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Abstract

Virtual Reality (VR) is a rapidly growing domain that
requires high-fidelity graphics for immersion. To understand
and improve the VR architecture, an open-source, end-to-end
platform for VR research was recently proposed. However,
studying the stereo rendering aspect of VR applications
remains challenging due to the lack of infrastructure.

In this work, we augment the aforementioned open-
source platform, ILLIXR, by integrating a high-end, physically
based 3D rendering engine, Filament. This upgrade, named
PBVR, enables developers to render high-quality graphics in a
completely open-source VR platform.

As a case study, we leverage our proposed PBVR to look
into gaze-tracked foveated rendering and profile three different
scenes. We show that a handful of renderpasses consume
the most time and that readily available foveated rendering
solutions, such as Variable Rate Shading, might not provide
significant advantages. Moreover, our results reveal that eye
tracking can incur a significant overhead on the graphics
processing unit (GPU).

1. Introduction

Virtual Reality (VR) is deemed as the next generation
of entertainment platforms and has grown into a multi-
billion dollar industry [13] [14]. Establishing immersive and
high-quality VR entails a unique set of challenges. One of
the biggest challenges is low-latency, high resolution, high
frame rate stereo rendering. State-of-the-art VR headsets
feature resolutions that are upwards of 1440x1600 per eye,
with refresh rates ranging from 90Hz to 120Hz [5] [9] [12].
This problem is further exacerbated on mobile platforms
due the power constraints.

Although VR imposes significant research challenges,
there is limited research on VR system architecture from
academia, and the primary reason is the lack of infras-
tructure. Recently, an initiative has been formed to enable
and democratize VR research [3]. As part of this effort, an
open-source VR testbed, named ILLIXR, has been built
[21]. ILLIXR enables end-to-end analysis and study of
VR systems by integrating the fundamental components
of a VR system, including visual-inertial odometry, pose
prediction, asynchronous reprojection, eye tracking, scene
reconstruction, and more. Researchers can now investigate

and experiment with these components and evaluate the
overall performance of the system.

Nevertheless, stereo rendering, which is one of the
biggest bottlenecks in the VR pipeline [21], remains dif-
ficult to analyze and improve with the existing ILLIXR
infrastructure. This is mainly because ILLIXR provides the
components of a VR system, but it is up to the researchers
to develop applications and benchmarks that will be run on
ILLIXR. In other words, researchers have to spend ample
time developing 3D applications that can interface with
ILLIXR’s components. To address this problem, ILLIXR
enables support for OpenXR [34] applications through
Monado [6]. In practice, a game engine such as Godot
[2] or Unity [11] is used to develop OpenXR applications,
which can be run on ILLIXR. The catch, however, is that
game engines are extremely complex tools, making them
impractical to modify and extend for research purposes.

To support high-performance 3D rendering, in this work,
we integrate Filament [1] into ILLIXR. Filament is an open-
source, real-time, physically based rendering engine from
Google. It exposes a C++ programming interface that can
be effortlessly hooked up with ILLIXR. More importantly,
the software architecture of Filament is flexible and allows
for maodifications and quick prototyping. To demonstrate
this, we use Filament to render three scenes with varying
complexities and breakdown frames for detailed analysis.
We also extend the existing eye tracking component in
ILLIXR to enable gaze estimation, which we use for foveated
rendering in Filament. We employ Nvidia’s Variable Rate
Shading [8] technology to implement foveated rendering.
Implementing foveated rendering in a game engine would
require substantially more effort and expertise, whereas,
with Filament, it is nearly trivial. Moreover, we avoid the
additional complexity of OpenXR, by using ILLIXR’s native
interface. Our experimental results show that eye tracking
consumes substantial GPU memory and computing power,
affecting the overall benefits of foveated rendering. Finally,
we open-source our augmented tool to foster VR graphics
research.

The remainder of the paper is organized as follows.
Section Il provides the background and motivates our work.
Section Ill elaborates on Filament's capabilities and how
we couple Filament with ILLIXR. Section 1V demonstrates
an example use case of this augmented tool by analyzing



eye-tracked foveated rendering. Section V discusses the
related work. Section VI concludes.

