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Abstract

Composites comprising crimped fibers of finite length embedded in a soft matrix have the potential to mimic the strain-
hardening behavior of tissues containing fibrous collagen. Unlike continuous fiber composites, such chopped fiber composites
would be flow-processable. Here, we study the fundamental mechanics of stress transfer between a single crimped fiber and
the embedding matrix subjected to tensile strain. Finite element simulations show that fibers with large crimp amplitude and
large relative modulus straighten significantly at small strain without bearing significant load. At large strain, they become
taut and hence bear increasing load. Analogous to straight fiber composites, there is a region near the ends of each fiber
which bears much lower stress than the midsection. We show that the stress-transfer mechanics can be captured by a shear
lag model where the crimped fiber can be replaced with an equivalent straight fiber whose effective modulus is lower than
that of the crimped fiber, but increases with applied strain. This allows estimating the modulus of a composite at low fiber
fraction. The degree of strain hardening and the strain needed for strain hardening can be tuned by changing relative modulus
of the fibers and the crimp geometry.
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1 Introduction (Diamant et al. 1972; Fratzl 2008; Fratzl et al. 1997; Kassab

and Sacks 2016; Meyers et al., 2008; Rigby et al. 1959). The

In a stress-free state, fibrous collagen in the body is organ-
ized with a periodic crimp pattern (Fratzl 2008; Kassab and
Sacks 2016). This structure is observed in numerous tissues
such as blood vessels, valve leaflets, intestine, ligaments, and
tendons (Fratzl 2008; Gathercole and Keller 1991; Kassab
and Sacks 2016). The crimped nature of collagen affects
the mechanical and load-bearing properties of these tissues
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crimp pattern allows for highly nonlinear behavior wherein
tissues act as soft materials at low strains as fibers uncrimp
without bearing much load, but as stiffer materials at higher
strains as fully uncrimped fibers become increasingly load-
bearing (Canham et al. 1992; Diamant et al. 1972; Fratzl
2008; Fratzl et al. 1997; Gathercole & Keller 1991; Hilbert
et al. 1996; Kassab & Sacks 2016Meyers et al., 2008). This
phenomenon is well studied, and there have been numer-
ous studies of collagen structure and its contribution to the
mechanics of tissues (Canham et al. 1992; Hilbert et al.
1996; Maqueda et al. 2012; Muthukumar et al. 2018).

In computational studies, soft tissues are often mod-
eled as composites comprising stiffer fibers embedded in a
softer hyperelastic matrix, and their behavior has been mod-
eled using finite element method for various types of fiber
arrangements (Drach et al. 2016; Freutel et al. 2014; Gas-
ser et al. 2006; Hiremath et al. 2018; Krishan 2019; L6pez
Jiménez & Pellegrino 2012; Politis 2014; Sun and Vaidya
1996). The fibers in these studies are treated as having peri-
odic crimps defined by either helical (Freed and Doehring
2005) or planar sinusoid (Drach et al. 2016; Gasser et al.
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2006; Krishan 2019) geometry. Boundary conditions are
prescribed such that they undergo tensile loading within the
simulations (Freutel, 2014; Politis 2014). Such computa-
tional studies have helped develop an understanding of the
mechanisms responsible for the experimentally observed
nonlinear elastic response of these tissues in response to
externally applied loads (Hu et al. 2016; Karkan et al., 2019;
Nezarati et al. 2015; Ravi et al. 2009; Wang et al. 2014;
Zavan et al. 2021).

