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ABSTRACT

All systems monitoring human behavior in real time are, by their

nature, attractive targets for spoofing. For example, misdirecting

live-feed security cameras or voice-controllable Internet-of-Things

(IoT) systems (e.g., Amazon Alexa and Google Assistant) has imme-

diately intuitive benefits, so there is a consequent need for detecting

liveness of the human(s) whose behavior is being monitored. Emerg-

ing research lines have focused on analyzing changes in prevalent

wireless signals to detect video or voice spoofing attacks, as wireless-

based techniques do not require the user to carry any additional

device or sensor for liveness detection. Video/voice streaming and

coexisting wireless signals convey different aspects of the same

overall contextual information related to human activities, and the

presence of spoofing attacks on the former breaks this relationship,

so the latter performs well as liveness detection to augment the for-

mer. However, we recognize and herein evaluate how to spoof the

latter as well to defeat this liveness detection. In our attack, an ad-

versary can easily create phantom wireless signals and synchronize

themwith spoofed video/voice signals, such that the legitimate user

can no longer distinguish real from fake human activity. Real-world

experimental results on top of software-defined radio platforms val-

idate the possibility of generating fake CSI flows and demonstrate

that with the phantom-CSI attack, the true positive rates (TPRs) of

wireless liveness detection systems for video and voice decrease

from 100% spoofing detection to just 4.4% and 0, respectively.
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1 INTRODUCTION

Liveness detection using wireless signals aims to detect whether

human activity is real (from a live person present at the point of
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capture) or fake (from a spoof artifact or lifeless body part) by

exploring the correlation between feeds of a sensor capturing hu-

man motion and co-existing wireless signals. Wireless liveness

detection has proven successful in securing various practical sys-

tems [23, 24, 29, 36, 42], such as

• Video liveness detection: By launching a video spoofing

attack (e.g., [4]), an adversary can hijack the camera feed to

replay benign footage while stealing valuables (e.g., contents

of a vault) without getting caught. A security guard can

detect such attacks by observing mismatches between the

live video feeds and the captured wireless signals [29].

• Voice liveness detection: Voice controllable systems are

especially vulnerable to spoofing attacks (e.g., with pre-

recorded voice [12]) due to the inherent broadcast nature of

voice transmissions. It can tell whether the voice command is

generated by a live user via comparing the features extracted

from both voice and wireless signals [36].

• Human presence detection:Wireless signals can be uti-

lized to detect human presence by human breathing [32, 57,

64]. Wireless liveness detection can thus associate the detec-

tion of breathing with the user presence to combat replay

attacks against voice assistants [42].

Human activity usually causes subtle environmental impacts

unique to that human activity pattern, which can be observed by

analyzing collected nearby wireless signals. As a result, wireless

signals can be utilized to detect human activities and thus verify

the authenticity of the captured data of another co-existing sensor

such as video or microphone.

MainstreamWiFi systems are based on theOrthogonal frequency-

division multiplexing (OFDM) technique, which utilizes multiple

parallel narrowband subcarriers to encode a packet. Disturbances in

wireless signals can be quantified by the channel state information

(CSI) measurement [17], which describes how the wireless channel

impacts the radio signal that propagates through the channel (e.g.,

amplitude attenuation and phase shift). CSI can be considered as

an aptly initialed wireless analog to traditional łCrime Scene Inves-

tigation”, measuring what has happened on a wireless channel [18].

Specifically, the variation of CSI time series has been widely utilized

to identify the motion changes of a target user between a wireless

transmitter and receiver pair.

In this work, however, we design a new phantom-CSI attack

against all existing liveness detection built on the correlation be-

tween recorded human activity and co-existing CSI measurements.

This attack accompanies traditional spoofing of video or micro-

phone recorders by creating measurable CSI which exhibits corre-

sponding spoofed human activity, bypassing the enforced wireless

liveness detection system.

To understand the phantom-CSI attack, we first explain the im-

pact of human activity on wireless signals. Generally, the presence

440



RAID ’23, October 16ś18, 2023, Hong Kong, China Qiuye He and Song Fang

Transmitter Receiver
𝑡

Received signal

(Human activity)

(a) Wireless human activity detection

𝑡 𝑡𝑡

Attacker

(Compromised 

transmitter)

Receiver
𝑡

Received signal

(b) Phantom human activity

𝑡 𝑡𝑡

𝑡 ~𝑡

𝑡 ~𝑡

𝑡

𝑤 (𝑡)

𝑤 (𝑡)

𝑤 (𝑡)

Figure 1: Crafting wireless signal affected by human activity.

of human and related body motion will result in significant changes

in both amplitude and phase of the received wireless signals [31].

Accordingly, the received wireless signal (or CSI) at the receiver

can thus capture the timing information (e.g., start or end time)

and prominent frequency of occurrence of activities [29], and will

exhibit a unique pattern corresponding to each activity [36]. For

example, the repetitive (rhythmic) patterns of human breathing

induce wave-like (sinusoidal-like) periodic change patterns over

time in the CSI amplitudes at subcarrier level [32, 57, 64]. To fool

a receiver to believe that an event occurs, the attacker needs to

create a łvirtual channel” that can exhibit a pattern similar to the

real wireless channel affected by the event.

Figure 1 presents an example at the OFDM subcarrier level to il-

lustrate how the attacker can build such a channel. Figure 1a shows

a real scenario without an attack, where the transmitter sends a

wireless signal and a human activity (e.g., walking) occurs between

the transmitter and the receiver during the period from time 𝑡1 to

𝑡2. As a result, the received signal at the receiver would reflect the

corresponding interference during the activity period [𝑡1, 𝑡2]. Fig-

ure 1b shows an attack scenario, where there is no human activity

happening between the attacker (i.e., a compromised transmitter)

and the receiver, but the attacker aims to make the receiver detect

some activities similar to that in Figure 1a. For each transmitted

signal at time 𝑡 , the attacker multiplies it with a corresponding

coefficient, i.e., 𝑤0 (𝑡) when 𝑡 ∈ [𝑡0, 𝑡1) or 𝑡 > 𝑡2, or 𝑤1 (𝑡) when

𝑡 ∈ [𝑡1, 𝑡2], to mimic the distortion effect of the real subchannel in

Figure 1a. Consequently, the receiver observes a distinguishable

time series in period [𝑡1, 𝑡2] and incorrectly deduces that it is caused

by the activity performed in Figure 1a.

Beyond this example of spoofing human activity in its absence, an

attackermay have other goals, such as obscuring a particular human

activity or portraying a different fake activity. Performing this

general attack requires two technical solutions. First, the phantom

motion must be encoded in the form of CSI for the receiver to

estimate and map to the intended motion. Accordingly, we design

a custom technique to convert an event into manipulated CSI of

a wireless channel. Second, the transmitted signal crafted by the

adversary is affected by the real wireless channel between herself

and the receiver. Thus, the attacker requires a method to cancel

the effect of the real channel, so that the receiver only observes the

phantom channel corresponding to spoofed activity. We address

this challenge by reverse-engineering existing channel estimation

algorithms for OFDM systems and pre-coding the original signal.

The discovered attack reveals that an attacker can create fake CSI

data corresponding to spoofed voice or video signals. We conduct

real-world experimental evaluations on top of Universal Software

Radio Peripheral (USRP) X300 platforms. The experimental results

show that an attacker camouflaged via our phantom CSI can inject

spoofed video and voice to successfully bypass wireless liveness de-

tection systemswith a probability of 95.6% and 100%.We summarize

our main contributions as follows.

• This paper is the first to point out the vulnerability of wireless

liveness detection systems, via phantom-CSI attacks causing

wireless signals and spoofed video/voice data to present

common yet fake human semantic information.

• We create a technique that can successfully craft fake CSI

based on human activities and deliver it to the receiver via a

realistic wireless channel.

• We implement real-world prototypes of both existing wire-

less video/voice liveness detection and the proposed attack

techniques, validating the efficacy of the latter against the

former.

2 PRELIMINARIES

In this section, we introduce the prevalent algorithm used to esti-

mate CSI for OFDM and the general method used by existing work

employing CSI to achieve liveness detection.

2.1 CSI Estimation

As discussed earlier, the occurrence of human activities can induce

disturbances in the surrounding wireless signal and thus variation

in the observed CSI at the receiver.

The OFDM technique has been widely used in modern wireless

communication systems, e.g., 802.11 a/g/n/ac/ad. The channel fre-

quency responses measured from all subcarriers form the CSI of

OFDM. Let𝐻 (𝑓 , 𝑡) denote the channel frequency response at time 𝑡

for a particular subcarrier with a frequency 𝑓 . It is usually estimated

by using a pseudo-noise sequence that is publicly known [15, 17, 67].

Specifically, a transmitter sends a pseudo-noise sequence, denoted

with 𝑋 (𝑓 , 𝑡), over the wireless channel, and the receiver estimates

𝐻 (𝑓 , 𝑡) from 𝑋 (𝑓 , 𝑡) and the received, distorted copy, denoted with

𝑌 (𝑓 , 𝑡), i.e., 𝐻 (𝑓 , 𝑡) =
𝑌 (𝑓 ,𝑡 )
𝑋 (𝑓 ,𝑡 )

.

2.2 CSI-aided Liveness Detection

A myriad of recent studies have shown success of using CSI to

recognize subtle human movements, including walking [60, 62],

falling [40], breathing [32], mouth movements [56], and activities of

daily living [44]. Existing CSI-based liveness detection techniques

discover that CSI from widely available wireless signals is able to

perceive human existence or activities in the place of interest in

addition to surveillance cameras [24, 29] or a microphone [36, 42],

and thus spoofing attacks can be detected by catching dissimilarities

between CSI and video/voice signals.

These techniques normally use four steps to verify live users

and detect spoofing attacks, namely, data synchronization, data

pre-processing, feature extraction, and consistency checking. The
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first phase synchronizes signals in both modalities. The following

phase pretreats video/voice feeds for activity detection and removes

noise from the CSI. Next, specific features are extracted from both

CSI and video/voice signals. They are then correlated and exploited

for deciding whether a spoofing attack happens in the final phase.

Figure 2 illustrates a general flowchart of the CSI-aided liveness

detection system.