2. Background and Motivation

2.1. The Canonical VR Pipeline

Contemporary VR systems consist of several funda-
mental building blocks, along with a number of optional
ones. Typically, the dataflow starts with the headset sensors,
which include inertial measurement units, cameras, or laser
emitters [4] [27]. The data from these sensors are processed
to determine the headset’s position and orientation using
visual-inertial odometry (VIO) algorithms. The position and
orientation data are then passed to the user application’s
graphics pipeline to render 3D scenes. Once a scene is
rendered, it is sent to the display device.

Most VR systems also feature hand controllers, which
are tracked in a similar fashion and used by the application
to interact with the virtual world.

Some of the most recent VR headsets also feature eye
tracking for foveated rendering and avatar expressions
[5] [9]. These headsets are equipped with integrated eye
cameras that image the user’s eyes at a high frequency.
These images are typically fed into a neural network to
perform eye segmentation [16] [40]. Once the images are
segmented, gaze estimation is carried out, which involves
ellipse fitting and other algebraic operations [40].

Pose estimation, eye tracking, hand tracking, and other
similar tasks are usually executed in parallel, as they are
independent. Fig. 1 shows a generic VR system that features
eye tracking.

In practice, VIO and stereo rendering may consume
too much time and become the primary contributors to
motion-to-photon (MTP) latency. Low latency is key to a
pleasant VR experience, and high MTP latency is known to
cause sickness and fatigue to the user [28] [32]. To mitigate
these problems, VR headsets implement pose prediction
and asynchronous reprojection [22] [35]. Asynchronous
reprojection, also known as timewarp, works hand in
hand with pose prediction. Pose prediction uses the pose
calculated by the VIO algorithm, and updates it based on
the latest sensor data. The updated pose is then used by
timewarp to transform the rendered frame to match the
latest headset pose. This whole update and transformation
process happens just before the display refreshes. Ultimately,
this technique reduces the MTP latency of the system, thus
improving the user experience [35].

2.2. The ILLIXR VR System

ILLIXR adopts a similar organization as in Fig. 1. It
consists of "plugins”, i.e. components that run in parallel
and communicate with each other through a well-defined
interface. Users can easily add new plugins, modify existing
ones or remove them completely. By default, ILLIXR pro-
vides plugins for pose estimation, pose prediction, timewarp,
scene reconstruction, camera and inertial-measurement
unit(IMU) sensors, audio and more. A rudimentary plugin

for eye tracking is also provided, but it merely runs a neural
network for eye image segmentation and does not perform
gaze estimation. We discuss how we added gaze estimation
in Section V. Fig. 2 depicts the plugins that we use and
how they are connected.

In its essence, ILLIXR is a C++ program that glues
together an array of plugins that are implemented as
C++ classes. Most plugins run in a dedicated thread, and
communicate with other plugins through callbacks and
thread-safe queues. The ILLIXR runtime, i.e., the entry
point of the program, dynamically loads the plugins and
initializes them.Plugins either run in a tight loop in a
dedicated thread, or they are invoked by these looping
plugins. For example, the ofline IMU/Camera plugin runs
in a loop that reads stereo camera images and IMU sensor
data from disk at a rate of 30Hz, packs them into a structure,
and pushes a pointer to that structure into a thread-safe
qgueue. The VIO plugin is executed upon a callback from
the IMU/Camera plugin when a new data is pushed to
the queue. The plugin then reads this pointer from the
queue and accesses the underlying data. The plugins that
run in a loop are derived from the threadloop class that
ILLIXR infrastructure provides. This base class provides
two functions that are overridden by the derived class:
_p_thread_setup() and _p_one_iteration(). As the names
imply, the first function is executed just once as part of
setup the phase before the thread goes into a loop, where it
executes the second function in each iteration. Our custom
Filament plugin is also derived from this threadloop class.

Therefore, the only requirement for a plugin to hook up
with ILLIXR is to match this producer/consumer interface.
This allows ILLIXR to be highly modular and extensible.