Devices intended for implantation within the body have
sought to replicate the mechanical behavior of collagen-con-
taining tissues, for example, using wavy knitted patterns as a
graft material (Hu et al. 2016; Wang et al. 2014) to manufac-
ture long continuous crimped fibers for applications such as
vascular conduits (Hu et al. 2016; Jeffries et al. 2015; Karkan
et al., 2019; Nezarati et al. 2015; Ravi et al. 2009; Wang et al.
2014; Zavan et al. 2021). Other approaches aiming to repli-
cate these behaviors include electrospinning crimped fibers
onto graft surfaces (Karkan et al., 2019; Nezarati et al. 2015;
Zavan et al. 2021); using multilayer collagen fiber-reinforced
tissue engineered composites (Ravi, 2009); suturable scaffolds
(Chua et al. 2021; Jeffries et al. 2015), stents (Vearick et al.
2018), and bladder matrix(Stankus et al. 2008). However, a
common limitation of these approaches is that it is difficult to
process these materials into arbitrary shapes (Fidan et al. 2019;
Zampaloni et al. 2007). Indeed, this problem is not unique to
crimped fibers—all continuous fiber composites are difficult
to fabricate into arbitrary shapes, though there has been more
recent progress in this direction (Chang et al. 2022). Out-
side of the biomedical area, it has long been common to use
chopped fiber composites (sometimes also called short fiber
composites) to overcome the processability limitations of con-
tinuous fiber composites. Such composites are typically based
on glass or carbon fibers cut to several-mm lengths and dis-
persed within a polymer matrix. Also, conceptually related are
nanocomposites which comprise stiff nanoscale fillers of high
aspect ratio such as carbon nanotubes, cellulose whiskers, or
clay platelets dispersed into plastics (Chazeau et al. 2020; Loos
& Manas-Zloczower 2013; Utracki 2010). Since the reinforc-
ing fillers are no longer continuous, such chopped fiber com-
posites or nanocomposites can be processed via conventional
plastics processing operations including extrusion, molding,
and extrusion-based 3D printing (De and White 1996; Komal
et al. 2019; Krishan 2019; Ratner et al. 2004; Shao Yun Fu;
Young 2015; Zhong et al. 2001). However, since the fillers
are not in a crimped form, such composites do not replicate
the strain-hardening behavior of collagen-containing tissues.
The eventual goal of this research is to develop synthetic tis-
sue substitutes where crimped fibers of a finite length act as
reinforcing agents for a softer matrix. Such short fiber com-
posites with crimped fibers may mimic the strain-hardening
behavior of collagen-rich tissues. Their mechanical properties
may be tuned by changing the properties of the fibers such as
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the modulus, orientation, crimp geometry, and volume fraction
of fibers (Curtin and Takeda 1998; Huang et al. 2021; Peel
& Jensen 2001). Most importantly, similar to other chopped
fiber composites, they would be processible, e.g., by molding
or extrusion, thus facilitating manufacture of arbitrary shapes
(Fu et al. 2009; Komal et al. 2019; Zhong et al. 2001).

This article is the first step in understanding the mechanics
of short fiber-reinforced composites where we quantify the
contribution of a single fiber to the properties of the com-
posite. As reviewed in Sect. 2, such a single-fiber analysis
has provided enormous insights into how a fiber’s length and
mechanical properties affect the modulus of the composite for
non-crimped fibers. Thus, this study aims to take the same
approach for crimped fiber composites by considering a single
crimped fiber embedded in a sufficiently large soft matrix and
examining the mechanics of uncrimping as the surrounding
matrix is stretched.

This paper is organized as follows: Sect. 2 describes the
shear lag theory for stress transfer in a straight fiber composite.
A key result from the theory is that a certain length near the
fiber ends bears much lower stress than the center of the fiber;
accordingly, fibers that are too short are incompletely loaded.
This low stress near the ends is expected to affect uncrimping
behavior. Section 3 explains the simulation method. Section 4
presents the central results of the simulations including com-
parisons between crimped and straight fibers, and the effects
of fiber geometry and modulus. Section 5 introduces the con-
cept of an equivalent straight fiber which can approximate a
crimped fiber, and therefore allows an estimate of the mechani-
cal behavior of a composite containing a chopped crimped
fiber. Section 6 concludes the paper with a brief summary.

2 Shear Lag Model for straight fiber
composites

When a composite composed of straight fibers embedded in
a softer matrix is placed under tensile stress, there occurs a
transfer of stress from the matrix to the fiber thread (Hull
and Clyne 1996). A commonly used model for this stress
transfer is based on the shear lag theory (Cox 1952; Hull
and Clyne 1996), first developed by Cox (1952) to model
the behavior of discontinuous fiber composites when all of
the fibers are aligned along the tensile direction. This theory
assumes that each fiber (of length 2L and radius ry) is located
at the center of a cylindrical matrix such that the ratio of
fiber volume to the cylinder volume matches the volume
fraction ¢ of fibers in the composite. When the matrix is
stretched along the x-direction (i.e., along the axis of the
cylinder) to a strain of &, the stress in the fiber rises from
zero at the fiber ends as per
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op(x) = Epe [1 - cosh(}%x) .sech <nr£f>] (1)

where x is the coordinate along the fiber direction such that
the fiber spans —L < x < L. Note that o;/E; is simply the
strain &, in the fiber. The quantity n is