3 ADVERSARY MODEL

A general wireless liveness detection system utilizes wireless sig-

nals as a second-factor authentication for human activity, which is

detected via another co-existing sensor. Without loss of generality,

we consider a common surveillance scenario, where a camera is

used to monitor an open area, and a transmitter and receiver pair

is utilized to verify the authenticity of the video captured by the

camera. Specifically, the public transmitter constantly transmits

the wireless signal; the receiver estimates the CSI based on the

received signal. We point out that such a public transmitter can be

unreliable and can be exploited for launching the proposed attack. If

the detected human activities from wireless signals and the camera

match with each other, the video is authentic, otherwise the video

spoofing attack is detected.

To demonstrate the impact of our attack, we consider an attacker

who can craft a fake video and feed it to the camera (e.g., [4, 20]).

This aligns with existing liveness detection studies (e.g., [23, 24, 26,

29]). The attacker aims to make the target system unable to detect

the fake video. She may use the public transmitter as an accomplice.

Alternatively, if the defender secures the public transmitter, the

attacker can set up a hidden transmitter nearby. Similar to other

wireless attacks such as GPS spoofing [52], the attacker’s trans-

mitter then employs wireless jamming or spoofing techniques [70]

to cancel the real signals and let the receiver take the fake signals

from the attacker as the real ones. Toward the goal, the malicious

transmitter attempts to mislead the receiver by generating phantom

CSI that matches the forged video.

4 SYSTEM DESIGN

4.1 Attack Overview

Existing wireless liveness detection systems rely on wireless envi-

ronmental fluctuations to detect video- or voice-spoofing attacks.

Our key idea of the proposed attack is to manipulate the wireless

environmental fluctuations so that both the coexisting video/voice

and CSI data have a consistent observation of human activities.

Wireless liveness detection systems would thus be unaware of the

spoofing attacks. Without loss of generality, we assume that the

attacker aims to launch video spoofing attacks.

In a typical video spoofing attack, the attacker replaces the live

video frames with fake ones (e.g., what are previously recorded) so

that she can perform activities in the area monitored by the camera

without being recorded. With a stream of video frames, the data

pre-processing phase first identifies body keypoints in each video

frame. Such keypoints input to the event detection phase, which

determines the ongoing event. After that, the feature extraction

phase generates semantic features from the processed video data,

which are compared with that extracted from the CSI to determine

the authenticity of the captured video.

To make the receiver observe fake CSI, whose semantic features

are consistent with that extracted from the video data, the attacker

first specifies such artificial CSI, and then delivers it to the receiver

by manipulating the transmitted signal. Since the transmitted signal

has to experience the distortion effect applied by the real wireless

channel, the attacker compensates for such distortion effect at the

transmitter side. Consequently, the receiver extracts the semantic

features of the ongoing event with estimated CSI. Figure 3 depicts

the flow chart of the proposed attack.

4.2 Video-based Pipeline

Traditional video-based monitoring system usually involves three

steps, data pre-processing, event detection, and feature (i.e., event

parameter) extraction.

Data Pre-processing: OpenPose is the first open-source real-

time video processing tool for 2D pose detection, including tracking

body, foot, hand, and facial keypoints [7]. It is also widely used

in existing wireless liveness studies (e.g., [24, 29]). We also utilize

OpenPose to process video frames, each of which then generates X-

Y coordinates of the 18 body keypoints. Figure 4 shows an example

of the body keypoints extracted from a video frame using OpenPose.
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Figure 4: Body keypoints extracted by OpenPose.

We see that there are 18 keypoints (labeled with 0-17) of the target

person. The displacement of those keypoints over time can then

help infer occurrent events (e.g., human activities).

Event Detection: The input of this step is the X-Y coordinates

of the 18 body keypoints extracted from each video frame. Let 𝑃𝑖𝑚
denote the 𝑖tℎ point in the𝑚tℎ video frame, where 𝑖 ∈ {1, 2, · · · , 18}

and𝑚 ∈ {1, 2, · · · , 𝑀}, where𝑀 denotes the total amount of video

frames. The Euclidean distance of each point between the𝑚tℎ frame

and the (𝑚 + 1)tℎ can be denoted as 𝐿𝑖𝑚 =
�

�𝑃𝑖𝑚−𝑃𝑖𝑚+1

�

�. We then add

up all these Euclidean distances and obtain the sum 𝐷𝑚 =
∑

18

𝑖=1 𝐿
𝑖
𝑚 .

If 𝐷𝑚 is larger than the predefined threshold 𝐷0, we regard that

the motion is detected; otherwise, there is no motion detected if

𝐷𝑚 ≤ 𝐷0. We iterate over all neighboring video frames with this

scheme, separating dynamic scenes (with motion) from static ones.

Feature Extraction: We need to select a set of distinctive se-

mantic features of motion, so that we can use them to design corre-

sponding phantom-CSI flows. The start time and the end time of

motion are often chosen as such features. If the motion occurring

in the video is periodic, the motion frequency is also recorded as

another. Particularly, to determine the frequency, we apply a metric

referred to as motion energy which captures the energy in the dif-

ferent frequency bands of the body keypoints. With the FFT profile

of the body keypoints, a single frequency component that exhibits

the maximum signal magnitude can be extracted.

4.3 Artificial CSI Generation

The attacker would deliver specified CSI to the receiver, which

matches events occurring in the injected fake video. Let h𝑇 (𝑡) =

[ℎ𝑇1 (𝑡), ℎ𝑇2 (𝑡), · · · , ℎ𝑇𝑁 (𝑡)] denote the target CSI for 𝑁 subcarriers.

Intuitively, we may pre-record the CSI corresponding to the events

in the video as h𝑇 (𝑡). However, this profiling process of collecting

CSI is laborsome and may place an extra burden on the attacker.

Instead, we propose a method that enables the attacker to generate

such artificial CSI.

In general, to craft h𝑇 (𝑡), there are the following two cases: 1) the

video just contains static images and has no human activity in the

video; 2) the video contains human activity. For the first case, the

target CSI h𝑇 (𝑡) can be easily crafted, denoting the random noise

in the environment. For the latter case, we then need to convert

the human activities into h𝑇 (𝑡).

Different human activities may cause different impacts on the

environmental CSI. Specifically, the CSI amplitude on a sensitive

subcarrier often shows a strong correlation with human activities.

As a non-synchronized transmitter and receiver pair may bring an

unknown phase lag [45], the CSI amplitude is often only chosen to

characterize the wireless channel for human activity detection. Cor-

respondingly, this paper also focuses on wireless liveness detection

using CSI amplitudes.

It is widely observed that periodic movement usually makes

the CSI amplitude on a sensitive subcarrier present a sinusoidal-

like pattern over time [57]. Let 𝑓𝑎 denote the frequency (Hz) of

occurred event. We then convert the event into a subcarrier CSI

ℎ𝑇𝑖 (𝑡) = |ℎ𝑇𝑖 (𝑡) | ·𝑒
𝑗𝜃 (𝑡 )+𝑁𝑖 (𝑡), where |ℎ𝑇𝑖 (𝑡) | represents amplitude.

We model the CSI envelope on a sensitive subcarrier as a sinusoidal-

like wave, i.e.,

|ℎ𝑇𝑖 (𝑡) | = 𝑎 · 𝑠𝑖𝑛(2𝜋 𝑓𝑎𝑡 + 𝛽) + 𝑁𝑖 ,when 𝑡 ∈ [𝜏𝑠 , 𝜏𝑒 ], (1)

where 𝑎, 𝛽 , and 𝑁𝑖 are the amplitude, initial phase, and additive

noise. When 𝑡 ∉ [𝜏𝑠 , 𝜏𝑒 ] (i.e., outside of the activity period), there is

no need to craft specific CSI and we then have |ℎ𝑇𝑖 (𝑡) | = 0. In turn,

with such a CSI envelope, the receiver can infer the start and end

times of the activity, as well as the event frequency.

4.4 Transmission Manipulation

To invalidate wireless liveness detection, the transmitter (i.e., at-

tacker) needs to make the receiver believe the target CSI ℎ𝑇𝑖 (𝑡) on

sensitive subcarriers. To achieve this goal, the following three steps

are required towards crafting the transmitted signal.

4.4.1 Winnowing Sensitive Subcarrier. Due to the multipath effect,

signals usually arrive at the receiver via different paths, e.g., line-

of-sight (LOS) and non-line-of-sight (NLOS). These signals may

interfere constructively or destructively, leading the receiver to

observe enhanced or weakened signals. This phenomenon may

vary for different subcarriers as they have varying wavelengths.

Consequently, all subcarriers can be divided into two groups: sensi-

tive and insensitive. Sensitive subcarriers show large amplitudes (or

variances), while insensitive subcarriers have imperceptible signal

fluctuations. Thus, observations on sensitive subcarriers are utilized

to detect human activities.

We utilize a binary decision variable 𝛼𝑖 to indicate the subcarrier

sensitivity, with 1 denoting sensitive while 0 showing insensitive.

Since insensitive subcarriers are not involved in wireless liveness

detection decisions, we only exploit sensitive subcarriers for achiev-

ing CSI manipulation.

4.4.2 Desensitizing. Since the transmitted signal has to experience

the real wireless channel, the transmitter needs to cancel the actual

distortion effect of the real channel. We call this process desensitiz-

ing. Let ℎ𝑟𝑖 (𝑡) denote the real CSI of the 𝑖
th sensitive subcarrier, and

𝑑𝑖 (𝑡) represent the corresponding coefficient of the desensitizing

module. 𝑑𝑖 (𝑡) would be the inverse of ℎ𝑟𝑖 (𝑡) to eliminate the impact

of the real channel on the transmitted signal 𝑥 (𝑡). We then have

𝑑𝑖 (𝑡) · ℎ𝑟𝑖 (𝑡)=1, i.e., 𝑑𝑖 (𝑡) = ℎ−1𝑟𝑖 (𝑡).

Activity Removal in Dynamic Scenarios:Generally, to obtain

the real CSI in environments with human motion, an attacker can

utilize a CSI profiling process. Particularly, rhythmic human activi-

ties (e.g., breathing) periodically affect the CSI waveforms, and the

resultant CSI often presents a sinusoidal-like pattern, which can be

then modeled by the attacker, as illustrated in Section 4.3.
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Figure 5: Subcarrier-level CSI wave morphing.

