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ABSTRACT: Dielectric constant is an important property which
is widely utilized in many scientific fields and characterizes the
degree of polarization of substances under the external electric
field. In this work, a structure−property relationship of the
dielectric constants (ε) for a diverse set of polymers was
investigated. A transparent mechanistic model was developed
with the application of a machine learning approach that combines
genetic algorithm and multiple linear regression analysis, to obtain
a mechanistically explainable and transparent model. Based on the
evaluation conducted using various validation criteria, four- and
eight-variable models were proposed. The best model showed a
high predictive performance for training and test sets, with R2

values of 0.905 and 0.812, respectively. Obtained statistical performance results and selected descriptors in the best models were
analyzed and discussed. With the validation procedures applied, the models were proven to have a good predictive ability and
robustness for further applications in polymer permittivity prediction.
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■ INTRODUCTION

Polymeric properties related to electrical conductivity are
useful in many applications, such as cable insulation,1 capsules
for electrical components, interlayer dielectrics, charge-storage
capacitors,2,3 and printed circuit boards.4 Dielectric permittiv-
ity is an important value that is widely used and characterizes
the degree of polarization of substances under the action of an
external electric field. A larger dielectric constant means a
larger polarization of the medium between the two charges.
Therefore, the dielectric constant is the ability of a substance
to separate the charge or orient its molecular dipoles in an
external electric field. The dielectric constant is an important
basic molecular property that can also be a useful predictor of
other electrical properties of polymers.4−6 However, the exact
experimental values of the dielectric constant for polymers are
often unavailable. The prediction of dielectric constants
computationally and by using theoretical approaches, such as
machine learning predictive modeling, is important in the
molecular design of new polymeric materials with the desired
properties. The rapid and accurate implementation of
predictions for a wide variety of chemical structures can
significantly improve the performance and speed of phenom-

ena investigation. However, the theoretical calculation of the
property, such as dielectric constant of the polymer is not an
easy problem, because this property is a nonlinear property
and, therefore, a function of several factors, including polymer
structure and composition, temperature, materials morphology,
additives and plasticizers, impurities, and moisture in the
volume of the polymer. A quantitative structure−activity/
property relationship (QSAR/QSPR) is a subsection of
machine learning (ML) modeling and chemical informatics
for revealing relationships between chemical structures of
molecules and their activity. QSAR modeling is a suitable
approach for estimating the properties of polymers based on
numerical features/descriptors derived from the molecular
structure to fit the experimental data.7−9 The main idea of the
QSAR approach is that the change in the desired property of a
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Table 1. Set of Experimental and Predicted Dielectric Constant Data for the Polymers Involved in the Experiment

Equation 1. Equation 2.