1

2

- 2E,, @)
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where Ef and E,, are the moduli of the fiber and matrix,
respectively, and v,, is the Poisson’s ratio of the matrix. The
quantity E;/E,, will be called relative modulus henceforth.
Exemplary profiles of &/(x) = o/ E, are shown as solid lines
in Fig. 2a discussed later. Integration of Eq. 1 over the fiber

length gives the mean stress in the fiber as

. tanh(nL/rf)
oy = Ef€<1 - T/I’f 3

Since the fibers are taken as aligned along the loading
direction, the stress of the composite can be obtained by a
weighted average of the fiber and the matrix. The ratio of
this composite stress to the applied strain € gives the com-
posite modulus:

f
Ewm = ?d) + Em(l - d)) (4)

where the subscript com indicates composite.
It is also useful to define a dimensionless quantity
sf(x) = G;Si which is a measure of the strain in the fiber so
f

that Eq. 1 can be rewritten as

sf(x) = O-fE(:C) =€ [1 - cosh(%) .sech(%)] 5)

where [; = 3r,/n is defined as the shear lag length. The fac-
tor of 3 is generally included in the definition of [, because
for sufficiently long fibers, the quantity in the square brackets
is nearly 1 everywhere except within a distance of [, from
the ends.

Equations 1-5 offer key insights on how the length of
fibers affects the mechanics of chopped fiber composites.
Two limits can be identified readily. In the long fiber limit,

15 = ;’—L > 1, Egs. 1 and 5 state that the entire length of the
3ry

fiber except for the region within a distance /; from the ends
has o,(x) ~ E¢, or equivalently £,(x) ~ €. Accordingly, most
of the fiber is loaded to the highest extent possible at the
applied strain, and hence Eq. 4 states that the composite

modulus E_,, is simply a volume-weighted average of the

moduli of the fiber and the matrix. However, the fiber strain
drops to zero over the length of roughly [/, adjacent to each
end. Within this region, stress is transferred by shear from

nL

the matrix to the fiber. In the short fiber limit, when lé =3
s f

is on the order of 1 or smaller, Eq. 1 and 5 state that
op(x) < Ege, or g,(x) < . In this case, no portion of the fiber
is fully loaded, and the chopped fiber is a relatively ineffec-
tive reinforcing agent.

Although the mechanics of crimped fiber composites
are expected to differ from that of straight fiber compos-
ites, two effects may be expected from the discussion above.
First, we anticipate that because the fiber can accommodate
stretching by uncrimping, the actual strain in the fiber will be
lower than the strain in the matrix, i.e., unlike Eq. 5, g <e
is expected in the midsection of a fiber even if the fiber is
very long. Under these uncrimping conditions, the midsec-
tion of the fiber contributes relatively little to the compos-
ite modulus because it bears only a low stress. Yet, as the
fiber uncrimps, it will increasingly resemble a straight fiber,
i.e., £, will approach ¢ as the strain increases, leading to
the strain hardening that mimics collagen-bearing tissues.
Second, even for crimped fibers, we anticipate a near-end
portion where the fiber experiences lower strain than the
central portion. In this region, only partial uncrimping is
expected, and hence this region will contribute less to strain
hardening. The central goal of this article is to quantify these
two effects as the crimp amplitude and the modulus of the
fibers is varied.

With the above background, we can now formulate the
questions to be addressed by simulations in this paper: (a) At
what strain does the midsection of a long fiber uncrimp, how
does the uncrimping affect the load borne by the fiber, and
how does the uncrimping tune the strain-hardening behavior
of the composite?, (b) Over what length near the fiber ends
does the stress reduce significantly—which in turn defines
the minimum length of crimped fiber necessary to achieve
the desired strain hardening, and (c) How are the previous
two questions affected by the fiber geometry and modulus
of the fiber relative to the matrix?

3 Methods

We examined the mechanics of stress transfer of a crimped
fiber embedded in a matrix using 3D finite element simula-
tions. A single crimped fiber was embedded in a matrix of
a relatively low Young’s modulus and of dimensions 2L,
along the x-direction, 2H,, along the y-direction, and W,
along the z-direction (Fig. 1a). Taking advantage of sym-
metry, only half of the geometry was modeled. For straight
fiber simulations, the fiber was specified as a hemicylinder
of radius r, and length 2L = 400r, centered on the x-axis.