Signal Annihilation in Realistic Settings: To cancel the real

channel effect, the attacker needs to know the real CSI via CSI

profiling or modeling ahead. In certain cases, the human activity

is complex and the real CSI is not available. However, the attack

impact still exists. Although the attacker cannot control the CSI

obtained at the receiver, she can then utilize a random coefficient of

the desensitizing model. This may not successfully cancel the real

channel effect, but it can make the target wireless liveness detection

system obtain random and incorrect decisions. In the following, we

focus on the scenarios where the attacker has knowledge of the real

CSI due to the higher manipulability and more misleading nature

of such attacks.

4.4.3 Creating Artificial Channel. After canceling the real channel

effect, the attacker also needs to create an artificial channel to make

the receiver obtain the target CSI, crafted during the phase of event-

CSI conversion, as demonstrated in Section 4.3. Let ℎ𝑎𝑖 (𝑡) denote

the specified CSI of the artificial 𝑖th subchannel, and we thus obtain

ℎ𝑎𝑖 (𝑡) = ℎ𝑇𝑖 (𝑡).

Figure 5 illustrates subcarrier-level transmission signal manip-

ulation. We use 𝑥𝑎𝑖 (𝑡) to show the actual transmitted signal on

the 𝑖th subchannel. After the original signal 𝑥 (𝑡) goes through the

two steps of desensitizing and artificial channel, we have 𝑥𝑎𝑖 (𝑡) =

(1 − 𝛼) · 𝑥 (𝑡) + 𝛼 · 𝑥 (𝑡) · ℎ−1𝑟𝑖 (𝑡) · ℎ𝑎𝑖 (𝑡). The received signal at the

receiver then becomes 𝑦𝑎𝑖 (𝑡) = 𝑥𝑎𝑖 (𝑡) · ℎ𝑟𝑖 (𝑡) (where we omit the

noise term for the sake of simplicity). With 𝑦𝑎𝑖 (𝑡) and the publicly

known training sequence, the receiver can estimate the subcarrier

CSI ℎ̂𝑖 (𝑡), i.e., 𝑦𝑎𝑖 (𝑡) = 𝑥 (𝑡) · ℎ̂𝑖 (𝑡). As a result, we have

ℎ̂𝑖 (𝑡) = 𝛼 · ℎ𝑇𝑖 (𝑡) + (1 − 𝛼) · ℎ𝑟𝑖 (𝑡). (2)

Consequently, for insensitive subcarriers (𝛼 = 0), we obtain ℎ̂𝑖 (𝑡) =

ℎ𝑟𝑖 (𝑡), i.e., no manipulation is applied; while for sensitive subcarri-

ers (𝛼 = 1), we have ℎ̂𝑖 (𝑡) = ℎ𝑇𝑖 (𝑡), demonstrating that the proposed

method is able to make the receiver estimate the specified CSI via

creating an artificial channel.

Synchronization for Real CSI Cancellation: CSI patterns

(e.g., peaks and valleys in sinusoidal waves) change with humanmo-

tion, and CSI during the motion period shows a larger variance than

those happing out of the period. We can thus utilize human motion

and the corresponding CSI feature to achieve synchronization, so

that the real channel effect can be compensated.

4.5 CSI-aided Liveness Detection

With both the video and CSI signals, as discussed in Section 2.2, we

apply the general wireless liveness detection process in existing

studies (e.g., [29]). Particularly, we first synchronize both signals

and then process each. The video data processing follows the pro-

cedures described in Section 4.2, while the CSI-based monitoring

pipeline is an inverse process of event-CSI conversion, including

CSI data preprocessing, event detection, and feature extraction. Fi-

nally, we cross-check features extracted from the two sources to

determine whether a spoofing attack happens.

4.5.1 CSI and Video Data Synchronization. Spoofing detection re-

lies on the concurrent camera and wireless signals, thus it is crucial

to synchronize both. The out-of-sync data may result in different

semantic features, causing a high false alarming rate when they are

used for spoofing detection [24].

Suppose that 𝑓𝑣 denotes the frame per second (FPS) or frame rate

of the camera, and Δ𝑣 represents frame interval, i.e., the interval

between two consecutive frames. The frame interval is normally

constant and mathematically, we have Δ𝑣 = 1/𝑓𝑣 . The common

frame rates for video are 24 FPS (standard), 30 FPS (close-second

standard), and 60 FPS (for slow motion) [51]. Thus, the correspond-

ing frame intervals are 42 ms, 33 ms, and 17 ms. Meanwhile, let

𝑓𝑤 represent the CSI sampling rate at the receiver, which is much

larger than 𝑓𝑣 . We use 𝑁𝑐 to denote the number of CSI measure-

ments that a frame interval corresponds to. Note that if there is no

packet loss, 𝑁𝑐 is constant and equals
𝑓𝑤
𝑓𝑣
. Due to packet loss, unlike

video frames, CSI measurements may have variable time intervals

between them. As a result, each frame interval corresponds to a

varying number of CSI measurements, i.e., 𝑁𝑐 varies.

To address the issue, we apply linear interpolation to resam-

ple CSI measurements with a constant interval Δ𝑐 =
Δ𝑣

𝑁𝑐
, so that

each video frame corresponds to a fixed amount of resampled CSI

measurements.

4.5.2 CSI Data Preprocessing. The imperfect CSI can be caused

by environmental noise, radio signal interference, and hardware

imperfection. CSI data preprocessing includes (1) outlier removal

and noise reduction, making CSI more accurately reflect the impact

of human activities; (2) Principle Component Analysis (PCA) [48],

reducing dimensionality of feature vectors to facilitate data analysis.

Outlier Removal and Noise Reduction: The collected CSI

series may have some abrupt changes that are not caused by human

activities, and such abnormal values should be corrected. Hampel

filter is generally applied to identify and replace outliers (which

differ significantly from other samples) in a given series [11, 41]. It

uses a sliding window of configurable width to go over the input

data. For each window, the median 𝜂 and the median absolute

deviation (MAD) 𝜆 can be calculated. The sample of the input is

regarded as an outlier if it lies outside of the range of [𝜂 − 𝛾 · 𝜆, 𝜂 +

𝛾 · 𝜆], where 𝛾 is a pre-determined scalar threshold. In this way, the

Hampel filter is able to identify all outliers in the CSI series and

then replace them with the corresponding median.

Besides, CSI variations caused by human activities may occur

at the low end of the frequency range. We thus utilize the moving

average filter [49] to smooth the CSI series. This filter is simple

to use and is optimal for retaining a sharp step response [38]. It

computes the arithmetic mean of𝑀 input points at a time to pro-

duce each point of the output stream, where𝑀 is the pre-defined

number of points. Thus, the high-frequency noise in the raw CSI

measurements can be eliminated.
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(b) Waveform after PCA. (c) Variance scan and event extraction.

Figure 6: Procedures of CSI data preprocessing.

Figure 6a shows an example of applying outlier removal and

noise reduction, where we effectively reduce outlier peaks and the

strong high-frequency noise.

Dimension Reduction: We apply the PCA technique to de-

crease computational complexity by converting the received CSI

into a set of orthogonal components (i.e., the most representative

or principal components), which are influenced by human activity.

Meanwhile, PCA also facilitates removing the uncorrelated noisy

components. Figure 6b shows the CSI waveform after PCA, and

we can clearly observe CSI fluctuations that correspond to human

activity and smooth waveform, indicating static periods within

which there is no human activity.

4.5.3 Event Detection. Generally, when there is no movement in

the monitored area, the CSI fluctuation is small and maintains

stability in the time domain [65], while human activity would bring

distinguishable CSI fluctuations [63]. To segment CSI waveforms

corresponding to human activities, we need to determine the start

and end points of the CSI time series, which covers as much of

the activity-disturbed waveform as possible while minimizing the

coverage of the non-activity portion.

We then calculate the moving variance 𝜎2 of each window h=

{ℎ1, ℎ2, · · · , ℎ 𝐽 }, where 𝐽 is the pre-defined size of the window and

ℎ 𝑗 is the 𝑗 th CSI value in this window. Mathematically, we have

𝜎2 =

∑𝐽
𝑗=1

(ℎ 𝑗−𝜇 )
2

𝐽 −1 , where 𝜇 is the mean CSI value of the window

h. Empirically, the CSI segments during the human motion period

show amuch larger variance than those happening out of the period.

Thus, we are only interested in the CSI segments with a variance

larger than a predetermined threshold while ignoring the segments

with a variance under this threshold. Later, those segments contain-

ing information about human activities will be further processed

to extract semantic features about human activities. As shown in

Figure 6c, by scanning the CSI variances, we can determine the

start and end points for each event (two are detected, occurring

during [34.9 s, 67.1 s] and [97.3 s, 130.7 s], respectively).

4.5.4 Feature Extraction. With CSI segments during human ac-

tivities, a set of distinctive semantic features would be extracted

and compared with that obtained from the video streams. The

time period of human activities intercepted by CSI waveforms and

video frames would usually match. Thus, the start and end times

of each CSI segment, corresponding to that of human activity, will

be recorded as the features. The frequency of CSI variations de-

notes the frequency of the event, which the video frames can also

generate. Accordingly, we use the inter-peak intervals (i.e., the

time period between successive peaks) to compute the frequency

of occurred events.

As the first derivative of a peak switches from positive to nega-

tive at the peak maximum, it can be used to localize the occurrence

time of each peak. However, noise may occasionally bring fake

peaks and consequently false zero-crossings. Generally, the event

usually cannot occur beyond a certain frequency. This observation

enables us to develop a threshold-based fake peak removal algo-

rithm. Specifically, if the calculated interval between the current

peak with the previous one is less than 1/𝑓𝑚𝑎𝑥 (seconds), where

𝑓𝑚𝑎𝑥 (Hz) denotes the maximum possible event frequency, this peak

will be labeled as a fake one and thus discarded.