Currently, there are two ways to run a VR application on
ILLIXR. The first way is to use the native interface of ILLIXR,
which involves writing an OpenGL application using a C++
base class that ILLIXR provides, and hooking up this plugin
with other plugins via the switchboard system of ILLIXR.
The second way is to provide ILLIXR with an OpenXR
application binary. In this case, the OpenXR application
runs using Monado, an open-source implementation of
the OpenXR standard. Monado, then, communicates with
ILLIXR and uses its plugins to read headset pose, submit
frames, and more. In other words, ILLIXR imitates a VR
headset in this case. Both of these approaches have pros and
cons. Using ILLIXR’s native interface is convenient because,
the whole VR pipeline is managed by ILLIXR, and the
additional complexity of OpenXR and Monado is avoided.
Moreover, in this way, ILLIXR is not limited by what the
OpenXR spec does and does not allow. The downside is
that users have to rewrite their applications just to interface
with ILLIXR. The main advantage of using the OpenXR
interface is that existing applications can be run directly on
ILLIXR, without any modifications. However, this means the
users now have to work with an even more complex system
consisting of ILLIXR and Monado. In this work, we use the
native interface of ILLIXR to develop our applications.
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Figure 1: Organization of a generic VR system with eye tracking.
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Figure 2: Simplified diagram of ILLIXR plugins used in this
work. Red rectangles represent heavily modified plugins.
Blue blocks represent thread-safe queues. Producer plugins
insert data to concurrent queues, which consumer plugins
read. Dotted arrows indicate that the plugin is invoked
through a callback when new data is pushed to the queue.

2.3. Physically Based Rendering

With the advent of powerful graphics processing units
(GPUs), more advanced and realistic graphics rendering tech-

niques are now possible. Physically Based Rendering(PBR) is
one such technique, and the idea is to model the materials of
objects as physically accurately as possible. Materials are
characterized by parameters such as color, metalness,
roughness, reflectance, anisotropy, etc. Collectively, these
parameters determine the behavior of light as it interacts
with the material, as physically accurate as possible. There-
fore, when rendered with PBR, the materials in a 3D scene
can look incredibly realistic under any lighting scenario.
Fig. 3 showcases different materials rendered in a PBR
fashion using the Filament engine.

Figure 3. A range of materials from metals to rock is
rendered in the Filament engine. Objects appear highly
realistic thanks to accurate modeling of their material
properties. Image attributed to Filament developers [1].

Nevertheless, PBR’s visual fidelity comes at a price. The
physically based calculations of how light interacts with
the material are typically carried out during the fragment
shading stage of the graphics pipeline. These calculations
can involve multiple expensive texture fetches for every
material, evaluating mathematical operations such as dot
products, trigonometric functions, exponents, roots, etc [17]
[31] [36]. Even though these operations are not complex



individually, they are executed in fragment shaders, which
are carried out multiple times for every pixel on the screen.
Thus, they can introduce a substantial overhead.

Nowadays, most 3D engines implement some form of
PBR to achieve the best possible visual fidelity [2] [7] [11].
Consequently, the state-of-the-art VR applications such as
games also benefit from this technology. The use of PBR
can be considered essential in achieving a high level of
realism and creating a captivating virtual world.

2.4. The Need For a Rendering Engine in ILLIXR

While the ILLIXR infrastructure provides most of the
necessary components of a VR system, it is up to the
user to develop the VR application itself. Currently, ILLIXR
only supports OpenGL applications. Therefore, the user
has to either write an OpenGL application from scratch
and use ILLIXR’s native interface, or write an OpenXR
application that uses OpenGL as its renderer. One possibility
is to employ game engines to develop OpenXR applications.
The problem with using game engines is that, they are
usually extremely complex pieces of software, and while
possible, the codebase is not designed to be modified or
extended by the user. This makes it dificult to add new
features or modify the rendering pipeline. Developing an
OpenGL application from scratch is another option, albeit
not practical, especially if high-quality graphics is desired.
The reason is that implementing PBR, shadows, and post-
processing effects in an optimized manner is no trivial
task. Therefore, we resort to using an existing rendering
engine, Filament, that has the best of both worlds. Filament
is basically an open-source C++ library for rendering high-
quality graphics. It supports OpenGL and has all the features
needed to render realistic graphics. With Filament, users
simply provide the 3D model, light sources, and graphics
settings, such as ambient occlusion, reflections, and anti-
aliasing, and Filament does the heavy lifting.

3. Augmenting ILLIXR

3.1. Coupling Filament with ILLIXR

Making ILLIXR and Filament work together involves
three main challenges as discussed below.