@ Springer



N. N. Pitre et al.

. 2L,, = 20001y R
A -« - e
(A)
= 2L = 400 75
S
3 R
.. e
t,’::
o
Y
X
vlZ

|

(B) AN\ NS/ AT/ ANS/aNE/

()

(D) 6= 12(7);77"7\mp|itude

matrix 4 :
op—
fiber Wavelength
i s @ Amplitude

Fig.1 (A) Relative dimensions of the matrix and embedded fiber (B)
magnified view of the geometry of the fiber, (C) semicircular cross
section of the hemicylindrical fiber, (D) examples of how 6 affects the
initial amplitude of the fiber, (E) tetrahedral adaptive mesh near the
fiber-matrix interface illustrated for the fiber with 8 = 150°

The crimped fiber was modeled as a sequence of circular
arcs, with the cross section being hemicylindrical (Fig. 1b-
¢). These arcs were defined by a parameter 6, the projected
angle. The wavelength of the crimps was fixed 4 = 40r; and
thus a change in 6 corresponded to a change in the initial
amplitude of the crimps (Fig. 1d). The dimensions of the
matrix were chosen to be 2L, = 2000r;, 2H,, = 2400r, and
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W,, = 40r;. Doubling the dimensions of the matrix did not
change the results significantly, showing that these dimen-
sions were sufficiently large for the matrix to be regarded as
infinite in extent. The simulation geometry was modeled in
Autodesk Inventor (2018) and meshed in the FeBio software
(Maas et al. 2012).

The left face of the matrix (the plane x = —L,,) was held
fixed while the right face (x = L,,) was displaced along
the x-direction using a rigid body connection. The applied
displacements corresponded to nominal strains (ratio of
x-displacement to 2L,,) of up to 0.69. Symmetry boundary
conditions were imposed on the center plane (z=0), whereas
the remaining surfaces (y = +H,, and z = W,,) were kept
stress-free. Neo-Hookean material was chosen both for the
fiber and the surrounding matrix. An adaptive tetrahedral
mesh was used for the fiber and matrix. The mesh density
was uniform across the fiber and the total number of ele-
ments increased with contour length of the fiber (i.e., with
the amplitude), ranging from 21,916 for straight fiber to
31,620 for fiber with semicircular arcs. Facet-to-facet no-slip
contact was applied between fiber and the matrix. Figure le
shows a screenshot of the fiber mesh as seen at the central
plane. The simulation results were found to be nearly identi-
cal when the mesh density was doubled, i.e., with eightfold
increase in the number of elements, showing that the mesh
density was adequate to correctly resolve the mechanics.

Two sets of simulations were conducted. In the first, the
modulus ratio was held fixed at 1000 and four values of 6
(0°, 120°, 150° and 180°) were examined. The correspond-
ing ratios of peak-to-trough amplitude to the wavelength
were 0, 0.29, 0.38 and 0.5. This set of simulations allowed a
clear assessment of the strain-dependent uncrimping of fib-
ers, and the comparison with a straight fiber. In the second
set, the initial amplitude was held fixed at 8 = 150°, while
the modulus ratio was varied. These simulations were also
compared against simulations for a straight fiber geometry.

The simulations also provided end-reaction forces that
had to be applied at the x = +L,, boundaries to maintain the
specified displacement. These forces allowed calculation of
the contribution of the embedded fiber to the stiffness of the
composite as described in the Appendix.

4 Results

4.1 Stress evolution of uncrimped versus crimped
fiber

To illustrate the effect of crimps on the stretching behavior,
Fig. 2 compares two cases: § = 0°(straight fiber) vs 8 = 150°,
both at a relative modulus value of 1000. In both cases, we
plot the stress profile in the fiber normalized by its modulus
(af / Ef) at four values of applied strain (¢ =0.15,0.33,0.51
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Fig.2 (A) Distribution of &, = o;/E; for straight fiber: simulation
data (black dashed line), Eq. 1 (black solid line), and (B): af/Ef,
where o; is the x-component of the Cauchy stress in the fiber; for
crimped fiber with § =150°: simulation data (blue dashed line), Eq. 6
(blue solid line, discussed in Sect. 5.1). In both graphs, the data are

and 0.69) which are indicated by the horizontal dotted lines
in Fig. 2a. Here, o; refers to the 6, component of the in-fiber
Cauchy stress tensor. Consistent with Sect. 2, the quantity of
o;/E; is defined as &, henceforth. Figure 2a shows that the
profiles of £ in the straight fiber are in reasonable agreement
with those predicted by the shear lag model Eq. 1 with no
fitting parameters. The L/[, calculated using Eq. 5 is 1.2,
thus showing that the half-length of the fiber only slightly
exceeds the shear lag length. Accordingly, Eq. 5 predicts,
and simulations confirm, that the sf(x) in the midsection of
the fiber is nearly constant and nearly equal to the applied
strain, whereas it reduces to zero over a distance of roughly
[, from the ends.