Let 𝑝𝑖 denote the number of true peaks detected via an event-

associated CSI segment, and [𝑡1, 𝑡2, · · · , 𝑡𝑝𝑖−1] denote the corre-

sponding sequence of inter-peak intervals. The event frequency

𝑓 can be then estimated using the mean inter-peak interval, i.e.,

𝑓 =
𝑝𝑖−1

∑𝑝𝑖 −1

𝑗=1
𝑡 𝑗
.

4.5.5 Consistency Checking. Given two tuples of features f𝑣 =

[𝑓 𝑣
1
, · · · , 𝑓 𝑣𝑛 ] (from video) and f

𝑐
= [𝑓 𝑐

1
, · · · , 𝑓 𝑐𝑛 ] (from CSI), where

𝑛 is the number of extracted features, the multi-feature similar-

ity score 𝑆 can be calculated by comparing the similarity of each

corresponding feature.

If the difference between the two features, each extracted from

one of the two sources, is within a predefined threshold, we regard

that both sources show the same feature. Mathematically, let 𝑠 𝑗
denote the single-feature similarity score and it can be obtained

through

𝑠 𝑗 =

{

1 if |𝑓 𝑣𝑗 − 𝑓 𝑐𝑗 | ≤ 𝐷 𝑗

0 otherwise
, 𝑗 ∈ [1, · · · , 𝑛] . (3)

𝐷 𝑗 is chosen empirically to achieve a high detection accuracy with

a low false positive rate. We set the optimal thresholds for both
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Figure 7: Layout of the experimental environment.

Figure 8: Three daily events.

the start and end times as 1.5 seconds, and that for the event fre-

quency as 0.08 Hz. As a result, we have 𝑆 (𝑖) =
∑𝑛

𝑗=1 𝑠 𝑗 . If all features

extracted from both sources are consistent, i.e., 𝑆 (𝑖) = 𝑛, we deter-

mine that there is no spoofing attack present; otherwise, the video

spoofing attack is detected.

5 EXPERIMENTAL RESULTS

We implement an existing wireless liveness detection (e.g., [29, 30])

and our proposed attack on top of a typical surveillance camera

(CODi HD 1080p [10]) and two USRP X300s [14], each equipped

with an SBX-120 daughterboard [13].

5.1 Evaluation Setup

We perform the experiment in a laboratory office. For a good field

of view, the camera is mounted on a wall 2.2 meters above the

floor to monitor human activities in the office. It creates 1280×720

RGB images at 30 frames per second (FPS). Meanwhile, a wireless

transmitter and receiver pair is utilized to verify the authenticity

of the recorded video. Each node is a USRP X300.

The channel estimation algorithm runs at the receiver to extract

the CSI for liveness detection. The attacker launches the phantom-

CSI attack by replacing the original real-time video frames with pre-

recorded fake ones (e.g., [4, 20]) and simultaneously manipulating

the transmitted signal, aiming to make both the recorded video

and the measured CSI at the receiver consistently show the same

human activities. Figure 7 shows the positions of the camera, the

transmitter, and the receiver.

We ask the user to perform the following three daily activities,

as shown in Figure 8, including E1: walking on the floor; E2: sitting

on a chair and then standing on the floor; E3: moving the arm up

and down. We consider two typical attack scenarios based on the

goal of the attacker.

Figure 9: Channel manipulation in a static environment.
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(b) Sit/stand.
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(c) Wave arms.

Figure 10: Channel manipulation in a dynamic environment.

• Fabricating Event: when no event occurs in the monitored

area, the attacker feeds a video with motion to the camera

and synchronously makes the CSI detect the same motion.

• Hiding Event: when motion appears in the area, the attacker

feeds a static shot to the camera and meanwhile makes CSI

exhibit no motion.

Metrics: We use the following two evaluation metrics.

• True Positive Rate: this is the percentage of actual spoofing

incidents that are correctly detected, denoting the accuracy

of the spoofing detection.

• False Positive Rate: this is the proportion of all negatives (i.e.,

when no spoofing occurs) that are wrongly categorized as

cases with spoofing.

5.2 Effectiveness of Channel Manipulation

In the section, we utilize examples to demonstrate the effectiveness

of channel manipulation in different environments, which aims to

make the receiver obtain the channel specified by the attacker.

Static Environment: Figure 9 presents the true CSI between

the transmitter and the receiver, the CSI specified by the attacker,

and the estimated CSI at the receiver in a static environment (with

no human activity). We can observe that the estimated CSI is greatly

similar to the specified one, while both significantly deviate from

the true CSI. The estimated CSI further causes the receiver to believe

that there are human activities during the periods from 34.2 s to

66.1 s, and from 96.3 s to 130.0 s. The activity repeats four and five

times in the two periods, respectively. When the attacker injects a

fake video with such events (e.g., waving arms) into the camera, the

system would alert as the true CSI and the video detect inconsistent

results without our attack, whereas our attack can successfully

bypass the CSI-aided liveness detection system.
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Figure 11: Video and the CSI signals when fabricating events.

Dynamic Environment: Figure 10 presents the true CSI be-

tween the transmitter and the receiver, the CSI specified by the

attacker, and the estimated CSI at the receiver in an environment

with human activities present. Human activities bring fluctuations

in the CSI waveforms. Specifically, a walking activity involves sig-

nificant body movements and location changes. Thus, it causes

significant CSI changes over time. However, an in-place activity, i.e.,

sitting/standing and waving arms, only involves relatively smaller

body movements and does not cause significant CSI changes. Also,

channel manipulation enables the receiver to obtain an estimated

CSI that is almost flat and close to the CSI specified by the attacker,

causing the receiver to believe that no event happens. Thus, when

the attacker injects a fake static video into the camera and mean-

while human activities occur in the monitored area, the system

may alert without our attack due to the inconsistent detection re-

sults from the video and CSI, whereas our attack can make the CSI

present no event and succeed to defraud the CSI-aided liveness

detection system.

5.3 Two Attack Cases

Case I - Fabricating Nonexistent Events: The attacker makes

the estimated CSI at the receiver side change with the injected fake

video containing scenes of human activities, where the environment

is in fact static.

Figure 11 compares the time series of the video and CSI when

the fake video contains different activities. As shown in Figures 11a

and 11d, with the video signal, the extracted feature tuple (in-

cluding start time, end time, and frequency) for walking equals

(20.0 𝑠, 53.2 𝑠, 0.15 𝐻𝑧); with the CSI data stream, the correspond-

ing tuple is (19.5 𝑠, 53.5 𝑠, 0.15 𝐻𝑧). The absolute errors between

features from the two sources are thus 0.5 s, 0.3 s, and 0. As the

optimal thresholds for start time, end time, and event frequency

are 1.5 s, 1.5 s, and 0.08 Hz, the similarity score equals 3. We have

similar observations for the cases of sitting/standing (Figures 11b
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(b) CSI stream.

Figure 12: Video and CSI signal comparison when hiding events.

and 11e) and waving arms (Figures 11c and 11f). In all cases, our

attack successfully bypasses wireless video liveness detection.

Case II - Hiding True Events: The attacker aims to make

the CSI disclose no human activities when feeding a fake video

containing only static scenes, though the user performs activities

in the monitored area.

When the spoofed video contains no person, OpenPose extracts

no keypoints from it and thus shows the empty output. When the

spoofed video of a static scene contains a still user, the extracted

keypoints have no movement, as shown in Figure 12a. Figure 12b

plots the corresponding CSI time series obtained at the receiver

side when the user performs events (e.g., walking). From the video

and CSI signals, the respective extracted features are consistent.

Thus, the wireless liveness detection system generates no alarm of

spoofing detection, verifying the success of the proposed attack.

5.4 Overall Attack Impact

We test both static and dynamic environments. Each has two sce-

narios: (i) the attacker launches a video spoofing only attack; (ii)

the attacker launches the proposed attack. For comparison, we
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Table 1: Different human activity combinations.

Number of events Human activity combination

1 E1 only; E2 only; E3 only

2 E1+ E2; E2 + E3; E1 + E3

3 E1+E2+E3
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(b) Event frequency.

Figure 13: CDF of the extracted features in a normal situation and

when a video spoofing only attack happens.

also test the performance of the wireless liveness detection sys-

tem when there is no any attack. The above three scenarios are

referred to as łvideo”, łcsi”, and łno”, respectively. We consider

the number of actual or spoofed events ranging from 1 to 3, and

test 7 different combinations of the three daily events (E1, E2, and

E3), as shown in Table 1, where łE𝑖 + E𝑗 ” (𝑖, 𝑗 ∈ {1, 2, 3}) denotes

that events E𝑖 and E𝑗 occur sequentially. For every combination

under each case, we perform 10 trials. Thus, in total, we perform

(2 × 2 × 7 + 7 + 1) × 10 = 360 attempts.

Event Feature Matching: Let 𝜖𝑠𝑐𝑒𝑡𝑠
, 𝜖𝑠𝑐𝑒𝑡𝑒

, and 𝜖𝑠𝑐𝑒
𝑓 𝑟

denote the

measured absolute estimation errors for start time, end time, and

event frequency, in scenario 𝑠𝑐𝑒 (𝑠𝑐𝑒 ∈ 𝑛𝑜, 𝑣𝑖𝑑𝑒𝑜, 𝑐𝑠𝑖). We show

the empirical cumulative distribution functions (CDFs) of 𝜖𝑛𝑜𝑡𝑠 , 𝜖𝑛𝑜𝑡𝑒 ,

𝜖𝑣𝑖𝑑𝑒𝑜𝑡𝑠
, and 𝜖𝑣𝑖𝑑𝑒𝑜𝑡𝑒

in Figure 13a. Also, Figure 13b shows the CDFs

of 𝜖𝑛𝑜
𝑓 𝑟

and 𝜖𝑣𝑖𝑑𝑒𝑜
𝑓 𝑟

. We see that the absolute errors for all three

features are always small with no attack. Specifically, 𝜖𝑛𝑜𝑡𝑠 and 𝜖𝑛𝑜𝑡𝑒
are less than 2.0 s with probabilities 92.9% and 98.6%, respectively;

𝜖𝑛𝑜
𝑓 𝑟

is always less than 0.045 Hz. Such results clearly show that

without any attacks, the co-existing video and CSI data are highly

consistent, i.e., the false positive rate of wireless liveness detection

is low. On the other hand, for a video spoofing only attack, the

features extracted from the two sources show an apparentmismatch.