The first challenge is OpenGL context sharing. ILLIXR
creates and shares its own OpenGL context across the
entire application. This OpenGL context is used by the
main OpenGL plugin and the timewarp plugin. On the
other hand, Filament also requires an OpenGL context. For
the whole system to work, Filament and ILLIXR must share
the same OpenGL context. Fortunately, Filament makes
it simple to share an OpenGL context with ILLIXR, as
it has an option of passing an external OpenGL context
during initialization. It then proceeds to initialize its own
OpenGL backend using this context. Therefore, we can
simply forward the OpenGL context that ILLIXR creates to
Filament.

The second challenge is stereo frame sharing between
Filament and timewarp. In ILLIXR, the main OpenGL

application renders the stereo frames into a pair of OpenGL
textures. Once the rendering is finished, the handles to
these textures are then broadcast through ILLIXR’s interface.
The timewarp plugin reads these handles, and accesses the
textures to apply the transform. To prevent data races
between the timewarp and the OpenGL application, the
latter uses a double-buffering technique where two pairs of
textures are maintained. The OpenGL application renders
to one pair of textures, while timewarp reads from the
other pair. Indeed, we observed visual artifacts when a
single pair of textures was used. By default, Filament
renders the frames into an internal framebuffer, which is
not accessible from outside. However, Filament allows the
user to import OpenGL textures from outside, and use them
as the rendertarget. Thus, we create four (two pairs) color
textures and a depth texture, and import them to
Filament. As Filament renders the scene into these textures,
we broadcast their handles for the timewarp plugin.

The third challenge is run-time environment setup. To
build and link ILLIXR and Filament in the same environ-
ment, we resort to a Docker container. The reason is that
the ILLIXR infrastructure alone has a large number of
dependencies ranging from specific versions of OpenCV,
GTSAM to OpenGL headers and libraries. In addition, it
also requires a specific version of the clang++ compiler
to be built. As a result, it is nearly impossible to meet all
these requirements in every machine. The Filament project
also has its strict requirements before it can be built. In
particular, Filament expects clang++-7 compiler, whereas
ILLIXR expects clang++-10. Since these two versions of
clang are not fully compatible, we have to introduce minor
modifications to Filament’s codebase, such as explicitly
including standard library headers, and adding namespaces
to variable declarations. Moreover, by default, Filament uses
libc++, which is LLVM'’s implementation of the standard
library, instead of libstdc++, which is GNU’s implementation
of the standard library. We observed that using libc++
instead of libstdc++ in ILLIXR causes deadlocks. Thus, we
forced Filament to use libstdc++. This is an unfortunate
by-product of the fragmented software ecosystem.

3.2. Writing an ILLIXR plugin using Filament

With our augmented ILLIXR tool, it becomes nearly
trivial to write the main application plugin. Algorithm 1.
shows the important pieces.

The plugin is derived from the threadloop class in
ILLIXR, which encapsulates a dedicated thread running in
a tight loop, as discussed in Section II. We add several
variables to this class for essential objects such as Engine,
View, SwapChain, and others that Filament requires. These
structures are initialized during the thread setup phase,
which is executed just once before the thread goes into
the loop phase. In the setup phase, the Filament engine
and other vital parts are initialized. The GLTF loader of
Filament starts importing the 3D model and its textures
asynchronously. We also create the OpenGL textures, import
them into Filament, and set them as rendertargets.



Algorithm 1 ILLIXR plugin using Filament.
_p_thread_setup() and _p_one_iteration() are inherited
from the threadloop base class.

1. procedure Filament Plugin
2. _p_thread_setup():

3 filament :: Engine : Create(glContext)
4 Create Swapchain

5 Create Renderer

6: Create Camera

7 Create View

8 Create Scene

9 Load 3D asset

10: Create GL textures

11 Import textures to Filament
12: _p_one_iteration():

13: Add entities to scene

14: Get headset pose
15: fori <« 1,2 do

16: Update camera

17: Update rendertarget
18: Render scene

19: end for

20: Publish texture handles

21 end procedure

Within the thread loop, the scene is populated with
asynchronously loaded objects. Next, the headset pose is
read through ILLIXR’s interface. This headset pose, which
consists of a position vector and a quaternion that describes
the head’s orientation in space, is transformed into a matrix
and used as the Filament's camera model matrix. As the
last step before rendering the scene, the appropriate pair
of OpenGL textures are set as the rendertarget of Filament.
Finally, two render calls are issued to produce a stereo
image.