Figure 2b shows the &/(x) profiles for an embedded
crimped fiber with 8 = 150°. Although modulated by the
crimp wavelength, the gross distribution of &, qualitatively
resembles that in Fig. 2a: the midsection of the fiber has
a nearly uniform value of &, which reduces to zero near
the ends. The major quantitative difference however is that
the magnitude of &, near the middle is much lower than the
applied strain because, as explained the end of Sect. 2, the
applied strain is accommodated by uncrimping. A second,
more subtle difference is that with increasing strain, the uni-
formly loaded midsection shrinks. Equivalently, there is an
increase in the length near the ends where stress is lower
than in the midsection. The solid lines in Fig. 2b are dis-
cussed later in Sect. 5.1, along with Eq. 6.

4.2 Effect of initial amplitude

We will now quantify the uncrimping behavior by com-
paring fibers of various initial amplitudes (i.e., various 6
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shown at applied strain values (going from top to bottom) of 0.69,
0.51, 0.33, and 0.15. These four values are shown as horizontal dot-
ted black lines in a. The images in b are screenshots of the fiber at the
same four strains to illustrate uncrimping
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Fig.3 Distribution of e/(x) = qf(x)/Ef for different initial crimp
amplitudes given by 6 = 0° (straight fiber), 120°, 150° and 180°; for
E;/E, = 1000 and applied strain=69% (dashed lines), and Eq. 6
(solid lines, discussed in Sect. 5.1)

values), all at a relative modulus of 1000. Figure 3 shows
the spatial distributions &,(x) of the various fibers, all at an
applied stretch of 0.69. Snapshots of the fiber shape before
and after stretching to an applied strain of 0.69 are shown
in Fig. 4.

As in Fig. 2b, in all cases, the midsection of the fiber has
an approximately flat distribution of ¢,. Further, the mid-
section also has a nearly uniform crimp amplitude (upper
portion of Fig. 4). Both these observations suggest that the
midsections of the fibers are isolated from any effects of
shear lag from the fiber ends. Therefore, the mechanics of
uncramping—independent of end-effects—can be quantified
by examining a narrow section of the fiber near the mid-
dle. For this, we selected a two-wavelength-wide region at
the center and calculated two quantities: the peak-to-trough
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Fig.4 Upper images show amplitude profiles at applied strain e= 0
(top left) and £ =0.69 (top right). (A) Mean value (g,) averaged over
two wavelengths near the center, and (B) percent decrease in crimp
amplitude in the midportion of the fiber for E, = 1000. Vertical lines
correspond to the strains needed for geometric straightening (see text)

amplitude which quantifies the geometric aspects of
uncrimping, and the mean value of (&;) = (o;)/E, which
quantifies the strain borne by the fiber.

Figure 4a shows that for the straight fiber, the mean
value of (&) is only slightly smaller than applied strain &
and increases almost linearly with €. The slight nonlin-
earity is a geometric effect of the fiber length increasing
as strain increases. For all the crimped fibers, (g;) < € at
small applied strain, and then grows nonlinearly in a manner
similar to collagen recruitment. Concurrently, the amplitude
reduces rapidly at low strain before leveling off as the fib-
ers straighten. In effect, since the fiber straightens at small
applied strain, further stretching must be accommodated
by fiber stretching, rather than uncrimping. As discussed
in Sect. 1, this increase in (¢;) (and hence (o;)) relates to
strain hardening, and will be quantified later in this paper. As
expected, all three quantities—(e—(&;)), the € value at which
(€7) increases rapidly, and the € value at which the amplitude
significantly reduces—all increase with 6. All three trends
indicate an increasing degree of uncrimping with increasing
initial crimp amplitude.
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and 6 = 150°

The vertical lines in Fig. 4 correspond to “geometric
straightening” and are calculated as the strain needed to
make the end-to-end length of the uncrimped fibers equal to
the contour length of the original crimped fiber. Figure 4b
shows that at a strain corresponding to geometric straighten-
ing, the amplitude has only reduced by about 55-60% of the
original value, i.e., a significant portion of the straightening
continues beyond this point.

Finally, the amplitude profiles at the top of Fig. 4 show
that the crimp amplitude does not decrease as much near
the ends. This is not surprising: it is the tensile stress that
induces straightening, and the end-region has a much lower
tensile stress. Since the amplitude change is modest, one
may expect that this end-region would make only a small
contribution to strain hardening.

