 
(rectangular distribution, average of 1500 ms) (Fig. 1c). Participants 
pressed one button for related word pairs and another button for unre
lated word pairs using the index and middle fingers of the dominant 
hand. The stimulus response mapping was counterbalanced across par
ticipants (50% of participants pressed with the index finger for related 
word pairs; 50% of participants pressed with the index finger for unre
lated word pairs. Each target word was presented once in a related word 
pair and once in an unrelated word pair. Word pairs were randomly 
intermixed. Participants completed 120 trials, with a break provided 
every 20 trials. 

2.2.5. Flanker 
The flanker task was modified from the Eriksen flanker task (Eriksen 

and Eriksen, 1974). In each trial, a central arrowhead was flanked by 
two arrowhead stimuli on either side all in black for 200 ms over a 
continuously visible central white fixation point (0.15◦ visual angle), 
with a jittered SOA of 1200 - 1400 ms (rectangular distribution, average 
of 1300 ms). Each arrowhead stimulus subtended 1◦ of visual angle. 
Participants made either a left-hand or right-hand button press corre
sponding to the direction of the central arrowhead (Fig. 1d). Flanker 
stimuli either pointed in the same direction (congruent trials) or the 
opposite direction (incongruent trials) as the target stimulus. Partici
pants completed a total of 400 trials, with a break provided every 40 
trials. Leftward and rightward pointing targets each occurred on half of 
the trials, and congruent and incongruent flankers each occurred on half 
of the trials; all trial types were randomly intermixed. To ensure an 
adequate number of error trials, feedback saying “Try to respond a bit 
faster” if the error rate dipped below 10%, or “Try to respond more 
accurately” if the error rate exceeded 20% was presented during the 
break between trial blocks. If the error rate was between 10–20%, a 
message of “Good job!” was presented. Because the leftward and right
ward pointing arrowhead stimuli are strongly associated with left- and 
right-hand responses, respectively, the stimulus-response mapping was 
held consistent across participants. 

2.3. Electrophysiological methods 

Continuous scalp electroencephalograms (EEGs) were recorded from 
32 active Ag/AgCl electrodes (actiCAP, Brain Products GmbH, Gilching, 
Germany) using the Brain Vision actiCHamp system (actiCHamp, Brain 
Products GmbH, Gilching, Germany). Impedances were kept below 

Table 1 
Participant demographic data (n = 34).  

Group N (# of 
females) 

Mean age in years (SD) 
range 

Mean years education 
(SD) 

SILS* : mean score 
(SD) 

SILS: mean vocabulary 
(SD) 

SILS: mean abstraction 
(SD) 

Young 
Adults  

17 (7)  20.76 (1.25) 
19-23  

15.06 (1.03)  69.44 (5.36)  32.85 (3.59)  36.59 (2.62) 

Older Adults  17 (8)  72.19 (3.77) 
66-79  

19.75 (2.49)  65.46 (9.80)  35.93 (2.77)  29.53 (7.89) 

*SILS= Shipley Institute of Living Scale.  
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50 kΩ throughout the experiment. Electrodes were placed at Fp1, Fp2, 
F3, Fz, F4, F7, F8, FC3, FC4, C3, Cz, C4, C5, C6, TP9, CPz, TP10, P3, Pz, 
P4, P7, P8, P03, P04, P07, P08, 01, Oz, O2 according to the international 
10/10 system. The horizontal electrooculogram (HEOG) was recorded 
from electrodes placed lateral to the external canthi and the vertical 
electrooculogram (VEOG) was recorded from an electrode placed below 
the right eye. The continuous EEG was digitized at 500 Hz. 

2.3.1. EEG data analysis and reduction 
Data were imported into MATLAB and analyzed using the EEGLAB 

toolbox (Delorme et al., 2004) and ERPLAB toolbox (http://www. 
erpinfo.org/erplab). EEG data were adjusted for DC bias then filtered 
using an IIR Butterworth band-pass filter from 0.1 to 30 Hz (12 dB/oct 
half amplitude cut off, 40 dB/dec roll-off). Data were re-referenced 
off-line to the average of TP9 and TP10 mastoid electrodes for the Vi
sual Oddball, Word Pair Judgment, and Flanker tasks, and to an average 

Fig. 1. Four tasks: face perception, visual oddball, word pair judgment, and visual flanker. 
(modified from Kappenman et al., 2021). 
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reference for the Face Perception task (Wang et al., 2019). None of the 
data sets contained bad channels. Continuous data were segmented into 
epochs. For the face perception, visual oddball, and word pair judgment 
tasks, segments were stimulus locked and defined from 200 ms 
pre-stimulus to 600 ms post-stimulus. For the flanker task, data were 
response locked and defined for 400 ms post response with a baseline 
from − 600 to − 400 ms before the response. For all tasks, baseline 
correction used the mean voltage from a 200 ms pre-stimulus or 
pre-response period. Artifacts in the data were addressed in two ways. 
First, trials were removed from analysis if they contained significant 
ocular artifacts (+/- 100 µV at HEOG or VEOG) during stimulus pre
sentation (+/- 150 ms surrounding stimulus presentation). Second, 
ocular (eye blink, eye movement), muscle and electrical artifacts were 
identified and corrected for the entire trial length (200 ms pre-stimulus 
to 600 ms post-stimulus) using independent component analysis (ICA, 
method RUNICA; Jung et al., 2000; Delorme et al., 2007). ICLabel 
(Pion-Tonachini et al., 2019) and SASICA (Chaumon et al., 2015) were 
used for independent confirmation of artifact components to be 
removed. For each participant’s cleaned EEG data set, the trials were 
averaged for each task condition for ERP analyses. 