no name data set status Exp. Pred. residual pred. residual

1 poly(1,4-butadiene) train. 2.51 2.4104 −0.0996 2.6006 0.0906

2 poly[oxy(2,6-dimethyl-1,4-phenylene)] train. 2.6 2.9651 0.3651 2.7210 0.1210

3 bisphenol-A polycarbonate train. 2.9 3.0325 0.1325 2.8725 −0.0275

4 poly(ether ketone) train. 3.2 3.0998 −0.1002 3.0820 −0.1180

5 poly(ethylene terephthalate) train. 3.25 3.1291 −0.1209 3.0958 −0.1542

6 poly(chloro-p-xylylene) train. 2.95 2.8054 −0.1446 2.7932 −0.1568

7 polyacrylonitrile train. 4 3.6164 −0.3836 3.9567 −0.0433

8 polystyrene train. 2.55 2.4631 −0.0869 2.3794 −0.1706

9 polypropylene train. 2.2 2.3304 0.1304 2.3763 0.1763

10 poly(p-xylylene) train. 2.65 2.4154 −0.2346 2.3772 −0.2728

11 polyisobutylene train. 2.23 2.1490 −0.0810 2.2123 −0.0177

12 poly(p-chloro styrene) train. 2.65 2.8016 0.1516 2.7449 0.0949

13 poly(N-vinyl carbazole) train. 2.9 2.9390 0.0390 2.7868 −0.1132

14 poly(vinyl cyclohexane) train. 2.25 2.3931 0.1431 2.1312 −0.1188

15 polyisoprene test 2.37 2.2119 −0.1581 2.4058 0.0358

16 poly(p-hydroxybenzoate) train. 3.28 3.1280 −0.1520 3.1413 −0.1387

17 poly(vinyl butyral) train. 2.69 2.9227 0.2327 3.0580 0.3680

18 poly(cyclohexyl methacrylate) train. 2.58 2.9625 0.3825 2.7652 0.1852

19 poly(vinyl acetate) train. 3.25 2.9128 −0.3372 3.1751 −0.0749

20 poly(e-caprolactam) train. 3.5 3.5411 0.0411 3.4218 −0.0782

21 poly(3,4-dichlorostyrene) test 2.94 2.7643 −0.1757 2.9000 −0.0400

22 poly(hexamethylene adipamide) train. 3.5 3.5852 0.0852 3.5226 0.0226

23 poly(hexamethylene sebacamide) test 3.2 3.5443 0.3443 3.3880 0.1880

24 poly(isobutyl methacrylate) train. 2.7 2.8675 0.1675 2.7456 0.0456

25 poly(vinyl chloride) train. 2.95 3.1896 0.2396 2.9759 0.0259

26 poly(m-chloro styrene) train. 2.8 2.6153 −0.1847 2.8629 0.0629

27 polychlorotrifluoroethylene test 2.6 2.1061 −0.4939 2.2365 −0.3635

28 poly(ethyl methacrylate) train. 3 2.8124 −0.1876 2.8927 −0.1073

29 poly(n-butyl methacrylate) test 2.82 2.9877 0.1677 2.9430 0.1230

30 poly(methyl methacrylate) train. 3.1 2.8846 −0.2154 2.8868 −0.2132

31 poly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] train. 3.3 3.3864 0.0864 3.4484 0.1484

32 polyethylene test 2.3 2.4908 0.1908 2.3596 0.0596

33 poly(a-vinyl naphthalene) test 2.6 2.4277 −0.1723 2.4579 −0.1421

34 poly(tetramethylene terephthalate) train. 3.1 3.2794 0.1794 3.1749 0.0749

35 poly[thio(p-phenylene)] train. 3.1 3.4506 0.3506 3.2558 0.1558

36 poly(4-methyl-1-pentene) train. 2.13 2.1958 0.0658 2.2527 0.1227

37 poly(1-butene) train. 2.27 2.3378 0.0678 2.4632 0.1932

38 poly(a,a,a′,a′-tetrafluoro-p-xylylene) train. 2.35 2.4386 0.0886 2.4448 0.0948

39 poly(o-methylstyrene) train. 2.49 2.4046 −0.0854 2.4385 −0.0515

40 poly(b-vinyl naphthalene) train. 2.51 2.4622 −0.0478 2.5002 −0.0098

41 poly(a-methylstyrene) test 2.57 2.4189 −0.1511 2.3614 −0.2086

42 poly[oxy(2,6-diphenyl-1,4-phenylene)] train. 2.8 2.8875 0.0875 2.9843 0.1843

43 poly(vinylidene chloride) train. 2.85 2.9919 0.1419 2.7289 −0.1211

44 poly(p-methoxy-o-chloro styrene) train. 3.08 3.0777 −0.0023 3.1591 0.0791

45 poly(ethyl a-chloroacrylate) test 3.1 3.1639 0.0639 3.4555 0.3555

46 poly(methyl a-chloroacrylate) train. 3.4 3.2357 −0.1643 3.4685 0.0685

47 poly(oxy-2,2-dichloromethyltrimethylene) train. 3 3.1478 0.1478 3.0166 0.0166

48 Ultem 1000 test 3.15 3.4652 0.3152 3.3747 0.2247

49 polyoxymethylene train. 3.1 2.9951 −0.1049 3.0158 −0.0842

50 poly(1,4-cyclohexylidene dimethylene terephthalate) train. 3 3.1045 0.1045 3.0271 0.0271

51 poly[N,N′-(p,p′-oxidiphenylene)pyromellitimide] train. 3.5 3.5482 0.0482 3.5032 0.0032