At any point within the plugin, graphics settings can
be adjusted. Filament features point, spot and directional
light sources that can cast shadows, image-based lighting,
anti-aliasing, screen-space ambient occlusion(SSAQ), screen-
space reflections(SSR), screen-space refractions and more
[1].

Our augmented tool is open sourced and
available at github.com/yavuz650/ILLIXR and
github.com/yavuz650/filament, which include the custom
plugin along with the modified Filament source code.

4. Case Study: Gaze-tracked foveated render-
ing

We now demonstrate a use case of our augmented
tool. First, we further extend ILLIXR by implementing gaze
estimation. Then, we add Nvidia Variable Rate Shading
(VRS) to Filament, and use the estimated gaze to enable
foveated rendering in ILLIXR [8]. To conduct this study
without this augmented tool, we would have to spend a
great amount of time writing an OpenGL renderer and
the major tasks would include GLTF loading, where we

would need to parse a GLTF file and manage the vertices,
textures, and other attributes. We would also have to write
our own shaders, which would demand expertise and time if
PBR is desired. Moreover, any modern 3D application
would require lighting and shadows, which are not trivial to
implement. Thanks to our augmented tool, we do not have to
worry about any of these daunting tasks, as Filament
handles all that. Instead, we only need to invoke a few API
calls to Filament, as summarized in Algorithm 1, where we
provide the settings of the scene. We benchmark three
popular scenes and present the frametimes, motion-to-
photon latencies, and frame breakdowns, and analyze the
overhead of eye tracking.

4.1. Gaze Estimation in ILLIXR

In the context of VR, gaze estimation refers to the task
of determining where on the screen the user's eyes are
looking at. Currently, the ILLIXR infrastructure features a
plugin that runs a convolutional neural network to perform
eye segmentation [16]. Eye segmentation is a computer
vision task that involves the identification and labeling of
different regions within an image of the human eye, such as
the iris, pupil, and sclera. However, additional steps beyond
eye segmentation are required to perform gaze estimation.
In this work, we adopt the open-source implementation
that DeepVOG [40] uses, which is based on ellipse fitting,
and unprojection algorithms [30] [33]. We used OpenCV
library’s [10] ellipse fitting functions, and implemented the
unprojection algorithm in C++. Ultimately, the eye tracking
plugin computes a pair of numbers that corresponds to the
screen coordinates where the user’s eyes are looking at.

We use the OpenEDS 2019 [19] dataset to stimulate
the gaze estimation system. This dataset consists of over
350,000 images collected from over 150 participants. The
images are grayscale and have a resolution of 400x640. We
feed the input images at a rate of 20 per second. Each input
consists of one image, which we duplicate in the plugin to
imitate a stereo-eye camera.

4.2. Foveated Rendering with Filament in ILLIXR

Foveated rendering is an optimization that exploits the
decrease in human visual acuity between the eye’s center
and the periphery. In this scheme, the frames are rendered
at the highest quality where the eyes are focused, and at
a gradually lower quality in the peripheral regions. This
curtails computation without sacrificing any visual quality
that is perceptible to the user [20] [29].

Foveated rendering has been the subject of ample re-
search, and there is a multitude of possible implementations
[18] [20] [26] [29]. While most of the existing meth-
ods require significant changes to the rendering pipeline,
Nvidia’s VRS technology offers a simple and effective way
of implementing foveated rendering [8]. VRS exposes a set
of API calls that allow developers to specify a shading rate
for every 16x16 pixel tile on the screen. The shading rate
corresponds to how many fragment shaders are invoked for
the associated tile. For example, the shading rate could be



1 invocation per 1 pixel in the eye fixation region; whereas
it could be reduced to 1 invocation per 2x2 pixels in the
periphery region, and 1 invocation per 4x4 pixels in the
outer periphery regions. The developer is responsible for
supplying a palette, which is a map that pairs numbers
with shading rates, and a 2D texture, which specifies the
shading rates for every 16x16 tile using the numbers in the
palette.

In this work, we modify the OpenGL driver of Filament
and incorporate the necessary API calls to enable VRS. We
only enable VRS for the color renderpass, and disable it
for other renderpasses such as shadowmaps, as the color
pass is where the scene is actually rendered from the user’s
perspective. All other passes can be considered as either
preprocessing or postprocessing.