2.3.2. Behavioral and ERP data analysis 
For each experimental task, we analyzed behavioral measures (pro

portion accuracy, mean correct response time, and/or number of errors). 
For the stimulus-locked N170, P3, and N400 components, we analyzed 
ERP mean amplitudes for correct trials only; the time windows for the 
mean amplitude quantification were based on examination of the grand 
average data averaged across conditions as well as the time windows 
reported in the literature (Kappenman et al., 2021). For the flanker task, 
we measured pre- (−110 to 0 ms) and post-response (−0 to 110 ms) 
mean amplitudes for correct and error (ERN) responses from partici
pants’ average ERP waveforms. We calculated the difference between 
pre- and post-response mean amplitudes by subtracting the 
post-response mean amplitude from the pre-response mean amplitude. 

For each experiment we confirmed that the majority of the data were 
represented within the selected time windows. For each task, we con
ducted mixed-model analyses of variance (ANOVAs) with the between- 
subjects factor of Age (YA, OA) and the within-subjects factor of Con
dition (2). The N170 analysis also included an Electrode (2) factor to 
examine age-related differences in the lateralization of face processing 
(Rossion et al., 2003). Effect sizes are partial eta squared (Ƞp

2). 

2.3.3. Topographic data analysis 
For microstate analysis, we employed the Randomization Graphical 

User Interface (RAGU; http://www.thomaskoenig.ch/index.php/work/ 
ragu/1-ragu; see Koenig et al., 2011 for a complete description of the 
methods; Murray et al., 2008 for a tutorial) to conduct multivariate 
statistical analyses of multichannel event-related data. These analyses 
are based on measures of scalp field differences and include all sensors in 
the randomization statistics to extract stable and recurring topographic 
patterns of electrical activity on the scalp. They make no a priori as
sumptions regarding the latency or location of maximal neural activity. 
Baseline-corrected, time x channel data were normalized to eliminate 
differential spatial distributions between the maps. Analysis of each task 
comprised a between-subjects Age (YA, OA) factor and a within-subjects 
Condition (2) factor. 

Three types of topographic ERP analyses were conducted. First, a 
topographic consistency test (TCT) evaluated whether there was 
consistent neural activity in the conditions across all participants most of 
the time by testing the null hypothesis that consistency between subjects 
is relatively small and produced by chance. For both age groups in all 
conditions across all four tasks, the TCT confirmed that over 80% of the 
data had consistent neural activation (p < 0.0002), indicating that 
consistency between participants’ datasets was not produced by chance. 

Next, a topographic analysis of variance (TANOVA), a nonparametric 
analysis of the global dissimilarities between topographical maps, was 

conducted to test whether the different experimental conditions elicited 
different brain functional states at given time points. Specifically, the 
dissimilarity in topographic maps is calculated for each point in time. In 
our study we calculated dissimilarity maps for age groups, conditions, 
and the interaction between age group and condition (i.e., the condition 
differences within each age group). Randomization tests were carried 
out to determine whether there were significant differences in the 
microstate patterns that could not be produced by chance. For example, 
for the main effect of condition, data points are randomly reassigned to 
conditions and the differences between these artificial groups were 
calculated. In our study, this procedure was repeated 5000 times, 
creating a distribution of the differences to be expected under the hy
pothesis of no condition effect. The likelihood that the actual differences 
that were observed occur in this distribution was determined. If the 
probability was less than or equal to 0.05, we concluded that the to
pographies of the conditions were significantly different at that point in 
time. This process was repeated for every point in time and extended 
periods with significant dissimilarities were identified. Thus, a signifi
cant TANOVA could indicate one of several possibilities. The two groups 
or conditions may have consistently different states (e.g., AAAA vs 
BBBB). They may have a variety of states that differ (e.g., ABCD vs 
EFGH). Or, they may have the same states but shifted in time. The time 
periods for significant Age by Condition interactions are reported in the 
Results section for each task. 

Third, if TCT shows consistent neural activity, then it is appropriate 
to carry out microstate analysis. Microstate analysis is an examination of 
brain electromagnetic scalp data in terms of a set of fixed maps, quan
tifying the data by the time periods when each map is predominant 
(Brandeis et al., 1995). Specifically, microstate analysis looks for high 
spatial correlations between the topographic distribution of activity at 
two data points. (A data point is the activity of all electrodes at a point in 
time.) Data points with high correlations are clustered together. The 
clustering is iterative, with each new data point assigned to the cluster 
with which it has the highest correlation. For each pattern of clusters, 
the Global Explained Variance (GEV) is calculated. The number of 
clusters is reduced by identifying the cluster whose removal least pe
nalizes the GEV. The number of clusters to retain is selected by the 
researcher based on the “elbow” at which the rate of improvement by 
adding another cluster drops. These patterns of electrode clusters yield a 
set of scalp maps that represent the different microstates. Each group 
and factor level at each moment in time is assigned to the microstate 
with which it has the highest spatial correlation. Statistics can be ob
tained for the onset and offset latency as well as the duration of each 
microstate. In addition, the mean GFP and the area under the GFP curve 
can be used to characterize the microstate. We also calculated center of 
gravity (COG), the GFP weighted by time. Duration, Area under the 
curve (AUC) and mean GFP of the microstates are considered global 
measurements of the occurrence of particular microstates. Onset, offset 
and center of gravity provide information about the behavior of the 
specific microstate in time; center of Gravity (COG) is a more robust 
temporal measure (Murray et al., 2008). 