4.3 Effect of relative modulus

The effect of relative modulus was examined by comparing
fibers with three values of (E;/E,,) =10, 100 and 1000. The
angle was held fixed at # = 150°. Qualitatively, all three
values of relative modulus show similar behavior, and in all
cases, the midsection of the crimped fiber has a plateau in ¢;.
Quantitatively, two effects are readily apparent. First, with
decreasing relative modulus, the £, increases (Fig. 5) indicat-
ing that fibers of lower stiffness accommodate the applied
strain by stretching rather than uncrimping. Second, as fiber
modulus reduces, the midsection where the fiber has nearly
constant £, becomes wider (equivalently, the near-end region
of the fiber which bears a lower stress becomes narrower).
Analogous to Fig. 4, Fig. 6a shows the evolution of the
average value (g;) over two wavelengths at the center of the
fiber, whereas Fig. 6b shows the % decrease in crimp ampli-
tude in the midsection. The crimp amplitude decreases much
less with decreasing relative modulus: for a relative modu-
lus of 1000, the amplitude reduces by 82% of the original
value, whereas for a relative modulus of 10, the decrease is
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(top left) and €=0.69 (top right). Note that the end-to-end length for
profiles on the right are 69% longer than those on the left. (A) Mean
value (e_/-) averaged over two wavelengths near the center, and (B)
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only 21%. Similar to Fig. 4, beyond the strain for geometric
straightening (vertical line), the decrease in amplitude with
strain continues, but becomes more gradual (Fig. 6b).

5 Discussion

The simulations show that at any given value of applied
strain, the midsection of the crimped fiber bears a lower
stress than a straight fiber of the same aspect ratio and modu-
lus. Further, similar to a straight fiber, the crimped fiber has
a near-end region that is loaded less than the midsection. The
ultimate goal of these simulations is to inform the design
of composites that use chopped crimped fibers to achieve
strain-hardening behavior that mimics collagen-rich tissues.
In this Discussion section, we do so in two steps: Sect. 5.1
proposes that the crimped fiber may be treated as an equiv-
alent straight fiber. Section 5.2 then uses the equivalent
straight fiber concept to estimate the modulus of composites
comprising crimped fibers embedded in a soft matrix.

5.1 Equivalent straight fiber model

As discussed above, Figs. 2, 3 and 5 show that the gross
shape of €,(x) profile resembles that of straight fibers, albeit
with a wavelength-scale modulation. This suggests that we
may regard the crimped fiber as an equivalent straight fiber
which has the same end-to-end length as the crimped fiber,
but a different effective radius, shear lag length, and stiff-
ness. Accordingly, the stress in the crimped fiber may be
postulated to follow Eq. 1, but in modified form

eff
os(x) = E;ﬂ e[ 1 — cosh nTﬁ.x sech| nl % (6)
ry ry

where n/ is defined identically as Eq. 2, but with E; replaced
with E;ﬂ . Here, E;ff < Ef is the modulus of the équivalent
straight fiber. For a sufficiently long crimped fiber, Eq. 6 has
a flat profile near its middle, however, unlike for a straight
fiber, the magnitude of the stress far from the ends is E;ﬁ €.
The ratio Efeﬂ / E; may be regarded as a fiber efficiency faétor,
and we anticipate that its value increases with applied strain
as the fiber uncrimps and approaches a straight fiber. Fur-
ther, the stress decays toward zero within an effective shear
lag distance [/ = Sr;ﬁ /nf' . Equation 6 is fitted to the strain
profiles using E:ﬁ and r:ﬁ as the fitting parameters, and the
solid lines in Figs. 2b, 3, and 5 show that reasonable fits are
obtained. The corresponding fitting parameters, and the cal-
culated values of liﬁ , all suitably non-dimensionalized, are
shown in Fig. 7a—c at fixed modulus ratio, and e—g for fixed
amplitude. The shear lag length for the fiber with large
amplitude (6 = 180) and modulus ratio of 1000 is smaller
than half of the crimp wavelength for € < 0.15, making the
fits unreliable for small strains for this fiber, and hence are
not reported in Fig. 7.

The results of Fig. 7 can now guide the design of com-
posites based on chopped crimped fibers. Figure 7a, e quan-
tifies the degree to which sufficiently long crimped fibers can
act as strain-hardening reinforcers. Specifically, Fig. 7a
shows that at a relative modulus of 1000, crimped fibers have
E;#/Ef < 0.1 at small strain, i.e., they have an effective
modulus that is over tenfold lower than their actual modulus.
Equivalently, the stress in the fiber is less than 10% of the
value expected for a long straight fiber. With increasing
strain, their effective modulus increases analogous to col-
lagen recruitment, and further, fibers with larger initial
crimp amplitudes require larger strains to be recruited.
Indeed, at the highest amplitude corresponding to 6 = 180°,
E;ﬁ /E; remains below 0.1 up to an applied strain of nearly
0.52, indicating that the fibers are approximately inextensi-
ble, i.e., they uncrimp with very little stretching. An unex-
pected result from Fig. 7e is that for fibers with a modulus
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Effect of

O  120deg _(:,-’4'5<

#* 150 deg
180deg )/C%/E}

!