Inside the ILLIXR plugin, we use the estimated gaze
position to construct a 2D array that contains the shading
rates of the 16x16 tiles. This 2D array is passed to Filament's
OpenGL driver and is uploaded to the GPU as a 2D texture.
Algorithm 2 summarizes the important changes we made
to the existing code.

Algorithm 2 Important steps in foveated rendering with
ILLIXR augmented with Filament. Only changes to the
original code are shown.

1. procedure Compute the 2D VRS mask in ILLIXR

2. _p_thread setup():

3 sriw ¢ display_width/16

4; sri,, € display_height/16

5: mask.resize(sriw @ sri},)

6: _p_one_iteration():

7. X,y & Latest gaze coordinates

8: for i =0 to sriy do

9 for j =0 to sri,, do

10; dist < sqrt(|j—x|% + |i-y|?)
11 if dist> 19 then

12: mask[i x sriw +j] € 2
13: else if dist > 12 then

14: mask[i x sriw +j] ¢ 1
15: else

16 mask[i x sriw +j] €0
17: end if

18: end for

19: end for

20: renderer.setVRSMask(mask)

21: end procedure

22. procedure Enable VRSin Filament’'s OpenGL Driver
23. beginRenderPass():

24 if if (enableVRS) then

25: glBindTexture(VRS_mask_texture)

26: glTexSublmage2D(VRS_mask)

27: glEnable(GL_SHADING_RATE_IMAGE_NV)
28: else

29: glDisable(GL_SHADING_RATE_IMAGE_NV)
30: end if

3L: end procedure

Similar to [29], we use three eccentric layers of different
shading rates. Fig. 4 depicts the sizes of each layer.

Figure 4: Three eccentric layers used in this work. The eyes
are assumed to be looking at the center of the screen. The
red region is rendered with 1 fragment shader invocation
per 1x1 pixel, the green region is 1 invocation per 2x2
pixels, and the blue region is 1 invocation per 4x4 pixels.
The regions are not perfectly circular due to lens distortion.

We experimented with different shading rate configura-
tions but did not notice remarkable differences in terms of
performance. As the goal of this study is workload analysis,
the configuration shown in Fig. 4 is adequate.

4.3. Methodology

We conduct benchmarks lasting 60 seconds each, using
the three scenes described in Table 1. Intel Sponza [25] is
a new, PBR based model of the Sponza palace. This scene
features very high geometric complexity along with 4k
textures, and is the most intense scene that we use. Due to
GPU memory limitations, we downscaled the textures to
2k resolution. San Miguel [24] is another popular scene in
the graphics community with a large number of textures
with varying resolutions. Finally, Amazon Bistro [23] is
also widely used for research, and it consists of over 2
million triangles and high-resolution textures. All scenes
are illuminated with image-based lighting, and we added
multiple point-light sources to Sponza and San Miguel. All
light sources cast shadows. We also enabled SSR, SSAQ,
and 4x multisample anti-aliasing.

TABLE 1: Scene statistics. Textures include base
colors, specular, normal, and roughness maps.

Scenes # of # of Total size of
triangles | texture files textures
Intel Sponza 5,744,002 148 903MB
San Miguel 5,600,782 323 139MB
Bistro Exterior | 2,828,266 231 679MB

We use the EUROC MAV dataset [15] to emulate a real
camera and an IMU sensor. An ofline camera, i.e., a dataset,
is also used to ensure that the benchmarks are consistent
across different runs, as the camera movement is identical
across different runs.

We run the benchmarks in four different configurations.
We start with no eye tracking or foveated rendering, which



is the baseline. Then, we enable eye tracking without
foveated rendering to determine its overhead. We then
enable both eye tracking and foveated rendering to see
how much performance, if any, is gained. Finally, we also
test foveated rendering without eye tracking by setting a
constant gaze at the center of the screen. We gather the
frametime, motion-to-photon latency, and GPU memory
usage. To provide more insightful analysis, we also measure
how much time each renderpass within a frame takes in
the Sponza scene. We incorporate OpenGL queries into
the OpenGL driver of Filament to measure the frametime
of every frame in the benchmarks. In a similar fashion,
we measure renderpasses of every 10th frame. We use
the existing logging infrastructure that ILLIXR has to
gather motion-to-photon latency. Finally, we use the nvidia-
smi tool to measure GPU memory usage. We run these
benchmarks on a workstation desktop machine with an
Intel Xeon E5-1650 CPU, 32GB of memory, and an Nvidia
RTX 2080 GPU.