The RAGU output from microstate analysis (e.g., Fig. 3) shows scalp 
maps corresponding to each microstate (identified by a state number 
and a color) as well as the unfolding of the microstates (and the GFP) 
over the course of the epoch. To more closely examine the microstate 
sequence in a period of interest, we carried out a second microstate 
analysis focused on the combined YA and OA time window for the ERP 
for that experiment. In sum, microstate analysis can investigate whether 
certain brain processes, as indicated by the microstate maps, differ in 
their timing between factor levels (i.e., if their length, onset, or offset 
latency was affected by the experimental condition or group). 

3. Results 

For each task, behavioral analyses for proportion accuracy and cor
rect response times (RTs; Table 2), ERP amplitude analyses (Table 3), 
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and topographic ERP analyses are reported. For all effects, means and 
standard errors (in parentheses) are reported. 

3.1. Face perception (N170) 

3.1.1. Behavior 
Age x Condition ANOVAs were conducted for proportion correct and 

correct RT. The Age by Condition interaction showed that OAs had 
similar high accuracy for faces and cars, but YAs performed relatively 
better for faces, MOA-faces = 0.98 (0.01); MOA-Cars = 0.96 (0.01), MYA-Faces 
= 0.97 (0.01), MYA-cars = 0.90 (0.02). Overall, OAs performed the task 
more slowly than YAs, MOA = 477 ms (16), MYA = 391 ms (14), and 
faces were faster than cars, MFaces = 422 ms (15), MCars = 446 ms (15). 
There was no Age by Condition interaction. 

3.1.2. N170 amplitude analyses 
N170 time windows were identified separately for YAs (135 - 

175 ms) and OAs (140 - 180 ms) (Rossion and Caharel, 2011) and then 
mean amplitudes were extracted for correct responses to faces and cars 
at PO7/Left Hemisphere (LH) and PO8/Right Hemisphere (RH) (Fig. 2). 

Overall, amplitudes were more negative for older adults than 
younger adults, MOA = −2.98 µV (0.66), MYA = −0.69 µV (0.93). The 
Age by Condition (Faces, Cars) by Hemisphere (PO7/LH, PO8/RH) 
ANOVA (Table 3) confirmed an N170 effect: faces elicited greater 
negative amplitudes than cars, MFaces = −3.24 µV (0.54), MCars 
= −1.38 µV (0.51). In addition to greater negativities in RH than LH, the 
Condition by Hemisphere interaction showed a greater RH N170 for 
faces than cars, MFaces-RH = −3.85 µV (0.56), MFaces-LH = −2.63 µV 
(0.53), MCars-RH = −1.78 µV (0.55), MCars-LH = −0.99 (0.47). Although 
OAs had more negative N170s than YAs, MOA = −2.97 µV (0.65); MYA 
= −1.65 µV (0.80), age did not interact with condition, hemisphere or 
produce a three-way interaction. 

3.1.3. Topographic microstate analyses 
The TANOVA revealed a significant Age by Condition interaction 

between 144 to 188 ms explaining 15.15% of the variance (p < 0.05). 
The microstate analysis produced seven distinct states for Face and Car 
conditions between 0 to 300 ms that were shared by both age groups and 
explained 93.10% of the total variance in GFP (Fig. 3a). The timing and 
topography of State 6 resembled the bilateral occipitotemporal distri
bution of the N170 (Rossion and Jacques, 2008). Constraining micro
state analysis to the 135 to 180 ms time period to include the ERP time 
periods for both age groups, a three-microstate model explained 90.70% 

Fig. 3. Face Perception microstate output for younger (YA; left) and older (OA; right) adult groups by Face (upper) and Car (lower) conditions. A) Seven states 
explain 93.10% of total variance for the 0–300 ms time period. B) Three states explain 90.70% of total variance between 135–180 ms. 

Table 2 
Proportion accuracy and correct response time (RT) ANOVA results for N170, 
P3, and N400 experiments (df1 =1, df2 =32).  

Experiment Measure Effect F-value P-value Ƞp
2 

N170 Accuracy Age  8.24  0.01  0.21   
Condition  24.79  < 0.001  0.44   
Age x Condition  6.12  0.02  0.16  

RT Age  16.80  < 0.001  0.34   
Condition  44.56  < 0.001  0.58   
Age x Condition  0.26  0.62  0.01 

P3 Accuracy Age  0.001  0.97  < 0.001   
Condition  47.67  < 0.001  0.60   
Age x Condition  0.79  0.38  0.02  

RT Age  48.00  < 0.001  0.60   
Condition  35.59  < 0.001  0.53   
Age x Condition  0.40  0.53  0.01 

N400 Accuracy Age  0.30  0.59  0.01   
Condition  0.30  0.59  0.01   
Age x Condition  0.02  0.89  < 0.001  

RT Age  10.90  0.002  0.25   
Condition  154.73  < 0.001  0.83   
Age x Condition  2.18  0.15  0.06 

df = degrees of freedom. Ƞp
2 = partial eta squared 

Table 3 
Amplitude ANOVA results for N170, P3, N400 and ERN experiments (df1 =1, 
df2 =32).  