52 poly[4,4′-diphenoxy di(4-phenylene)sulfone] train. 3.44 3.3943 −0.0457 3.4010 −0.0390

53 poly[4,4′-isopropylidene diphenoxy di(4-phenylene)sulfone] test 3.18 3.3082 0.1282 3.4309 0.2509

54 poly[4,4′-sulfone diphenoxy di(4-phenylene)sulfone] train. 3.8 3.5963 −0.2037 3.6851 −0.1149

55 poly[1,1-cyclohexane bis(4-phenyl)carbonate] test 2.6 3.0918 0.4918 3.0117 0.4117

56 poly[1,1-ethane bis(4-phenyl)carbonate] train. 2.9 3.0499 0.1499 2.9578 0.0578

57 poly(cellulose propionate) train. 3.2 3.1174 −0.0826 3.4035 0.2035

58 poly(amide-imide) train. 3.32 3.4811 0.1611 3.3832 0.0632

59 poly(diallyl phthalate) train. 3.57 3.2808 −0.2892 3.3366 −0.2334
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compound can be correlated with the structure-based proper-
ties that numerically expressed and called “molecular
descriptors”.8−11 In cheminformatics, molecular descriptors
are numbers that formally represent a molecule, obtained by a
well-defined algorithm and applied to a well-defined
experimental procedure. In other words, a molecular descriptor
is the result of a mathematical expression that converts the
chemical structure to a numerical value.12 Each molecular
descriptor describes a molecular structure by encoding a part
of the structure or a whole molecular structure. Molecular
descriptors play a fundamental role in the development of
QSPR models. One of the main features of the QSPR
approach is that it requires only knowledge of the chemical
structure and is independent of any experimental properties.
Once a correlation is found, it can be applied to predict the
properties of new compounds/materials that have not been
synthesized previously or not found. Therefore, the QSPR
approach can accelerate the development of new molecules
and materials with the required properties. Using the QSPR
approach, many different properties of polymers can be
determined with a sufficient accuracy, in particular, this
approach is already used to determine, such properties as a
refractive index,4,13−21 glass transition temperature,14,22−33

cohesive energy,34 thermal decomposition temperature,35

solubility parameter,36 as well as fouling release properties.37

Several QSPR models for the dielectric constants of small
organic molecules have also been reported in the litera-
ture.6,38−41 But the number of attempts to predict the
dielectric constants of polymers was rather small.4,42 Liu et
al.42 introduced a model with a correlation coefficient of (R2)
0.908 and a standard error (s) of 0.001 for 22 polyalkenes
using three descriptors, but the values of ε in this case cover
only the range from 2.154 to 2.165. Bicerano4 developed a
QSPR model with (R2) 0.958 and (s) 0.087 to correlate ε with
32 topological and constitutional descriptors for 61 polymers.
This model is good but contains too many descriptors. High
correlation and randomness of correlations may be partly due
to increased number of descriptors in the model and use a
whole dataset as a trainig set. Moreover, the two models were
not validated externally using a test set. In fact, validation is a
crucial aspect of any QSPR/QSAR modeling.43

The purpose of this study was to develop a reliable
predictive QSPR model that could effectively be used to
predict dielectric constant values with mechanistically explain-
able descriptors for further design applications. The model is
developed using a set of 71 polymers with a large structural

diversity, with further model validation applying specific
validation approaches and an external set.

■ MATERIALS AND METHODS

Data Set

The experimental data (polymers 1−56) were taken from the source
that published by Bicerano,4 the remaining data (polymers 57−71)
from the source published by Ku and Liepins,5 at room temperature
(298 K). In total, the data set for this study consists of 71 polymers
with diverse structures (see Table 1). The data set contains polymers
of the following types: polyvinyls, polyethylenes, polyoxides,
polystyrenes, polyethers, polysulfones, polyacrylnitrile, polyamides,
polyacrylates, poly siloxanes, polyxylylenes, and polycarbonates.