4.4. Results and Discussion

We first present the frametimes and MTP latency in
Fig. 5 and 6 respectively. We clearly see the impact of eye
tracking on performance. Frametimes increase noticeably
in all scenes, and almost by 2x in Sponza. This level of
performance impact is understandable given that the GPU
is now burdened with running a large neural network in
addition to rendering graphics. Enabling foveated rendering
alleviates this overhead, though not completely. We also
note that foveated rendering alone does not provide any
meaningful performance gain. Finally, there is hardly any
change in MTP latency. This is mainly because MTP does
not directly depend on frametime, but rather on timewarp’s
performance. In ILLIXR, frames are sent to the display
by timewarp, regardless of whether the main OpenGL
application rendered a new frame or not. Timewarp will
always read the latest frame, predict the headset pose, apply
the transformation, and send it to the display. The only
way foveated rendering can improve MTP is by virtue of
releasing more GPU resources to timewarp.

= No eye tracking, No foveated rendering = Eye tracking, No foveated rendering
Eye tracking, Foveated rendering = No eye tracking, Constant gaze

80
66.9
60
37.8
40 35.2 34.3
215 21.2
16.7

20 I I 10.SI 5

; |

sponza san_miguel bistro

Figure 5: Frametimes measured in different scenes with
different configurations.
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We now present the average durations of renderpasses
in Fig. 7 for a deeper understanding of the system. As we
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Figure 6: Motion-to-photon latency measured in different
scenes with different configurations.
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mentioned before, VRS is only enabled during the main view
pass, i.e., the color pass. Therefore, it can only speed up the
color pass, which already appears to take a small portion
of the overall frametime. Moreover, VRS only reduces the
number of fragment shader invocations, which further limits
its potential. This implies that, with VRS, the performance
gain heavily depends on the scene. We observe that SSRand
shadowmap rendering takes the most time. One possible
optimization would be to render shadowmaps once, and
use them for both left and right eye views, as shadowmaps
are independent of the user’s view point.
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Figure 7: Renderpasses measured in the Sponza scene. Other
passes include SSAQ, color grading, and other trivial passes.

Fig. 8 shows the GPU memory consumption for all
configurations. We note that eye tracking introduces a large
memory footprint, approximately 3 GB, which increases
the pressure on caches and contributes to the performance
overhead.

At a first glance, it may appear as if foveated rendering
is not beneficial and the extra overhead of eye tracking
is unjustified. However, as discussed before, we use VRS
to implement foveated rendering, but there may be other
more eficient ways to implement it. Moreover, eye tracking
can be used for realistic personal avatar rendering, and
developers can incorporate special effects or features into
their applications based on the user’s gaze. In other words,
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Figure 8: GPU memory usage.

the overhead of eye tracking can be amortized among
multiple tasks.

5. Related Work

5.1. Virtual/Augmented Reality Systems

The original ILLIXR work [21] conducts a detailed
performance and power analysis of the Virtual/Augmented
Reality system on both desktop and mobile systems and
reveals that almost all components fail to meet their targets
on mobile platforms, and that system-wide optimizations are
imperative. Another study that extends ILLIXR is conducted
by Zhao et al. [41], where they develop a customized
Augmented Reality(AR) system and use it to evaluate their
power-eficient design.

5.2. VR Accelerators

Xie et al. propose domain-specific accelerators that
utilize processing-in-memory to accelerate timewarp [39],
and exploit the data locality between stereo frames to
optimize stereo rendering [38]. Wen et al. profile 3D VR
applications and present an accelerator that optimizes the
post-processing stage of the graphics pipeline [37]. Our
augmented tool can be an open and customizable alternative
to the workloads used in these works.

6. Conclusion and Future Work

In this work, we extend an existing tool, ILLIXR, by
integrating a high-end rendering engine, Filament. This
augmentation allows researchers to render high-quality,
physically-based graphics in ILLIXR, paving the way for
more thorough research of VR graphics. We demonstrate a
use case of this augmented tool by investigating gaze-
tracked foveated rendering. We analyze the overhead of
eye tracking and the performance gains from foveated
rendering.