Experiment Effect F-value P-value Ƞp
2 

N170Ϯ Age  2.12  0.16  0.06  
Condition  28.84  < 0.001  0.47  
Hemisphere  9.68  0.004  0.23  
Age x Condition  3.48  0.07  0.10  
Age x Hemisphere  1.34  0.26  0.04  
Condition x Hemisphere  1.24  0.27  0.04  
Age x Condition x Hemisphere  1.39  0.25  0.04 

P3Ϯ Age  6.31  0.02  0.17  
Condition  90.90  < 0.001  0.74  
Age x Condition  5.29  0.03  0.14 

N400Ϯ Age  2.72  0.11  0.08  
Condition  74.53  < 0.001  0.70  
Age x Condition  5.69  0.02  0.15 

ERNϮ Ϯ Age  1.79  0.19  0.05  
Condition  9.22  0.005  0.23  
Age x Condition  4.89  0.03  0.13 

df = degrees of freedom. Ƞp
2 = partial eta squared 

Ϯ = mean amplitudes ϮϮ ϮϮ 
= peak-to-peak mean amplitudes 

C.M. Denaro et al.                                                                                                                                                                                                                              



Neurobiology of Aging 136 (2024) 9–22

15

of the GFP variance (Fig. 3b). State 2 was similar to State 6 in the full 
analysis. There were no significant age-related State 2 onset differences, 
but there was a significant State 2 offset difference (p < 0.02) with State 
2 for OAs ending later than for YAs. There were also corresponding in
creases in the OA’s State 2 in terms of overall duration (p = 0.03) and 
COG (p = 0.05). State 2′s AUC was greater for faces than cars 
(p < 0.003). 

3.2. Visual oddball (P3) 

3.2.1. Behavior 
Age x Condition ANOVAs were conducted for proportion correct and 

correct RT. YAs and OAs performed with similar accuracy, MOA = 0.94 
(0.01), MYA = 0.94 (0.01), and participants were more accurate for 
Frequent than Rare conditions, MFrequent = 0.98 (0.01), MRare = 0.90 
(0.02), but there was no interaction. OAs performed the task more 
slowly than YAs, MOA = 490 ms (15), MYA = 369 ms (11), and Rare 

Fig. 2. Face perception/N170: Grand average waveform plots for Face and Car conditions produced by younger (YA) and older (OA) adults at PO7/LH and PO8/RH. 
Shaded areas indicate the N170 time window. Scalp maps represent average voltage for the ERP time window. 

Fig. 4. Visual oddball/P3: Grand average waveform plots for correct Rare (target) and Frequent (non-target) conditions produced by younger (YA) and older (OA) 
adults at Pz. Shaded areas indicate the P3 component time window. Scalp maps represent average voltage for the ERP time window. 
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conditions were slower than Frequent conditions, MRare = 451 ms (15), 
MFrequent= 408 ms (12), but there was no interaction. 

3.2.2. P3 amplitude analyses 
P3 time windows were identified separately for YA (300 - 425 ms) 

and OA groups (375 - 500 ms) (Polich, 2012) and mean amplitudes were 
calculated for Rare and Frequent conditions at Pz. The Age by Condition 
(Rare, Frequent) ANOVA (Fig. 4) showed lower amplitudes overall for 
OAs than YAs, MOA= 6.85 µV (0.77), MYA= 11.37 µV (1.64). The Con
dition difference confirmed the P3 effect, MRare = 12.10 µV (1.41), 
MFrequent = 6.13 µV (1.00). The significant Age by Condition interaction 
showed P3 effects were greater for YAs than OAs, MYA-Rare = 15.08 µV 
(1.85), MYA-Frequent = 7.67 µV (1.43), MOA-Rare = 9.12 µV (0.98), MOA-

Frequent = 4.59 µV (0.57), but the interaction indicated that the 
age-related difference was greater for Rare than for Frequent conditions: 
YARare vs OARare: t(32) = 2.71, p = 0.05; other post-hoc comparisons, ns. 

3.2.3. Topographic microstate analyses 
The TANOVA revealed a significant Age by Condition interaction 

between 244 to 314 ms, explaining 13.18% of variance (p < 0.03). The 
fitting of microstate maps between 0 to 700 ms resulted in 9 distinct 
states explaining 93.95% of the total variance in GFP. Microstate maps 
between 300 to 500 ms produced 3 states explaining 95.65% of total 
variance in GFP. There were clear age-related timing and topographical 
differences across microstates. State 2 corresponded to State 4 in the full 
epoch, indicating a tight centroparietal topographical distribution 
associated with the P3 ERP voltage scalp distribution. This was the 
predominant state for YAs, but it was also present in OAs although 
diminished. There were significant condition effects of State 2 onset 
(p = 0.001) with the Frequent condition starting before the Rare con
dition. The significant offset effect for age group and condition effects 
indicated that State 2 had a much longer duration for YAs than OAs, as 
well for Frequent conditions. The mean GFP (p = 0.01) and AUC 
(p = 0.005) indicated Age by Condition interactions: State 2 was 
stronger for Frequent compared to Rare conditions in YAs, but was 
weaker and similar across conditions for OAs. In contrast, State 3, rep
resenting a more anterior centroparietal positivity, was the predominant 
state for OAs, although it was also present in YAs. It corresponded with 
State 5 in the longer epoch. State 3 had significant timing effects that did 
not interact with Age Group. The significant onset and duration effects 
for Age Group (p < 0.006) indicated that State 3 occurred earlier for YAs 
and lasted longer for OAs. The significant COG effect for group indicated 
it was later and longer for OAs. Condition effects showed timing 

differences for State 3 in the onset (p = 0.02) indicating it occurred 
earlier for Frequent conditions; the duration effect (p = 0.03) indicated 
it lasted longer for the Rare condition. Overall, the Frequent condition 
had a stronger mean GFP than the Rare condition (p < 0.0001). Thus, 
microstate analysis showed that age influenced the timing of the brain 
processes associated with attention and categorization as indicated by 
states for the different conditions. Nonetheless, age groups primarily 
differed in the predominant topographical state: the tight centroparietal 
topography that was predominant for YAs differed from the broader, 
slightly more anterior centroparietal topography predominant for OAs 
(Fig. 5). 