0 01 02 03 04 05 06 07
applied strain

Fig.7 Variation in (A&E) equivalent effectlve modulus factor
ET /Ef) (B&F) normalized effective radius (% /r) (C&G) nor-
mahzed effective shear lag length (f /ry) and (D&H) normal-
ized modulus of the composite (E,,,,/E,) with applied strain using

¢ = 1x 1073, Left column shows effect of varying crimp amplitude

ratio of 10, E;ﬁ is nearly independent of € suggesting that
these fibers are altogether ineffective at realizing strain hard-
ening, i.e., crimped fibers with the geometry used here can
only confer significant strain hardening if their modulus is
at least 100-fold larger than of the matrix.

Figure 7a, e only comments on the uncrimping behavior
of sufficiently long fibers since the value of Eeﬁr only deter-
mines stress in the fiber far from the ends. To understand
fiber length effects, we turn to Fig. 7c, g which plots the
strain-evolution of the effective shear lag length lﬁﬁ . As dis-
cussed above, a straight fiber with L < [, cannot be loaded
to its fullest extent and hence may be regarded as an

@ Springer

Effect of E'
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applied strain

at fixed relative modulus of 1000. Right column shows effect of rel-
ative modulus at fixed crimp amplitude corresponding to § = 150°.
Vertical lines indicate the strains for geometric straightening of the
crimps

ineffective reinforcing agent. Analogously, for a crimped
fiberif L < lﬁﬁ , the midsection of the fiber bears a stress even
lower than E;ﬁ €. Such a fiber will uncrimp less than a long

fiber, and be unsuitable to realize strain-hardening behavior.
Figure 7c shows that for a relative modulus of 1000, lf,ﬁ
comparable to the wavelength at small strain, but increases
significantly with strain, i.e., a fiber that is long enough to
approximate infinite-length at small strain may have more
significant end-effects at large strain.
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5.2 Modulus of composites

The modulus of such composites can be estimated from
adding the matrix and the fiber contributions as per Eq. 4.
We now take advantage of the equivalent fiber concept and
hence integrate Eq. 6 over the fiber length to estimate the
mean stress in the fiber, 6. The final expression for &; is
identical to Eq. 3, but with effective quantities on the right
hand side. Appendix A shows that an independent method
of estimating o using end-reaction forces is in excellent
agreement with the equivalent fiber approach. The values
of E_,, thus calculated from Eq. 4 are plotted in Fig. 7d,
h. They show how the desired level of strain hardening can
be achieved by an appropriate choice of initial amplitude
and relative modulus of the fibers. For small strains, all the
composites (but especially those with crimped fibers of
high initial amplitude) have a modulus that is only slightly
higher than of the matrix. At high relative modulus, the
fibers make increasing contributions to modulus as strain
increases, analogous to collagen recruitment. The strain for
onset of strain hardening approximately matches the geo-
metric limit of the strain needed to completely uncrimp the
fibers. As mentioned above, the degree of strain hardening
is very modest for modulus ratios of 100 and 10 (Fig. 7h),
i.e., for the geometry considered here, crimped fibers would
be useful for strain hardening only if the relative modulus is
on the order of 1000 or higher.

The limitations of Eq. 4 must be noted: it is only justi-
fiable if the fibers are aligned along the tensile direction
and dilute (and hence their stress fields are non-interacting).
In our calculations, we have used a volume fraction (¢) of
1 x 1073 for the fiber in the simulated matrix as representa-
tive of dilute conditions. A more detailed computational
study would be needed to identify the volume fraction at
which fibers interact with each other, and to estimate the
modulus of the crimped fiber composites with a high volume
fraction of fibers.

6 Summary and Conclusions

The crimped structure of collagen fibers is well-recognized
as contributing to the strain-hardening behavior of tissues.
We consider the mechanics of composites composed of
chopped crimped fibers embedded in a softer matrix. Such
discontinuous fiber composites have the potential to show
strain-hardening behavior while also being flow-processible.
This paper examines the behavior of a single crimped fiber
of a specified length as the matrix embedding the fiber is
stretched. Simulations show that such a crimped fiber bears
lower load than a straight fiber of the same modulus, but
that the load borne by the fiber increases nonlinearly as the
matrix strain increases. Concurrently, the fiber is found to

straighten (i.e., the crimp amplitude reduces) analogous to
collagen recruitment.