We observe that 𝜖𝑣𝑖𝑑𝑒𝑜𝑡𝑠
and 𝜖𝑣𝑖𝑑𝑒𝑜𝑡𝑒

are larger than 7.8 s and 23.8

s with probability 97.6%, respectively. Also, 𝜖𝑣𝑖𝑑𝑒𝑜
𝑓 𝑟

ranges from

0.05 to 0.39 Hz, and is larger than 0.07 Hz with probability 97.6%.

These results convincingly demonstrate that the wireless liveness

detection system can effectively detect video spoofing only attacks.

Figure 14 presents CDFs of 𝜖𝑐𝑠𝑖𝑡𝑠
, 𝜖𝑐𝑠𝑖𝑡𝑒

, and 𝜖𝑐𝑠𝑖
𝑓 𝑟

. We observe that

the absolute estimation errors for all three features become con-

sistently small. Particularly, 𝜖𝑐𝑠𝑖𝑡𝑠
and 𝜖𝑐𝑠𝑖𝑡𝑒

are less than 1.5 s with

probabilities 93.8% and 95.3%; 𝜖𝑐𝑠𝑖
𝑓 𝑟

is less than 0.042 Hz with prob-

ability 98.6%. These results show that our attack can successfully

synchronize the CSI and video signals observed at the receiver.With
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Figure 14: CDF of the extracted features with our attack.

Table 2: Wireless video liveness detection vs. feature count.

Count Two Three

Case
video spoofing

only attack

our

attack

video spoofing

only attack

our

attack

TPR 1 3.1% 1 4.4%

FPR 4.4% 4.4% 13.3% 13.3%

Table 3: Impact of different event types.

E1 E2 E3

Case Video*
our

attack
Video

our

attack
Video

our

attack

TPR 1 5.0% 1 6.0% 1 4.3%

FPR 10.0% 10.0% 10.0% 10.0% 7.1% 7.1%

*Video: video spoofing only attack.

consistent CSI and video data streams, the wireless liveness detec-

tion system would fail to send out an alarm when video spoofing

attacks happen.

Impact of Feature Count: By comparing extracted features

from both sources, it can determine whether the recorded video

is spoofed or not. Table 2 presents TPRs and FPRs of the liveness

detection system when the video spoofing only attack happens

and when our attack initiates. We see that if using two features

(start and end time), the overall TPR can be up to 1 when there is

a video spoofing only attack, while it is decreased to as small as

3.1% when the proposed attack is launched. This implies that the

CSI-aided liveness detection system can reliably detect traditional

video spoofing attacks, but becomes ineffective with our attack

(with just 9.1% accuracy). Besides, we observe that the proposed

attack rarely has an impact on FPR, which maintains a relatively

low value. Moreover, when using three features (start time, end

time, and event frequency) for event detection, we have similar

observations. Specifically, compared with the video spoofing only

attack, the TPR of our attack is slightly increased but still below

4.5%, again indicating the attack effectiveness against the wireless

liveness detection scheme.

Impact of Event Type: For different types of events in the

spoofed video, we construct respective phantom CSI to launch

our attack. As shown in Table 3, the TPR of the liveness detection

system is always 100% under video spoofing only attacks regardless

of event type, while it drops dramatically to 5.0%. 6.0%, and 4.3%

for E1, E2, and E3, respectively. Also, the FPRs across all event
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Figure 15: Event start time discrepancies.
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Figure 16: Event end time discrepancies.
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Figure 17: Mean frequency discrepancies.

Table 4: The list of voice commands we test.

ID Command Word #

C1 Please call 911 3

C2 Please play music 3

C3 Please open the door 4

C4 Please turn on the TV 5

C5 Please open the notification center 5

types under both scenarios are no larger than 10%. These results

demonstrate our attack is robust against event type.

5.5 User Study

We recruited 10 volunteers (aged 18-35 years old; 5 self-identified

as females and the rest as males).1 Every participant was asked to

perform eachmotion event in Table 1 twice in a normal scenario (i.e.,

without any attacks). We also recorded the corresponding videos

and replayed them in the other two cases, i.e., the video spoofing

only attack and the proposed attack. For each case, we test the

performance of wireless video liveness detection for (3+4+1) ×2 =

16 trials per participant.

Figures 15, 16, and 17 illustrate respective feature differences. We

see that all feature differences are consistently low with no attack.

Specifically, for the start/end time, the feature difference is less than

1.5 s while it is less than 0.03 for the frequency. With the video

spoofing only attack, each feature discrepancy of all users increases

greatly, which becomes an effective indicator of the existence of

video spoofing. However, when the proposed attack is launched, all

feature differences become consistently small again, similar to that

in the scenario of no attack. These results convincingly demonstrate

that an attacker can effectively bypass the wireless video liveness

detection system with spoofed videos by launching the phantom-

CSI attack.

6 ATTACK AGAINST WIRELESS VOICE
LIVENESS DETECTION

Voice assistants, such as Amazon Alexa and Google Assistant, have

been embedded in a slew of digital devices (e.g., smartphones and

smart TVs). Due to the open nature of voice assistants’ input chan-

nels, a malicious attacker could easily record people’s use of voice

commands [1, 16], and even build a model to synthesize a victim’s

voice [37]. The attacker plays pre-recorded or synthesized voice

1Our study has been approved by our institution’s IRB.

Figure 18: An example of a wireless-based voice liveness detection.

commands, which may spoof voice assistants, causing these devices

to perform operations against the desires of their owners [5, 75].

Wireless voice liveness detection cross-checks the consistency be-

tween simultaneously obtained audio and wireless signals. Specif-

ically, we preprocess audio signals using the spectral subtraction

technique [6] to remove the background noise, where the average

noise spectrum is first estimated and then subtracted from the noisy

speech spectrum. By extracting semantic features (e.g., start time,

end time, and word count) from the audio and wireless signals,

spoofing attacks via pre-recorded or synthesized voice can be then

detected [35, 36, 42, 53, 76]. Our attack can generate fake CSI and

make it synchronized with the voice signal played by a speaker.

6.1 Implementation Setup

We implement wireless voice liveness detection and our attack in

real-world environments. We utilize USRP X300 as a transceiver to

collect CSI, and a microphone to collect voice signals. The trans-

mitter and the receiver are placed at opposite positions relative to

the target speaker. We randomly select 5 commands (C1-C5) from a

list of the best Siri voice commands for a variety of daily tasks [8],

as shown in Table 4. The evaluation metrics are the same with that

for assessing the attack against wireless video liveness detection.
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Figure 19: CDFs of start/end time for normal

and voice spoofing attack only cases.
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Figure 20: CDFs of word count for normal and

voice spoofing attack only cases.
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Figure 21: CDFs of start/end time when the

proposed attack is launched.

6.2 Case Study

We compare the following cases: (1) Normal Case: the user speaks

command C5 in Table 4; (2) Voice Replay Only: a speaker plays C5;

(3) Our Attack. Figure 18 plots corresponding voice and CSI signals.

Normal Case: From the voice signal, the speaking interval is

[9.6 s, 35.2 s] and there are 5 separate segments full of fluctuations,

corresponding to 5 words. Meanwhile, the fluctuations of the CSI

time series (referred to as łtrue CSI” in Figure 18) happen with

the occurrence of the command; accordingly, we get the speaking

interval [9.9 s, 35.3 s] and the word count 5 (as the sharp and rise

pattern appears 5 times, each caused by speaking a word). Thus, the

errors between corresponding features extracted from the voice and

CSI signals are all small, indicating that both signals are consistent.

Voice Replay Only: When an attacker launches a voice spoof-

ing only attack (with no mouth motion), the voice signal that the

microphone captures maintains almost unchanged. However, the

CSI waveform (referred to łW/o our attack’ in Figure 18) becomes

flat, demonstrating that the CSI would detect no event. The incon-

sistency of event detection via voice and CSI data facilitates the

detection of the voice spoofing attack.

OurAttack: The waveform of the estimated CSI is highly similar

to the true one. The correspondingly extracted features are 9.0 s,

34.4 s, and 5. By comparing them with the features extracted from

the voice signal, we obtain the absolute errors as 0.6 s, 0.8 s, and 0,

each of which is smaller than the respective threshold, indicating

the failure of the liveness detection.

6.3 Overall Performance

For each command in Table 4, we perform the proposed attack

10 times. We synchronize the CSI and spoofed voice signals each

time to bypass the wireless-based liveness detection system. For

comparison, we also record the performance of the normal case

with no attack, and the voice spoofing only attack. We refer to the

above three scenarios as łcsi”, łno”, and łvoice”, respectively.

Speaking Activity Detection: Let 𝜖𝑠𝑐𝑒𝑡𝑠
, 𝜖𝑠𝑐𝑒𝑡𝑒

, and 𝜖𝑠𝑐𝑒𝑤𝑐 denote

the absolute estimation errors of start time, end time, and word

count in scenario 𝑠𝑐𝑒 , where 𝑠𝑐𝑒 ∈ {no, voice, csi}. Figure 19 shows

CDFs of 𝜖𝑛𝑜𝑡𝑠 , 𝜖𝑛𝑜𝑡𝑒 , 𝜖𝑣𝑜𝑖𝑐𝑒𝑡𝑠
and 𝜖𝑣𝑜𝑖𝑐𝑒𝑡𝑒

. We see that 𝜖𝑛𝑜𝑡𝑠 is always less

than 1.2 s and 𝜖𝑛𝑜𝑡𝑒 is less than 1.5 s with probability 98.0%, while

𝜖𝑣𝑜𝑖𝑐𝑒𝑡𝑠
and 𝜖𝑛𝑜𝑡𝑒 are apparently larger. Meanwhile, 𝜖𝑛𝑜𝑤𝑐 equals 0 with

probability of 96.0%, whereas 𝜖𝑣𝑜𝑖𝑐𝑒𝑤𝑐 ranges from 3 to 6, as shown

Table 5: Wireless voice liveness detection vs. feature count.

Two Three

Case no voice csi no voice csi

TPR N/A 1 0 N/A 1 0

FPR 6.0% 6.0% 6.0% 8.0% 8.0% 8.0%

Table 6: Wireless voice liveness detection vs. word count.