3.3. Word-pair judgment (N400) 

3.3.1. Behavior 
Age x Condition ANOVAs were conducted for proportion correct and 

correct RT data. OAs performed with similar accuracy as YAs, MOA 
= 0.98 (0.01); MYA = 0.97 (0.01), and participants had similar accuracy 
for Related and Unrelated conditions, MRelated = 0.97 (0.01), MUnrelated 
= 0.98 (0.01). There was no interaction. OAs performed the task more 
slowly than YAs, MOA = 738 ms (30), MYA = 594 ms (34), and Related 
word pairs had faster RTs than Unrelated word pairs, MRelated = 589 ms 
(30), MUnrelated = 743 ms (34), but there was no interaction. 

3.3.2. N400 amplitude analyses 
Separate N400 time windows were identified for YA (260 - 460 ms; 

Kutas and Hillyard, 1980) and OA groups (350 - 550 ms) and mean 
amplitudes were calculated for each condition at Pz (Fig. 6). An Age by 
Condition (related, unrelated) ANOVA showed that amplitudes did not 
differ by age, MOA = 2.46 µV (0.62), MYA = 5.48 µV (1.40). The N400 
effect was confirmed, with Unrelated amplitudes relatively more nega
tive than Related amplitudes, MUnrelated = 1.50 µV (0.63), MRelated 
= 6.89 µV (0.94). The significant Age by Condition interaction occurred 
because the N400 effect (i.e., Unrelated- Related difference) was larger 
for YAs than for OAs, MYA-Related = 9.03 µV (1.68), MYA-Unrelated 
= 1.93 µV (1.12), MOA-Related = 4.47 µV (0.70), MOA-Unrelated = 0.45 µV 
(0.54). 

3.3.3. Topographical microstate analyses 
The TANOVA analysis revealed a significant Age by Condition 

interaction between 390 to 536 ms which explained 14.89% of variance 
(p < 0.03). The fitting of microstate maps between 0 to 800 ms resulted 
in eight distinct states that explained 90.75% of the total variance in GFP 

Fig. 5. Visual Oddball microstate output for younger (YA; left) and older (OA; right) adult groups by Rare (upper) and Frequent (lower) conditions. A) Nine states 
explain 93.95% of total variance for the 0–800 ms time period. B) Three states explain 95.65% of total variance between 300 - 500 ms. 
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(Fig. 7A). Constraining the analysis to the 260–550 ms time period, a 
three-microstate model explained 91.18% of the GFP variance (Fig. 7B). 
Age groups and conditions shared the same states in a similar order, but 
differed primarily in State 2 which resembled the centroparietal N400 
scalp topography (Kutas and Federmeier, 2011); State 2 was similar to 
State 4 in the full epoch analysis. State 2 did not produce any Age by 
Condition interactions; it only showed Condition effects indicating that 
the Related condition had a longer duration (p < 0.0001), greater AUC 
(p < 0.0001), COG (p < 0.0001) and mean GFP (p < 0.0001) compared 
to the Unrelated conditions. All of these measures indicated that this 
centroparietal N400-like topography was had a larger and longer GFP 

for the Related condition. In contrast, State 3, similar to State 3 in the 
full epoch, showed a more frontocentral topography, and was only was 
present for the Unrelated condition. State 3 produced a significant Age 
by Condition interaction for AUC (p = 0.02), indicating that for the 
Unrelated condition, OAs produced this state more than the YAs. Thus, 
age appeared to influence measures relating to the occurrence of State 3 
with its frontoparietal scalp topography, rather than the state’s timing 
between groups and factor levels. 

Fig. 6. Word-pair judgment/N400: Grand average waveform plots for Related and Unrelated word-pair conditions produced by younger (YA) and older (OA) adults 
at Pz. Shaded areas indicate the N400 component time window. Scalp maps represent average voltage for the ERP time window. 

Fig. 7. Word-pair judgment microstate output for younger (YA; left) and older (OA; right) adult groups by Related (upper) and Unrelated (lower) conditions. A) eight 
states explain 90.75% of total variance for the 0 - 800 ms time period. B) three states explain 91.18% of total variance between 260 - 550 ms. 
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3.4. Error Processing (ERN) 

3.4.1. Behavior 
YAs made more errors than OAs, MYA = 46.06 (4.69), MOA = 27.29 

(6.16), t(32) = 2.43, p = 0.02. 

3.4.2. ERN amplitude analyses 
We measured pre- and post-response mean amplitudes for correct 

and error responses at Fz (Gehring et al., 2012; Gentsch et al., 2009). The 
Age by Condition (Correct, Error) ANOVA (Fig. 8) showed the expected 
condition effect but no age effect. Both effects were qualified by the 
significant Age by Condition interaction indicating that the difference 
between Correct and Error responses was greater for YAs (p < 0.03), 
MYA-Correct = −1.52 µV (0.94), MYA-Error = 2.07 µV (0.76), MOA-Correct 
= 1.18 µV (0.55), MOA-Error = 1.75 µV (0.83).. 

3.4.3. Topographic microstate analyses 
The TANOVA indicated no significant Age x Condition interaction 

during the ERN time period (p > 0.27). This lack of interaction sug
gested that there may be no overlap in stable microstates between age 
groups during the error processing time period. 