As with traditional chopped fiber (also known as short
fiber) composites, there are significant end-effects. There is
a certain length near the ends of the crimped fiber where the
stress is significantly lower than the stress in its midsection,
analogous to the shear lag length in straight fiber compos-
ites. Thus, crimped fibers can significantly contribute to the
modulus of the composite (and hence to the strain-hardening
behavior of the composite) only if the fiber is much longer
than this shear lag length.

Broadly, the stress profiles in crimped fibers resemble
those in straight fiber composites, and hence we develop
the concept of an equivalent fiber. Accordingly, a crimped
fiber can be treated as an equivalent straight fiber, but with
an effective modulus and effective radius that is different
from its true modulus and radius. This allows prediction of
the contribution of the fiber to the modulus of the composite.

We quantify how all the relevant quantities: the load-
bearing capability of the fiber, the shear lag length, and the
modulus of the composite, depend on the crimp amplitude
and the modulus of the fiber relative to the matrix. Fibers
with small crimp amplitude or modest relative modulus are
load-bearing even at small strain. Such fibers raise the modu-
lus of the composite, but not in a strain-hardening fashion. In
contrast, fibers with large crimp amplitude and large relative
modulus first straighten significantly without bearing signifi-
cant load, and then bear increasing load once they become
taut. This mimics the strain-hardening behavior of collagen-
containing tissues such as skin or arterial walls. Surpris-
ingly high relative modulus values, on the order of 1000,
are necessary to see significant strain-hardening behavior.
In summary, the degree of nonlinearity and the extent of

«10°
3 x10

— straight fiber
— 120 deg
— 150 deg

180 deg

Fiber force contribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
applied strain

Fig.8 Comparison of two different methods of calculating the con-
tribution of single fibers to the force in the composite. Stars show the
value of f calculated from the end-reaction forces (Eq. Al). Solid
lines are calculations of a from the equivalent fiber model (Eq. A2).
Dashed black line is the prediction of shear lag model (Eq. A3) with
no fitting parameters
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fiber loading can be controlled by changing fiber parameters
such as fiber length, relative stiffness, and crimp geometry.

Appendix

As illustrated in Fig. 1 in the main text, the simulation out-
puts the tensile force F that must be applied on the boundary
atx = L,, to achieve the desired strain. Simulations were also
conducted without a fiber to obtain the force F,, when the
matrix alone is stretched. We may now define f as

_F-F,
- F

m

p (Al)

p represents the fractional extra force needed to stretch the
matrix due to the presence of the fiber.

The quantity f may be compared against the force-con-
tribution of the fiber calculated using the effective fiber
approach described in the main text. The quantity % defined

m

in Sect. 2, as the ratio of average stress in the fiber to that in
the matrix, is obtained from simulation data. The contribu-
tion of the single fiber is then estimated by integrating the
stress profile over the entire fiber to obtain

P E;ﬂ tanh (neﬁc L/ rjfﬁ )

a=—"tg¢p="A)1-——— " |p

: (A2)
me Em neﬂ L / r;#

where ¢ is the volume fraction of the fiber in the matrix. a
represents the ratio of average stress in fiber to average stress
in the matrix, when experiencing the same strain, scaled to
the volume fraction of the thread.

The contribution of the fiber to the composite stiffness
obtained in these two distinct ways—f using the total force,
and « using the average of the stress distribution—are com-
pared in Fig. 8 for the same simulations as Figs. 3 and 4.
Figure 8 also includes a theoretical value of « for a straight
fiber from the shear lag model (dashed). This is obtained
from averaging Eq. 3 in the main text over the length of the
straight fiber

axtra[ght — i <1
E

m

B tanh(nL/r) ) é (A3)

nL/r

For the straight fiber, a and f start at a higher value and
remain nearly constant. The slight increase in the quantities
is due to increase in the fiber length as strain increases. For
the crimped fibers, a and f, start at low values and increase
nonlinearly with strain, indicating increasing contribution
as the fiber uncrimps. The good agreement between the two
methods establishes that Eq. A2 can be used to accurately

@ Springer

obtain the contribution of the crimped fiber to the composite
once the quantities E;ﬁ and rjf# are found for the equivalent

fibers.
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