Computational Details

In this work, the structures of all polymers were computationally
optimized and used for generating structural properties/features/
descriptors calculation. Because polymers are macromolecules with a
large size and wide chain length distribution, the calculation of
structural descriptors based on original structural formulas was not
possible using current descriptor-generating software.23,30 Moreover,
due to the high molecular weight of the polymers, the effect of the
terminal groups on the overall structure of polymer is quite small,
which allows us to neglect the contribution of the terminal structure
contribution. In this regard, the structures of repeating monomer
units of investigated polymers were used to calculate the structural
features/descriptors (as shown in Figure 1).13,15,22−24,30 We assumed
that the main contributing factor to the polymer property is the
structure of monomer units and, therefore, the molecular descriptors
are calculated based on the structure of repeating monomer units.44,45

The molecular structures of each polymer were drawn in
ChemSketch software.46 The optimization of monomeric units, i.e.,
geometry optimization and finding the minimal energy conformation,
is an important step and provides a real conformation of the
investigated structure for further QSAR modeling. Molecular
modeling is often used for optimization and property assessment of
various chemical systems.47−50 In this work, the geometry
optimization was carried out using HyperChem software, applying
molecular mechanics force-field MM+.51 The criterion for the energy
optimization limit was chosen as the achieved gradient of 0.01 kcal/
mol. The molecular descriptors for each polymer were calculated
based on minimal energy conformation using DRAGON software.52

Dragon 6.0 allows one to generate about 5000 descriptors per
structure.52 The generated descriptors include the following
categories: constitutional indices, 2D and 3D matrix-based
descriptors, 2D autocorrelations, topological descriptors, indicator
descriptors, connectivity indexes, information indices, atom-centered
fragments, charge-based descriptors, 0D, 2D, and 3D descriptors,
molecular properties, and so on.12 Descriptors with high correlations,
single variables, and noninformative information were discarded based

Table 1. continued

Equation 1. Equation 2.

no name data set status Exp. Pred. residual pred. residual

60 poly(diallyl phenyl phosphonate) train. 3.84 3.6409 −0.1991 3.7696 −0.0704

61 poly(2,5-dichlorostyrene) train. 2.61 2.7786 0.1686 2.8859 0.2759

62 polyfumaronitrile excl. 8.5

63 poly(methyl cellulose) excl. 6.8

64 Nylon-11 train. 3.3 3.3744 0.0744 3.3483 0.0483

65 Nylon-12 train. 3.6 3.3392 −0.2608 3.3367 −0.2633

66 poly(vinyl fluoride) excl. 8.5

67 poly(2-vinylpyridine) excl. 4.64

68 poly(vinyl toluene) train. 2.59 2.4524 −0.1376 2.4418 −0.1482

69 poly(vinylidene fluoride) excl. 8.4

70 poly(dichloro-p-xylylene) test 2.82 2.9745 0.1545 2.8109 −0.0091

71 poly(methyl-p-xylylene) train. 2.48 2.3989 −0.0811 2.4105 −0.0695
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on the constant value, near constant (R > 0.95), and pair correlation
criteria (R > 0.7).
A total of 523 descriptors of different types were selected from

about 5000 descriptors after the initial filter criteria applied. Each
descriptor represents a molecular graph invariant, describes the
particular property, and overall adds to chemical diversity of the
monomeric unit.
The model development was performed by QSARINS software53,54

with the following setup to find the best model. For the genetic
algorithm (GA)-based variable selection step, the number of
generations was set to 2000 and a mutation rate of 35% was used.
For the best models’ selection, the population size of the final models’
list was set to 20. For validation purposes, multiple methods were

applied, including leave-one-out (LOO) cross validation, y-scram-
bling, as well as internal and external validation protocols. After
validation techniques were applied, the best model was chosen based
on multiple criteria: (1) high statistical performance of R2 and Q2

variables (including R2 − Q2 < 0.3);43 (2) a low number of variables
in the model; (3) low cross-correlation between descriptors in the
selected model; and (4) best performance of R2 for the external
validation set (test set) to avoid model overfitting.43

■ RESULTS AND DISCUSSION

In this work, a data set of 71 polymers was used to develop a
quantitative structure−permittivity relationship model. For the