Microstate analysis produced six states accounting for 94.71% % of 
the total variance in GFP for the post-response epoch and three states for 
the 0–110 ms ERN time period accounting for 94.67% of the total GFP 
variance. Between 0 to 110 ms, YA and OA groups had little overlap in 
states, indicating distinct scalp topographies and neural generators for 
the two age groups. We focus on comparisons of States 1 and 2 that have 
distributions associated with the ERN. For YAs, the primary state for the 
ERN was State 2, indicating a frontocentral negativity which had timing 
and scalp topography consistent with the ERN ERP scalp map of average 

voltages (Dehaene et al., 1994). State 2 had a significantly longer 
duration (p < 0.01) and AUC (p < 0.001) for YAs compared to OAs and 
there was a significant Age by Condition interaction for duration 
(p < 0.003) and AUC (p < 0.0001) indicating that State 2 was present 
for the YA Error condition compared to the YA correct condition; it was 
not present for OAs in either condition. State 1 had a frontocentral 
positive distribution that extended more posteriorally than State 2. State 
1 was predominant in the OA’s correct and error conditions. The sig
nificant Age Group effect for AUC (p < 0.0001) indicated that State 2 
was produced by OAs rather than YAs. Thus, the significant age-related 
differences in state behavior were related to the occurrence of specific 
states rather than their timing. 

4. Discussion 

Aging has been shown to influence both performance and neural 
function, but the literature reports mixed results about whether aging 
has a common effect across cognitive functions or whether it is process 
specific. In this study we addressed this question by using electroen
cephalography and a within-subject design to examine age-related 
changes in neural processing across four different cognitive tasks. Spe
cifically, we used both event-related potential and topographic micro
state analytical approaches to examine age-related differences in the 
timing of neural events and in the topography of neural processing. 
Although ERP analyses can identify activation in select electrodes, they 
cannot assess age-related differences in activation across the whole 
scalp. As a result, we used task-related microstate analyses to classify 
stable states of whole-head neural activity across time (Murray et al., 
2008; Michel and Koenig, 2018). Microstate analyses provided addi
tional insights into age-related changes in the distribution of whole-head 

Fig. 8. Flanker/ERN: Grand average waveform plots for Correct and Error response conditions produced by younger (YA) and older (OA) adults at Fz (baseline is 
−600 to −400). Peak-to-peak mean amplitudes are calculated as the difference between the mean amplitude − 110 to 0 ms prior to response and the mean amplitude 
0 to 110 ms following the response. Scalp maps represent average voltage for the shaded ERP time window. 
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neural activity beyond those provided by ERP analyses. Results from 
both ERP and topographical microstate indicated that age effects on 
neural responses were not uniform across the tasks. 

For face perception, age-related differences were associated with 
small processing delays rather than with the strength or the topography 
of the neural processing. We found no age-related differences in the 
effects of condition (face vs. car) or hemisphere. In the literature, evi
dence for age-related differences in N170 amplitudes and hemispheric 
specialization is mixed (Boutet et al., 2021; Daniel and Bentin, 2012). 
Microstate analysis confirmed the same microstates for both age groups, 
emerging in the same order. The predominant occipitotemporal micro
state was similar to the N170 scalp distribution for a similar time period 
(Rossion and Jacques, 2008). Although the onset of the microstate was 
similar, the microstate had a longer duration for older adults. Thus, ERP 
and topographic analysis converge on the finding that for the more 
perceptual encoding of objects, aging influences the timing (Pichot 
et al., 2022), but not the neural generators associated with face 
processing. 

For attention and categorization, as measured by the visual oddball 
task, ERP analyses confirmed overall age-related delays in the P3 (van 
Dinteren et al., 2014), as well as an age by condition interaction arising 
from a larger difference between rare and frequent events in younger 
adults. Microstate analyses demonstrated age-related timing and 
strength differences in the scalp topographies over time. Both voltage 
maps and microstate maps showed a different pattern of centroparietal 
activation for OAs than YAs, a pattern that extended across more elec
trodes both frontally and laterally. However, unlike other aging studies 
using fMRI methodology (Reuter-Lorenz and Lustig, 2017), the activa
tion did not move or extend to frontal pole areas.2 Microstate analyses 
also showed less differentiation in GFP between conditions for OAs 
compared to YAs. OAs may not orient as strongly to infrequent stimuli, 
such that they do not evaluate as big a discrepancy between rare stimuli 
and the context, defined by the frequent stimuli. 

Semantic processing was measured by a word-pair judgment task in 
which the N400 is a cognitive index of automatic semantic activation. 
ERP analyses also replicated delayed, smaller N400 effects for OAs than 
Yas (Tiedt et al., 2020). The age-related difference occurred because 

amplitudes were similar for YAs and OAs with unrelated pairs but were 
much larger in YAs than OAs for related pairs. Joyal et al. (2020) also 
reported an influence of age on the N400 difference wave, but it is un
clear if the age-related difference was driven by the related condition in 
their study as it was in ours. Microstate analyses further confirmed that 
both age groups produced a common microstate (State 2) with a tight 
centroparietal distribution of activity. This state was present with 
related word pairs but not with unrelated pairs. However, a different 
microstate (State 3) with a more frontocentral distribution distinguished 
the OAs from the YAs in the unrelated condition. These age-related 
differences suggest an anterior spread in older adults’ activation but 
only for evaluating unrelated word pairs. Thus, for attention/categori
zation (P3) and semantic processing (N400), microstate analyses indi
cated age differences in processing states. During critical time windows 
of processing, older adult states showed more widely spread cen
troparietal scalp distributions that moved anteriorly relative to those of 
younger adults. 