3 4 5

Case voice csi voice csi voice csi

TPR 1 0 1 0 1 0

FPR 10.0% 10.0% 10.0% 10.0% 5.0% 5.0%

in Figure 20. These results convincingly imply that the wireless

liveness detection system can effectively recognize voice spoofing

attacks via feature differences. Figure 21 presents CDFs of 𝜖𝑐𝑠𝑖𝑡𝑠
and

𝜖𝑐𝑠𝑖𝑡𝑒
. We see that 𝜖𝑐𝑠𝑖𝑡𝑠

and 𝜖𝑐𝑠𝑖𝑡𝑒
are always less than 0.8 s and 1.1

s, respectively. Also, 𝜖𝑐𝑠𝑖𝑤𝑐 is always 0. Evidently, with our attack,

the extracted features from both voice and CSI signals are highly

consistent, leading to the failure of the liveness detection system.

Impact of Feature Count: Table 5 compares TPR and FPR for

different cases when utilizing two features (start and end time)

or three features (start time, end time, and word count) to detect

spoofing attacks. We observe that regardless of the feature count,

the wireless voice liveness detection system can achieve a TPR

of 100% to recognize voice spoofing only attacks, while the TPR

plummets to 0 with the proposed attack, implying that a voice

replay attack is no longer to be correctly recognized. Meanwhile,

we see that the FPRmaintains small and consistent in different cases,

demonstrating that our attack does not raise extra false alarms.

Impact of Number of Spoken Words: Aligned with existing

work [36, 58, 66, 74], we also investigate the impact of count of

spoken words. As show in Table 6, for word count ranging from

3 to 5, the FPR of the liveness detection system is always 100%

without considering our attack, while it drops 0 under our attack.

This verifies the robustness of our attack against word count. Also,

the FPRs across all word counts for two cases are no larger than

10%, and the small fluctuation in FPR appears due to the minute

changes in the environment.
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Figure 22: Speaking start time differences.
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Figure 23: Speaking end time differences.
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Figure 24: Mean word count differences.

6.4 User Study

The 10 volunteers (as described in Section 5.5) were asked to speak

each command in Table 4 twice in a normal scenario. We also

recorded the voices and replayed them in the other two cases with

the voice spoofing only attack and our proposed attack, respectively.

Figures 22, 23, and 24 illustrate respective feature discrepancies. We

have the following observations. With no attack, the differences in

both start time and end time are consistently low (less than 1.5 s)

across all users. Also, the mean difference in word count for each

user is always small (less than 0.1). However, for a voice spoof-

ing only attack, the discrepancies in all features for all users jump

sharply. These results convincingly show that the wireless liveness

detection system can robustly detect voice spoofing only attacks.

With our attack, however, those feature discrepancies decrease to

small values, similar to that in the scenario of no attack, indicat-

ing that spoofed voice can successfully bypass the wireless voice

liveness detection system.

7 DISCUSSIONS

7.1 Limitations

Cross-modality Sensing: Currently, the proposed attack targets

compromisingwireless video/voice liveness detection systems. Thus,

except for generating fake CSI time series, it should also perform a

video spoofing or voice replay attack simultaneously. In general,

phantom-CSI can be utilized alone to confuse any CSI-based appli-

cations, such as keystroke recognition techniques [2, 15] or vital

signs inference methods [25, 32].

Complex Human Activities: Our work currently just consid-

ers three popular daily activities (i.e., walking, sitting/standing, and

waving arms), while a person may perform more complex activities

(e.g., playing games). It may thus become difficult to construct phan-

tom CSI associated with these activities. Accordingly, we expect

that if the adversary could pre-collect CSI traces from such activi-

ties, she can feed them to the wireless liveness detection system to

launch the proposed attack.

Scenarios Where Real CSI is Unknown: The proposed work

may fail to make the receiver obtain the specific CSI in scenar-

ios where real CSI is unavailable or cannot be correctly predicted.

Machine learning-based approaches have demonstrated success in

achieving accurate CSI prediction (e.g., [33, 69]). They thus can be

added to our technique to improve the attack effectiveness, and we

leave such integration to our future work.

Channels with Noise and Interference: Normally, if the real

channel has noise and interference, existing wireless liveness detec-

tion may not work, and thus in this case, it is unnecessary to explore

the feasibility of the proposed attack. The directional antenna can

be adopted to eliminate CSI noises and other interferences.

7.2 Countermeasures

The proposed attack needs to compromise the transmitter and can-

cel the real channel effect before injecting phantom CSI to mislead

the target system. Intuitively, to defend against such attacks, we can

utilize a trustful transmitter or a protected frequency (on which the

attacker is not allowed to inject signals). Such methods, however,

would incur extra costs. Alternatively, we can also directly stop the

attacker from obtaining the true wireless channel information by

leveraging friendly jamming. Specifically, an ally jamming sends out

intentional radio interference signals, i.e., jamming signals, to the

wireless channel to prevent the attacker from measuring the real

CSI, while the receiver itself can eliminate the impact of interference

signals to guarantee that the wireless liveness detection system still

works when the proposed attack is not launched. Similarly, this

defense brings additional overhand for jamming hardware.

To validate the liveness detection result, another viable defense

strategy is to integrate extra sensors. For example, the work [50]

uses thermal infrared (IR) images to detect live signals; motion

sensors can be employed to detect the presence of humans from

the radiation of their body heat [19]; by exploiting the circular

microphone array of the smart speaker, voice spoofing attacks can

be thwarted [34]. However, these extra sensors are not always

available, and the deployment of additional infrastructure requires

authentication of the new sensor data that may potentially intro-

duce a new attack surface [29].

8 RELATED WORK

In this section, we review two domains of prior works that are

tightly related to the proposed phantom-CSI attack.

Wireless Human Activity Detection: Due to the pervasive,

low-cost, and non-intrusive sensing nature, wireless human activity

sensing has drawn increasing attention [31]. The received signal

strength (RSS) or channel state information (CSI) obtained at the

receiver may vary with environmental human activity. RSS rep-

resents the average power in a received wireless signal over the

whole power bandwidth. Different from RSS, which uses synthetic

values, CSI offers fine-grained channel information by decompos-

ing the entire channel measurement into subcarriers and obtains

better human activity detection performance than other metrics
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(e.g., received signal strength) [21]. CSI contains both subcarrier-

level amplitude and phase information. Extensive research efforts

show that CSI amplitudes can capture various human activities,

such as walking [60, 62, 71], breathing [32], gestures [55], and

keystrokes [3, 15, 68]. Also, the work [61] exploits CSI phase differ-

ence data to monitor vital signs. Moreover, CSI amplitude and phase

information can be employed together to achieve human activity

detection [42, 43, 47, 72]. For example, the study [72] points out that

human respiration cannot be detectable in all the locations when

CSI amplitude or phase is used individually, and then proposes to

use both phase and amplitude that are complementary to remove

blind spots (where respiration detection experiences poor perfor-

mance). Another study [42] presents that compared with using CSI

amplitude alone, leveraging CSI amplitude along with CSI phase

improves the accuracy of breathing rate estimation.

Liveness Detection: With the rapid advance in speech synthe-

sis and video editing methods, it becomes increasingly popular to

replay tampered voices/videos [27, 28, 59]. Specifically, in an audio

replay attack, a recording of a target speaker’s voice is replayed

to a voice recognition system in place of genuine speech [28]; in

a video spoofing attack, an attack can play back a clip of footage

to cover up a crime [27]. With such spoofing techniques, attackers

may bypass voice authentication or video monitoring, and even

stealthily inject illegal voice commands or conduct malicious activi-

ties. To deal with these spoofing attacks, liveness detection is widely

applied to differentiate the alive and present data (originating from

live users) from forged data that are pre-recorded, concatenated,

or synthesized by the attacker. Liveness detection against those

spoofing attacks mainly includes the following three categories.

Intrinsic feature-based: Non-live representations often miss some

intrinsic features in the corresponding live source. For example,

a smartphone’s loudspeaker usually presents strongly attenuated

frequency responses in the low part of the spectrum [54], but it

often has a high false acceptance rate to use this observation for

liveness detection. Also, [74] uses the unique time-difference-of-

arrival (TDoA) dynamic (i.e., the TDoA changes in a sequence of

phoneme sounds to the phone’s two microphones) for liveness

detection, as it does not exist under replay attacks. Nevertheless,

this method is not applicable to a device with only one microphone.

Another sensor-assisted: Liveness detection can also be achieved

by combining a microphone/camera with other co-existing sen-

sors [9, 22, 46, 73]. For example, [22] correlates sounds and breathing-

induced chest motion (obtained via a gyroscope) to build a liveness

detection system; [46] uses earbuds to measure the air pressure

in the ear canal for voice liveness detection. These two methods,

however, require the user to wear a chest-mounted gyroscope or

earbuds. [73] leverages a speaker to emit inaudible signals, and ex-

erts a microphone to record the reverberant signals to distinguish

bone-conducted vibrations from air-conducted voices for liveness

detection. Unfortunately, not all loudspeakers can emit ultrasound,

which limits its practicality.

Wireless-based: There are emerging research efforts (e.g., [24,

29, 35, 36, 39, 42, 53, 76]) performing liveness detection leveraging

wireless sensing due to its non-invasive and device-free nature,

as well as the ubiquitous deployment of wireless infrastructures.

In particular, [39] uses the ratio of the energy in motion affected

bands (35-60 Hz) over the entire mmWave radar spectrogram as

an indicator for liveness; [24, 29] develops techniques to detect

video replay or forgery attacks using CSI extracted from wireless

signals near the camera spot; [35] utilizes CSI to capture mouth

motions, which can help distinguish authentic voice command

from a spoofed one; [42] exploits the synchronized changes in

voice and breathing to detect voice replay attacks. Our attack can

make the CSI convey the same event semantic information with

the spoofed video or voice signals, compromising those wireless

liveness detection systems.