Figure 1. Plots of experimental and predicted values of the dielectric constants for the entire data set. Yellow dots are the training set, and blue dots
are the test set (A�for eq 1.; B�for eq 2).
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model validation, the set was split into training and test sets
consisting of 57 (80%) and 14 (20%) polymers, respectively.
The splitting was performed with care to ensure that at least
one compound of each structural class in the training set was
represented in the test set. After genetic algorithm combined
with multiple linear regression analysis (GA-MLRA) compu-
tation iterations, the best models were found. After a first
round of GA-MLRA it was found that five compounds are
outliers, with a high prediction value error. The outliers are 62,
63, 66, 67, and 69. After elimination of outliers, the GA-MLRA
iteration was repeated. The set with a total of 66 components
was split into training and test sets containing 53 (80%) and 13
(20%) polymers, respectively. In the process of finding the best
model, several options were selected that best correlate with
the dielectric constants of the selected polymers. Two models
with four and eight variables are proposed, the statistical
characteristics of which are given in Table 2.
The following equations represent the proposed models with

four (1) and eight (2) variables

N R

F Q R

Me AAC

JGI1 R p

3.839( 0.559) 3.478( 0.281)

0.477( 0.138) 0.616( 0.115) 5

2.491( 0.085)

53; 0.842; s 0.187;

64.124; 0.813; 0.715
train
2

2
test
2

= ± + ±

± ± +

+ ±

= = =

= = =

(1)

N R

F Q R

Me AAC

GATS1p

ESpm11u Mor22v

R1v

2.487( 0.489) 2.285( 0.289)

1.044( 0.151) 0.345( 0.107)

0.343( 0.154)

1.308( 0.178)RARS 1.048( 0.225)

0.254( 0.120)nCt 2.863( 0.182)

53; 0.905; s 0.151;

52.542; 0.865; 0.812
train
2

2
test
2

= ± + ±

+ ± ±

±

± + ± +

± + ±

= = =

= = =

(2)

The four-variable model shows a good performance, with
Rtrain

2 = 0.842 and Rtest
2 = 0.715. A graphical representation of

the model for the training and test sets is given in Figure 1A.
Compared to the 4-variable model, the eight-variable model
shows better Rtrain

2 and Q2 performance values for the training
set, smaller standard deviation s, and better predictive
performance due to higher Rtest

2 for the test set, 0.812. In
comparison to the four-variable model, the 8-variable model
has a larger number of variables, which can lead to some level
of overfitting, but still very robust. A graphical representation
of the model for the training and test sets is presented in
Figure 1B.
Both equations: (1) and (2) show satisfactory statistical

results that confirm the robustness of these models. However,
considering the combined productivity for both training and
test sets, the second model provides a better performance.
Descriptor selection was performed by applying a variable

selection GA algorithm, followed by the MLRA approach
together with a cross-validation LOO procedure. Based on the
size of the data set and the correlation coefficients of the
training and test sets (Rtrain

2 and Rtest
2), the significance

criterion F and the standard errors, the number of descriptors
in the final QSPR model was determined.
A very important step in the model's robustness is to check

the applicability domain (AD). Predictions of compounds can
be considered reliable only if the dataset’s chemical space of
applicability is within the predictive chemical space of the
developed model, before the model can be applied for further
predictions. The AD check was performed by application of
leverage approach, i.e., William’s plot evaluation for the final
models. All data points were within the three standardized
residues (±3σ) and within the HAT index, where h* is the
critical value of leverage h. If the errors of estimation would
exceed the values of the standardized residues, then the
predicted values could go out of the AD and give inaccurate
predictions as they go beyond reasonable extrapolation. If the
value of h of the resulted data is higher than h*, then they are
considered as structurally significant contributors to the
model.55

Table 2. Statistical Characteristics of the Four- and Eight-Variable Models

model no. of descriptors Rtrain
2 Radj

2 s F Q2 Rtest
2

1 4 0.842 0.829 0.187 64.124 0.813 0.715

2 8 0.905 0.888 0.151 52.542 0.865 0.812

Figure 2. Williams plots for eq 1. (A) and eq 2. (B): yellow balls�training set; blue balls �test set.
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As can be seen in the Williams plots (Figure 2) for both
equations, in the first model (A) there are only two polymers,
and in the second (B) only one polymer has values h higher
than h*. However, these polymers have low residual values,
which means that the model is stable enough to make reliable
predictions for all polymers structurally similar to the ones in
the data set.
The obtained models contain the following descriptors:

Me�mean atomic Sanderson electronegativity (scaled on
carbon atom); AAC�mean information index on atomic
composition; R5p+�R maximal autocorrelation of lag 5/
weighted by polarizability; JGI1�mean topological charge
index of order 1; GATS 1p�Geary autocorrelation of lag 1
weighted by polarizability; Mor22v�signal 22/weighted by
van der Waals volume; RARS�R matrix average row sum;
ESpm11u�Spectral moment 11 from edge adj. matrix; R1v
+�R maximal autocorrelation of lag 1/weighted by van der
Waals volume; and nCt�number of total tertiary C(sp3).
More information about these descriptors can be found in

the Dragon software user’s guide12,52 and the references
therein.
As a rule, the value of coefficient F indicates the ability of the

model to predict the value of the properties in the training set.
The large F ratio values in both eqs (64.124 and 52.542 for the
first and second, respectively) indicate that both equations do
an excellent job with predicting ε values. Each equation has an
adjusted value of Radj

2 0.829 and 0.888, which denotes a very
good correspondence between correlation and data variation.
The cross-validated correlation coefficient (Q2 for eq 1 is equal
to 0.813 and Q2 for eq 2 is eqiual ro 0.865) demonstrates the
robustness of the models. The model was further validated by
using a y-randomization test. The obtained R2Yscr against the
correlation coefficient between the original and shuffled data is
shown in Figure 3. It can be seen from Figure 3 that the
original models are not due to random correlations; since
values of R2Yscr are significantly low. It is worth noting that
model 1 (eq 1) showed much stronger robustness at the y-
scrambling test than model 2 (eq 2), while both models are

quite strong. The calculated results of the values of ε from eqs

1 and 2 for the training and test sets are shown in Table 1 and

Figure 1.
Based on the model selection procedure described earlier,

the relative contribution of descriptors to the respective

models was determined and shown in Figure 4. The

descriptors involved in the model are having the reducing

contribution to the model in the following order: for eq 1: Me

Figure 3. Y-scrambling plots of selected 4-descriptor eq 1 (A) and 8-descriptor eq 2 (B) models.

Figure 4. Descriptors contributions to eq 1 (A) and eq 2 (B).
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> AAC > R5p+ > JGI1 and for eq 2: Me > AAC > RARS > R1v
+ > GATS1p > ESpm11u > Mor22v > nCt.
One of the most important descriptors involved in both

equations is the AAC information index. This descriptor
contains information about each atom in a molecule by its own
atom type, its bond type, and the atom types of its first
neighbors. AAC is a measure of atomic composition associated
with molecular complexity. When a molecule is larger and its
elemental composition is more complex, the value of the
descriptor increases. The positive value of this descriptor
indicates that polymers with a more complex structure and,
accordingly, with a larger value for this descriptor would have
larger values of ε. Another descriptor, ESpm11u, is based on
the use of bond distances as weights in the diagonal entries of
the edge matrix.
It is worth noting that the presented QSPR models can be a

good simple way to predict the permittivity of homopolymers.
These models can be improved further in future studies by
improving the dataset size and variety of polymers. We believe
that the results of this study will pave the way for future steps
in investigating the electrical conductivity mechanism of
polymeric materials.

■ CONCLUSIONS

In this work, a machine learning-based structure−property
relationship model for dielectric constants (ε) based on a
diverse set of polymers is developed. A transparent model was
obtained with application of the GA-MLRA approach, to get a
mechanistically explainable model. This work represents two
QSPR models developed based on descriptors computed from
monomeric polymer structures. The reliability of the models
was validated using several verification methods. The best
overall performance is achieved by a four- and eight-descriptor
QSAR models, with R2 values of 0.842/0.715 and 0.905/0.812
for training/test sets, respectively, per each model. The models
are suitable for further development of polymers with desired
dielectric constants based on chemical structure information of
monomers.
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