Unlike the above stimulus-locked tasks, ERPs elicited from the 
flanker task were response-locked. The flanker task isolated neural ac
tivity associated with error responses. The ERN ERP analyses indicated 
age-related differences in processing correct and error responses: Older 
adults show a smaller difference than young adults. Importantly, 
microstate analysis revealed distinctly different microstates between 
older and younger adults, something only implied by the ERP analyses. 
OAs showed the same central positivity for error and correct responses 
whereas YAs showed central negativity for error responses but a left- 
lateralized state for correct responses. Hoffmann and Falkenstein 
(2011) found the ERN ERP had a somewhat different component 
structure for older adults and this difference is apparent in the micro
state analyses, which classified the topography of activity across the 
scalp as significantly differing across groups. For younger adults, the 
ERN produced a microstate with frontocentral negativity, but for older 
adults, the relevant microstate showed a frontocentral relative 
positivity. 

In sum, this study extended the limited research examining task- 
related microstates (rather than resting-state, Zanesco et al., 2020; 
Jabès et al., 2021) to explore age-related differences in neural process
ing. By comparing the results from ERP and microstate analyses across 
tasks, we have shown that microstate analysis provides greater context 
to the ERP analyses because it does not require having to make a priori 
assumptions about electrodes of interest and time windows. We used 

Fig. 9. Response-locked flanker task/ERN microstate output for younger (YA; left) and older (OA; right) adult groups by Correct (upper) and Error (lower) responses. 
A) Six states explain 94.71% of total variance for the 0 - 300 ms time period. B) Three states explain 94.67% of total variance between 0 - 110 ms. 

2 Of interest, although we did not report this comparison, there was no sta
tistical difference across Cz, CPz, and Pz electrodes within each age group for 
P3 amplitudes, despite the apparent microstate and voltage differences. 
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well-established ERPs elicited from stable paradigms and microstates 
were shown to provide converging evidence for the scalp distribution 
and timing of the neural effects. However, they also contributed to our 
understanding of those effects that change with age. 

Several frameworks have been proposed to account for age-related 
differences in brain activation (Festini et al., 2018; Oosterhuis et al., 
2023): central nervous system slowing (CNSS); dedifferentiation (DD, 
Koen et al., 2020), posterior-to-anterior shift in aging (PASA; Davis 
et al., 2008), hemispheric asymmetry reduction in older adults (HAR
OLD; Cabeza, 2002), diffused activation (DA; Voss et al., 2008), 
compensation-related utilization of neural circuits (CRUNCH; Reuter-
Lorenz and Cappell, 2008), and the scaffolding theory of aging and 
cognition (STAC, Park and Reuter-Lorenz (2009), and STAC-r[evised] 
(Reuter-Lorenz and Park, 2014). 

CNSS proposes a general slowing of neuronal transmission in the 
central nervous system (Birren and Fisher, 1995; Salthouse, 1996). It 
predicts that the latency of neural events will be longer in older adults. 
Dedifferentiation is signaled when the effect of a manipulation is 
stronger in younger than in older adults (Koen and Rugg, 2019). The 
distinctiveness of neural responses is reduced in older adults, such that 
brain activation patterns are less specific to a particular type of input or 
mental state. Closely related concepts refer to a loss of neural coherence 
and increased neural noise with increasing age (Layton, 1975). Diffused 
activation is closely related to dedifferentiation and often the terms are 
used interchangeably (Voss et al., 2008). Here we use DA to refer to 
topographical patterns that have similar foci (as opposed to different 
foci) in the two age groups, but a greater spread in the older adults. 
Although DD may result in DA, the presence of DA does not necessarily 
entail DD (Koen and Rugg, 2019). PASA describes patterns in which 
tasks elicit posterior, parietal activation in younger adults but frontal 
activity in older adults. HAROLD notes greater bilateral activation 
(especially frontal) in older adults where activation is more unilateral in 
younger adults. For example, Reuter-Lorenz et al. (2000) found that 
spatial working memory was right-lateralized in frontal cortex in 
younger adults whereas verbal working memory was left-lateralized but 
both tasks elicited bilateral activation in older adults. CRUNCH postu
lates that the level of brain activation in response to increased task de
mands increases regardless of age. Older adults, with already reduced 
resources, should show this recruitment at lower levels of demand. The 
STAC views cognitive activity as being embedded in a scaffold consisting 
of individual differences in brain integrity, compensatory activation, 
maintenance, education, and richness of experience. DA, PASA, and 
HAROLD make predictions about the topographical foci of cortical ac
tivity and microstate analysis is uniquely suited to assess their fit to the 
data. CRUNCH is consistent with all three, and further, explains why the 
patterns of activation are different in younger and older adults. STAC-r 
could encompass all of the above, depending on the task, the person, 
neural changes, recruitment, and other factors. Patterns consistent with 
PASA, HAROLD, and CRUNCH are often elicited by tasks with a high 
cognitive demand, whereas all of our tasks were less cognitively 
demanding. Nevertheless, Reed et al. (2017) found a pattern apparently 
consistent with PASA using a simple detection task. 

Our datasets comprising four different cognitive domains and pro
cesses provide a unique opportunity to compare and contrast these 
frameworks. Microstates help to differentiate among these theories. The 
slowing of neural transmission postulated by CNSS would be signaled by 
longer latencies for ERPs and delayed onsets of microstates in older 
adults. This was found in the face perception (N170), attention (P3), and 
categorization (N400) experiments. In the flanker response processing 
(ERN/CRN) experiment, RTs were clearly longer for OAs, but the 
response-related processing was carried out in the same window for both 
OAs and YAs. 