9 CONCLUSION

We have identified a new attack against liveness detection systems

that use CSI to authenticate environmental human activities. Our

phantom-CSI attack can manipulate CSI to exhibit the same se-

mantic information as that measured by a co-existing camera or

microphone, allowing spoofed video or voice signals to bypass the

CSI-based liveness detection system. Our attack implementation

on USRPs running GNURadio validates the effectiveness and ro-

bustness of the proposed attack, with experimental results showing

that the proposed attack drastically lowers the true positive rates

(TPRs) of the wireless liveness detection system from 100% to just

4.4% and 0% for detecting spoofed video and voice, respectively.

ACKNOWLEDGMENTS

Wewould like to thank all anonymous reviewers for their insightful

comments. This work was supported in part by NSF under Grants

No.1948547 and No.2155181.

REFERENCES
[1] Muhammad Ejaz Ahmed, Il-Youp Kwak, Jun Ho Huh, Iljoo Kim, Taekkyung Oh,

and Hyoungshick Kim. 2020. Void: A fast and light voice liveness detection
system. In 29th USENIX Security Symposium (USENIX Security 20). 2685ś2702.

[2] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad. 2015. Keystroke
recognition using WiFi signals. In Proceedings of the 21st annual international
conference on mobile computing and networking. 90ś102.

[3] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad Shahzad. 2017. Recognizing
keystrokes using WiFi devices. IEEE Journal on Selected Areas in Communications
35, 5 (2017), 1175ś1190.

[4] Zach Banks and Eric Van Albert. 2015. Looping Surveillance Cameras through
Live Editing of Network Streams. https://infocondb.org/con/def-con/def-con-
23/looping-surveillance-cameras-through-live-editing-of-network-streams.

[5] Logan Blue, Luis Vargas, and Patrick Traynor. 2018. Hello, is it me you’re looking
for? Differentiating between human and electronic speakers for voice interface
security. In Proceedings of the 11th ACM Conference on Security & Privacy in
Wireless and Mobile Networks. 123ś133.

[6] Steven Boll. 1979. Suppression of acoustic noise in speech using spectral sub-
traction. IEEE Transactions on acoustics, speech, and signal processing 27, 2 (1979),
113ś120.

[7] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2019.
OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields.
IEEE transactions on pattern analysis and machine intelligence 43, 1 (2019), 172ś
186.

[8] Edgar Cervantes. 2021. The best Siri commands for productivity, information,
laughter, and more. https://www.androidauthority.com/best-siri-commands-
1094484/.

[9] Shaxun Chen, Amit Pande, and Prasant Mohapatra. 2014. Sensor-assisted facial
recognition: an enhanced biometric authentication system for smartphones.
In Proceedings of the 12th annual international conference on Mobile systems,
applications, and services. 109ś122.

[10] CODi. 2021. FALCO HD 1080P Auto Focus Webcam.
https://www.codiworldwide.com/mobile-accessories/falco-hd-1080p-webcam/.

[11] Laurie Davies and Ursula Gather. 1993. The identification of multiple outliers. J.
Amer. Statist. Assoc. 88, 423 (1993), 782ś792.

[12] Wenrui Diao, Xiangyu Liu, Zhe Zhou, and Kehuan Zhang. 2014. Your voice assis-
tant is mine: How to abuse speakers to steal information and control your phone.

452



RAID ’23, October 16ś18, 2023, Hong Kong, China Qiuye He and Song Fang

In Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices. 63ś74.

[13] Ettus Research. 2021. SBX 400-4400 MHz Rx/Tx (120 MHz, X Series only).
https://www.ettus.com/all-products/sbx120/.

[14] Ettus Research. 2021. USRP X300. https://www.ettus.com/all-products/x300-kit/.
[15] Song Fang, Ian Markwood, Yao Liu, Shangqing Zhao, Zhuo Lu, and Haojin

Zhu. 2018. No Training Hurdles: Fast Training-Agnostic Attacks to Infer Your
Typing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA,
1747ś1760.

[16] Huan Feng, Kassem Fawaz, and Kang G. Shin. 2017. Continuous Authentication
for Voice Assistants. In Proceedings of the 23rd Annual International Conference
on Mobile Computing and Networking (Snowbird, Utah, USA) (MobiCom ’17).
Association for Computing Machinery, New York, NY, USA, 343ś355.

[17] Andrea Goldsmith. 2005. Wireless Communications. Cambridge University Press,
New York, NY, USA.

[18] Francesco Gringoli, Matthias Schulz, Jakob Link, and Matthias Hollick. 2019. Free
your CSI: A channel state information extraction platform for modern Wi-Fi
chipsets. In Proceedings of the 13th International Workshop on Wireless Network
Testbeds, Experimental Evaluation & Characterization. 21ś28.

[19] Yan He, Qiuye He, Song Fang, and Yao Liu. 2021. MotionCompass: Pinpointing
Wireless Camera via Motion-Activated Traffic. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services (MobiSys).
Association for Computing Machinery, New York, NY, USA, 215ś227.

[20] Craig Heffners. 2013. Exploiting Network Surveillance Cameras Like a Hollywood
Hacker. https://www.youtube.com/watch?v=B8DjTcANBx0.

[21] Peter Hillyard, Anh Luong, Alemayehu Solomon Abrar, Neal Patwari, Krishna
Sundar, Robert Farney, Jason Burch, Christina Porucznik, and Sarah Hatch Pollard.
2018. Experience: Cross-technology radio respiratory monitoring performance
study. In Proceedings of the 24th Annual International Conference on Mobile Com-
puting and Networking. 487ś496.

[22] Chenyu Huang, Huangxun Chen, Lin Yang, and Qian Zhang. 2018. BreathLive:
Liveness detection for heart sound authentication with deep breathing. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1
(2018), 1ś25.

[23] Yong Huang, Xiang Li, Wei Wang, Tao Jiang, and Qian Zhang. 2021. Forgery
Attack Detection in Surveillance Video Streams Using Wi-Fi Channel State Infor-
mation. IEEE Transactions on Wireless Communications 21, 6 (2021), 4340ś4349.

[24] Yong Huang, Xiang Li, Wei Wang, Tao Jiang, and Qian Zhang. 2021. Towards
Cross-Modal Forgery Detection and Localization on Live Surveillance Videos. In
Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM ’21).

[25] Weijia Jia, Hongjian Peng, Na Ruan, Zhiqing Tang, and Wei Zhao. 2020. WiFind:
Driver Fatigue Detection with Fine-Grained Wi-Fi Signal Features. IEEE Transac-
tions on Big Data 6, 2 (2020), 269ś282.

[26] Jesse S Jin, Changsheng Xu, Min Xu, Dai-Kyung Hyun, Min-Jeong Lee, Seung-Jin
Ryu, Hae-Yeoun Lee, and Heung-Kyu Lee. 2013. Forgery detection for surveillance
video. In The Era of Interactive Media. Springer, 25ś36.

[27] Naor Kalbo, Yisroel Mirsky, Asaf Shabtai, and Yuval Elovici. 2020. The security
of IP-based video surveillance systems. Sensors 20, 17 (2020), 4806.

[28] Tomi Kinnunen, Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Nicholas
Evans, Junichi Yamagishi, and Kong Aik Lee. 2017. The ASVspoof 2017 challenge:
Assessing the limits of replay spoofing attack detection. (2017).

[29] Nitya Lakshmanan, Inkyu Bang, Min Suk Kang, Jun Han, and Jong Taek Lee.
2019. SurFi: detecting surveillance camera looping attacks with Wi-Fi channel
state information. In Proceedings of the 12th Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec ’19).

[30] Nitya Lakshmanan, Inkyu Bang, Min Suk Kang, Jun Han, and Jong Taek Lee.
2019. SurFi: Detecting Surveillance Camera Looping Attacks with Wi-Fi Channel
State Information (Extended Version). arXiv preprint arXiv:1904.01350 (2019).

[31] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang. 2020. Wireless Sensing for Human
Activity: A Survey. IEEE Communications Surveys & Tutorials 22, 3 (2020), 1629ś
1645.

[32] Jian Liu, Yan Wang, Yingying Chen, Jie Yang, Xu Chen, and Jerry Cheng. 2015.
Tracking Vital Signs During Sleep Leveraging Off-the-Shelf WiFi. In Proceedings
of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting (Hangzhou, China) (MobiHoc ’15). Association for Computing Machinery,
New York, NY, USA, 267ś276.

[33] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. 2020. Chan-
nel State Information Prediction for 5GWireless Communications: A Deep Learn-
ing Approach. IEEE Transactions on Network Science and Engineering 7, 1 (2020),
227ś236.

[34] Yan Meng, Jiachun Li, Matthew Pillari, Arjun Deopujari, Liam Brennan, Hafsah
Shamsie, Haojin Zhu, and Yuan Tian. 2022. Your microphone array retains your
identity: A robust voice liveness detection system for smart speaker. In USENIX
Security.

[35] Yan Meng, Zichang Wang, Wei Zhang, Peilin Wu, Haojin Zhu, Xiaohui Liang,
and Yao Liu. 2018. WiVo: Enhancing the Security of Voice Control System via

Wireless Signal in IoT Environment (Mobihoc ’18). Association for Computing
Machinery, New York, NY, USA, 81ś90.

[36] Yan Meng, Haojin Zhu, Jinlei Li, Jin Li, and Yao Liu. 2020. Liveness detection for
voice user interface via wireless signals in IoT environment. IEEE Transactions
on Dependable and Secure Computing (2020).

[37] Dibya Mukhopadhyay, Maliheh Shirvanian, and Nitesh Saxena. 2015. All your
voices are belong to us: Stealing voices to fool humans and machines. In European
Symposium on Research in Computer Security. Springer, 599ś621.

[38] Eduardo F. Nakamura and Antonio A. F. Loureiro. 2008. Information Fusion
in Wireless Sensor Networks. In Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data (Vancouver, Canada) (SIGMOD ’08).
Association for Computing Machinery, New York, NY, USA, 1365ś1372.

[39] Muhammed Zahid Ozturk, ChenshuWu, BeibeiWang, and KJ Liu. 2021. RadioMic:
Sound Sensing via mmWave Signals. arXiv preprint arXiv:2108.03164 (2021).