For future work, ILLIXR can be upgraded to use
the Vulkan API instead of OpenGL, which can improve
performance and consistency of the system. In addition,
integrating faster and more eficient eye-tracking systems
into ILLIXR can be beneficial.
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Appendix

1. Abstract

This Artifact presents the source code of our augmented
tool and instructions to run the benchmarks that are used
in this work.

2. Artifact check-list (meta-information)

e Program: ILLIXR

» Run-time environment: Ubuntu 20.04 Docker Container

« Hardware: Nvidia GPU with Variable Rate Shading
Support with at least 8GB device memory

* Metrics: Frametime, Motion-to-photon latency, frame
breakdown

« Output: Metrics

« Experiments: Three scenes with four configurations each

« How much disk space required (approximately)?:
25GB for Docker image

e How much time is needed to prepare workflow
(approximately)?: 1-2 hours in total to setup Nvidia
Docker Toolkit and pull our image.

e« How much time is needed to complete experiments
(approximately)?: 15-20 minutes

e Publicly available?: Yes

e Archived (provide DOI)? Docker Image and the data
used for graphs: https://doi.org/10.5281/zenodo.8260684

3. Description

3.1. How to access. We provide a Docker image hosted
on Zenodo and Docker Hub that has the source code and
all the dependencies installed in it.

3.2. Hardware dependencies. To run the benchmarks, an

Nvidia GPU with Varible Rate Shading support is required.
At least 8GB of device memory is also required to be able
to run all benchmarks. We used an RTX 2080 GPU to run

our benchmarks.

3.3. Software dependencies. A Linux system with X11
window system is required, Wayland is not tested. Docker
engine and Nvidia Docker Toolkit must be installed in it.
We used an Ubuntu 22.04 system to run our benchmarks.
The augmented ILLIXR system and Filament have a large
set of dependencies, but they are very dificult to install
properly on every system, therefore a Docker container is
mandatory.

4. Installation

Start with installing the Docker engine if you have not
before, and then proceed to install the Nvidia Container
Toolkit. The latter is required so that the Docker container
can access your Nvidia GPU.

You can pull the Docker image from Docker hub using
the command below,

docker pull ystozlu/illixr-docker:iiswc2023

Or, you can download the image from Zenodo, and run
the following command.

docker load -i illixr-filament-docker.tar
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You can check if the image is ready by running
docker image I's -a. You should see an image that takes up
roughly 25GB of space. Before starting a container from this
image, you need to run the following command so that the
Docker container can access your X windowing system.

xhost +local:root

Now you can start a container with the following
command. Make sure you change the image name if you
downloaded from Zenodo.

docker run -it --privileged --name iiswc-docker

-e "DISPLAY=S${DISPLAY}" --hostname iiswc-docker

-v /tmp/.X11-unix:/tmp/.X11-unix

--gpus all ystozlu/illixr-docker:iiswc2023 /bin/bash

Once in the container, check if everything is properly

setup by running vkcube. This should create a small window
with a spinning cube in it.

5. Experiment workflow

While in the container, simply run ./iiswc2023.sh.
This will run the benchmarks one by one, and save the
results in .csv files. The script should take about 15 minutes.

6. Evaluation and expected results

Once the benchmarks finish running, the generated
metrics will be placed in three folders:

Jopt/ILLIXR/iiswc_sponza_results
Jopt/ILLIXR/iiswc_sanmiguel_results
Jopt/ILLIXR/iiswc_bistro_results

You can use the scripts under
Jopt/ILLIXR/metric_scripts to summarize the .csv files.
Note that the numbers you will get will not be same,
maybe not even close, to the numbers we present in the
paper. This is because ILLIXR is not a simulation, but a
real-time workload. Therefore, the numbers will depend on
your hardware. However, you should be able to observe
the insights and trends that we point out in the paper. For
example, when eye tracking is enabled for a given scene,
the frametime and MTP should increase drastically.
Likewise, when foveated rendering is enabled for a given
scene, frametime should decrease, albeit not much. These
observations should be particularly conspicuous for the
Sponza scene.