DD would be signaled primarily by smaller effects of the condition 
manipulations in OAs than in YAs. This was found in the P3, N400, and 
ERN/CRN experiments. For P3, rare minus frequent was larger for YAs 
(7.41 µV) than for OAs (4.52 µV); for N400, related minus unrelated was 

larger for YAs (6.87 µV) than for OAs (3.90 µv); for ERN/CRN, correct 
minus error was larger for YAs (3.59 µV) than for OAs (0.57 µV). By 
contrast, for N170 faces minus cars was greater in magnitude for OAs 
(−2.50 µV) than for YAs (−1.21 µV) although the interaction of age 
group and condition did not reach significance. A plausible interpreta
tion is that more perceptual tasks show less evidence of dedifferentation. 

Topographical patterns would be classified as DA when YAs and OAs 
have similar foci but the spread of activation is greater in the OAs. Only 
the P3 experiment fit this pattern. Activation in OAs (State 3) was more 
diffuse than in YAs (State 2), extending slightly frontally but also more 
posteriorally and laterally. The same states were active with both 
frequent and rare stimuli. It should be noted that the activation was 
more parietal in OAs and more central in YAs. Activation in the ERN/ 
CRN experiment was more diffuse for OAs but it had a clearly different 
focus than the YAs. 

Only the N400 experiment clearly fit the pattern described by PASA. 
For related word pairs YAs and OAs show the same state with a parietal 
focus. For OAs but not YAs, the presumably more difficult unrelated 
word pairs elicited a clear frontal focus. In the P3 experiment, as noted, 
activation for OAs was shifted slightly forward— a pattern that might be 
interpreted as consistent with PASA— although the focus was central 
rather than frontal. 

Evidence consistent with HAROLD was also found in only one 
experiment, ERN/CRN. Here YAs showed focused activation in left 
occipital-parietal cortex. A true HAROLD pattern would have focused 
activation in OAs in both left and right occipital-parietal cortex. Instead, 
the activation for OAs was central and diffuse for both correct and error 
responses. 

The patterns of age-related differences that were most consistent 
across experiments, then, were those characterized by the slowing and 
dedifferentiation frameworks. The microstate analyses showed that the 
three experiments other than face perception (N170) were each char
acterized by a different pattern of age-related differences in topography: 
the oddball attention task (P3) showed a diffuse activation pattern; the 
semantic categorization task (N400) showed a PASA pattern; the flanker 
task (ERN/CRN) arguably showed a HAROLD pattern. It is important to 
remember that the same participants completed all four tasks at the 
same time. This underscores the conclusion that different cognitive tasks 
elicit different topographies of age-related differences. The findings as a 
whole—evidence across tasks for slowing and dedifferentation as well as 
different topographies for different tasks—are well accounted for by the 
STAC-r framework, acknowledging as it does the interacting contribu
tions of fundamental nervous system changes, of strategic responses to 
task demands, and of life experiences. 

4.1. Conclusion 

In conclusion, we examined whether different cognitive tasks would 
reveal similar or different age-related differences in neural responses. 
Our classic ERP-evoking tasks provided known timing and loci of neural 
processing, thereby allowing us to confirm the outputs of the microstate 
analyses. The state maps from topographical microstate analysis pro
vided additional insight into the spatial distribution of electrical activity 
across the whole scalp during different phases of neural processing, 
especially regarding the onset, offset, and power of the stable micro
states. This technique clarified the dynamics of neural activity and 
provided insights into the organization of cognitive and neural 
processes. 

When compared to traditional ERPs, microstates can provide addi
tional information from the ERPs in three major ways. First, microstates 
take into account activation across the whole scalp relative to the acti
vation from a single or small group of electrodes. The microstate 
approach does not have a priori assumptions as to the distribution of 
scalp activations. Second, if the two groups and conditions share com
mon microstates, then the scalp distributions can speak quantitatively to 
the strength, onset and duration of specific microstates. We observed 
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such timing and strength differences for face and object processing and 
the N170. Third, if the two groups and conditions have different mi
crostates, then the scalp distributions in the microstates can speak to the 
changes in underlying neural activation/generators producing different 
patterns of activation. We observed these activation pattern differences 
in for context updating/P3, semantic judgments/N400, and error pro
cessing/ERN. 

In contrast to ERPs or microstates, fMRI allows the identification of 
specific loci that are engaged by a task. The theoretical frameworks, 
though, make broader claims about general areas of activation such as 
frontal or lateral. With some cautions, EEG/ERP topographies can speak 
to such claims. Our goal here was to understand the age-related differ
ences we found using ERPs and microstates using the aging theories as a 
contextual framework. The areas of cortical activation found in this 
study are consistent with those found in fMRI studies. With microstate 
analysis, we were able to characterize the moment to moment changes 
in the patterns of activation over short periods of time. 

Microstate analyses, as well as the ERP analyses, showed different 
effects of age across tasks which were most consistent with the STAC-r 
framework that proposes age-related effects differ depending on the 
resources available and the kinds of processing and cognitive load 
required of various tasks. As noted, however, our tasks placed less de
mand on executive function than many of the tasks (e.g., working 
memory tasks) from which some of these frameworks were developed, 
which may explain why we did not observe frontal recruitment. The ERP 
data suggest differences in the brain’s response to age-related neural 
changes under different cognitive demands. For each cognitive task, 
microstate analysis quantified when age influenced the timing and scalp 
distribution of the neural response. The important contribution of this 
study is as a proof of concept that task-related microstate analysis can 
show age similarities and differences in processing states not captured 
by ERP analysis. Additional studies using ERP and microstate analyses 
with a larger participant sample and with systematic manipulation of 
task difficulty could inform current theories of aging in terms of the 
conditions under which different types of neural compensation are 
elicited. 
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