[40] Sameera Palipana, David Rojas, Piyush Agrawal, and Dirk Pesch. 2018. FallDeFi:
Ubiquitous Fall Detection Using Commodity Wi-Fi Devices. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1, 4, Article 155 (Jan. 2018), 25 pages.

[41] R.K. Pearson. 2002. Outliers in process modeling and identification. IEEE Trans-
actions on Control Systems Technology 10, 1 (2002), 55ś63.

[42] Swadhin Pradhan, Wei Sun, Ghufran Baig, and Lili Qiu. 2019. Combating replay
attacks against voice assistants. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 3, 3 (2019), 1ś26.

[43] Kun Qian, Chenshu Wu, Zheng Yang, Yunhao Liu, Fugui He, and Tianzhang
Xing. 2018. Enabling contactless detection of moving humans with dynamic
speeds using CSI. ACM Transactions on Embedded Computing Systems (TECS) 17,
2 (2018), 1ś18.

[44] Muhammad Salman, Nguyen Dao, Uichin Lee, and Youngtae Noh. 2022.
CSI:DeSpy: Enabling Effortless Spy Camera Detection via Passive Sensing of User
Activities and Bitrate Variations. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 6, 2, Article 72 (jul 2022), 27 pages.

[45] Souvik Sen, Božidar Radunovic, Romit Roy Choudhury, and Tom Minka. 2012.
You Are Facing the Mona Lisa: Spot Localization Using PHY Layer Information.
In Proceedings of the 10th International Conference on Mobile Systems, Applications,
and Services (Low Wood Bay, Lake District, UK) (MobiSys ’12). Association for
Computing Machinery, New York, NY, USA, 183ś196.

[46] Jiacheng Shang and Jie Wu. 2022. Voice Liveness Detection for Voice Assistants
through Ear Canal Pressure Monitoring. IEEE Transactions on Network Science
and Engineering (2022).

[47] Cong Shi, Jian Liu, Hongbo Liu, and Yingying Chen. 2017. Smart user authen-
tication through actuation of daily activities leveraging WiFi-enabled IoT. In
Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing. 1ś10.

[48] Jonathon Shlens. 2014. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100 (2014).

[49] Steven W Smith. 1999. The scientist and engineer’s guide to digital signal
processing, Second Edition. (1999).

[50] Lin Sun, WaiBin Huang, and MingHui Wu. 2011. TIR/VIS correlation for liveness
detection in face recognition. In International Conference on Computer Analysis
of Images and Patterns. Springer, 114ś121.

[51] Benjamin Tag, Junichi Shimizu, Chi Zhang, Kai Kunze, Naohisa Ohta, and
Kazunori Sugiura. 2016. In the Eye of the Beholder: The Impact of Frame Rate on
Human Eye Blink. In Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems (San Jose, California, USA) (CHI EA ’16).
Association for Computing Machinery, New York, NY, USA, 2321ś2327.

[52] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan
Capkun. 2011. On the Requirements for Successful GPS Spoofing Attacks. In
Proceedings of the 18th ACMConference on Computer and Communications Security
(Chicago, Illinois, USA) (CCS ’11). Association for Computing Machinery, New
York, NY, USA, 75ś86.

[53] Bang Tran, Shenhui Pan, Xiaohui Liang, and Honggang Zhang. 2021. Exploiting
Physical Presence Sensing to Secure Voice Assistant Systems. In ICC 2021 - IEEE
International Conference on Communications. 1ś6.

[54] Jesus Villalba and Eduardo Lleida. 2011. Preventing replay attacks on speaker
verification systems. In 2011 Carnahan Conference on Security Technology. IEEE,
1ś8.

[55] Aditya Virmani and Muhammad Shahzad. 2017. Position and orientation agnostic
gesture recognition using wifi. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services. 252ś264.

[56] Guanhua Wang, Yongpan Zou, Zimu Zhou, Kaishun Wu, and Lionel M. Ni. 2014.
We Can Hear You with Wi-Fi!. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (Maui, Hawaii, USA) (MobiCom
’14). Association for Computing Machinery, New York, NY, USA, 593ś604.

[57] Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan Wu, Tao
Gu, and Bing Xie. 2016. Human Respiration Detection with Commodity Wifi
Devices: Do User Location and Body Orientation Matter?. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing
(Heidelberg, Germany) (UbiComp ’16). Association for Computing Machinery,
New York, NY, USA, 25ś36.

453



Phantom-CSI Attacks against Wireless Liveness Detection RAID ’23, October 16ś18, 2023, Hong Kong, China

[58] Qian Wang, Xiu Lin, Man Zhou, Yanjiao Chen, Cong Wang, Qi Li, and Xiangyang
Luo. 2019. VoicePop: A Pop Noise based Anti-spoofing System for Voice Authen-
tication on Smartphones. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications. 2062ś2070.

[59] Shu Wang, Jiahao Cao, Xu He, Kun Sun, and Qi Li. 2020. When the differences
in frequency domain are compensated: Understanding and defeating modulated
replay attacks on automatic speech recognition. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 1103ś1119.

[60] Wei Wang, Alex X. Liu, and Muhammad Shahzad. 2016. Gait Recognition Us-
ing Wifi Signals. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (Heidelberg, Germany) (UbiComp ’16).
Association for Computing Machinery, New York, NY, USA, 363ś373.

[61] Xuyu Wang, Chao Yang, and Shiwen Mao. 2020. On CSI-based vital sign moni-
toring using commodity WiFi. ACM Transactions on Computing for Healthcare 1,
3 (2020), 1ś27.

[62] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo
Liu. 2014. E-Eyes: Device-Free Location-Oriented Activity Identification Using
Fine-Grained WiFi Signatures. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (Maui, Hawaii, USA) (MobiCom
’14). Association for Computing Machinery, New York, NY, USA, 617ś628.

[63] Bo Wei, Wen Hu, Mingrui Yang, and Chun Tung Chou. 2019. From real to
complex: Enhancing radio-based activity recognition using complex-valued CSI.
ACM Transactions on Sensor Networks (TOSN) 15, 3 (2019), 1ś32.

[64] C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao. 2015. Non-Invasive Detection
of Moving and Stationary Human With WiFi. IEEE Journal on Selected Areas in
Communications 33, 11 (2015), 2329ś2342.

[65] Kaishun Wu, Jiang Xiao, Youwen Yi, Dihu Chen, Xiaonan Luo, and Lionel M. Ni.
2013. CSI-Based Indoor Localization. IEEE Transactions on Parallel and Distributed
Systems 24, 7 (2013), 1300ś1309.

[66] Libing Wu, Jingxiao Yang, Man Zhou, Yanjiao Chen, and Qian Wang. 2020. LVID:
A Multimodal Biometrics Authentication System on Smartphones. IEEE Transac-
tions on Information Forensics and Security 15 (2020), 1572ś1585.

[67] Edwin Yang, Song Fang, Ian Markwood, Yao Liu, Shangqing Zhao, Zhuo Lu,
and Haojin Zhu. 2022. Wireless Training-Free Keystroke Inference Attack and

Defense. IEEE/ACM Transactions on Networking 30, 4 (2022), 1733ś1748.
[68] Edwin Yang, Qiuye He, and Song Fang. 2022. WINK: Wireless Inference of

Numerical Keystrokes via Zero-Training Spatiotemporal Analysis. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New
York, NY, USA, 3033ś3047.

[69] Jide Yuan, Hien Quoc Ngo, andMichail Matthaiou. 2020. Machine Learning-Based
Channel Prediction in Massive MIMO With Channel Aging. IEEE Transactions
on Wireless Communications 19, 5 (2020), 2960ś2973.

[70] Mustafa Harun Yılmaz and Hüseyin Arslan. 2015. A survey: Spoofing attacks in
physical layer security. In 2015 IEEE 40th Local Computer Networks Conference
Workshops (LCN Workshops). 812ś817.

[71] Yunze Zeng, Parth H. Pathak, and Prasant Mohapatra. 2016. WiWho: WiFi-
Based Person Identification in Smart Spaces. In 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). 1ś12.

[72] Youwei Zeng, Dan Wu, Ruiyang Gao, Tao Gu, and Daqing Zhang. 2018. Full-
Breathe: Full Human Respiration Detection Exploiting Complementarity of CSI
Phase and Amplitude of WiFi Signals. Proc. ACM Interact. Mob. Wearable Ubiqui-
tous Technol. 2, 3, Article 148 (sep 2018), 19 pages.

[73] Linghan Zhang, Sheng Tan, Zi Wang, Yili Ren, Zhi Wang, and Jie Yang. 2020.
VibLive: A Continuous Liveness Detection for Secure Voice User Interface in IoT
Environment. In Annual Computer Security Applications Conference. 884ś896.

[74] Linghan Zhang, Sheng Tan, Jie Yang, and Yingying Chen. 2016. Voicelive: A
phoneme localization based liveness detection for voice authentication on smart-
phones. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 1080ś1091.

[75] Zhaohe (John) Zhang, Edwin Yang, and Song Fang. 2021. CommanderGabble:
A Universal Attack Against ASR Systems Leveraging Fast Speech. In Annual
Computer Security Applications Conference (Virtual Event, USA) (ACSAC ’21).
Association for Computing Machinery, New York, NY, USA, 720ś731.

[76] Cui Zhao, Zhenjiang Li, Han Ding, Wei Xi, Ge Wang, and Jizhong Zhao. 2021.
Anti-Spoofing Voice Commands: A Generic Wireless Assisted Design. Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol. 5, 3, Article 139 (sep 2021), 22 pages.

454


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 CSI Estimation
	2.2 CSI-aided Liveness Detection

	3 Adversary Model
	4 System Design
	4.1 Attack Overview
	4.2 Video-based Pipeline
	4.3 Artificial CSI Generation
	4.4 Transmission Manipulation
	4.5 CSI-aided Liveness Detection

	5 Experimental Results
	5.1 Evaluation Setup
	5.2 Effectiveness of Channel Manipulation
	5.3 Two Attack Cases
	5.4 Overall Attack Impact
	5.5 User Study

	6 Attack Against Wireless Voice Liveness Detection
	6.1 Implementation Setup
	6.2 Case Study
	6.3 Overall Performance
	6.4 User Study

	7 Discussions
	7.1 Limitations
	7.2 Countermeasures

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

